Lucas Tree Models

Financial Economics II

Yang-Ho Park
Consider an economy with a representative consumer with preferences described by $E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$ where $u(c_t) = \ln(c_t + \gamma)$ where $\gamma \geq 0$ and c_t denotes consumption of the fruit in period t. The sole source of the single good is an everlasting tree that produces d_t units of the consumption good in period t. The dividend process d_t is Markov, with $\text{prob}\{d_{t+1} \leq d' \mid d_t = d\} = F(d', d)$. Assume the conditional density $f(d', d)$ of F exists. There are competitive markets in the title of trees and in state-contingent claims. Let p_t be the price at t of a title to all future dividends from the tree.

(a) Prove that the equilibrium price p_t satisfies

$$p_t = (d_t + \gamma) \sum_{j=1}^{\infty} \beta^j E_t \left(\frac{d_{t+j}}{d_{t+j} + \gamma} \right)$$

Consumer optimizes the following household problem.

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

Budget constraint:

$$A_{t+1} = R_t (A_t + y_t - c_t)$$

where c_t, y_t, A_t, R_t indicate the consumption of an agent at time t, the agent’s labor income, the amount of a single asset valued in units of consumption good, and the real gross rate of return on the asset between time t and $t+1$. The Euler equation gives the following condition.

$$u'(c_t) = E_t \beta R_t u'(c_{t+1})$$

The above equation does not spell out complete general equilibrium setups. Lucas’s asset pricing model does use general equilibrium reasoning.

Lucas model assumptions:
The labor income is zero.
The durable good in the economy is only a set of trees.
Representative agent assumption.
The fruit is nonstorable.

Recall \(c_t = d_t \) in a general equilibrium.
Letting \(R_t = \frac{p_{t+1} + d_{t+1}}{p_t} \), the Euler equation will be:

\[
E_t \beta \frac{u'(c_{t+1})}{u'(c_t)} \left(\frac{p_{t+1} + d_{t+1}}{p_t} \right) = 1
\]

\[
p_t = E_t \beta \frac{u'(c_{t+1})}{u'(c_t)} (p_{t+1} + d_{t+1})
\]

Using the equilibrium condition \(c_t = d_t \).

\[
p_t = E_t \beta \frac{u'(d_{t+1})}{u'(d_t)} (p_{t+1} + d_{t+1})
\]

Since \(u(c_t) = \ln(c_t + \gamma) \),

\[
p_t = E_t \beta \frac{d_t + \gamma}{(d_{t+1} + \gamma)} (p_{t+1} + d_{t+1})
\]

The price at time \(t+1 \) is as follows:

\[
p_{t+1} = E_t \beta \frac{d_{t+1} + \gamma}{(d_{t+2} + \gamma)} (p_{t+2} + d_{t+2})
\]

By plugging \(p_{t+1} \) back into \(p_t \),

\[
p_t = E_t \beta \frac{d_t + \gamma}{(d_{t+1} + \gamma)} \left(\beta \frac{d_{t+1} + \gamma}{(d_{t+2} + \gamma)} (p_{t+2} + d_{t+2}) + d_{t+1} \right)
\]

\[
= E_t \left(\beta \frac{d_t + \gamma}{(d_{t+1} + \gamma)} d_{t+1} + \beta^2 \frac{d_t + \gamma}{(d_{t+2} + \gamma)} d_{t+2} + \beta^2 \frac{d_t + \gamma}{(d_{t+2} + \gamma)} p_{t+2} \right)
\]

Recursively,

\[
p_{t+1} = E_t \sum_{j=1}^{\infty} \beta^j \frac{d_t + \gamma}{(d_{t+j} + \gamma)} d_{t+j} + \lim_{j \to \infty} E_t \beta^j \frac{d_t + \gamma}{(d_{t+j} + \gamma)} p_{t+j}
\]
Since \(\lim_{j \to \infty} E_t \beta^j \frac{(d_t + \gamma)}{(d_{t+j} + \gamma)} p_{t+j} = 0 \), we obtain the final pricing formula.

