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Background: Connectomes/Connectivity

Ø Structural Connectivity Ø Functional Connectivity
• A pattern of anatomical links, dMRI • Statistical Dependencies, fMRI, EEG, MEG



The Human Connectome Project
Ø HCP focuses on elucidating the neural pathways that underlie brain 
function and behavior.  

The Heavily Connected Brain
Peter Stern, “Connection, connection, connection…”, 
Science, Nov. 1 2013: Vol. 342 no. 6158 P.577

• High quality brain images: functional MRI (fMRI), diffusion
MRI, structural MRI, Magnetoencephalography (MEG)
and electroencephalography (EEG) 

• Rich demographic and behavioral data: cognition, 
perception, and personality measurements.

Ø Diffusion MRI is routinely collected in many/most brain studies

• UK Biobank
• Adolescent Brain Cognitive Development Study (ABCD) 
• …



Diffusion Imaging Acquisition

Ø Axons have  ~μm diameters 

(From UMD website) 

Ø Axons group together in 
bundles that traverse the white
matter in brain

Ø We can not image individual
axons, but we can indirectly
image bundles with diffusion MRI 
technique



Diffusion in Brain Tissue
Ø Water molecules in different tissues have different diffusion properties.

• Gray matter:  Diffusion is unrestricted          isotropy 

• White matter: Diffusion is restricted              anisotropy

Sean Foxley et al.



Reconstruction of Local WM Configuration
Ø At each voxel, we want to infer:
• The orientation and the magnitude of the diffusion

(2) High angular resolution diffusion imaging (HARDI)
§ Orientation distribution function (ODF) [Tuch et al. 04]
§ Fiber ODF [Descoteaux et al. 09]
§ … 

Low anisotropy High anisotropy 

Ø Fiber reconstruction using stochastic differential equation:

26 Book title goes here

sor/ODF/EAP field is biased, then these methods may not be able to reduce
the biases in the smoothed tensor/ODF/EAP field.

(iii) For the third category, these methods are computationally more ex-
pensive, but a key advantage of these methods is to adaptively determine the
weights at each voxel and then apply them to the raw DW signals. They avoid
the potential biases introduced by those methods for the first category. More-
over, since MARM refits the raw DWI data at each bandwidth, it avoids the
potential biases introduced by the voxel-wise method.

1.4 Tractography Algorithms

Many tractography algorithms have been proposed to map fibers through
the entire brain based on the estimated principal direction/ODF field
[55, 109, 72, 83, 94]. The algorithms can be categorized into two main groups:
local and global methods. Local methods use local ODF information to in-
dependently construct fibers path-by-path. Local methods can be grouped
into two classes: deterministic and probabilistic. Deterministic algorithms usu-
ally start at seed voxels and follow the local principal directions/ODFs esti-
mated by the di↵usion model in order to generate sequences of points that are
considered on major fibers. Several deterministic tractography algorithms in-
clude streamline algorithms and more elaborated tensor deflection algorithms,
among others. Probabilistic algorithms repeatedly use Monte Carlo simula-
tions (e.g., Makov chain Monte Carlo) to statistically generate the principal
directions and then apply some deterministic methods to tracking fiber bun-
dles. Such methods produce maps of ‘probability’ for each voxel to be crossed
by a random track and the probabilistic maps of connectivity between any two
ROIs. See [73, 133, 83] for a nice review of various tractography algorithms and
references therein. An advantage of local methods is their computational e�-
ciency. However, the local methods can be very sensitive to noise components
in DWIs, which can significantly a↵ect the final tracking result.

Fig 1.9 showed fiber tracts across in several ROIs by the determin-
istic local tractography method in MRtrix (See section 1.9.2). The sub-
ject is from Q3 dataset in Human Connectome Project (HCP), where b =
1000, 2000, 3000s/mm

2, 90 directions per shell. Constrained SD [122] was per-
formed for all 90x3 volumes using a 3D fiber response function [35] to estimate
fODFs. Then MRtrix is used for deterministic local tractography.

We consider a stochastic di↵erential equation model with measurement
errors for local tractography methods [80, 111]. Specifically, let v(t) be the
true fiber trajectory in R

3. The stochastic di↵erential equation model assumes

dv(t)

dt
= e(v), t � 0 with v(0) = v0, (1.45)

is the reconstructed fiber track

(1) Diffusion tensor image (DTI) 

fODF
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FIGURE 1.9
Fiber tracts of a subject in HCP Q3 dataset by a deterministic local tractog-
raphy used in MRtrix.

where e(v) is the true fiber direction at location v and v0 is the position of
the seed location. Based on dMRI data, one is able to obtain an estimate of
the true fiber direction field, denoted by {ê(v) : v 2 V}, such that

ê(v) = e(v) + ✏(v), (1.46)

where ✏(v) is a zero-mean stochastic process. Numerically, let � > 0 be a fixed
approximation step and a sequence of points tk = k� for k = 0, 1, . . . , [T/�]. By
using the Euler’s approximation, one can solve (1.45) by iteratively updating

v(tk) = v(tk�1) + ê(v(tk�1)) for k = 1, · · · , [T/�], v(t0) = v0. (1.47)

Global methods reconstruct all detectable fibers of the brain simultane-
ously. It reconstructs fibers by finding a configuration that best describes the
whole set of measured data [88]. The reconstructed fibers are built by small
line elements, each of them reflecting a part of the whole di↵usion anisotropy.
Elements being connected in lines eventually form reconstructed fibers. An
advantage of global methods is stable with respect to noise and imaging arti-
facts. However, the global methods is often computationally time-consuming.

