A Some preliminary results

We will apply the following two results repeatedly. For a positive definite matrix \(B\),

\[
B = \arg\min_{A > 0} \{ \log |A| + \text{tr}(A^{-1}B) \}.
\]

In addition (Kolda, 2006; Proposition 3.7),

\[
A = B \times_1 C_1 \times_2 \cdots \times_N C_N \iff A_{(n)} = C_n B_{(n)} (C_N \otimes \cdots \otimes C_{n+1} \otimes C_{n-1} \otimes \cdots \otimes C_1)^T.
\]

For the envelope parameterization of \(B = ([\Theta; \Gamma_1, \ldots, \Gamma_m, I_p])\), we have

\[
B_{(m+1)} = \Theta_{(m+1)} (\Gamma_m^T \otimes \cdots \otimes \Gamma_1^T), \quad \text{and} \quad \Theta_{(m+1)} = B_{(m+1)} (\Gamma_m \otimes \cdots \otimes \Gamma_1).
\]

As for \(Y = [Z; \Gamma_1, \ldots, \Gamma_m] \in \mathbb{R}^{r_1 \times \cdots \times r_m}\), we have the following results by treating \(Y\) as \((m+1)\)-th order tensor with \(r_{m+1} = 1\), and treating \(\text{vec}^T(Y)\) as the mode-(\(m+1\)) matricization.

\[
\text{vec}^T(Z) = \text{vec}^T(Y \times_1 \Gamma_1^T \times_2 \cdots \times_m \Gamma_m^T) = \text{vec}^T(Y) (\Gamma_m \otimes \cdots \otimes \Gamma_1),
\]

\[
\text{vec}(Z) = (\Gamma_m^T \otimes \cdots \otimes \Gamma_1^T) \text{vec}(Y).
\]

B Proof for Proposition 1 and 2

We first prove Proposition 1. Then Proposition 2 follows directly from the results of Proposition 1 and the definitions of reducing subspace and Tucker decomposition.
Under the tensor linear model $Y = B\bar{x}_{(m+1)}X + \epsilon$, we can write

$$Y \times_k Q_k = (B\bar{x}_{(m+1)}X) \times_k Q_k + \epsilon \times_k Q_k = (B \times_k Q_k)\bar{x}_{(m+1)}X + \epsilon \times_k Q_k,$$

which implies that $Y \times_k Q_k | X \sim Y \times_k Q_k$ is equivalent to $B \times_k Q_k = 0$.

Similarly, $Y \times_k Q_k \perp \perp Y \times_k P_k | X$ is equivalent to $\epsilon \times_k Q_k \perp \perp \epsilon \times_k P_k$, where the independence of two tensor-valued random variable is defined as independence of their vectorized forms: $\text{vec}(\epsilon \times_k Q_k) \perp \perp \text{vec}(\epsilon \times_k P_k)$. Because of the tensor normal distribution, the independence is equivalent to $\text{cov}\{(\text{vec}(\epsilon \times_k Q_k), \text{vec}(\epsilon \times_k P_k))\} = 0$, and hence to

$$\Sigma_m \otimes \cdots \otimes \Sigma_{k+1} \otimes Q_k \Sigma_k P_k \otimes \Sigma_{k-1} \otimes \cdots \otimes \Sigma_1 = 0.$$

Therefore, we have shown that

$$Y \times_k Q_k \perp \perp Y \times_k P_k | X \iff Q_k \Sigma_k P_k = 0 \iff \Sigma_k = P_k \Sigma_k P_k + Q_k \Sigma_k Q_k.$$

C Proof for Proposition 3

We first show that for subspaces $E = E_m \otimes \cdots \otimes E_1$ and covariances $\Sigma = \Sigma_m \otimes \cdots \otimes \Sigma_1$, where $E_k \subseteq \mathbb{R}^{r_k}$ and $\Sigma_k \in \mathbb{R}^{r_k \times r_k}$, $k = 1, \ldots, m$, the two conditions are equivalent: (1) E reduces Σ; (2) E_k reduces Σ_k for all $k = 1, \ldots, m$.

The statement (2) implies (1) is straightforward. We need to show that (1), $E = E_m \otimes \cdots \otimes E_1$ reduces $\Sigma = \Sigma_m \otimes \cdots \otimes \Sigma_1$, implies (2), E_k reduces Σ_k for all $k = 1, \ldots, m$. By definition, (1) implies that $P_{E_m \otimes \cdots \otimes E_1} (\Sigma_m \otimes \cdots \otimes \Sigma_1)Q_{E_m \otimes \cdots \otimes E_1} = 0$, where $Q_{E_m \otimes \cdots \otimes E_1} = I - P_{E_m \otimes \cdots \otimes E_1} = I - P_{E_m} \otimes \cdots \otimes P_{E_1}$. Expanding this, we see that

$$P_{E_m} \Sigma_m \otimes \cdots \otimes P_{E_1} \Sigma_1 - P_{E_m} \Sigma_m P_{E_m} \otimes \cdots \otimes P_{E_1} \Sigma_1 P_{E_1} = 0.$$

If we right-multiply $P_{E_m} \otimes \cdots \otimes P_{E_2} \otimes I_{r_1}$ to both sides of the above equation, we obtain

$$P_{E_m} \Sigma_m P_{E_m} \otimes \cdots \otimes P_{E_2} \Sigma_2 P_{E_2} \otimes (P_{E_1} \Sigma_1 - P_{E_1} \Sigma_1 P_{E_1}) = 0,$$
which implies that \(P_{\mathcal{E}_1} \Sigma_1 - P_{\mathcal{E}_1} \Sigma_1 P_{\mathcal{E}_1} = 0 \). Since \(P_{\mathcal{E}_1} \Sigma_1 = P_{\mathcal{E}_1} \Sigma_1 (P_{\mathcal{E}_1} + Q_{\mathcal{E}_1}) \), we conclude that \(P_{\mathcal{E}_1} \Sigma_1 Q_{\mathcal{E}_1} = 0 \) and hence \(\mathcal{E}_1 \) reduces \(\Sigma_1 \). Using the similar argument, we can see that \(\mathcal{E}_k \) reduces \(\Sigma_k \), for all \(k = 1, \ldots, m \).

