Sparse covariance models for high dimensional image data analysis

Alfred Hero

Dept of Electrical Engineering and Computer Science (EECS), Dept of Biomedical Engineering (BME), Dept of Statistics Program in Applied and Interdisciplinary Mathematics Program in Applied Physics Program in Computational Medicine and Bioinformatics University of Michigan - Ann Arbor

Dec. 4 , 2020

- 2 Learning multiway covariance
- 3 Learning inverse multiway covariance
- ④ Sylvester Glasso (SyGlasso)

6 Applications

References:

Principal references for theory presented here

- Kristjian Greenewald and Alfred Hero, Robust Kronecker Product PCA for Spatio-Temporal Covariance Estimation, IEEE Transactions on Signal Processing, vol 63, no 23, pp. 6368-6378, Dec. 2015. arxiv:1411.1352.
- Ø Kristjian Greenewald, Shuheng Zhou, Alfred Hero (2019), The Tensor Graphical Lasso (TeraLasso), Journal of the Royal Statistical Society, Series B, 81:5, pp. 901-931, November 2019. arxiv:1705.03983.
- Yu Wang, Byoung Jang, Alfred Hero, The Sylvester Graphical Lasso (SyGlasso), AISTATS June 2020. arxiv:2002.00288
- Yu Wang and Alfred Hero, A proximal alternating linearized minimization method for tensor graphical models, submitted.

References:

Principal references for theory presented here

- Kristjian Greenewald and Alfred Hero, Robust Kronecker Product PCA for Spatio-Temporal Covariance Estimation, IEEE Transactions on Signal Processing, vol 63, no 23, pp. 6368-6378, Dec. 2015. arxiv:1411.1352.
- Ø Kristjian Greenewald, Shuheng Zhou, Alfred Hero (2019), The Tensor Graphical Lasso (TeraLasso), Journal of the Royal Statistical Society, Series B, 81:5, pp. 901-931, November 2019. arxiv:1705.03983.
- Yu Wang, Byoung Jang, Alfred Hero, The Sylvester Graphical Lasso (SyGlasso), AISTATS June 2020. arxiv:2002.00288
- Yu Wang and Alfred Hero, A proximal alternating linearized minimization method for tensor graphical models, submitted.

Research supported by

- **1** NASA/NSF: Solar Storms and Terrestrial Impacts Center (SOLSTICE)
- 2 ARO MURI: Non-commutative information
- 3 AFOSR: ATR-Center Program
- Ø DOE: Consortium for Exploitation of Technological Innovations
- **6** DARPA: Guaranteeing AI Robustness Against Deception (GARD)

Sy

Applications

Conclusions

Space Weather can have significant terrestrial impact¹

Figure 1. Examples of Potential Effects of Space Weather

Source: NASA, email communication with NASA Office of Legislative and Intergovernmental Affairs, September 6, 2019.

¹Space Weather: An Overview of Policy and Select U.S. Government Roles and Responsibilities, Congressional Research Service Report, Jan. 2020

Space Weather can have significant terrestrial impact

In 2019 FEMA National Threat and Hazard Identification and Risk Assessment (THIRA) Report² cites Space Weather among top 5 threats Space Weather places 3rd among threats with nationwide impact

Table 1: Threats and Hazards of Concern Identified for the 2019 National THIRA^{8,9}

Threat/Hazard Type	Threat/Hazard	Area/Region	
	Plausible Concurrent Operations ¹⁰	Nationwide	
Natural	Fortherupice	Washington, Oregon, California, Idaho	
	Eartriquake	600,000 sq. km in the Midwest/East	
		Galveston, Texas to the Midwest	
	Hurricane	Fort Lauderdale, Florida to Alabama	
		Hawaii	
	Pandemic	Nationwide	
	Space Weather	Nationwide	

¹⁰Plausible concurrent operations: response capacity overwhelmed in Aug and Sept 2019 when FEMA responded to 3 hurricanes (Harvey-Texas, Irma-Florida and Maria-Puerto-Rico), 5 flooding events across nation, and 1 major CA wildfire.

