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What is Functional Data?

Functional Data: A sample of random functions,
with one function per subject.

- These functions can be curves (1D), images (2D or 3D), or
object data.

The first part of the talk focuses on curves, i.e.
real-valued functions defined on an interval I ∈ R.

The second part of the talk is for object data with focus on
time-series data.
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Examples of Functional Data

fMRI data at a particular voxel for 20 subjects =⇒ n = 20.
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Real/Observed Functional Data

In reality, functional data are recorded intensely on a time grid

- The fMRI data were recorded every two seconds for about 10
minutes (300 time points) =⇒ 300 dimensional data.
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=⇒ high-dimensional data.

Is there a curse of high dimensionality?
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High-dimensional vs. Functional Data

Methods to handle high-dimensional data are quite different from
those for functional data.

Large p is a challenge for high-dimensional data but a blessing for
functional data!

Noise, a.k.a. Measurement error, is a challenge for multivariate
data but easy to handle for functional data.

How did functional data get away with the curse of large p
and measurement errors?

Answer: We assume continuity and smoothness of the data, so
information in a neighborhood can be shared.
- We can do so because there is a natural ordering of the data.
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High-dimensional vs. Functional Data

Question: Can we order p-dim data so the ordered data represent
a discretized version of functional data?

Goal: Convert high-dim multivariate data to functional data as a
preprocessing step to perform further data analysis.

* This makes sense only if the high-dim data are all measured on
the same scale.
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End of Introduction

Macchuipiccu, Peru
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Transforming High-dim Data to Functional Data

(Chen, Chen, Müller & W., 2011)

Convert p-dim data (X1, . . . , Xp) to functional data.

Idea: Regard the components of the p-dim data (X1, . . . , Xp) as
order-perturbed noisy measurements of a smooth latent process.

Goal: Construct a proximity/similarity measure between pairs of
features, Xj and Xk, to map each feature to a location on [0, 1],
so similar features are placed closer to each other.

Xk Xj

|+++++++++++++++++++++++++++++++++++|
0 1
=⇒ string p features to new locations on [0, 1].
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Stringing Method

assigned location
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Stringing in Action
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Key Assumption for the Stringing Method

Assumption: There is a latent order which corresponds to a
smooth process.
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Key Assumption for the Stringing Method

The latent order was scrambled.
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Goal of the Stringing Method

Stringing restores the latent order which corresponds to a smooth
process.

16/71



How does stringing work?

Observe p-dim data (X1, . . . , Xp) from n subject.

Choose a distance d to measure proximity/similarity between
features
⇒ p× p Distance matrix (Djk), where Djk = d(Xj , Xk),
for the components of the p-dim data.

Apply multidimensional scaling (MDS) to assign a location, on the
interval [0, 1], to each variable in such a way that variables that are
similar to each other are located close to each other on [0, 1].
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How does stringing work?

Construct a new p-dim data for each subject based on the
reconfiqured p data pairs, (new variable locations, level of
variable),
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Treat this new/transformed p-dim data as discretized observations
of a latent smooth random function.

18/71



How does stringing work?

Construct a new p-dim data for each subject based on the
reconfiqured p data pairs, (new variable locations, level of
variable),

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Location

O
b

s
e

rv
a

ti
o

n

0.0 0.2 0.4 0.6 0.8 1.0

Treat this new/transformed p-dim data as discretized observations
of a latent smooth random function.

18/71



How does stringing work?
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This completes the steps to embed p−dimensional vectors into the
infinite-dimensional space of random functions: p 7→ ∞

* After stringing, one can use functional data approaches to represent
the data and for further data analysis.
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More about Stringing Method

MDS maps p objects to p points in a target space Rd.

- When d = 1, this is called UDS (unidimensional scaling).

- Stringing applies UDS to “string” the p variables onto p locations
on [0, 1] like peals on a string.
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More about Stringing Algorithm

For variables Xj and Xk, let (xij , xik) be the observation from the ith
subject.

We used both Euclidean distance and transformed Pearson correlation
as the metric distance (or proximity measure).

Euclidean distance: D̂jk = [ 1n
∑

i(xij − xik)2]1/2

Pearson distance: D̂jk = 2(1− ρ̂jk), where
ρ̂jk = 1

n−1
∑

i(xij − x̄j)(xik − x̄k)/{σ̂j σ̂k}, with

x̄j = 1
n

∑
i xij , σ̂j = [ 1

n−1
∑

i(xij − x̄j)2]1/2.
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More about Stringing Algorithm

Stringing step: Minimize the stress function
SD(s1, . . . , sp) =

∑
j<k(|sj − sk| −Djk)

2, where sj ∈ R is the
coordinate of the projected location of the jth variable in the one
dimensional projection space.

