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• Impact of statistics on image representations
• Impact of statistics on performance bounds for computer vision 

algorithms
• Shape statistics
• Action detection
• Bayesian inference
• Ten problems for statisticians 
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Neural networks, deep learning 
networks

• NNs have been around for a while: Second life in the 80’s
• Good examples of NNs for vision

• Autonomous driving (Dean Pomerleau)
• Face detection (Tommy Poggio)
• OCR (mostly in NIPS)

• Our work: Stereo, optic flow computation and texture segmentation using 
NNs

• Artificial neural networks for computer vision, Springer (with Y.T. Zhou)
• MRF-based algorithms and ANNs
• MRFs and Boltzman machines
• CNN for ATR, jointly with Army Research Lab sciences, Computer Vision and 

Image Understanding, 2001.
• Face recognition using a version of dynamic link architecture (CVPR 1992)
• Revenge of the networks

• By adding more layers, deep learning networks are beating SVMs
• LeNets, (1989, 1998), AlexNet (2012)
• Turing award for Hinton, LeCun and Bengio



Statistis and image representations

• Peter Whittle, Biometrika - 2-D non-causal autoregressive models
• Second-order homogeneous random fields, in Proc. 4th Berkeley Symp. Mathematical Statistics and 

Probability, vol. 2. Berkeley, Calif.: Univ. California Press, 1961 – A.M. Yaglom
• On Gaussian fields with given conditional distributions, Theory of Probability and Its Applications, 1967, Y.A. 

Rozanaov
• R.L. Dobrushin’s work
• Hammersley-Clifford theorem establishing the equivalence of MRFs and Gibbs distributions (1971) 
• Spatial interaction and statistical analysis of lattice models - Julian Besag, Jl. Royal Stat. Society. Ser. B, 1974
• P.A. P. Moran and Julian Besag, Estimation in GMRF – 1975
• Julian Besag, Error-in-variable formulation, 1977
• W. E. Larimore, Statistical inference on stationary random fields, PIEEE 1977
• M. M. Ali. Analysis of stationary spatial-temporal processes: Estimation and prediction. Biometrika, 66:513–

518, 1979 – Dynamic texture models



80’s and 90’s –The golden decades for statistical 
models of images

• Estimation methods, neighborhood selection rules, texture synthesis, 
classification, image restoration

• Besag, Geman, Geman
• Julian Besag – Statistical analysis of dirty pictures - Iterated 

conditional mode (same as the energy function in a Hopfield neural 
model) - 1986

• MRFs were quite popular
• Whittle’s simultaneous 2-D noncausal autoregressive models did not 

take off!
• To my surprise, used in predicting the value of your home based on 

neighbors’ homes.



Other tried/dropped models

• Fractals- Mandelbrot
• Simultaneous 2-D noncausal autoregressive models

• White noise instead of the correlated noise as in Gaussian MRFs
• Originally suggested by Peter Whittle in 1954
• Not Markov wrt to the neighbor set, but Markov wrt a higher order neighbor 

set.
• To my surprise, used in predicting the value of your home based on 

neighbors’ homes.



Drawbacks of MRFs
• Sensitivity of parameters to transformations (illumination, rotation, 

resolution)
• The number of parameters were typically less than 20
• Extensions to videos harder
• Hierarchical representations harder to analyze
• Discriminative methods performed better
• Absence of non-linearities
• Emergence of better approaches

• Normalized cuts for image segmentation
• These drawbacks point to why statistics may be “absent” in deep learning 

despite being data driven!



Impact of statistics on performance bounds for 
computer vision algorithms

• Performance characterization of regression-like methods
• Haralick’s work in the 90’s

• Cramer-Rao bounds for structure and motion parameters using point 
features and optic flow

• Broida, Chellappa, JOSA 1989, PAMI 1991, Young and Chellappa, PAMI 1990, 
1992

• For linear methods perturbation analysis without needing a 
distribution.