 $^{^2 \}rm National Threat and Hazard Identification and Risk Assessment (THIRA), FEMA DHS Report, July 2019$

Solar imaging - active regions, coronal mass ejections, and flares

Flares and coronal mass ejections (CME) are generated from active regions (sunspots)

- Active regions evolve over time, space and channel
- Some active regions produce flares, some active regions are quiet.
- Solar flares are classified into different intensity categories: A, B, C, M, X

SyGlasso

ications

Conclusions

Predicting and identifying solar CMEs from satellite image data^{3 4}

 $^3 \rm Y.$ Chen, W. Manchester, A.O. Hero \ldots , (2019), Identifying solar flare precursors using time series of SDO/HMI images and SHARP parameters, Space Weather, Oct 2019. .

⁴Z. Jiao, H Sun, X Wang, W Manchester, AO Hero, and Y. Chen, *Solar Flare Intensity Prediction with Machine Learning Models*, Space Weather, May 2020. Motivation Multiway covariance Inverse multiway covariance SyGlasso Applications Conclusions

Learning multiway data representations

Objective: Learn a low dimensional representation of a multi-modal data cube

$$\mathbf{Z} = \{Z_{i_1,...,i_K}\}_{i_1,...,i_K}^{d_1,...,d_K}, \qquad d = \prod_{i=1}^K d_i, \qquad m_k = d/d_k = \prod_{i \neq k}^K d_k$$

⁵Kolda and Bader, Tensor decompositions and applications, SIAM Review, 51(3):445-500, 2009

 Motivation
 Multiway covariance
 Inverse multiway covariance
 SyGlasso
 Applications
 Conclusions

Learning multiway data representations

Objective: Learn a low dimensional representation of a multi-modal data cube

$$Z = \{Z_{i_1,...,i_K}\}_{i_1,...,i_K}^{d_1,...,d_K}, \qquad d = \prod_{i=1}^K d_i, \qquad m_k = d/d_k = \prod_{i \neq k}^K d_k$$

Common traits of data cube (K-way tensor):

- the indices may index over different mode types.
- some mode dimensions may be high, others low.
- the data cube may be sparse in some modes.
- data cube may have sparse, low dimensional approximation

⁵Kolda and Bader, Tensor decompositions and applications, SIAM Review, 51(3):445-500, 2009

Motivation Multiway covariance Inverse multiway covariance SyGlasso Applications Conclusions

Learning multiway data representations

Objective: Learn a low dimensional representation of a multi-modal data cube

$$Z = \{Z_{i_1,...,i_K}\}_{i_1,...,i_K}^{d_1,...,d_K}, \qquad d = \prod_{i=1}^K d_i, \qquad m_k = d/d_k = \prod_{i \neq k}^K d_k$$

Common traits of data cube (K-way tensor):

- the indices may index over different mode types.
- some mode dimensions may be high, others low.
- the data cube may be sparse in some modes.
- data cube may have sparse, low dimensional approximation

First order representations: learning the mean⁵.

 $\mathbb{E}[Z] \approx a \circ b \circ c, \quad \mathbb{E}[Z] \approx A \otimes B \otimes C, \quad \mathbb{E}[Z] \approx A \oplus B \oplus C,$

⁵Kolda and Bader, Tensor decompositions and applications, SIAM Review, 51(3):445-500, 2009

Motivation Multiway covariance Inverse multiway covariance SyGlasso Applications Conclusions

Learning multiway data representations

Objective: Learn a low dimensional representation of a multi-modal data cube

$$Z = \{Z_{i_1,...,i_K}\}_{i_1,...,i_K}^{d_1,...,d_K}, \qquad d = \prod_{i=1}^K d_i, \qquad m_k = d/d_k = \prod_{i \neq k}^K d_k$$

Common traits of data cube (K-way tensor):

- the indices may index over different mode types.
- some mode dimensions may be high, others low.
- the data cube may be sparse in some modes.
- data cube may have sparse, low dimensional approximation

First order representations: learning the mean⁵.