The resulting one-dimensional configuration

reflects the pairwise distances between variables

leads to an ordering of the features

provides support points for constructing a trajectory Z(t) from the
predictor levels for each subject
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End of Stringing Methodology

23/71



Outline

1 Introduction to Functional Data

2 Transforming High-dimensional Data to Functional Data

3 Numerical Illustrations

4 Part II: Stringing Object Data

5 Brain Efficiency and Community Detection of Brain Network

6 Data Analysis

24/71



Application 1: Stringing for Visulization

Molecular classification problem to diagnose type of leukaemia
based on gene expression array data (Golub et al. 1999).

The gene expression data were obtained from Affymetrix chips,
containing 7129 genes, reduced to 50 most significant genes by
t-tests.

Gene expression data (50 genes) for 38 patient

- 27 with acute lymphoblastic leukaemia (ALL)
- 11 with acute myeloid leukaemia (AML).
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Stringing Gene Expression for Visualization

Leukaemia gene expressions for 50 significant genes
Left: Original order Right: Stringed order

* Stringing separates the leukaemia types based on patient’s
gene expression data.
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Application 2: Recovering the Latent Factor(s)

Annual tree ring widths from 1932-1976 for 45 blue oak trees
(Mary Ranch, Santa Clara, California), p = n = 45.
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Top: Observed series of tree ring width data.
Bottom: Ordered tree ring series obtained by Stringing.
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Tree Ring Data

We implemented Stringing with Euclidean distances.

Results: Stringing recover climatic variation, primarily annual
precipitation.

Stringing → Tree ring width as a smooth function of
precipitation, with scrambled observations due to random
precipitation levels per year.

EVIDENCE ???
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Tree Ring Data
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Comparison of the Stringing function (solid) for the tree ring width data with
yearly rainy season precipitation (dashed).
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Tree Ring Data

Stringing Function Ψ is found to be significantly associated with
(known) precipitation levels.

(Confirmed by bootstrap test for association)

Stringing uncovers precipitation levels.
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Application 3: Stringing for Modeling

Alaska

31/71



Predicting Survival from Gene Expression Data

n = 240 patients with diffuse large-B-cell type lymphoma
(DLBCL), p = 7399 gene expression levels.

Goal: Predict survival (possibly right censored) based on gene
expression levels.

Patients were randomly divided into training (160 subjects) and
test (80 subjects) groups.

Data were preprocessed following similar approach as in Bair and
Tibshirani (2004), who proposed supervised PCA.

- 80 genes were selected as input for stringing.

After stringing we propose a functional Cox model using the
expression levels X(t) of these 80 stringed genes.
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Functional Cox Model

Censored lifetimes as responses: Proportional hazards

h(t|Xi) = h0(t) exp

[∫ 1

0
Xi(s)β(s) ds

]
, (1)

with baseline hazard function h0(t).

This model is different from the conventional Cox model with
longitudinal covariates: h(t|Xi) = h0(t) exp [Xi(t)β(t)] .

Rather, it is a continuous approximation of

h(t|Xi) = h0(t) exp
[
XT
i β
]
, (2)

where Xi and β are both 80-dim vectors.
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Functional Cox Model

The Cox model in (2) involves high-dim covariates.

The functional Cox model in (1) involves an infinite dimensional
covariates.

Which one is more evil?
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Prediction for Large B-cell Lymphoma
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Coefficient function for the stringed functional Cox regression model, as
obtained for one random split of the DLBCL gene expression data.
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Comparing Deviance

We use the deviance proposed by Bovelstad et al. (2007).

DEV = −2{(ltest(β̂)− ltest(0)}.

Smaller deviance is better!

PCR Ridge Lasso Stringing

1st quartile 1 -6 -1.5 -11.5

median -3 -8.5 -4.5 -18

3nd quartile -6.5 -11 -7 -21

* Comparison of quartiles of deviances for survival prediction for four methods
across test sets: Stringing; supervised principal component regression (PCR);

ridge regression (Ridge); Lasso.
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Functional Cox Models: Qu, W. and Wang (2016)

In Qu et al. (2016) we investigate the theoretical properties of a
more general model using the RKHS approach.

We allow vector covariates in addition to functional covariates.

h(t |X) = h0(t) exp
{
θ′0Z +

∫
S
X(s)β0(s)ds

}
, (3)

where S could be [0, 1].

We applied penalized partial likelihood to estimate θ0 and β0(t),
and developed the semiparametric efficiency of the parametric
estimate and minimax property of the nonparametric estimate of
β0(t).
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End of Part I

Sinkhole in Lake Berryessa (near Davis).
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Alignment of Objects: Chen and W. (2019)

So far in Part I, we stringed the scalar components of p-dim
multivariate data.