We next show that \(\mathcal{E} = \mathcal{E}_m \otimes \cdots \otimes \mathcal{E}_1 \) contains \(\text{span}(B^\top_{(m+1)}) \) implies \(\mathcal{E}_k \) contains \(\text{span}(B_{(k)}) \).

Let \(G_k \in \mathbb{R}^{r_k \times q_k} \) be semi-orthogonal matrix such that \(\text{span}(G_k) = \text{span}(B_{(k)}) \), then we have Tucker decomposition of \(B \) as \(B = [\eta; G_1, \ldots, G_m, I_p] \) for some \(\eta \in \mathbb{R}^{q_1 \times \cdots \times q_m \times p} \). Therefore we can write \(B^\top_{(m+1)} = (G_m \otimes \cdots \otimes G_1) \eta^\top_{(m+1)} \). Hence \(\mathcal{E} = \mathcal{E}_m \otimes \cdots \otimes \mathcal{E}_1 \) contains \(\text{span}(B^\top_{(m+1)}) \) implies that \(\mathcal{E}_k \) contains \(\text{span}(G_k) = \text{span}(B_{(k)}) \).

D Proof for Lemma 1

Here we aim to show that \(\Sigma_k^{(0)} \), the Kronecker covariance estimator from Manceur and Dutilleul (2013), is a \(\sqrt{n} \)-consistent estimator for \(\Sigma_k \), for all \(k \), if \(\varepsilon_i, i = 1, \ldots, n, \) are i.i.d. from tensor normal distribution with mean 0 and covariances \(\Sigma_1, \ldots, \Sigma_m \).

First we note that the mode-\(k \) matricization \(\varepsilon_{i(k)} \in \mathbb{R}^{r_k \times \prod_{j \neq k} r_j} \), \(i = 1, \ldots, n \), are i.i.d. from a matrix normal distribution with mean 0 and covariances \(\Sigma_k \) (the row covariance matrix) and \(\Delta_k \equiv \Sigma_m \otimes \cdots \otimes \Sigma_{k+1} \otimes \Sigma_{k-1} \otimes \cdots \otimes \Sigma_1 \) (the column covariance matrix). Then following Gupta and Nagar (1999; Chapter 2, Theorem 2.3.5), we have the following second-order moments:

\[
\mathbb{E}(\varepsilon_{i(k)} \varepsilon_{i(k)}^\top) = \Sigma_k \text{tr}(\Delta_k),
\]

where \(\text{tr}(\cdot) \) is the trace operator of matrices.

In the iterative algorithm of obtaining \(\Sigma_k^{(0)} \), the starting value for \(\Sigma_k^{(0)} \) is

\[
\frac{1}{n \prod_{j \neq k} r_j} \sum_{i=1}^{n} \varepsilon_{i(k)} \varepsilon_{i(k)}^\top,
\]

which is thus \(\sqrt{n} \)-consistent for \(\Sigma_k \) up to a scalar difference due to \(\text{tr}(\Delta_k) \). As we discussed in Section 4.1 regarding the identifiability of \(\Sigma_k \)'s, the scalar difference can be resolved after normalizing \(\Sigma^{(0)} = \tau \Sigma_m^{(0)} \otimes \cdots \otimes \Sigma_1^{(0)} \) according to the scalar \(\tau = (n \prod_{j \neq k} r_j)^{-1} \sum_{i=1}^{n} \text{vec}(\varepsilon_i)\{ (\Sigma_m^{(0)})^{-1} \otimes \cdots \otimes (\Sigma_1^{(0)})^{-1} \} \text{vec}^\top(\varepsilon_i) \) at the end of each iteration.
Therefore, after the first iteration, we have obtained \sqrt{n}-consistent estimators $\Sigma_k^{(0)}$ for Σ_k. In the iterations that follow, the updating equations of $\Sigma_k^{(0)}$ for $k = 1, \ldots, m$, are obtained by maximizing the tensor normal likelihood function. Hence it is guaranteed that the final estimators of $\Sigma_k^{(0)}$ from the algorithm are also \sqrt{n}-consistent for Σ_k.

E Proof for Theorem 1

E.1 Consistency of the one-step estimator

From Cook and Zhang (2016; Proposition 6) we know that if \hat{M} and \hat{U} are \sqrt{n}-consistent estimators for $M > 0$ and $U \geq 0$, then the 1D algorithm for minimizing $J_n(G) = \log |G^T \hat{M} G| + \log |G^T (\hat{M} + \hat{U})^{-1} G|$ produce \sqrt{n}-consistent estimator for the projection onto the envelope $E_{\hat{M}}(U)$. We use this result to prove the \sqrt{n}-consistency of $P_n^{o_k}$, noting that $f_k^{s(0)}$ and Algorithm 2 are special instances of J_n and the 1D algorithm.

First $\Sigma_k^{(0)}$, the Kronecker covariance estimator from Manceur and Dutilleul (2013), is \sqrt{n}-consistent estimator for Σ_k. Next, by comparing $f_k^{s(0)}(G_k)$ to $J_n(G)$ we see that $N_k^{(0)} = (n \prod_{j \neq k} r_j)^{-1} \sum_{i=1}^n Y_{i(k)} \Sigma_k^{(0)} Y_{i(k)}^T$ is analogous to $(\hat{M} + \hat{U})$ in $J_n(G)$, where we have defined

$$\Sigma_k^{(0)} = \left((\Sigma_1^{(0)})^{-1} \otimes \cdots \otimes (\Sigma_m^{(0)})^{-1} \otimes (\Sigma_{k-1}^{(0)})^{-1} \otimes \cdots \otimes (\Sigma_k^{(0)})^{-1} \right).$$

Therefore we focus on $N_k^{(0)} - \Sigma_k^{(0)}$, which is analogous to \hat{U} in $J_n(G)$. Recall that $Y_i = B^{(0)} \tilde{x}_{(m+1)} X_i^T + e_i$ and that $\Sigma_k^{(0)}$ is obtained based on e_i as $\Sigma_k^{(0)} = (n \prod_{j \neq k} r_j)^{-1} \sum_{i=1}^n e_i(k) \Sigma_k^{(0)} e_i(k)^T$. Hence,

$$N_k^{(0)} - \Sigma_k^{(0)} = (n \prod_{j \neq k} r_j)^{-1} \sum_{i=1}^n (Y_i - e_i(k)) \Sigma_k^{(0)} (Y_i - e_i(k))^T,$$

where we recognize $Y_i - e_i = B^{(0)} \tilde{x}_{(m+1)} X_i^T$. Define the following “scaled” regression coefficient tensor

$$B^{(k)} = [B; \Sigma_1^{-1/2}, \ldots, \Sigma_k^{-1/2}, I_{r_k}, \Sigma_{k+1}^{-1/2}, \ldots, \Sigma_m^{-1/2}, \Sigma_{X}^{1/2}].$$