\[
p_{t+1} = E_t \sum_{j=1}^{\infty} \beta^j \frac{(d_t + \gamma)}{(d_{t+j} + \gamma)} d_{t+j}
\]

(b) Find a formula for the risk-free one-period interest rate \(R_{1t} \). Prove that in the special case in which \(\{d_t\} \) is independently and identically distributed, \(R_{1t} \) is given by \(R_{1t}^{-1} = \beta_k (d_t + \gamma) \), where \(k \) is a constant. Give a formula for \(k \).

We now suppose that there are markets in one- and two-period perfectly safe loans, which bear gross rates of return \(R_{1t} \) and \(R_{2t} \). At the beginning of time \(t \), the returns \(R_{1t} \) and \(R_{2t} \) are known with certainty and are risk free from the viewpoint of the agents. That is, at time \(t \), \(R_{1t}^{-1} \) is the price of a perfectly sure claim to one unit of consumption at time \((t+1) \), and \(R_{2t}^{-1} \) is the price of a perfectly sure claim to one unit of consumption at time \((t+2) \). The representative agent solves the following optimization problem:

\[
\max_{c_t, L_{1t+1}, L_{2t+1}} \quad E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)
\]

subject to the budget constraint:

\[
c_t + L_{1t} + L_{2t} \leq d_t + L_{1t-1}R_{1t-1} + L_{2t-2}R_{2t-2}
\]

where \(L_{jt} \) is the amount lent for \(j \) periods at time \(t \).

Using the Lagrange Multiplier method,

\[
L = E_0 \sum_{t=0}^{\infty} \beta^t (u(c_t) + \lambda_t (d_t + L_{1t-1}R_{1t-1} + L_{2t-2}R_{2t-2} - c_t - L_{1t} - L_{2t}))
\]

By taking differentiations with respect to \(\{c_t, L_{1t}, L_{2t}\} \),

\[
\begin{align*}
 c_t & : \quad E_0 \beta^t (u'(c_t) - \lambda_t) = 0 \\
 L_{1t} & : \quad E_0 \beta^t (\beta \lambda_{t+1} - \lambda_t) = 0 \\
 L_{2t} & : \quad E_0 \beta^t (\beta^2 \lambda_{t+2} - \lambda_t) = 0
\end{align*}
\]
Using the Markov property $E_0 = E_t$.

\begin{align*}
 c_t & : \lambda_t = u'(c_t) \\
 L_{1t} & : \lambda_t = E_t(\beta \lambda_{t+1} R_{1t}) \\
 L_{2t} & : \lambda_t = E_t(\beta^2 \lambda_{t+2} R_{2t})
\end{align*}

Combining the first-order conditions gives:

\begin{align*}
 E_t \left(\beta \frac{u'(c_{t+1})}{u'(c_t)} R_{1t} \right) &= 1 \\
 E_t \left(\beta^2 \frac{u'(c_{t+2})}{u'(c_t)} R_{2t} \right) &= 1
\end{align*}

Assuming the risk-free interest rates,

\begin{align*}
 R_{1t}^{-1} &= E_t \left(\beta \frac{c_t + \gamma}{c_{t+1} + \gamma} \right) \\
 R_{2t}^{-1} &= E_t \left(\beta^2 \frac{c_t + \gamma}{c_{t+2} + \gamma} \right)
\end{align*}

Since $u(c_t) = \ln(c_t + \gamma)$,

\begin{align*}
 R_{1t}^{-1} &= E_t \left(\beta \frac{d_t + \gamma}{d_{t+1} + \gamma} \right) \\
 R_{2t}^{-1} &= E_t \left(\beta^2 \frac{d_t + \gamma}{d_{t+2} + \gamma} \right)
\end{align*}

Recall $c_t = d_t$ in a general equilibrium.