• Roy-Choudhury and Chellappa, IJCV 2003
• Robust statistics

• M estimation, least Median squares (Rousseeuw)



Statistics on manifolds

• Fisher-Rao metric (Veeraraghavan et al., TIP 2008)
• Shape statistics (Mardia, Srivastava)
• Circular statistics for vehicle orientation estimation (Hara and 

Chellappa, IJCV 2017)
• Dictionary learning on statistical manifolds



Statistics on manifolds



Bayesian inference and computer vision

• Model order selection
• Bayes information criterion (Kashyap 1977, Schwartz, 1978, Kashyap and 

Chellappa, IEEE Trans. IT 1983))

• Object recognition (David Cooper)
• Bayesian graphical models – shallow hierarchy
• Simulated annealing (Geman and Geman, 1984), particle filter (Miller, 

Srivastava and Grenander, 1995, Isard and Blake, 1996), MCMC (too 
many to list)..

• Relevance vector machines did not take off



Statistics is struggling ..

• Statistical methods were mostly absent when compressive sensing 
and sparse representations were popular (2005-2012)

• Statistics likes l2 more than l1 and l0!

• When hierarchical models are considered
• Multi-resolution time series models, MRFs have challenging inference 

problems (learnt the hard way in 1982!)
• Wavelets dominated in the 90’s and statistical methods were hard to come by 

for hierarchical representations

• Statistical methods for hierarchical and non-linear models (Deep 
learning) are even more challenging!



Deep learning miracle or mirage

• Since 2012, computer vision has become a one-trick pony
• Impressive performance on many tasks

• Object/ face detection, classification, verification
• For face verification at 10-7 false acceptance rate, > 90% true acceptance rate 

on faces in the wild (IARPA JANUS program)

• Not there yet 
• For action detection, probability of miss for the best systems are 0.52 and 

0.71 for known and unknown facilities and 37 actions.
• Deep intermodal video analytics



Deep intermodal video analytics

● DIVA actions are very 
small
○ The average 

activity is 150x300 
resolution

● Limited data, actions 
of variable lengths

Spatial Sparsity Example

In Phase 3
UMD (Lead) with CMU, Columbia, JHU and UCF as partners



Despite being successful, deep learning-based 
methods are weak

• While seen as a non-linear mapping between data and labels, lack of 
analytical results is worrisome.

• Learning millions of parameters from relatively small data is statistical 
blasphemy!

• Tightly clings to training data and does not generalize well
• No performance measure to say why and when it works
• We can pile on…



Problem1: Unsupervised domain adaptation

Image credit: Saenko et al., ECCV 2010, Bergamo et al., NIPS 2010
1 S. J. Pan and Q. Yang. A survey on transfer learning. 
IEEE Trans. Knowledge and Data Engineering, 22:1345 –1359, 
October 2010. 17

Transfer Learning1

 P(Y|X) ≠ P(Y’|X’), P(X) ≈ P(X’)
Domain adaptation
 P(X) ≠ P(X’), P(Y|X) ≈ P(Y’|X’)

Source domain
Data: X, Labels: Y

Target domain
Data: X’, Labels: Y’



Finite vs infinite intermediate subspaces for domain adaptation

geodesic geodesic 
0S

1S

1tS

2tS

[1] R. Gopalan, R. Li, and R. Chellappa, "Domain Adaptation for Object Recognition: An Unsupervised Approach", ICCV, 
2011, PAMI 2014
[2] Gong et al., Generalized Kernel flow, CVPR 2012

Finite intermediate subspaces [1] Infinite intermediate subspaces 
[2] 

• samples a limited number of 
intermediate subspaces
• concatenates the subspace projection as 
the final features for learning. 
• train a discriminative learner on the 
projected source data

•Samples infinite intermediate subspaces
•Integrates the distance of sample 
projections along the geodesic 



Hierarchical dictionaries (Left) and GANs 
(Right)

Domain-specific 
transformations
Joint training of PS and 
PT Sparse 

coding
Shared 
dictionary 

Max-
pooling 
across 
4x4 
pixels for 
each 
dictionar
y atom

Higher layer 
adaptation

Multi-level 
feature 
aggregation 
with
1x1, 2x2, 
3x3 spatial 
blocks

Contrast-
normaliz
ation

Sankaranarayanan et al., CVPR 2018

Nguyen et al., TIP 2015



Generate to adapt for classification: 
Overall approach 



Why are DCNNs and GANs popular?