 $\mathbb{E}[Z] \approx a \circ b \circ c, \quad \mathbb{E}[Z] \approx A \otimes B \otimes C, \quad \mathbb{E}[Z] \approx A \oplus B \oplus C,$

Second order representations: learning the covariance or inverse covariance

$$\operatorname{cov}(\mathsf{Z}) \approx \mathsf{A} \otimes \mathsf{B}, \quad \operatorname{cov}^{-1}(\mathsf{Z}) \approx \mathsf{A} \oplus \mathsf{B}$$

⁵Kolda and Bader, Tensor decompositions and applications, SIAM Review, 51(3):445-500, 2009

ce Sy

Applications

Conclusions

Multiway data structure = patterned covariance

ce S

Conclusions

Multiway data structure \approx Kronecker product covariance

Inverse multiway covariance

SyGlasso

lications

Conclusions

Processes obeying diffusion equations have sparse KP inverse covariance

Consider a random process u(t, x, y) whose evolution is governed by a pde, e.g.,

$$\frac{du}{dt} = a\partial_{xx}^2 u + b\partial_{yy}^2 u + c\partial_{xy}^2 u + w.$$

w = w(t, x, y) is a random disturbance.

Multiway covariance

Inverse multiway covariance

SyGlasso

pplications

Conclusions

Processes obeying diffusion equations have sparse KP inverse covariance

Consider a random process u(t, x, y) whose evolution is governed by a pde, e.g.,

$$\frac{du}{dt} = a\partial_{xx}^2 u + b\partial_{yy}^2 u + c\partial_{xy}^2 u + w.$$

w = w(t, x, y) is a random disturbance.

Differential-operator equivalent equation

$$(D_t \otimes I \otimes I)\mathbf{u} = (\mathbf{a}[I \otimes D_{xx} \otimes I] + \mathbf{b}[I \otimes I \otimes D_{yy}] + \mathbf{c}[I \otimes D_x \otimes D_y])\mathbf{u} + \mathbf{w}$$

Euler discretized form described by KP time-space matrix equation:

$$(\mathsf{D}_t\otimes\mathsf{D}_z)\mathsf{u}=\mathsf{w} \quad \Leftrightarrow \quad \mathsf{D}_t\mathsf{U}\mathsf{D}_z=\mathsf{W}$$

•
$$\mathbf{U} = \{u(t, \mathbf{z})\}_{t \in [0, T], \mathbf{z} \in \mathbb{R}^2}$$
, $\mathbf{u} = \operatorname{vec}(\mathbf{U})$

- D_t and D_z are invertible sparse tridiagonal and pentadiagonal matrices.
- For w white noise, $var(w) = \sigma^2$, the inverse covariance of U is sparse KP

$$\boldsymbol{\Sigma}^{-1} = \sigma^{-2} \boldsymbol{\mathsf{D}}_t \otimes \boldsymbol{\mathsf{D}}_z$$

11

Inverse multiway covariance

SyGlasso

lications

Conclusions

Processes obeying diffusion equations have sparse KP inverse covariance

Consider a random process u(t, x, y) whose evolution is governed by a pde, e.g.,

$$\frac{du}{dt} = a\partial_{xx}^2 u + b\partial_{yy}^2 u + c\partial_{xy}^2 u + w.$$

w = w(t, x, y) is a random disturbance.