Then we see that $N_k^{(0)} - \Sigma_k^{(0)} = (\prod_{j \neq k} r_j)^{-1} \hat{B}^{(k)}(\hat{B}^{(k)})^T$ for

$$\hat{B}^{(k)} = [B; (\Sigma_1^{(0)})^{-1/2}, \ldots, (\Sigma_k^{(0)})^{-1/2}, I_{r_k}, (\Sigma_{k+1}^{(0)})^{-1/2}, \ldots, (\Sigma_m^{(0)})^{-1/2}, \hat{\Sigma}_{X}^{1/2}].$$
where $\hat{\Sigma}_X = n^{-1} \sum_{i=1}^{n} X_i X_i^T$. We claim that $N_k^{(0)} - \Sigma_k^{(0)}$ is a \sqrt{n}-consistent estimator for $B_{(k)}^{(k)} (B_{(k)}^{(k)})^T$ up to an upfront scaling constant, $(\prod_{j \neq k} r_j)^{-1}$, based on the fact that the sample matrices $\Sigma_j^{(0)}$ and $\hat{\Sigma}_X$ are asymptotically independent of the OLS estimator $B^{(0)}$. By Cook and Zhang (2016; Proposition 6) we now see that Pos_k is a \sqrt{n}-consistent estimator for $\mathcal{E}_{\Sigma_k} (B_{(k)}^{(k)})^T = \mathcal{E}_{\Sigma_k} (B_{(k)}^{(k)})$. By definition of $B_{(k)}^{(k)}$ and the property of Tucker operator, we have

$$B_{(k)}^{(k)} = B_{(k)} (\Sigma_1^{-1/2} \otimes \cdots \otimes \Sigma_{k-1}^{-1/2} \otimes \Sigma_{k+1}^{-1/2} \otimes \cdots \otimes \Sigma_m^{-1/2} \otimes \Sigma_1^{1/2})$$

which implies $\text{span}(B_{(k)}^{(k)}) = \text{span}(B_{(k)})$, and hence $\mathcal{E}_{\Sigma_k} (B_{(k)}^{(k)}) = \mathcal{E}_{\Sigma_k} (B_{(k)})$.

So far we have shown that Pos_k is a \sqrt{n}-consistent estimator for the projection onto the envelope $\mathcal{E}_{\Sigma_k} (B_{(k)})$. The second part of the proposition is based on the \sqrt{n}-consistency of $B^{(0)} = B_{\text{OLS}}$ and Pos_k, $k = 1, \ldots, m$, and the definition of Pos:

$$\text{Pos} = [B^{(0)}, \text{Pos}_1, \ldots, \text{Pos}_m, I_p].$$

E.2 Consistency of the likelihood-based estimator

The \sqrt{n}-consistency of the likelihood-based estimator from minimizing $\ell(B, \Sigma)$ relies on Shapiro’s (1986) results on the asymptotics of over-parameterized structural models. The proof is parallel to the proof of Proposition 4 in Cook and Zhang (2015) and is thus omitted.

F Proof for Theorem 2 (including derivations for the updating equations in Section 4.1)

Following the discussion in Section 5.2 of the paper, the iterative estimator is not guaranteed to be necessarily the maximum likelihood estimator (MLE), due to the existence of multiple local minima. However, it is asymptotically equivalent to the MLE. This is because, under the tensor normal distribution, the initialization of Algorithm 1 is built upon \sqrt{n}-consistent estimators, while each parameter in Algorithm 1 is iteratively obtained along the partial derivative of
the log-likelihood. From the classical theory of point estimation, we know that one Newton-Raphson step from the starting value provides an estimator that is asymptotically equivalent to the MLE even in the presence of multiple local minima (Lehmann and Casella, 1998, p. 454). Consequently, to prove Theorem 2, we only focus on the asymptotic properties of the theoretical MLE.

Specifically, we need to derive all the objective functions and updating equations in Section 4.1 from the negative normal log-likelihood function:

$$
\ell(B, \Sigma) = \log|\Sigma| + n^{-1} \sum_{i=1}^{n} \{\text{vec}(Y_i) - B_{(m+1)}^t X_i\} \Sigma^{-1} \{\text{vec}(Y_i) - B_{(m+1)}^t X_i\},
$$

which is to be optimized over \(\Sigma = \Sigma(\{\Gamma_k, \Omega_k, \Omega_{0k}\}_{k=1}^{m})\) and \(B = \text{B}(\{\Gamma_k\}_{k=1}^{m}, \Theta)\) for semi-orthogonal \(\Gamma_k \in \mathbb{R}^{r_k \times u_k}\), positive definite and symmetric \(\Omega_k \in \mathbb{S}^{u_k}\) and \(\Omega_{0k} \in \mathbb{S}^{r_k - u_k}\), and \(\Theta \in \mathbb{R}^{u_m \times \cdots \times u_1 \times p}\). Since it is impossible to obtain explicit forms of MLEs, we show that the series of equations used in Algorithm 1 come from partially minimizing \(\ell\) with specified parameters fixed. We summarize our findings in the following statements and give detailed derivations immediately after. Note that the updating equations in Section 4.1 is obtained from the following equations by superscripting \((t)\) on the left hand sides and superscripting \((t+1)\) on the right hand sides of equations.