\begin{align*}
 R_{1t}^{-1} &= E_t \left(\beta \frac{d_t + \gamma}{d_{t+1} + \gamma} \right) \\
 R_{2t}^{-1} &= E_t \left(\beta^2 \frac{d_t + \gamma}{d_{t+2} + \gamma} \right)
\end{align*}

By letting $k_{1t} = E_t \left(\frac{1}{d_{t+1} + \gamma} \right)$, the pricing formula can be expressed as:

\begin{equation*}
 R_{1t}^{-1} = \beta k_{1t}(d_t + \gamma)
\end{equation*}
(c) Find a formula for the risk-free two-period interest rate \(R_{2t} \). Prove that in the special case in which \(\{d_t\} \) is independently and identically distributed, \(R_{2t} \) is given by \(R_{2t}^{-1} = \beta^2 k (d_t + \gamma) \), where \(k \) is the same constant you found in part (b).

By letting \(k_{2t} = E_t \left(\frac{1}{d_{t+2} + \gamma} \right) \), the pricing formula can be expressed as:

\[R_{2t}^{-1} = \beta^2 k_{2t} (d_t + \gamma) \]

Let me show that \(k_{1t} \) and \(k_{2t} \) are identical. Since \(d_t \) are identically distributed and follow the Markov chain,

\[k_{2t} = E_t \left(\frac{1}{d_{t+2} + \gamma} \right) = E_{t+1} \left(\frac{1}{d_{t+2} + \gamma} \right) = k_{1t} \]

2. Consider the following version of the Lucas's tree economy. There are two kinds of trees. The first kind is ugly and gives no direct utility to consumers, but yields a stream of fruit \(\{d_{1t}\} \), where \(d_{1t} \) denotes a positive random process obeying a first-order Markov process. The second tree is beautiful and yields utility on itself. This tree also yields a stream of the same kind of fruit \(d_{2t} \), where it happens that \(d_{2t} = d_{1t} = \left(\frac{1}{2} \right) d_t \ \forall \ t \), so that the physical yields of the two kinds of trees are equal. There is one of each tree for each \(N \) individuals in the economy. Trees last forever, but the fruit is not storable. Trees are the only source of fruit.

Each of the \(N \) individuals in the economy has preferences described by

\[E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, s_{2t}) \tag{1} \]

where \(u(c_t, s_{2t}) = \ln c_t + \gamma \ln(s_{2t}) \) where \(\gamma \geq 0 \), \(c_t \) denotes consumption of the fruit in period \(t \) and \(s_{2t} \) is the stock of beautiful trees owned at the beginning of the period \(t \). The owner of a tree of either kind \(i \) at the start of the period receives the fruit \(d_{it} \) produced by the tree during
that period.

Let \(p_t \) be the price of a tree of type \(i \) (where \(i = 1, 2 \)) during period \(t \). Let \(R_t \) be the gross rate of returns of tree \(i \) during that period held from period \(t \) to \(t + 1 \).

(a) Write down the consumer optimization problem in sequential and recursive form.

Consumer optimization in a recursive form

The Bellman’s equation is given by

\[
v(d_t, s_{1t}, s_{2t}) = \max_{\{c_t, s_{1t+1}, s_{2t+1}\}} \left(\ln(c_t) + \gamma \ln(s_{2t}) + E_t \beta v(d_t, s_{1t+1}, s_{2t+1}) \right)
\]

where \(c_t + p_{1t} s_{1t+1} + p_{2t} s_{2t+1} \leq (d_{1t} + p_{1t}) s_{1t} + (d_{2t} + p_{2t}) s_{2t} \).

Consumer optimization in a sequential form

The sequential form is given by

\[
\max_{\{c_t, s_{1t+1}, s_{2t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t \left(\ln(c_t) + \gamma \ln(s_{2t}) \right)
\]

where \(c_t + p_{1t} s_{1t+1} + p_{2t} s_{2t+1} \leq (d_{1t} + p_{1t}) s_{1t} + (d_{2t} + p_{2t}) s_{2t} \).