Differential-operator equivalent equation

$$(D_t \otimes I \otimes I)\mathbf{u} = (\mathbf{a}[I \otimes D_{xx} \otimes I] + \mathbf{b}[I \otimes I \otimes D_{yy}] + \mathbf{c}[I \otimes D_x \otimes D_y])\mathbf{u} + \mathbf{w}$$

Euler discretized form described by KP time-space matrix equation:

$$(\mathbf{D}_t \otimes \mathbf{D}_z)\mathbf{u} = \mathbf{w} \quad \Leftrightarrow \quad \mathbf{D}_t \mathbf{U} \mathbf{D}_z = \mathbf{W}$$

•
$$\mathbf{U} = \{u(t, \mathbf{z})\}_{t \in [0, T], \mathbf{z} \in \mathbb{R}^2}$$
, $\mathbf{u} = \operatorname{vec}(\mathbf{U})$

- D_t and D_z are invertible sparse tridiagonal and pentadiagonal matrices.
- For w white noise, $var(w) = \sigma^2$, the inverse covariance of U is sparse KP

$$\boldsymbol{\Sigma}^{-1} = \sigma^{-2} \boldsymbol{\mathsf{D}}_t \otimes \boldsymbol{\mathsf{D}}_z$$

Example: diffusive limit of the dissipative magnetic induction equation

$$\frac{du}{dt} - \eta \nabla^2 u = -\alpha u + w$$

SyGlasso

itions (

Conclusions

Generated sample from dissipative magnetic induction equation

Multiway covariance

Inverse multiway covariance

iance S

Applications

Conclusions

Kronecker product expansions for covariance matrices

Any symmetric $d_1 d_2 \times d_1 d_2$ matrix **A** has the KPCA representation⁶

$$\mathbf{\Lambda} = \sum_{i=1}^r \sigma_i \mathbf{A}_i \otimes \mathbf{B}_i$$

w = w(t, x, y) is a random disturbance. for some sequence $\{A_i, B_i\}_{i=1}^r$ of $d_1 \times d_1$ and $d_2 \times d_2$ matrices

- $r \leq \min\{d_1, d_2\}$ is separation rank of Λ
- σ_i > 0 are (KPCA) coefficients
- $\|\mathbf{A}_i\|_F = \|\mathbf{B}_i\|_F = 1$

Compare to PCA representation

$$\mathbf{\Lambda} = \sum_{i=1}^{d_1 d_2} \lambda_i \mathbf{u}_i \mathbf{u}_i^T$$

⁶Tsiligkaridis and Hero, *Covariance Estimation in High Dimensions via Kronecker Product Expansions*, IEEE Trans on Signal Processing, Vol 61, No. 21, pp. 5347 5360, Nov 2013. arxiv 1302.2686.

⁷Greenewald and Hero, *Robust Kronecker Product PCA for Spatio-Temporal Covariance Estimation*, IEEE Transactions on Signal Processing, vol 63, no 23, pp. 6368-6378, Dec. 2015. arxiv:1411.1352.

KPCA vs PCA for dissipative magnetic induction process

 $d_2 = 32 \times 32$ image pixels, $d_1 = 12$ time samples, n = 1000 samples

Figure: KPCA vs PCA spectrum of population covariance Σ

- \bullet Principal KPCA component fits 100% of $\pmb{\Sigma}$
- \bullet Principal PCA component fits 2% of $\pmb{\Sigma}$

KPCA vs PCA for dissipative magnetic induction process

 $d_2 = 32 \times 32$ image pixels, $d_1 = 12$ time samples, n = 1000 samples

Figure: KPCA vs PCA spectrum of sample covariance S_n

- Principal KPCA component fits 82% of **S**_n
- Principal PCA component fits 1% of **S**_n

e Syl

Conclusions

KPCA vs PCA for dissipative magnetic induction process

 $d_2 = 32 \times 32$ image pixels, $d_1 = 12$ time samples, n = 1000 samples

Figure: KPCA and PCA principal components of sample covariance S_n

ice Sy

Conclusions

KPCA factors for dissipative magnetic induction process

 $d_2 = 32 \times 32$ image pixels, $d_1 = 12$ time samples, n = 1000 samples

Figure: Principal KPCA factors for S_n and $inv(S_n)$

ance S

Conclusions

KPCA factors for dissipative magnetic induction process

 $d_2 = 32 \times 32$ image pixels, $d_1 = 12$ time samples, n = 1000 samples

Figure: Scatterplots of entries $(S_n)_{ij}$ vs entries of rank 1 KPCA $\sigma_1(A_1 \otimes B_1)_{ij}$ (left) and entries of rank 1 PCA $\lambda_1(u_1u_2^T)_{ij}$ (right)