Under the tensor normal assumption, the MLEs satisfy the following equations,

$$
\Theta = Z \times_{(m+1)} \{(XX^t)^{-1}X\},
$$

$$
B = Y \times_1 \mathbf{P}_{\Gamma_1} \times_2 \cdots \times_m \mathbf{P}_{\Gamma_m} \times_{(m+1)} \{(XX^t)^{-1}X\},
$$

$$
\Omega_k = \frac{1}{n \prod_{j \neq k} r_j} \sum_{i=1}^{n} s_i(k) \{(\Omega_m^{-1} \otimes \cdots \otimes \Omega_{k+1}^{-1} \otimes \Omega_{k-1}^{-1} \otimes \cdots \otimes \Omega_1^{-1}) s_i^{T}(k)\},
$$

$$
\Omega_{0k} = \frac{1}{n \prod_{j \neq k} r_j} \sum_{i=1}^{n} \Gamma_{0k}^{T} Y_i(k) \{(\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_{k+1}^{-1} \otimes \Sigma_{k-1}^{-1} \otimes \cdots \otimes \Sigma_1^{-1}) Y_i^{T}(k)\} \Gamma_{0k},
$$

where the data tensors \(Z_i\) and \(Z\) are defined according to \(Z = [Y; \Gamma_1^T, \ldots, \Gamma_m^T]\), and the residual tensor \(s_i = Z_i - \Theta X_{(m+1)} X_i\). Under the tensor normal assumption, the MLE of \(\{\Gamma_k\}_{k=1}^{m}\) can be
obtained as minimizer of the following objective function

\[f_k(\Gamma_k) = \log |\Gamma_k^\top M_k \Gamma_k| + \log |\Gamma_k^\top N_k^{-1} \Gamma_k|, \]

where \(M_k, N_k\) are defined as

\[M_k = (n \prod_{j \neq k} r_j)^{-1} \sum_{i=1}^n \delta_i(k) (\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_{k+1}^{-1} \otimes \cdots \otimes \Sigma_1^{-1}) \delta_i(k), \]

\[N_k = (n \prod_{j \neq k} r_j)^{-1} \sum_{i=1}^n Y_i(k) (\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_{k+1}^{-1} \otimes \cdots \otimes \Sigma_1^{-1}) Y_i^\top(k), \]

where \(\delta_i(k)\) is the \(k\)-th matricization of the residual \(\delta_i\),

\[\delta_i = Y_i - \mathbb{Y} \times_1 \mathbb{P}_{\Gamma_1} \times_2 \cdots \times_{(k-1)} \mathbb{P}_{\Gamma_{k-1}} \times_{(k+1)} \mathbb{P}_{\Gamma_{k+1}} \times_{k+2} \cdots \times_m \mathbb{P}_{\Gamma_m} x_{(m+1)} \mathbb{X}_i \{(XX^\top)^{-1} X\} = Y_i - [\mathbf{\bar{B}}_{\text{OLS}}, \mathbb{P}_{\Gamma_1}, \ldots, \mathbb{P}_{\Gamma_{k-1}}, \mathbb{I}_{\Gamma_k}, \mathbb{P}_{\Gamma_{k+1}}, \ldots, \mathbb{P}_{\Gamma_m}, \mathbb{I}_p] x_{(m+1)} \mathbb{X}_i. \]

F.1 Estimation of other parameters given \(\{\Gamma_k\}_{k=1}^m \)

We first decompose the log \(|\Sigma|\) term as

\[\log |\Sigma| = \log |\Sigma_m \otimes \cdots \otimes \Sigma_1| = \sum_{k=1}^m \{ (\prod_{j \neq k} r_k) \log |\Sigma_k| \} = \sum_{k=1}^m \{ (\prod_{j \neq k} r_k) \{ \log |\Omega_k| + \log |\Omega_{0k}| \} \}, \]

which is essentially \(2m\) additive terms of \(\log |\Omega_k|\) and \(\log |\Omega_{0k}|\). The conditional log-likelihood can be separated into two independent parts regarding \(\mathbb{P}(Y)X\) and \(\mathbb{Q}(Y) \sim \mathbb{Q}(Y)|X\). Studying the regression of \(\mathbb{P}(Y)\) on \(X\) is essentially studying that of \(Z = [\mathbb{Y}; \Gamma_1, \ldots, \Gamma_m] \) on \(X\).

Following the discussion in the paper, we have the MLEs for \(\Theta, \mathbf{B}\) and \(\{\Omega_k\}_{k=1}^m\) given \(\{\Gamma_k\}_{k=1}^m\).

We next derive the MLE equations for \(\{\Omega_k\}_{k=1}^m\) with given \(\{\Gamma_k\}_{k=1}^m\). Without loss of generality, we write down our derivations with respect to \(\Omega_{01}\). We decompose \(\Sigma^{-1} = \Delta_1 + \Delta_{01}\), according to \(\Omega_1\) and \(\Omega_{01}\) in the decomposition of \(\Sigma^{-1} = \Gamma_1 \Omega_1^{-1} \Gamma_1^\top + \Gamma_{01} \Omega_{01}^{-1} \Gamma_{01}^\top\)

\[\Delta_1 = \Sigma_m^{-1} \otimes \cdots \otimes \Sigma_1^{-1} \otimes (\Gamma_1^\top \Omega_1^{-1} \Gamma_1) \]

\[= (\Gamma_m^\top \Omega_m^{-1} \Gamma_m + \Gamma_{0m}^\top \Omega_{0m}^{-1} \Gamma_{0m}) \otimes \cdots \otimes (\Gamma_2^\top \Omega_2^{-1} \Gamma_2 + \Gamma_{02}^\top \Omega_{02}^{-1} \Gamma_{02}) \otimes (\Gamma_1^\top \Omega_1^{-1} \Gamma_1), \]

\[\Delta_{01} = \Sigma_m^{-1} \otimes \cdots \otimes \Sigma_2^{-1} \otimes (\Gamma_{01}^\top \Omega_{01}^{-1} \Gamma_{01}) \]

\[= (\Gamma_m^\top \Omega_m^{-1} \Gamma_m + \Gamma_{0m}^\top \Omega_{0m}^{-1} \Gamma_{0m}) \otimes \cdots \otimes (\Gamma_2^\top \Omega_2^{-1} \Gamma_2 + \Gamma_{02}^\top \Omega_{02}^{-1} \Gamma_{02}) \otimes (\Gamma_{01}^\top \Omega_{01}^{-1} \Gamma_{01}). \]
Hence, we can write the negative partial log-likelihood for solving Ω_{01} as

$$
\ell(\Omega_{01} | \{ \Gamma_k \}_{k=1}^m) = \left(\prod_{j=1}^m r_j \right) \log |\Omega_{01}| + n^{-1} \sum_{i=1}^n \{ \text{vec}(Y_i) - B^{T}_{(m+1)} X_i \}^T \Delta_{01} \{ \text{vec}(Y_i) - B^{T}_{(m+1)} X_i \}.
$$