We consider a Bayesian approach for the global methods as follows. Let M
be the assumed fiber model in V ⇢ R

3 and S = {(S(qi;v),qi) : i = 1, · · · , n}
be observed DWI data. One needs to specify a sampling distribution of S
given M, denoted by p(S|M), and a prior distribution of M, p(M). For the
sampling distribution, one can use the dMRI models discussed above. The key
idea and challenge of the global tracking methods lies in how to specify the
prior of the fiber model, p(M). In [109], the authors used small line (fiber)
segments LS(v) = (v, r(v)) consisting of a continuous spatial position v 2 V
and an orientation r(v) that can form chains to represent the individual fibers.
A mixture model of the product of a stick model in orientation space and an
isotropic Gaussian in the spatial domain is assumed for p(S|M). A simple
interaction model is assumed for all connected segments, which leads to p(M).



• Beautiful picture (video) inference?

• Any systematic variation (with traits) in normal/disease subjects?

• 1 HCP Subject

• ~ 10^6 curves

• ~ 3 Gbs

From Connectivity to Knowledge



Traditional Connectome Mapping

Ø Traditional ROIs are volume based – lack of flexibility for changing connectome
resolution

Ø Traditional seeding for tractography is in the volume space – producing gyral
biases or bias caused by large fiber bundles

Ø We propose to instead utilize the white surface to construct connectome



Surface-based Connectome Mapping
Ø Seeding on the white surface & use “surface flow” to go to white matter for 

fiber tracking

Ø All constructed streamlines are connecting 
white surface

surface flow 
St-Onge et al. 2019

Ø We put a uniform mesh grid on the white 
surface

mesh grid
Final tracking result



Surface-based Connectome Mapping
Ø Connections between mesh triangles form a high-resolution connectome

Ø Given any parcellation of the brain surface,
e.g., Desikan, we can easily obtain a low-
resolution connectivity matrix

Ø We can easily manipulate the parcellation to
get HIGH or LOW resolution matrices

high-resolution connectome



Multi-scale Graph Principal Component 
Analysis



Data Description

Ø Dataset: Human Connectome Project (HCP)

• Image data: 1065 subjects with diffusion MRI and
structural MRI. All are preprocessed with our PSC
pipeline.

• Traits: Rich demographic and behavioral traits,
including cognition, motion, personality measurements
substance use and so on.

The HCP dataset contains:

We extracted 175 different trait measures for each subject

Example Traits: 
Cognition: NIH Toolbox Oral Reading Recognition Test, Penn Word Memory Test,…
Substance use: Drinks per day in heaviest 12-month period, Max drinks in a single 
day in past 12 months,… 
Sensory: Odor Identification, Regional Taste Intensity, … 



Tensor Representation

Ø For each subject, if we stack their different weighted networks together, 
we obtain a 3-way tensor with dimensionality of 𝑣×𝑣×𝑚

Ø Similarly, if we stack n subjects data together, we get a 4-way tensor with 
dimensionality of 𝑣×𝑣×𝑚×𝑛

Ø Each tensor is semi-symmetric because of the symmetry of connection. 



- is called subject mode

Ø Use a semi-symmetric CP decomposition within each scale:

- v # of nodes, n subjects

- is called network mode

- Enforcing orthogonality for s
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Within Scale Decompositions



Ø Link single-scale models through common subject modes:

Multi Scale Tensor Principal Component Analysis

Ø Anchoring fine-scale to coarse-scale data greatly reduces the effects of 
noise.

Ø Model is no more restrictive than the single-scale alternative (if K is 
allowed to increase).

Ø Need a sensible objective to optimize.



Ø Idea: minimize the squared error within each scale:

Optimization I

Ø Express this as a series of rank 1 maximization problems with the n-
mode product. If and

Ø (i) is equivalent to

then

(i)

(ii)

Ø P is the projection onto the orthogonal compliment of [v1,…,vk]

Ø Looks complicated, but can be written entirely in terms of dot products.



Ø Our rank 1 multi-scale problem is the sum of the squares of the single-
scale problems:

Optimization II

Ø Use block coordinate ascent, iteratively updating

where Emax(A) is the eigenvector of A with the largest eigenvalue.

Ø Multi-scale modelling combines spectral information across scales!



Ø Tested our model on 118 individuals.

Applications to HCP

Ø Notation: (l, r) is the parcellation created by splitting each Desikan region 
in the left (resp. right) hemisphere into l (resp. r) regions.

Ø Consistently saw the greatest gains with {(1,1), (2,4)}.



Ø Used K=70 latent factors as inputs to ridge regression.

Improved Trait Predictions

Ø Trained on 70% of data, computed MSE for trait predictions on other 30%.



Inference on Group Differences
Ø Interested in understanding how the connectome changes with traits.

Ø Tested on the HCP trait “worst lifetime binge drinking” with {(1,1), (2,4)}.

1. Find a unit direction w such that the projection of the latent factors 
onto w are maximally correlated with the traits.

2. Map back onto networks:

Ø Two stage process:

Ø Next slides show 100 largest changes when moving from low to high binge 
drinking (K=10).



Effects of Binge Drinking (Single-Scale)



Effects of Binge Drinking (Multi-Scale)



Summary

Ø We developed a multiscale + multiresolution population-based
structural connectome analysis framework

Ø Novel statistical methods for new connectome data analysis:

• Reproducible

• Preserves the geometry
and diffusion information

# of nodes

connectome representation

• To understand the normal connectome variation in healthy subjects

• To relate connectome to covariates of interest and traits

• To predict the risk of neuropsychiatric disorders 
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