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Graphs as data objects – they are everywhere!

I Scene understanding, social networks, chemo/bioinformatics,
brain connectivity

I Variable nodes, variable edges, attributes on nodes and edges
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A space of graphs

I A (weighted) graph can be represented by its adjacency
matrix A ∈ Rn×n =: A
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I Each graph has multiple adjacency matrix representations
I A graph space with unique graph representations: The

quotient
G := A/Sn

with respect to the node permutation group Sn

Jain et al, JMLR 2009
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A general space of graphs

I Easy to accommodate graphs with different numbers of nodes:

I Easy to extend to vector valued node and edge weights

A ∈ Rn×n =: A  A ∈ (Rd)n×n =: A
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Existing work on statistics in Jain’s graph space

I Jain, Obermayer: Structure Spaces. Journal of Machine Learning
Research. (2009)

I Jain, Obermayer: Large Sample Statistics in the Domain of Graphs.
SSPR/SPR (2010)

I Jain, Obermayer: Maximum Likelihood for Gaussians on Graphs. GbRPR
(2011)

I Jain: Maximum likelihood method for parameter estimation of
bell-shaped functions on graphs. Pattern Recognition Letters (2012)

I Calissano, Feragen, Vantini: Analysis of Populations of Networks:
Structure Spaces and the Computation of Summary Statistics. ICSA
(2019)

I Guo, Srivastava, Sarkar: A Quotient Space Formulation for Statistical
Analysis of Graphical Data. arXiv preprint arXiv:1909.12907 (2019).

I Kolaczyk, Lin, Rosenberg, Xu, Walters: Averages of Unlabeled Networks:
Geometric Characterization and Asymptotic Behavior. arXiv preprint
arXiv:1709.02793 (2019).
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Graph Space Geometry
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Graph Space is a Quotient Space

Lift to total space
by permutation
alignment

I Graph space X/T inherits a metric from the Euclidean metric
on X = Rn×n

I Graph space is a geodesic metric space – any two points
joined by a shortest path

I The total space X can be thought of as a “tangent space”
where a “log map” at any base point graph [x ] is equivalent to
aligninment to its fixed representative x
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The geometry of graph space

Theorem
Graph-space geodesics are not necessarily unique.

Theorem
Graph-space curvature is unbounded from above.
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The counterexample is not dependent on having node
attributes
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Statistics
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First statistic: Fréchet mean

[m] = argmin[x]∈X/G
∑

i=1...n

d2
X/G ([x ], [xi ])

Theorem
Fréchet means are not generally unique in graph space X/G .
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Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

Iterative weighted midpoints / stochastic gradient descent

Note: Proofs of convergence usually require being able to work in
a neighborhood with unique geodesics.
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Existing algorithms and heuristics for computing Fréchet
means in nonlinear spaces

We choose an analogy with Generalized Procrustes Analysis, and
call the general strategy “Align all and compute” (AAC).

Guarantee convergence to local minimum in finite time for generic
dataset.
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Example: Handwritten Letters

[0.72, 0.63]

[1.45, 2.53]

[2.42, 0.71]

[0.82, 1.56]
[2.13, 1.40]

[0.71, 0.74]

[1.52, 2.50]

[2.28, 0.69]

[0.90, 1.47] [2.11, 1.46]

A Datum Fréchet Mean
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Example: Mobility networks Lombardia region
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Higher order statistics: “Tangent space” approach

I ”Tangent space“ approach: Align all points with a
representative of the mean and perform statistics in the total
space (⇔ tangent space statistics in manifolds).

I Guo, Srivastava, Sarkar (2019): Tangent space PCA

I Risk distorted residuals away from the base point

Lift to total space
by permutation
alignment
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Intrinsic dimensionality
reduction: Generalized
Geodesic PCA
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Generalized Geodesic Principal Components
I Data: [x1], . . . , [xk ] ∈ X/T
I Model: Optimize over generalized geodesics δ = π ◦ γ for

geodesic γ in space of adjacency matrices X
I Task: Find generalized geodesic δ1 ∈ Γ(X/T ) such that

δ1 = argminδ∈Γ(X/T )

k∑
i=1

(d2
X/T ([xi ], δ))
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AAC for Generalized Geodesic Principal components

Algorithm 1: PCA via AAC
Result: Principal components 1-d represented as subspaces of

Rn×n

initialize by aligning all data graphs to a random adjacency
matrix;

while While not converged do
perform PCA in Rn×n;
choose representatives of all data graphs in optimal position
with the first PC in Rn×n.

end

Theorem
The AAC algorithm converges to a local minimum in finite time.
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Example: Handwritten letter “A”

1st GGPC (27.3%)

2nd GGPC (18.3%)

3rd GGPC (15.6%)
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Mobility networks Lombardia region
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Preliminary example: Baboons
I Networks represent grooming interaction/association between

baboons; they can have different roles (alpha/beta) over time
⇒ naturally unlabeled networks

I Each network summarizes data collected within 30 days before
and 90 days after each knockout.