In Part II, we replace the scalar by an object,
e.g. curves, images (emojies), networks, matrices, etc.

⇒ p objects.

The goal is to project these p objects to a one-dimensional
subspace so similar objects will be place near each other.

⇒ We are aligning the objects on a line.

Our toy object is the fMRI time-series with the goal to study
functional brain connectivity.
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Functional Magnetic Resonance Imaging

Figure 1: Time-varying Images
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Stringing Method

assigned location

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X1 X2 X3
…………………………X9 X10
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Parcellation of Brain Regions:

Automated Anatomical Labeling (AAL)

We use the AAL template to partition the brain into 90 regions.

Figure 2: Parcellation of brain regions.

Extract 90 time-series from these regions - region of interest (ROI)
analysis.
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ROI based fMRI Data: 90 Time Series

Figure 3: Time-varying Images
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Alzheimer’s Disease fMRI Data from UC Davis

The dataset consists of 172 normal and 67 Alzheimer’s disease
subjects.

For each subject, an image with spatial resolution 61x73x61 voxels
and temporal resolution 236 time points is acquired.

Use AAL template to partition a brain into 90 regions.

Extract 90 time-series from these regions
- We will apply stringing on these time-series.
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Visualization of Brain Images

(a) AAL Order (Demented) (b) AAL Order (Normal)

Figure 4: Brain image for a demented (a) and normal (b) subject.
Panels (a) and (b) show the 90 BOLD signals arranged horizontally

according to the AAL ordering.
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Alignment of fMRI Time Series

(a) AAL Order (Demented) (b) AAL Order (Normal)

(c) Aligned Order (Demented) (d) Aligned Order (Normal)

Figure 5: Brain image for a representative demented (a and c) and normal (b
and d) subject. Panels (c) and (d) show the aligned BOLD signals.
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Brain Connectivity Map

(a) AAL Order (Demented)(b) AAL Order (Normal)

(c) Align Order (Demented)(d) Align Order (Normal)

Figure 6: Panels (a) and (b) show the correlation of 90 normalized BOLD
signals arranged according to the AAL ordering, panels (c) and (d) show the
correlations of the aligned normalized BOLD signals.
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Alignment of Objects

For the p = 90 fMRI time-series objects, we want to align them
from the original 3D spatial space to a 1D space for visualization.

The goal is to align the p objects (fMRI time-series) on a line so
similar objects will be place near each other.

⇒ smooth transition of the aligned objects

Our main goal is to reflect the similarities of the objects in the
ordering, not the actual distance between two aligned objects on
the 1D space.

⇒ Reorder the p objects in Figure 4 suffices.

What does similarity means?
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Stringing fMRI data for Brain Connectivity
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Functional Connectivity: Our Primary Interest

Functional connectivity: Connectivity between brain regions that
share functional properties - often defined as temporal correlation of
fMRI time-series for anatomically separated brain regions (Friston et al.,
1993) .

Intrinsic correlations between a seed region in the PCC and all other voxels in the brain for a 
single subject during resting fixation. 

Michael D. Fox et al. PNAS 2005;102:9673-9678

©2005 by National Academy of Sciences

Figure 7: Interaction between brain regions.
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Choice of the Similarity/Disparity Measure

In neuroscience, Pearson correlation (PC) of two time series is used
to measure their functional connectivity (temporal dependency).

– This is problematic since the temporal data are correlated.
– It requires at least the stationarity of the time series.

Functional Data View: PC is the cosine angle of two
standardized time series, which are the discretized realizations of
two stochastic processes Xj(t) and Xk(t).

ρjk = 〈Xj(t), Xk(t)〉 =

∫
Xj(t)Xk(t)dt.
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Choice of the Similarity/ Disparity Measure

Functional Data View: PC is the cosine angle of two
standardized time series, which are the discretized realizations of
two stochastic processes Xj(t) and Xk(t).

ρjk = 〈Xj(t), Xk(t)〉 =

∫
Xj(t)Xk(t)dt.

We thus use djk = 2(1− ρjk) as a disparity measure.
⇒ It is the L2-norm of two normalized time series.∫

(Xj(t)−Xk(t))
2dt =

∫
X2

j (t)dt+

∫
X2

k(t)dt− 2

∫
Xj(t)Xk(t)dt

= 2− 2ρjk.

