Multi-scale Graph Principal Component Analysis of Brain Connectomes

David Dunson

Department of Statistical Science Duke University

12/4/2020

Background: Connectomes/Connectivity

Structural Connectivity

A pattern of anatomical links, dMRI

Functional Connectivity

• Statistical Dependencies, fMRI, EEG, MEG

The Human Connectome Project

HCP focuses on elucidating the neural pathways that underlie brain function and behavior.

> *The Heavily Connected Brain* Peter Stern, "**Connection, connection, connection**...", Science, Nov. 1 2013: Vol. 342 no. 6158 P.577

- High quality brain images: functional MRI (fMRI), diffusion MRI, structural MRI, Magnetoencephalography (MEG) and electroencephalography (EEG)
- Rich demographic and behavioral data: cognition, perception, and personality measurements.

Diffusion MRI is routinely collected in many/most brain studies

- UK Biobank
- Adolescent Brain Cognitive Development Study (ABCD)

Diffusion Imaging Acquisition

Axons have ~µm diameters

Axons group together in bundles that traverse the white matter in brain

We can not image individual axons, but we can **indirectly** image bundles with diffusion MRI technique

(From UMD website)

Diffusion in Brain Tissue

Water molecules in different tissues have different diffusion properties.

- Gray matter: Diffusion is unrestricted (
- White matter: Diffusion is restricted $\langle \rangle$ anisotropy ۲

Sean Foxley et al.

Reconstruction of Local WM Configuration

- At each voxel, we want to infer:
 - The orientation and the magnitude of the diffusion
 - (1) Diffusion tensor image (DTI)

 $D = \begin{pmatrix} d_{1,1} & d_{2,1} & d_{3,1} \\ d_{2,1} & d_{2,2} & d_{3,2} \\ d_{3,1} & d_{3,2} & d_{3,3} \end{pmatrix}$ (2) High angular resolution diffusion imaging (HARDI) $\bullet \text{ Orientation distribution function (ODF) [Tuch et al. 04]}$

Fiber ODF [Descoteaux et al. 09]

fODF

 λ_3

High anisotropy

 λ_3

Fiber reconstruction using stochastic differential equation:

$$\frac{d\mathbf{v}(t)}{dt} = \mathbf{e}(\mathbf{v}), \quad t \ge 0 \quad \text{with} \quad \mathbf{v}(0) = \mathbf{v}_0,$$
$$\hat{\mathbf{e}}(\mathbf{v}) = \mathbf{e}(\mathbf{v}) + \epsilon(\mathbf{v}),$$

v(t) is the reconstructed fiber track

From Connectivity to Knowledge

- Beautiful picture (video) inference?
- Any systematic variation (with traits) in normal/disease subjects?

- Traditional ROIs are volume based lack of flexibility for changing connectome resolution
- Traditional seeding for tractography is in the volume space producing gyral biases or bias caused by large fiber bundles
- > We propose to instead utilize the **white surface** to construct connectome

Surface-based Connectome Mapping

- Seeding on the white surface & use "surface flow" to go to white matter for fiber tracking
- All constructed streamlines are connecting white surface

We put a uniform mesh grid on the white surface

Final tracking result

Surface-based Connectome Mapping

Connections between mesh triangles form a high-resolution connectome

Given any parcellation of the brain surface, e.g., Desikan, we can easily obtain a lowresolution connectivity matrix

We can easily manipulate the parcellation to get HIGH or LOW resolution matrices

high-resolution connectome

Multi-scale Graph Principal Component Analysis

Data Description

- Dataset: Human Connectome Project (HCP)
 - The HCP dataset contains:

- Image data: 1065 subjects with diffusion MRI and structural MRI. All are preprocessed with our PSC pipeline.
 - **Traits**: Rich demographic and behavioral traits, including cognition, motion, personality measurements substance use and so on.

We extracted 175 different trait measures for each subject

Example Traits: **Cognition**: *NIH Toolbox Oral Reading Recognition Test, Penn Word Memory Test,...* **Substance use**: *Drinks per day in heaviest 12-month period, Max drinks in a single day in past 12 months,...* **Sensory**: *Odor Identification, Regional Taste Intensity, ...*

Tensor Representation

For each subject, if we stack their different weighted networks together, we obtain a 3-way tensor with dimensionality of v×v×m

Similarly, if we stack n subjects data together, we get a 4-way tensor with dimensionality of v×v×m×n

Each tensor is semi-symmetric because of the symmetry of connection.

Within Scale Decompositions

Use a semi-symmetric CP decomposition within each scale:

 \mathbf{L}

$$\boldsymbol{\mathcal{X}} \approx \sum_{k=1}^{K} d_k \, \mathbf{v}_k \circ \mathbf{v}_k \circ \mathbf{u}_k,$$

 $\mathcal{X} \in \mathcal{R}^{v imes v imes n}$ - **v** # of nodes, **n** subjects

- $\mathbf{v}_k \in \mathcal{R}^v$ is called network mode

- $\mathbf{u}_k \in \mathcal{R}^n$ is called subject mode
- Enforcing orthogonality for \mathbf{u}_k s

Multi Scale Tensor Principal Component Analysis

Link single-scale models through common subject modes:

$$\mathcal{X}^{(j)} \approx \sum_{k=1}^{K} d_k^{(j)} \mathbf{v}_k^{(j)} \circ \mathbf{v}_k^{(j)} \circ \mathbf{u}_k, \quad j = 1, \dots, R.$$

- Anchoring fine-scale to coarse-scale data greatly reduces the effects of noise.
- Model is no more restrictive than the single-scale alternative (if K is allowed to increase).
- Need a sensible objective to optimize.