Source Target Manifolds
2012

Dictionaries
2016

Deep features
2017

Deep features 
and /GANs
2018

Webcam Dslr 71.2 99.5 99.8

Dslr Webcam 68.8 72 98.2 97.9

Amazon Webcam 55.6 72 62.4 86.5

Amazon Dslr 64 87.7

Dslr Amazon 48.9 52 72.8

Webcam Amazon 49.4 48.4 71.4

Unsupervised domain adaptation results for office data set



Y. Balaji, S. Sankaranarayanan and R. Chellappa, “MetaReg: Towards Domain Generalization Using meta-
regularization”, Proc. Neural and Information Processing Systems, Montreal, Dec. 2018.

Domain generalization 
involves generalizing to novel 
test domains using variations 
in multiple source domains

Problem 2: Domain generalization



Our approach
● Use of regularization to enable generalization to novel test conditions

a. A parametric regularizer acting on the weights of neural network
b. Parameters of the regularizer should capture the notion of domain 

generalization
● Use of meta-learning for estimating the parameters of the regularizer
● After estimating the regularizer, a domain invariant model is trained using 

regularized cross-entropy loss on the source domains.
● Examples

● Face recognizer by training on different domains representing pose, illumination, 
expression, resolution, etc.

● Other examples (multi-sensor based target recognition, wine tasting, …



Network design - Step (i)

● Decompose the neural network into shared 
feature network and multiple task networks

a. Feature network shared across all source 
domains

b. Task network Ti trained on source domain i

● Number of source domains: p

● Once the regularizer is estimated, a single F-T network is 
trained on all source domains using the regularized cross-
entropy loss



Learning the regularizer

L(i)(ө) - cross-entropy loss of F-Ti
networks on source domain i

RΦ(ө) - regularization function

● The figure shows the 
regularizer update for 
generalizing from 
domain i to j

● These updates are 
repeated for every (i, j) 
source domain pair

● We use a weighted L1

loss as regularizer 

At each iteration we sample a pair of domains (i, j) from the training set. 
The black arrows are the SGD updates of the task network Ti trained on 
domain i. From each point in the black path, we take l gradient steps using 
the regularized loss and the samples from domain i to reach a new point ∗. 
We then compute the loss on domain j at ∗. The regularizer parameters φ 
are updated so that this meta-loss is minimized. This ensures that the task
network Ti trained with the proposed regularizer generalizes to domain j



Problem 3:Model pruning/optimization

• Existing methods for model pruning/optimization are heuristic
• Is there a BIC for deep networks?
• Which parameters are statistically insignificant and what harm they 

would cause if removed?
• Learning from noisy data (errors-in-variable formulation)
• We need rigorous hypothesis testing procedures.



Problem 4: Analysis of hierarchical non-linear 
models

• How does information flow from data to labels? Are convolutions (correlations?) 
the best to leverage on?

• What else is coded in the deep features other than ID information?
• Influence of nuisance factors on the main task
• Expressivity of yaw, sex, age and identity

The source image for face in this figure is attributed to Eva Rinaldi under the [cc-by-sa-2.0] creative common license. The face was cropped from 
the source image. 

https://creativecommons.org/licenses/by-sa/2.0/deed.en


Mutual information

=         Joint probability distribution

=         Product of marginals

(1)

Donsker-Varadhan representation of KL divergence

Where p,q are probability distributions, and T is a function that maps a set of parameters to a real number. Plugging this 
in eq. (1) we get



Computing supremum using gradient descent 

Let’s consider T as a neural network with a parameter set         ,

Finding the supremum of argument  Eq (3) is same as finding  minima of LΩ defined below:  

V1 = F = Set of 512 dimensional face descriptors
V2 = A = Attribute labels for face descriptors

(3)

We train a network T to minimize LΩ , in order to find optimal parameter set Ω*, 
which maximizes the argument of Eq 3. This maximum value approximates mutual information I(F,A).