Motivation	Multiway covariance	Inverse multiway covariance	SyGlasso	Applications	Conclusions
Learning ir	nverse covariance	2			

Many processes do not have sparse covariance $\pmb{\Sigma}$ but do have sparse inverse covariance $\pmb{\Omega}$

 \Rightarrow It is more natural to directly estimate inverse covariance $\Omega = \pmb{\Sigma}^{-1}$

Many processes do not have sparse covariance Σ but do have sparse inverse covariance Ω

 \Rightarrow It is more natural to directly estimate inverse covariance $\Omega = \pmb{\Sigma}^{-1}$

Penalized maximum likelihood estimator of $\boldsymbol{\Omega}$ under matrix normal model

Let $p : \mathbb{R}^{d \times d} \to \mathbb{R}$. The PML estimator of Ω is

$$\hat{\boldsymbol{\Omega}} = \operatorname{argmin}_{\boldsymbol{\Omega}} \operatorname{tr}(\boldsymbol{\mathsf{S}}_{n} \boldsymbol{\Omega}) - c_{n} \operatorname{logdet}((\boldsymbol{\Omega})) + \lambda p(\boldsymbol{\Omega})$$
(1)

ance Sy

Conclusions

Learning inverse covariance

Many processes do not have sparse covariance $\pmb{\Sigma}$ but do have sparse inverse covariance $\pmb{\Omega}$

 \Rightarrow It is more natural to directly estimate inverse covariance $\Omega = \pmb{\Sigma}^{-1}$

Penalized maximum likelihood estimator of $\boldsymbol{\Omega}$ under matrix normal model

Let $p: \mathbb{R}^{d \times d} \to \mathbb{R}$. The PML estimator of Ω is

 $\hat{\boldsymbol{\Omega}} = \operatorname{argmin}_{\boldsymbol{\Omega}} \operatorname{tr}(\boldsymbol{\mathsf{S}}_{n} \boldsymbol{\Omega}) - c_{n} \operatorname{logdet}((\boldsymbol{\Omega})) + \lambda p(\boldsymbol{\Omega})$ (1)

- Sparsity penalties $p(\Omega)$ induce Gaussian graphical model structure
 - Sparse cov estimation: Glasso, Friedman et al (2009)
 - Sparse Kronecker product (KGlasso): Allen and Tibshirani (2010)
 - Convex correlation selection method (CONCORD): Khare et al (2013)
 - Sparse Kronecker sum: Bigraphical lasso (BiGlasso), Zhou et al (2014),
 - Scalable BiGlasso: Tensor Glasso (TeraLasso): Greenwald et al (2019)
 - Generative Kronecker sum: Sylvester Glasso (SyGlasso), Wang et al (2020)

ince Sy

Learning inverse covariance

Many processes do not have sparse covariance $\pmb{\Sigma}$ but do have sparse inverse covariance $\pmb{\Omega}$

 \Rightarrow It is more natural to directly estimate inverse covariance $\Omega = \pmb{\Sigma}^{-1}$

Penalized maximum likelihood estimator of $\boldsymbol{\Omega}$ under matrix normal model