Recall that $B_{(m+1)} = \eta_{(m+1)} (\Gamma^T_m \otimes \cdots \otimes \Gamma^T_1)$, hence $\Delta_{01} B_{(m+1)}^T = 0$ as a result of $\Gamma^T_0 \Omega_{01}^{-1} \Gamma^T_0 \cdot \Gamma_1 = 0$. Therefore,

$$
\ell(\Omega_{01} | \{ \Gamma_k \}_{k=1}^m) = \left(\prod_{j=1}^m r_j \right) \log |\Omega_{01}| + n^{-1} \sum_{i=1}^n \text{vec}^T(Y_i) \Delta_{01} \text{vec}(Y_i).
$$

The quadratic form $\text{vec}^T(Y_i) \Delta_{01} \text{vec}(Y_i)$ equals the squared norm of $\text{vec}(Y_i) \times_1 \Omega_{01}^{-1/2} \Gamma^T_0 \times_2 \Sigma_2^{-1/2} \times_3 \cdots \times_m \Sigma_m^{-1/2}) = \text{vec}(V_i)$. By definition of tensor norm, $||V_i||^2 = ||\text{vec}(V_i)||^2 = ||V_{i(1)}||^2_F = \text{tr}(V_{i(1)}^T V_{i(1)})$, where $V_{i(1)}$ is the mode-1 matricization of V_i:

$$
V_{i(1)} = (\Omega_{01}^{-1/2} \Gamma^T_0) Y_{i(1)} \left(\Sigma_m^{-1/2} \otimes \cdots \otimes \Sigma_2^{-1/2} \right).
$$

Hence

$$
\text{tr}(V_{i(1)}^T V_{i(1)}) = \text{tr}(V_{i(1)} V_{i(1)}^T) = \text{tr} \left\{ \Omega_{01}^{-1} \Gamma^T_0 \cdot Y_{i(1)} \left(\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_2^{-1} \right) \cdot Y_{i(1)}^T \Gamma_0 \right\}.
$$

The partial conditional log-likelihood becomes

$$
\ell(\Omega_{01} | \{ \Gamma_k \}_{k=1}^m) = \left(\prod_{j=1}^m r_j \right) \log |\Omega_{01}| + n^{-1} \sum_{i=1}^n \text{tr} \left(V_{i(1)}^T V_{i(1)} \right)
$$

$$
= \left(\prod_{j=1}^m r_j \right) \log |\Omega_{01}| + n^{-1} \text{tr} \left[\Omega_{01}^{-1} \Gamma^T_0 \cdot Y_{i(1)} \left(\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_2^{-1} \right) \cdot Y_{i(1)}^T \Gamma_0 \right],
$$

which lead to the following equations for iteratively solving Ω_{01}.

$$
\Omega_{01} = \left(n \prod_{j=1}^m r_j \right)^{-1} \sum_{i=1}^n \Gamma^T_0 \cdot Y_{i(1)} \left(\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_2^{-1} \right) \cdot Y_{i(1)}^T \Gamma_0,
$$

where $\Sigma_k = \Gamma_k \Omega_k \Gamma_k^T + \Gamma_0 \Omega_0 \Gamma_0^T$ for $k = 1, \ldots, m$. It is then easy to obtain the following result, for any k,

$$
\Omega_{0k} = \left(n \prod_{j=k}^m r_j \right)^{-1} \sum_{i=1}^n \Gamma^T_0 \cdot Y_{i(k)} \left(\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_{k+1}^{-1} \otimes \Sigma_{k-1}^{-1} \otimes \cdots \otimes \Sigma_1^{-1} \right) \cdot Y_{i(k)}^T \Gamma_0.
$$
F.2 Estimation of Γ_1 given \(\{\Gamma_k, \Omega_k, \Omega_{0k}\}_{k=2}^m\)

Treating the other parameters \(\{\Gamma_k, \Omega_k, \Omega_{0k}\}_{k=2}^m\) as fixed constants, we write \(\mathbf{B} = \mathbf{B}(\Gamma_1)\) and \(\Sigma = \Sigma(\Gamma_1, \Omega_1(\Gamma_1), \Omega_{01}(\Gamma_1))\) as functions of \(\Gamma_1\). We then plug them into the likelihood \(\ell(\mathbf{B}, \Sigma)\) to partially optimize over \(\Omega_1\) and \(\Omega_{01}\) analytically, and then the objective function for optimizing over \(\Gamma_1 \in \mathbb{R}^{r_1 \times u_1}\) as follows.

First, ignoring all the fixed constants, the log-determinant term in \(\ell(\mathbf{B}, \Sigma)\) becomes

\[
\log |\Sigma| \simeq (\prod_{j=2}^m r_j) \{ \log |\Omega_1(\Gamma_1)| + \log |\Omega_{01}(\Gamma_1)| \}.
\]

Similar to the previous section, we can decompose \(\Sigma^{-1} = \Sigma_m^{-1} \otimes \cdots \otimes \Sigma_1^{-1}\) into two parts according to the decomposition \(\Sigma^{-1} = \Gamma_1 \Omega_1^{-1} \Gamma_1^T + \Gamma_{01} \Omega_{01}^{-1} \Gamma_{01}^T\). Then we can write

\[
\sum_{i=1}^n \{ \text{vec}(\mathbf{Y}_i) - \mathbf{B}_{(m+1)}^T \mathbf{X}_i \} \Sigma^{-1} \{ \text{vec}(\mathbf{Y}_i) - \mathbf{B}_{(m+1)}^T \mathbf{X}_i \}
\]

\[
= \sum_{i=1}^n \text{tr} \left\{ \Omega_{01}^{-1} \Gamma_1^T \mathbf{Y}_{i(1)} (\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_2^{-1}) \mathbf{Y}_{i(1)}^T \right\} + \sum_{i=1}^n \text{tr} \left\{ \Omega_1^{-1} \Gamma_1^T \mathbf{e}_{i(1)} (\Sigma_m^{-1} \otimes \cdots \otimes \Sigma_2^{-1}) \mathbf{e}_{i(1)}^T \right\},
\]