.
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Alignment of fMRI Time Series

(a) AAL Order (Demented) (b) AAL Order (Normal)

(c) Aligned Order (Demented) (d) Aligned Order (Normal)

Figure 8: Brain image for a representative demented (a and c) and normal (b
and d) subject. Panels (c) and (d) show the aligned BOLD signals.
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Illustration of Object Stringing

(a) original data (b) permuted data (c) aligned data

Figure 9: (a) is a smooth stochastic process Z(s, t), (b) is the randomly
permuted stochastic process of (a), and (c) is the process recovered by the
proposed alignment method.
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A Summary of Brain Efficiency

Consider brain as a network. A conventional summary of the brain
network efficiency is the minimum spanning tree (MST).

MST: A summary of the global efficiency of brain network that
selects the most efficient and essential path which connects all
nodes.

We propose a new path length LA for the aligned objects.

Let ψ(1)→ ψ(2)→ · · ·ψ(p− 1)→ ψ(p) be the ordered path,
where ψ(j) is the the subject index of the jth aligned object.

LA =

p−1∑
j=1

dψ(j)ψ(j+1).

|+++++++++++++++++++++++++++++++++++|
ψ1ψ2ψ3 . . . ψp−1ψp
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A New Community Detection Method

Qw(B, b1, · · · , bB−1) =
1

lw

∑
j,k∈{1,··· ,p}

(
wjk −

wj·wk·
lw

)
×

B∑
h=1

1{bh−1≤s∗j ,s∗k<bh}, (4)

wjk = eρjk , wj· =
∑

k 6=j wjk, and lw =
∑

j,k∈{1,··· ,p}wjk.

B is the number of communities and bh is used to defined
boundary of a community.
⇒ Objects whose aligned orders fall in [bh−1, bh) form a
community.

We apply the genetic algorithm to find the maximum of the
weighted modularity criteria over all possible (B, b1, · · · , bB−1).
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Conventional Modularity (Newman, 2006)

Conventional Modularity:

Qw(B,C1, · · · , Cn) =
1

lw

∑
j,k∈{1,··· ,n}

(
wjk −

wj·wk·
lw

)
× δ(Cj , Ck),

(5)

Where Cj is the community to which object j is assigned;
δ(Cj , Ck) = 1 if object j and k are in the same community,
otherwise it is 0.

Complexity of solution space: O(Bp) vs. O(2p) (our approach).
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Data Analysis

Bear Valley (Near Davis)
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Data Analysis

The dataset consists of 172 normal and 67 Alzheimer’s disease
subjects.

For each subject, an image with spatial resolution 61x73x61 voxels
and temporal resolution 236 time points is acquired.

Use AAL template to partition a brain into 90 regions.

Extract 90 time-series from these regions
- We will apply stringing on these time-series.
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Alignment of fMRI Time Series

(a) AAL Order (Demented) (b) AAL Order (Normal)

(c) Aligned Order (Demented) (d) Aligned Order (Normal)

Figure 10: Brain image for a representative demented (a and c) and normal (b
and d) subject. Panels (c) and (d) show the aligned BOLD signals.
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Brain Connectivity Map

(a) AAL Order (Demented)(b) AAL Order (Normal)

(c) Align Order (Demented)(d) Align Order (Normal)

Figure 11: Panels (a) and (b) show the correlation of 90 normalized BOLD
signals arranged according to the AAL ordering, panels (c) and (d) show the
correlations of the aligned normalized BOLD signals.
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Comparison of Brain Efficiency

H0 : The brain efficiency of the normal and demented group is the
same.

Type Wilcoxon test t test

Length of MST 0.1361 0.1673
Length of Path 0.0934 0.1198

Table 1: P value of the Wilcoxon test and t test
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Comparison of Brain Efficiency

H0 : The number of communities in normal and demented group is
the same.

Comparison of our approach with another package:
Brain Connectivity Toolbox (BCT). 1

Rank sum test: Number of Communities
X̄1 X̄2 s1 s2 p-value

Align 4.2500 4.8955 1.7576 1.9473 0.0032

BCT 3.8198 4.0149 0.7391 0.7281 0.0625

Table 2: 1=normal group; 2=demented group.
The p values are from Wilcoxon rank sum test.

1
M. Rubinov and O. Sporns. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage,

52(3):1059 – 1069, 2010. Computational Models of the Brain.
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Conclusion

Results of the data analysis show that the alignment approach
allows us to successfully reduce the complexity of the data
structure.

Further exploration reveals that the number of communities in
normal and demeneted groups is significant different.

More communities imply high wire cost for functional connectivity:
energy inefficient
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Post Alignment Analysis

Consider aligned time-series as an images:
Apply image classifiers to normal and Alzheimer’s disease subjects.

-To be done.

Consider brain connectivity map for aligned data:
Apply Convolutional Neural Networks to classify emotional EEG
data.

Moon, Chen, Hsieh, W. and Lee (2020).
“Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks”
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Thank You !
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