Let $p: \mathbb{R}^{d \times d} \to \mathbb{R}$. The PML estimator of Ω is

 $\hat{\boldsymbol{\Omega}} = \operatorname{argmin}_{\boldsymbol{\Omega}} \operatorname{tr}(\boldsymbol{\mathsf{S}}_{n} \boldsymbol{\Omega}) - c_{n} \operatorname{logdet}((\boldsymbol{\Omega})) + \lambda p(\boldsymbol{\Omega})$ (1)

- Sparsity penalties $p(\Omega)$ induce Gaussian graphical model structure
 - Sparse cov estimation: Glasso, Friedman et al (2009)
 - Sparse Kronecker product (KGlasso): Allen and Tibshirani (2010)
 - Convex correlation selection method (CONCORD): Khare et al (2013)
 - Sparse Kronecker sum: Bigraphical lasso (BiGlasso), Zhou et al (2014),
 - Scalable BiGlasso: Tensor Glasso (TeraLasso): Greenwald et al (2019)
 - Generative Kronecker sum: Sylvester Glasso (SyGlasso), Wang et al (2020)
- Sparsity models for estimation of $\boldsymbol{\Omega}$ in a nutshell:
 - KGlasso: find sparse A, B in model $\Omega = A \otimes B$
 - TeraLasso: find sparse A, B in model $\Omega = A \oplus B = A \otimes I + I \otimes B$
 - SyGlasso: find sparse model A,B in model $\boldsymbol{\Omega}=(\textbf{A}\oplus\textbf{B})^2$

ce SyGl

Applications

Conclusions

Kronecker sum vs Kronecker product

The Kronecker sum model of TeraLasso is sparser than the Kronecker product of KGLasso

ce S

TeraLasso: runtime comparisons for random Erdös-Renyi

Κ	p	d_k	n	TeraLasso Runtime (s)	BiGLasso Runtime (s)
2	100	10	10	.0131	.84
2	625	25	10	.0147	6.81
2	2500	50	10	.0272	161
2	5625	75	10	.0401	1690
2	10^{4}	100	10	.0664	
2	2.5×10^{5}	500	10	1.62	
2	10^{6}	1000	10	23.2	
2	4×10^6	2000	10	427	
3	10^{6}	100	10	3.52	NA
3	8×10^6	200	10	11.2	NA
3	1.25×10^{8}	500	10	32.6	NA
3	1×10^9	1000	10	70.0	NA
4	10^{4}	10	10	.281	NA
4	1.6×10^{5}	20	10	.649	NA
4	6.25×10^{6}	50	10	10.8	NA
4	1.00×10^{9}	178	10	88.4	NA
5	1.16×10^{9}	65	10	124	NA

- TeraLasso speedup wrt BiGlasso by 2 to 4 orders of magnitude $(10^2 10^4)$
- Teralasso is scalable to many many variables

$$\text{Terralasso/iter} \Rightarrow O(\sum_{k=1}^{K} d_k^3) \qquad \qquad \text{Glasso/iter}^{\text{a}} \Rightarrow O(p^3) = O\left(\prod_{k=1}^{K} d_k^3\right)$$

^aGuillot, Rajaratnam, Rolfs, Maleki, Wong (2012). Iterative thresholding algorithm for sparse inverse covariance estimation. *NIPS*.

Motivation	Multiway covariance	SyGlasso	Applications	Conclusions
The Sylve	ester Glasso			

- The model $\Omega = A \otimes B$ is generative and interpretable (diffusion process)
- \bullet The model $\Omega=\textbf{A}\oplus\textbf{B}=\textbf{A}\otimes\textbf{I}+\textbf{I}\otimes\textbf{B}$ is not generative or interpretable
- SyGlasso adopts a generative and interpretable model $\mathbf{\Omega} = (\mathbf{A} \oplus \mathbf{B})^2$

⁸Kressner, Tobler, Krylov Subspace Methods for Linear Systems with Tensor Product Structure. SIAM Journal on Matrix Analysis and Application, 2010

Motivation	Multiway covariance	Inverse multiway covariance	SyGlasso	Applications	Conclusions
The Sylv	vester Glasso				