where \(\mathbf{e}_{i} = \mathbf{e}_i(\Gamma_1) = \mathbf{Y}_i - \mathbf{B}(\Gamma_1) \times_{(m+1)} \mathbf{X}_i^T\) and \(\mathbf{B}(\Gamma_1) = \mathbb{Y} \times_1 \mathbf{P}_1 \times_2 \cdots \times_m \mathbf{P}_m \times_{(m+1)}\{(XX^T)^{-1}\}^T\). Then,

\[
\Gamma_1^T \mathbf{e}_{i(1)} = \left(\mathbf{Y}_i \times_1 \Gamma_1^T - \mathbb{Y} \times_1 \Gamma_1^T \mathbf{P}_1 \times_2 \cdots \times_m \mathbf{P}_m \times_{(m+1)} \mathbf{X}_i \{(XX^T)^{-1}\}^T \right)_{(1)}
\]

\[
= \left(\mathbf{Y}_i \times_1 \Gamma_1^T - \mathbb{Y} \times_1 \Gamma_1^T \mathbf{P}_1 \times_2 \cdots \times_m \mathbf{P}_m \times_{(m+1)} \mathbf{X}_i \{(XX^T)^{-1}\}^T \right)_{(1)}
\]

\[
= \left\{ \mathbf{Y}_i - \mathbb{Y} \times_1 \mathbf{I}_{r_1} \times_2 \cdots \times_m \mathbf{P}_m \times_{(m+1)} \mathbf{X}_i \{(XX^T)^{-1}\} \right\} \times_1 \Gamma_1^T_{(1)}
\]

\[
= \Gamma_1^T \delta_{i(1)},
\]

where \(\delta_{i} = \left(\mathbf{Y}_i - \mathbb{Y} \times_1 \mathbf{I}_{r_1} \times_2 \cdots \times_m \mathbf{P}_m \times_{(m+1)} \mathbf{X}_i \{(XX^T)^{-1}\} \right)\) does not involve \(\Gamma_1\). The partially maximized negative log-likelihood now becomes
\[
\ell(B, \Sigma) = \log |\Sigma| + n^{-1} \sum_{i=1}^{n} \{\vec{\text{vec}}(Y_i) - B_{(m+1)}^t X_i\} \Sigma^{-1} \{\vec{\text{vec}}(Y_i) - B_{(m+1)}^t X_i\}
\]

\[
\simeq \left(\prod_{j=2}^{m} r_j \right) \left\{ \log |\Omega_1(\Gamma_1)| + \log |\Omega_{01}(\Gamma_1)| \right\} + n^{-1} \sum_{i=1}^{n} \text{tr} \left\{ \Omega_{01}^{-1} \Gamma_{01}^t Y_i(1) (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) Y_i(1)^t \Gamma_{01} \right\} + n^{-1} \sum_{i=1}^{n} \text{tr} \left\{ \Omega_{1}^{-1} \Gamma_{1}^t \delta_{i(1)} (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) \delta_{i(1)}^t \Gamma_{1} \right\},
\]

which leads to partial MLE of \(\Omega_1(\Gamma_1) \) and \(\Omega_{01}(\Gamma_1) \) as

\[
\Omega_1(\Gamma_1) = (n \prod_{j=2}^{m} r_j)^{-1} \sum_{i=1}^{n} \Gamma_{i(1)}^t \delta_{i(1)} (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) \delta_{i(1)}^t \Gamma_{1},
\]

\[
\Omega_{01}(\Gamma_1) = (n \prod_{j=2}^{m} r_j)^{-1} \sum_{i=1}^{n} \Gamma_{01}^t Y_i(1) (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) Y_i(1)^t \Gamma_{01}.
\]

Then, substitute these back to \(\ell(B, \Sigma) \) to get the likelihood-based objective function for \(\Gamma_1 \):

\[
\Gamma_n(\Gamma_1) = \log |(n \prod_{j=2}^{m} r_j)^{-1} \sum_{i=1}^{n} \Gamma_{i(1)}^t \delta_{i(1)} (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) \delta_{i(1)}^t \Gamma_{1}| + \log |(n \prod_{j=2}^{m} r_j)^{-1} \sum_{i=1}^{n} \Gamma_{01}^t Y_i(1) (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) Y_i(1)^t \Gamma_{01}|
\]

\[
\simeq \log |\Gamma_{1}^t M_1 \Gamma_{1}| + \log |\Gamma_{1}^t N_1^t \Gamma_{1}|,
\]

where \(M_1 = (n \prod_{j=2}^{m} r_j)^{-1} \sum_{i=1}^{n} \delta_{i(1)} (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) \delta_{i(1)}^t \) and \(N_1 = (n \prod_{j=2}^{m} r_j)^{-1} \sum_{i=1}^{n} Y_i(1) (\Sigma_{m}^{-1} \otimes \cdots \otimes \Sigma_{2}^{-1}) Y_i(1)^t \). The last step of the above equations come from the fact that \(\log |\Gamma_{01}^t A \Gamma_{01}| \approx \log |\Gamma_{1}^t A^{-1} \Gamma_{1}| \) for any positive definite symmetric matrix \(A \).