(b) Define a rational expectations equilibrium.

Definition The following is called the *market clear condition*

\[
\sum_{i=1}^{I} c^i_t = \sum_{i=1}^{I} d^i_t \tag{2}
\]

\[
\sum_{i=1}^{I} s^i_{1t} = \sum_{i=1}^{I} s^i_{10} = I
\]

\[
\sum_{i=1}^{I} s^i_{2t} = \sum_{i=1}^{I} s^i_{20} = I
\]
where \(s_{1t}^i \) and \(s_{2t}^i \) are each agent’s number of trees at initial time.

Definition A *sequential household problem* is defined by each agent’s utility optimization problem:

\[
\max_{\{c_t, s_{1t+1}, s_{2t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t (\ln(c_t) + \gamma \ln(s_{2t}))
\]

where \(c_t + p_{1t} s_{1t+1} + p_{2t} s_{2t+1} \leq (d_{1t} + p_{1t}) s_{1t} + (d_{2t} + p_{2t}) s_{2t} \).

Definition A *rational competitive equilibrium* is an allocation, \(\{\{c_t^i\}_{t=0}^\infty\}_{i=1}^I, \{\{s_{1t}^i, s_{2t}^i\}_{t=0}^\infty\}_{i=1}^I \), and a price system, \(\{p_{1t}, p_{2t}\}_{t=0}^\infty \), such that the allocation solves each household problem and satisfies the market clear condition.

(c) Find the pricing functions mapping the state of the economy at \(t \) onto \(p_{1t} \) and \(p_{2t} \) (give precise formulas). [Hint: You should be able to directly derive \(p_{1t} \) from the example seen in class, then since pricing function have to be linear you can guess a pricing function \(p_{2t} = kd_t \) and solve for \(k \) parameter using Euler equation of the second stock.]

I am going to use the sequential form to find a solution. Using the Lagrange Multiplier,

\[
L = E_0 \sum_{t=0}^{\infty} \beta^t ((\ln(c_t) + \gamma \ln(s_{2t}))
+ \lambda_t ((d_{1t} + p_{1t})s_{1t} + (d_{2t} + p_{2t})s_{2t} - c_t - p_{1t}s_{1t+1} - p_{2t}s_{2t+1}))
\]

By taking differentiations with respect to \(\{c_t, s_{1t+1}, s_{2t+1}\} \).

\[
\begin{align*}
c_t & : E_0 \beta^t (\frac{1}{c_t} - \lambda_t) = 0 \\
s_{1t+1} & : E_0 \beta^t (\beta \lambda_{t+1} (d_{1t+1} + p_{1t+1}) - \lambda_t p_{1t}) = 0 \\
s_{2t+1} & : E_0 \beta^t \left(\beta \lambda_{t+1} (d_{2t+1} + p_{2t+1}) - \lambda_t p_{2t} + \beta \frac{\gamma}{s_{2t+1}} \right) = 0
\end{align*}
\]
Using the Markov property $E_0 = E_t$.

\[c_t : \frac{1}{c_t} = \lambda_t \]

\[s_{1t+1} : p_{1t} = E_t \beta \frac{\lambda_{t+1}}{\lambda_t} (d_{1t+1} + p_{1t+1}) \]

\[s_{2t+1} : p_{2t} = E_t \beta \frac{\lambda_{t+1}}{\lambda_t} (d_{2t+1} + p_{2t+1}) + \beta \frac{\gamma}{s_{2t+1}} \]

Combining the first-order conditions, we can obtain the pricing formula.

\[p_{1t} = E_t \beta \frac{c_t}{c_{t+1}} (d_{1t+1} + p_{1t+1}) \]

\[p_{2t} = E_t \beta \frac{c_t}{c_{t+1}} (d_{2t+1} + p_{2t+1}) + \beta \frac{\gamma c_t}{s_{2t+1}} \]

Recall \(c_t = d_t \) in a general equilibrium.