- The model $\Omega = A \otimes B$ is generative and interpretable (diffusion process)
- \bullet The model $\Omega=\textbf{A}\oplus\textbf{B}=\textbf{A}\otimes\textbf{I}+\textbf{I}\otimes\textbf{B}$ is not generative or interpretable
- ullet SyGlasso adopts a generative and interpretable model $\Omega=(A\oplus B)^2$

2-way SyGlasso representation

A data matrix $\boldsymbol{\mathsf{Z}} \in {\rm I\!R}^{d_1 \times d_2}$ has a 2-way SyGlasso representation when

() The inverse covariance matrix $\Omega = \Sigma^{-1}$ of z = vec(Z) has the form

$$\boldsymbol{\Omega} = \left(\boldsymbol{\mathsf{A}} \oplus \boldsymbol{\mathsf{B}}\right)^2$$

2 The matrix **Z** has the stochastic representation, for $\mathbf{W} \sim \mathcal{N}(0, \mathbf{I})$,

$$\mathbf{A}\mathbf{Z} + \mathbf{Z}\mathbf{B} = \mathbf{W}$$

⁸Kressner, Tobler, Krylov Subspace Methods for Linear Systems with Tensor Product Structure. SIAM Journal on Matrix Analysis and Application, 2010

Motivation	Multiway covariance	Inverse multiway covariance	SyGlasso	Applications	Conclusions
The Sylv	vester Glasso				

- The model $\Omega = A \otimes B$ is generative and interpretable (diffusion process)
- \bullet The model $\Omega=\textbf{A}\oplus\textbf{B}=\textbf{A}\otimes\textbf{I}+\textbf{I}\otimes\textbf{B}$ is not generative or interpretable
- SyGlasso adopts a generative and interpretable model $\mathbf{\Omega} = (\mathbf{A} \oplus \mathbf{B})^2$

2-way SyGlasso representation

A data matrix $\boldsymbol{\mathsf{Z}} \in {\rm I\!R}^{d_1 \times d_2}$ has a 2-way SyGlasso representation when

() The inverse covariance matrix $\Omega = \Sigma^{-1}$ of z = vec(Z) has the form

$$\boldsymbol{\Omega} = \left(\boldsymbol{\mathsf{A}} \oplus \boldsymbol{\mathsf{B}}\right)^2$$

2 The matrix **Z** has the stochastic representation, for $\mathbf{W} \sim \mathcal{N}(0, \mathbf{I})$,

$$\mathbf{A}\mathbf{Z} + \mathbf{Z}\mathbf{B} = \mathbf{W}$$

SyGlasso exploits the Cartesian structure of differential operators⁸, e.g., the Laplacian operator:

$$abla^2 u = (D_{xx} \oplus D_{yy}) u \quad \Leftrightarrow \quad (\mathsf{D}_{xx} \oplus \mathsf{D}_{yy}) \mathsf{u} \quad \Leftrightarrow \quad \mathsf{D}_{xx}\mathsf{U} + \mathsf{U}\mathsf{D}_{yy}$$

⁸Kressner, Tobler, Krylov Subspace Methods for Linear Systems with Tensor Product Structure. SIAM Journal on Matrix Analysis and Application, 2010

SyGlasso

lications

Conclusions

SyGlasso: Comparison of the Precision Matrix Structure

Note:

$$\left(\mathbf{A} \oplus \mathbf{B}\right)^2 = \mathbf{A}^2 \oplus \mathbf{B}^2 + 2\mathbf{A} \otimes \mathbf{B}$$

SyGlasso: Recovery under Model Mismatch

¹Matthews Correlation Coefficient

te Syl

Application to solar active region data

 $\ensuremath{\text{Data:}}$ Videos of active regions 13 hours before a B class flare or M/X class flare occurs