I Knockout = when a given alpha or beta male leaves the
group.

Image by Noneotuho, https://commons.wikimedia.org/wiki/File:
Macaca_fuscata,_grooming,_Iwatayama,_20090201.jpg
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Preliminary example: Baboons

Figure: GPC 1
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Preliminary example: Baboons

Figure: GPC 2

Image by Noneotuho, https://commons.wikimedia.org/wiki/File:
Macaca_fuscata,_grooming,_Iwatayama,_20090201.jpg
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Graph-valued regression models
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Regression models taking values in Graph Space
I Data: (s1, [x1]), . . . , (sk , [xk ]), where (si , [xi ]) ∈ Rp × X/T

I Model: Optimize over f̄ = π ◦ f for linear regression models f
on the space X of adjacency matrices

I Task: Describe the relationship f : Rp → X/T minimizing

k∑
i=1

d2
X/T ([xi ], f (si ))

I Note: Residuals measured between predicted and true output.
40 / 50



AAC for Linear Regression models taking values in Graph
Space

Algorithm 2: Linear Regression Models in Graph Space via AAC
Result: Predictions f (s) ∈ Rn×n for any s ∈ Rd

initialize by aligning all data graphs to a random adjacency
matrix;

while While not converged do
estimate linear regression model in Rn×n;
choose representatives of all data graphs in optimal position
with current estimate of the regression line in Rn×n.

end

Theorem
The AAC algorithm converges to a local minimum in finite time.
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Example: Cryptocurrency correlation networks

Data: Correlation networks for price in USD of Bitcoin, Dash,
Digibyte, Dogecoin, Litecoin, Vertcoin, Stellar, Monero, Verge
from July 18th 2010 (first record of bitcoin) - until April 3rd 2020,
for 20-day time windows.
Task: Predict network from time
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Example: Cryptocurrency correlation networks

Convergence:
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Example:
Public Transport and Covid-19 in Copenhagen, Denmark
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Figure: Bus stops in the different areas of Copenhagen and Frederiksberg.
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Example:
Public Transport and Covid-19 in Copenhagen, Denmark
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Figure: Prediction of the within area fluxes (i.e. the nodes attributes) of
three days randomly sampled from the three periods: 03/03/2020,
12/04/2020, and 22/04/2020
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Example:
Public Transport and Covid-19 in Copenhagen, Denmark

0 4000

Figure: Prediction of the network (i.e. the nodes attributes) of three days
randomly sampled from the three periods: 03/03/2020, 12/04/2020, and
22/04/2020
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Example:
Public Transport and Covid-19 in Copenhagen, Denmark

Figure: Prediction of the network of three days randomly sampled from
the three periods: 03/03/2020, 12/04/2020, and 22/04/2020. The
dimension of the node is proportional to the within area flux. The
position of the nodes is computed using Spectral Layout of the Networkx
python package.
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Example:
Public Transport and Covid-19 in Copenhagen, Denmark
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Figure: Most popular optimal matching with the node Indre By as a
function time. Vertical Lines describe transitions between different phases
of the lockdown.
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Discussion
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Discussion
Advantages:
I Total space is (Rd)n×n, easing generalization of Euclidean

methods
I The AAC approach gives intrinsic statistics while retaining the

computational advantages of Euclidean statistics
Limitations:
I Distances are generally NP-complete due to graph matching

problem  approximations
I Graph space geometry is highly non-Euclidean (and it is not a

manifold); this is likely to affect statistics in ways we do not
yet understand.

I Due to the interpolation-based nature of statistics, estimators
tend to lie in the top dimensional stratum (= be a complete
graph), whereas data often lives on its boundary. Might we
lean on ideas from logistic regression and/or image
segmentation to overcome this limitation?
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