Optimization I

Idea: minimize the squared error within each scale:

$$\min_{d_h, \mathbf{v}_h, \mathbf{u}_h} \left\| \mathcal{X} - \sum_{h=1}^{K} d_h \mathbf{v}_h \circ \mathbf{v}_h \circ \mathbf{u}_h \right\|_2$$
(i)
subject to $||\mathbf{u}_h||_2 = 1, ||\mathbf{v}_h||_2 = 1, \mathbf{v}_h^T \mathbf{v}_{h'} = \delta_{h,h'}$

Express this as a series of rank 1 maximization problems with the nmode product. If $\mathcal{X} \in \mathcal{R}^{I_1 \times I_2 \times \ldots \times I_M}$ and $A \in \mathcal{R}^{J_n \times I_n}$ then

$$(\mathcal{X} \times_n A)_{i_1, \dots, i_{n-1}, j, i_{n+1}, \dots, i_M} = \sum_{i_n} x_{i_1, i_2, \dots, i_M} a_{j, i_m}$$

(i) is equivalent to

$$\underset{\mathbf{v}_{h},\mathbf{u}_{h}}{\text{maximize}} \ \mathcal{X} \times_{1} \mathbf{P}_{h-1} \mathbf{v}_{h} \times_{2} \mathbf{P}_{h-1} \mathbf{v}_{h} \times_{3} \mathbf{u}_{h}$$

(ii)

subject to $||\mathbf{u}_h||_2 = 1, ||\mathbf{v}_h||_2 = 1$

 \succ **P** is the projection onto the orthogonal compliment of $[\mathbf{v}_1, \dots, \mathbf{v}_k]$

Looks complicated, but can be written entirely in terms of dot products.

Optimization II

Our rank 1 multi-scale problem is the sum of the squares of the singlescale problems:

$$\begin{array}{l} \underset{\mathbf{u}_{h},\mathbf{v}_{h}^{(1)},...,\mathbf{v}_{h}^{(R)}}{\text{maximize}} \sum_{j=1}^{R} \left(\mathcal{X}^{(j)} \times_{1} \mathbf{P}_{h-1}^{(j)} \mathbf{v}_{h}^{(j)} \times_{2} \mathbf{P}_{h-1} \mathbf{v}_{h}^{(j)} \times_{3} \mathbf{u}_{h} \right)^{2} \\ \text{subject to } ||\mathbf{u}_{h}||_{2} = 1, ||\mathbf{v}_{h}^{(1)}||_{2} = 1, \ldots, ||\mathbf{v}_{h}^{(R)}||_{2} = 1. \end{array}$$

Use block coordinate ascent, iteratively updating

$$\begin{aligned} \widehat{\mathbf{u}}_{h} | \mathbf{v}_{h}^{(1)}, \dots, \mathbf{v}_{h}^{(R)} &= E_{\max} \left(\sum_{j=1}^{R} \left(\mathcal{X}^{(j)} \times_{1} \mathbf{P}_{h-1}^{(j)} \mathbf{v}_{h}^{(j)} \times_{2} \mathbf{P}_{h-1}^{(j)} \mathbf{v}_{h}^{(j)} \right) \\ & \left(\mathcal{X}^{(j)} \times_{1} \mathbf{P}_{h-1}^{(j)} \mathbf{v}_{h}^{(j)} \times_{2} \mathbf{P}_{h-1}^{(j)} \mathbf{v}_{h}^{(j)} \right)^{T} \right) \\ & \widehat{\mathbf{v}}_{h}^{(j)} | \mathbf{u}_{h} = E_{\max} \left(\mathbf{P}_{h-1}^{(j)} (\mathcal{X}^{(j)} \times_{3} \mathbf{u}_{h}) \mathbf{P}_{h-1}^{(j)} \right), \end{aligned}$$

where $E_{max}(A)$ is the eigenvector of A with the largest eigenvalue.

Multi-scale modelling combines spectral information across scales!

Applications to HCP

Tested our model on 118 individuals.

Notation: (I, r) is the parcellation created by splitting each Desikan region in the left (resp. right) hemisphere into I (resp. r) regions.

Consistently saw the greatest gains with {(1,1), (2,4)}.

 \succ

Sample count adjacency matrices (log scale) (2, 2)

(2, 4)

Improved Trait Predictions

Used K=70 latent factors as inputs to ridge regression.

Trained on 70% of data, computed MSE for trait predictions on other 30%.

(a) Histograms of MSE improvements. The left plot has one omitted outlier around -200.

Inference on Group Differences

Interested in understanding how the connectome changes with traits.

Two stage process:

- Find a unit direction w such that the projection of the latent factors onto w are maximally correlated with the traits.
- 2. Map back onto networks:

$$\Delta_{\mathbf{X}}(s) = s \sum_{k=1}^{K} d_k \mathbf{w}(k) v_k \circ v_k, \text{ for } s \in [-1, 1],$$

> Tested on the HCP trait "worst lifetime binge drinking" with $\{(1,1), (2,4)\}$.

Next slides show 100 largest changes when moving from low to high binge drinking (K=10).

Effects of Binge Drinking (Single-Scale)

Effects of Binge Drinking (Multi-Scale)

Summary

- We developed a multiscale + multiresolution population-based structural connectome analysis framework
 - Reproducible
 - Preserves the geometry and diffusion information

connectome representation

- Novel statistical methods for new connectome data analysis:
 - To understand the normal connectome variation in healthy subjects
 - To relate connectome to covariates of interest and traits
 - To predict the risk of neuropsychiatric disorders

Acknowledgements

<u>Collaborators</u>: Zhengwu Zhang (*UNC STOR*) Steven Winter (*Duke Statistical Science*)

Funding Support: National Institute of Health grant 1R01MH118927-01