G Proof for Theorem 3

From the proof of Theorem 2, we have seen that \(\hat{B}_F = [\hat{B}_{OLS}; P_{1,1}, \ldots, P_{m,1}, I_p] \), where \(P_{1,k} \), \(k = 1, \ldots, m \), are all true projections onto the envelopes (i.e. population values). Then \(\text{vec}(\hat{B}_F) = (I_p \otimes \hat{P}_{m,1} \otimes \cdots \otimes \hat{P}_{k,1}) \) \(\text{vec}(\hat{B}_{OLS}) := P_{1,1} \cdot \text{vec}(\hat{B}_{OLS}) \). The OLS estimator \(\text{vec}(\hat{B}_{OLS}) \) is \(\sqrt{n} \)-consistent and asymptotically normal with mean zero covariance equals to \(U_{OLS} = \)
\(\Sigma^{-1} \otimes \Sigma \). Since \(P_t = I_t \otimes P_{\Gamma_m} \otimes \cdots \otimes P_{\Gamma_1} \) is fixed as population truth, we have proven that the envelope estimator \(\hat{B}_\Gamma \) is \(\sqrt{n} \)-consistent and asymptotically normal with mean zero covariance

\[U_{\Gamma} = P_t U_{\text{OLS}} P_t = \Sigma^{-1}_t \otimes P_{\Gamma_m} \Sigma_{m} P_{\Gamma_m} \otimes \cdots \otimes P_{\Gamma_1} \Sigma_{1} P_{\Gamma_1}. \]

H Proof for Theorem 4

Recall that the parameter vectors involved in this Theorem are:

\[
\begin{align*}
 \mathbf{h} &= \left(\begin{array}{c} h_1 \\ h_2 \end{array} \right) = \left(\begin{array}{c} \text{vec}(\mathbf{B}) \\ \text{vech}(\Sigma) \end{array} \right), \\
 \phi &= \left(\begin{array}{c} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_{m+1} \end{array} \right) = \left(\begin{array}{c} \text{vec}(\mathbf{B}) \\ \text{vech}(\Sigma_1) \\ \vdots \\ \text{vech}(\Sigma_m) \end{array} \right), \\
 \xi &= \left(\begin{array}{c} \xi_1 \\ \vdots \\ \xi_{3m+1} \end{array} \right),
\end{align*}
\]

where \(\xi_1 = \text{vec}(\Theta) \), \(\{\xi_j\}_{j=2}^{m+1} = \{\text{vec}(\Gamma_k)\}_{k=1}^{m} \), \(\{\xi_j\}_{j=m+2}^{2m+1} = \{\text{vech}(\Omega_k)\}_{k=1}^{m} \), \(\{\xi_j\}_{j=2m+2}^{3m+1} = \{\text{vech}(\Omega_{0k})\}_{k=1}^{m} \). The length of vectors are monotonically decreasing from \(\mathbf{h} \) to \(\phi \) and then to \(\xi \), because they corresponding to three nested model assumptions: (M1) \(\mathbf{h} \) corresponding to the unrestricted, vectorized linear regression model, or the OLS model; (M2) \(\phi \) is from the Kronecker covariance assumption, so letting \(\mathbf{h} = \mathbf{h} (\phi) \) is essentially imposing the Kronecker matrix structure that \(\Sigma = \Sigma_m \otimes \cdots \otimes \Sigma_1 \); (M3) \(\xi \) is based on envelope assumptions of \(\mathcal{E}_{\Sigma_k}(\mathbf{B}_{(k)}) \), \(k = 1, \ldots, m \).

From Theorem 2, we know that \(\mathbf{h}^{(\infty)} = \mathbf{h}(\phi^{(\infty)}) = \mathbf{h}(\xi^{(\infty)}) \) is the MLE under the envelope assumption, i.e. model assumption (M3). Also, \(\mathbf{h}^{(0)} = \mathbf{h}(\phi^{(0)}) \) contains the OLS estimator and the Kronecker covariance estimator from Maneur and Dutilleul (2013). Hence it is the MLE under tensor normal assumption, i.e. model assumption (M2). Since \(\mathbf{h} = \mathbf{h}(\phi) = \mathbf{h}(\xi) \) is overparameterized, from Shapiro’s (1986) we see the following results: \(\sqrt{n}(\mathbf{h}^{(0)} - \mathbf{h}_{\text{True}}) \to N(0, \mathbf{V}_{h0}) \) and \(\sqrt{n}(\mathbf{h}^{(\infty)} - \mathbf{h}_{\text{True}}) \to N(0, \mathbf{V}_{h\infty}) \), where \(\mathbf{V}_{h0} = \mathbf{H}(\mathbf{H}^T \mathbf{J}_h \mathbf{H})^+ \mathbf{H}^T \), \(\mathbf{V}_{h\infty} = \mathbf{K}^T (\mathbf{K} \mathbf{J}_h) \mathbf{K}^T \) and the gradient matrices \(\mathbf{H} = \partial \mathbf{h}(\phi) / \partial \phi \) and \(\mathbf{K} = \partial \mathbf{h}(\xi) / \partial \xi \). Moreover, the Fisher information matrix \(\mathbf{J}_h \) has the same form as in the usual vector-response linear regression model,

\[
\mathbf{J}_h = \begin{pmatrix} \Sigma_X \otimes \Sigma^{-1} & 0 \\ 0 & \frac{1}{2} \mathbb{E}_d^T (\Sigma^{-1} \otimes \Sigma^{-1}) \mathbb{E}_d \end{pmatrix},
\]
where the expansion matrix $E_d \in \mathbb{R}^{d^2 \times d(d+1)/2}$ has the corresponding dimension $d = \prod_{k=1}^m r_k$. Then,

$$H(H^T J_h H)^{1/2} H^T = J_h^{-1/2} \cdot J_h^1 H(J_h^{1/2} J_h^{1/2} H)^{1/2} H^T J_h^{1/2} \cdot J_h^{-1/2} = J_h^{-1/2} P J_h^{1/2} H J_h^{1/2} ,$$

and similarly, $K(K^T J_h K)^{1/2} K^T = J_h^{-1/2} P J_h^{1/2} K J_h^{-1/2}$. By chain rule, we can write

$$K = \partial h(\xi)/\partial \xi = \partial h(\phi)/\partial \phi \cdot \partial \phi(\xi)/\partial \xi = H \cdot \partial \phi(\xi)/\partial \xi .$$