Observations are multiway arrays Z_i , i = 1, ..., n, with dimensions

- $d_{time} = 13$ (1 hr cadence)
- $d_{width} = 100$
- $d_{height} = 50$
- $d_{channel} = 7$ (3 HMI and 4 AIA channels)

te Syl

Conclusions

Application to solar active region data

 $\ensuremath{\text{Data:}}$ Videos of active regions 13 hours before a B class flare or M/X class flare occurs

Observations are multiway arrays Z_i , i = 1, ..., n, with dimensions

- $d_{time} = 13$ (1 hr cadence)
- $d_{width} = 100$
- $d_{height} = 50$
- $d_{channel} = 7$ (3 HMI and 4 AIA channels)

Goal: Accurately estimate inverse covariance matrix of ${\bf Z}$ under 4-way sparse Sylvester model

$$(\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C} \oplus \mathbf{D})\mathbf{z} = \mathbf{w}$$

Special case: multichannel MIE

$$(\mathsf{D}_t\oplus\mathsf{D}_{xx}\oplus\mathsf{D}_{yy}\oplus\mathsf{D}_c)\mathsf{z}=\mathsf{w}$$

se Sy

Applications

Application to solar active region data

 $\mbox{Data:}$ Videos of active regions 13 hours before a B class flare or M/X class flare occurs

Observations are multiway arrays Z_i , i = 1, ..., n, with dimensions

- $d_{time} = 13$ (1 hr cadence)
- $d_{width} = 100$
- *d*_{height} = 50
- $d_{channel} = 7$ (3 HMI and 4 AIA channels)

Goal: Accurately estimate inverse covariance matrix of ${\bf Z}$ under 4-way sparse Sylvester model

$$(\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C} \oplus \mathbf{D})\mathbf{z} = \mathbf{w}$$

Special case: multichannel MIE

$$(\mathsf{D}_t\oplus\mathsf{D}_{xx}\oplus\mathsf{D}_{yy}\oplus\mathsf{D}_c)\mathsf{z}=\mathsf{w}$$

Model Validation

- Split dataset into a train and test set of videos.
- Train a one-step linear predictor to predict 13th frame from first 12 frames.
- Train QDA predictor to classify (B vs M/X) 13 frame from first 12 frames.
- Report performance of SyGlasso proximal alternating linearized minimization (SG-PALM) on the test set.

SyGlasso

Applications

Conclusions

Application to solar active region data

Active region images segmented by Xiantong Wang using whole disk data^{9 10}

⁹Richard Galvez et al, A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission, The Astrophysical Journal, 2019

¹⁰Yu Wang and Alfred Hero, A proximal alternating linearized minimization method for tensor graphical models, submitted manuscript, Oct 2020.

SyGlasso

Applications

Conclusions

Linear prediction of flare image from 12 hr pre-flare sequence

SyGlas

Applications

Conclusions

Value of HMI on AIA linear prediction accuracy

Main point: adding HMI channels to AIA improves prediction performance by factor >20 for B class flares and >9 for M/X class flares

SyGlasso

Applications

Conclusions

QDA classifier of flare class B vs M/X from 12 hr pre-flare image sequence

Motivation	Multiway covariance	SyGlasso	Applications	Conclusions
Conclusion	S			

Multiway covariance models that are motivated by mathematical physics

- Kronecker product PCA (KPCA)
 - Attains low rank representation of diffusion process covariance matrices Sparse Kronecker product model for inverse covariance Ω (KLasso)
 - Reduces complexity of model from $O(p^2q^2)$ to O(p+q)
 - Bilinear non-convex objective function.
- Sparse Kronecker sum model for inverse covariance Ω (TeraLasso)
 - Reduces complexity of model further than KLasso
 - Convex objective function
- Squared sparse Kronecker sum model for Ω (SyGlasso)
 - KS square root factorization of $\boldsymbol{\Omega}$ equivalent to a Sylvester representation
 - Proximal alternating linearization maximization (PALM) implementation is fast and scalable