\[p_{1t} = E_t \beta \frac{d_t}{d_{t+1}} (d_{1t+1} + p_{1t+1}) \]

\[p_{2t} = E_t \beta \frac{d_t}{d_{t+1}} (d_{2t+1} + p_{2t+1}) + \beta \frac{\gamma d_t}{s_{2t+1}} \]

Let us assume the linear form of the first tree’s pricing function.

\[p_{1t} = k_{1t} d_t \]

Next apply the above linear form to the Euler equation.

\[k_{1t} d_t = E_t \beta \frac{d_t}{d_{t+1}} (d_{1t+1} + k_{1t+1} d_{t+1}) \]

\[k_{1t} = E_t \beta k_{1t+1} + E_t \beta \frac{d_{1t+1}}{d_{t+1}} \]

Recursively we obtain \(k_{1t} \).

\[k_{1t} = E_t \sum_{j=1}^{\infty} \beta^j \frac{d_{1t+j}}{d_{t+j}} \]
Since we are given \(d_{1t} = \frac{1}{2} d_t \).

\[
\begin{align*}
k_{1t} &= \frac{1}{2} E_t \sum_{j=1}^{\infty} \beta^j \\
&= \frac{\beta}{2(1 - \beta)}
\end{align*}
\]

Let us assume the linear form of the second tree’s pricing function.

\[
p_{2t} = k_{2t} d_t
\]

Next apply the above linear form to the Euler equation.

\[
k_{2t} d_t &= E_t \beta \frac{d_t}{d_{t+1}} (d_{2t+1} + k_{2t+1} d_{t+1}) + \beta \frac{\gamma d_t}{s_{2t+1}} \\
k_{2t} &= E_t \beta k_{2t+1} + E_t \beta \left(\frac{d_{2t+1}}{d_{t+1}} + \frac{\gamma}{s_{2t+1}} \right)
\]

Recursively we obtain \(k_{2t} \).

\[
k_{2t} = E_t \sum_{j=1}^{\infty} \beta^j \left(\frac{d_{2t+j}}{d_{t+j}} + \frac{\gamma}{s_{2t+1}} \right)
\]

Since we are given \(d_{2t} = \frac{1}{2} d_t \) and \(s_{2t+1} = 1 \) in equilibrium.

\[
k_{2t} = E_t \sum_{j=1}^{\infty} \beta^j \left(\frac{1}{2} + \gamma \right)
= \left(\frac{1}{2} + \gamma \right) \frac{\beta}{1 - \beta}
\]

Finally, we have got the pricing equations.

\[
p_{1t} = \left(\frac{\beta}{2(1 - \beta)} \right) d_t \\
p_{2t} = \left(\left(\frac{1}{2} + \gamma \right) \frac{\beta}{1 - \beta} \right) d_t
\]
(d) Prove that if $\gamma > 0$, then $R_{1t} > R_{2t} \forall t$

The returns R_{1t}, R_{2t} are defined as:

$$R_{1t} = \frac{p_{1t+1} + d_{1t+1}}{p_{1t}}$$

$$R_{2t} = \frac{p_{2t+1} + d_{2t+1}}{p_{2t}}$$

From the derived pricing equations,

$$R_{1t} = \frac{1}{2} \left(\frac{\beta}{1 - \beta} \right) d_{t+1} + \frac{1}{2} d_{t+1}$$

$$R_{2t} = \frac{\left(\frac{1}{2} + \gamma \right) \left(\frac{\beta}{1 - \beta} \right) d_{t+1} + \frac{1}{2} d_{t+1}}{\left(\frac{1}{2} + \gamma \right) \left(\frac{\beta}{1 - \beta} \right) d_{t}}$$

By rearranging the equations,

$$R_{1t} - R_{2t} = \left(1 - \frac{1}{1 + 2\gamma} \right) \frac{1 - \beta}{\beta} \frac{d_{t+1}}{d_{t}}$$

If $\gamma > 0$, then $R_{1t} > R_{2t}$