Therefore $\text{span}(K) \subseteq \text{span}(H)$ and $\text{span}(J_h^{1/2} K) \subseteq \text{span}(J_h^{1/2} H)$, which implies that $P J_h^{1/2} K = P J_h^{1/2} H P J_h^{1/2} K$. Finally, we have arrived at

$$V_{h0} - V_{h\infty} = H(H^T J_h H)^{1/2} H^T - K(K^T J_h K)^{1/2} K^T$$

$$= J_h^{-1/2} P J_h^{1/2} H J_h^{1/2} - J_h^{-1/2} P J_h^{1/2} K J_h^{-1/2}$$

$$= J_h^{-1/2} \left(P J_h^{1/2} H - P J_h^{1/2} K \right) J_h^{-1/2}$$

$$= J_h^{-1/2} \left(P J_h^{1/2} H - P J_h^{1/2} H P J_h^{1/2} K \right) J_h^{-1/2}$$

$$= J_h^{-1/2} P J_h^{1/2} H Q J_h^{1/2} K J_h^{-1/2} \geq 0 .$$

So far, we have proved the main part of the Proposition 6. We next provide details about the gradient matrices H and K. First of all, since $h_1 = \phi_1 = \text{vec}(B)$, we have

$$H = \begin{bmatrix} I_p \prod_{j=1}^m r_k & 0 & \ldots & 0 \\ 0 & \frac{\partial \text{vech}(\Sigma)}{\partial \text{vech}(\Sigma_1)} & \ldots & \frac{\partial \text{vech}(\Sigma)}{\partial \text{vech}(\Sigma_m)} \end{bmatrix} . \quad (H1)$$

For a symmetric matrix $A \in \mathbb{R}^{a \times a}$, $\text{vech}(A) = C_a \text{vec}(A)$ and $\text{vec}(A) = E_a \text{vech}(A)$, where $C_a \in \mathbb{R}^{a(a+1)/2 \times a^2}$ is the contraction matrix and $E_a \in \mathbb{R}^{a^2 \times (a+1)/2}$ is the extraction matrix. Therefore,

$$\frac{\partial \text{vech}(\Sigma)}{\partial \text{vech}(\Sigma_k)} = C_{\prod_{j=1}^m r_j} \frac{\partial \text{vech}(\Sigma)}{\partial \text{vech}(\Sigma_k)} E_{rk} , \quad k = 1, \ldots, m .$$

We then use the Kronecker structure $\Sigma = \Sigma_m \otimes \cdots \otimes \Sigma_1$ to calculate $\frac{\partial \text{vec}(\Sigma)}{\partial \text{vec}(\Sigma_k)}$. For $k = 1$ and $k = m$, we can use the formulas from Fackler (2005) for the derivatives of $\text{vec}(A \otimes B)$ over $\text{vec}(A)$ and over $\text{vec}(B)$. For $2 \leq k \leq m - 1$, there is no compact way of writing down the matrix form but elementwise derivatives, which is straightforward but non-trivial.
Thus, where the zeros are because of \(B \) does not depend on \(\Omega_k \) or \(\Omega_{0k} \). We re-write \(\text{vec}(B) \) as

\[
\text{vec}(B) = \text{vec}(B^\top_{(m+1)}) = \text{vec}\left(\left(\Gamma_m \otimes \cdots \otimes \Gamma_1 \right) \Theta^\top_{(m+1)} \right)
\]

\[
= (I_p \otimes \Gamma_m \otimes \cdots \otimes \Gamma_1) \text{vec}(\Theta^\top_{(m+1)})
\]

\[
= (I_p \otimes \Gamma_m \otimes \cdots \otimes \Gamma_1) \text{vec}(\Theta).
\]

Thus,

\[
\frac{\partial \text{vec}(B)}{\partial \text{vec}(\Theta)} = (I_p \otimes \Gamma_m \otimes \cdots \otimes \Gamma_1).
\] (H4)

We next introduce the notation of re-arranging the vectorizations of a mode-\(N \) tensor \(T \in \mathbb{R}^{d_1 \times \cdots \times d_N} \): squared constant matrix \(\Pi_n^T \) satisfies: \(\text{vec}(T) = \Pi_n^T \text{vec}(T_{(n)}) \). Therefore, \(\text{vec}(B) = \Pi_k^B \text{vec}(B_{(k)}) \) and hence

\[
\text{vec}(B) = \Pi_k^B \text{vec}\left(\Gamma_k \Theta_{(k)} \left(\Gamma_m^\top \otimes \cdots \otimes \Gamma_{k+1}^\top \otimes \Gamma_{k-1}^\top \otimes \cdots \otimes \Gamma_1^\top \right) \right)
\]

\[
= \Pi_k^B \left(\left(\Gamma_m \otimes \cdots \otimes \Gamma_{k+1} \otimes \Gamma_{k-1} \otimes \cdots \otimes \Gamma_1 \right) \Theta_{(k)}^\top \otimes I_r \right) \text{vec}(\Gamma_k),
\]

\[
\frac{\partial \text{vec}(B)}{\partial \text{vec}(\Gamma_k)} = \Pi_k^B \left(\left(\Gamma_m \otimes \cdots \otimes \Gamma_{k+1} \otimes \Gamma_{k-1} \otimes \cdots \otimes \Gamma_1 \right) \Theta_{(k)}^\top \otimes I_r \right).
\] (H5)

Finally for \(\Sigma_k = \Gamma_k \Theta_k \Gamma_k^\top + \Gamma_{0k} \Theta_{0k} \Gamma_{0k}^\top \), we have

\[
\frac{\partial \text{vech}(\Sigma_k)}{\partial \xi} = \left(\begin{array}{cccc}
0 & \cdots & 0 & \frac{\partial \text{vech}(\Sigma_k)}{\partial \text{vech}(\Gamma_k)}
\end{array} \right)
\]

\[
= \left(\begin{array}{cccc}
0 & \cdots & 0 & 0
\end{array} \right).
\] (H6)
where the three nonzero elements are, (analogous to Cook et al. (2010)),

\[
\begin{align*}
\frac{\partial \vech(\Sigma_k)}{\partial \vec(\Gamma_k)} &= 2C_r \Gamma_k \Omega_k \otimes I_k - \Gamma_k \otimes \Gamma_0 \Omega_0 \Gamma_0^\top, \\
\frac{\partial \vech(\Sigma_k)}{\partial \vech(\Omega_k)} &= C_r (\Gamma_k \otimes \Gamma_k) E_{u_k}, \\
\frac{\partial \vech(\Sigma_k)}{\partial \vech(\Omega_0)} &= C_r (\Gamma_0 \otimes \Gamma_0) E_{r_{k-u_k}}.
\end{align*}
\]

Finally the explicit gradient matrices \(H \) is obtained by plugging each blocks (H3)–(H6) into (H1); similarly, the explicit gradient matrices \(K \) is obtained by plugging each blocks (H3)–(H6) into (H2). We have thus completed the proof of this theorem.

Additional References