(4)



1. Traditional GAN architecture involves a 
Generator (G) and Discriminator (D) pair. 

2. Both are modeled as deep networks 
(since DCGAN)

3. Optimize D to identify the generator’s 
fakes compared to real samples

4. Optimize G to fool the discriminator in 
thinking that G produced a real sample

5. Min-max adversarial game between G 
and D

Problem 5: Analysis of generative 
adversarial networks

Noise

G

D

Real 
Samples

Goodfellow 2014



GANS are useful for…. 

• Vehicle re-identification using attention models – ICCV 2019 (oral paper), ECCV 
2020

• Defending against adversarial attacks; Defense-GAN – ICLR 2018
• GAN-based reduction of metallic artifacts in CT images –CVPR 2019
• GAN-based transfer of visible to thermal images -Prof. Vishal Patel
• Text to video synthesis, IJCAI 2019
• Wasserstein GAN for domain adaptation, ICCV 2019
• GANs for restoring turbulence-degraded images, FG2020
• GANs for landmark extraction from low-resolution images –Lau, Kumar and 

Chellappa (Under review)
• GAN zoo!

• https://github.com/hindupuravinash/the-gan-zoo

A generative model without statistical validity is an anomaly 



Problem 6: Choosing the best subsets for training 
from a much larger pool of training data

• Setup
• Given a fixed classifier architecture
• A set of labeled training data points from L different classes

• Objective
• Iterative algorithm
• At teach time instance t, select a subset of the training data to resume training on

• Selection criteria
• The samples in the selected batch must be such that the classifier is uncertain about 

classifying them (or certain but wrong in its classification)
• The batch must have a balanced selection from all classes
• The batch should be sufficiently diverse.
• The batch should be representative of the training samples.



Classifier uncertainty and error
• At time instance t, the classifier produces L outputs for each training sample 

Xi,k from class k:

• Classifier uncertainty:

• Can be interpreted in two ways:
(1) Weighted sum of error term (for classifier error) and entropy term (for classifier uncertainty)

(2) Cross entropy between “weighted correct label” (in the case of label noise) and classifier predicted 
probabilities

x

classifier’s probability that Xi,k belongs 
to class 1 (correct class is k)



Class balance
• At each time instance t, we select a total of Mt samples, distributed 

among all classes in a balanced way. 
• We assign a budget        to each class depending on the classifier’s 

average uncertainty on this class. 
• We use a logarithmic objective function and formulate the problem as 

follows: 

• Since we are considering supervised learning settings, we can leverage 
the label information: Find a diverse and representative subset of each 
class separately.

• We can therefore solve L independent problems. 



Diversity and representativeness
• Diversity: Seek to maximize the average distance between all selected 

samples (from each class)

• Representativeness: Seek to minimize the average distance between 
selected samples and non-selected samples (from each class)

• Solve a separate optimization for each class to jointly maximize diversity, 
representativeness, and uncertainty

• Subject to the budget constraint assigned to the class by the water-filling 
algorithm

• Approximate solution to this NP-hard problem obtained by semi-definite 
programming (SDP)



Results on VGG dataset
• We use our algorithm as a fine-tuning strategy on a CNN pre-trained on 

CASIA-WebFace. We start with pre-trained weights for the first 15 layers, 
and add two randomly initialized fully connected layers.

• We fine-tune on VGG Face using 20 non-overlapping subjects. 
• Examples of images selected by our algorithm in the 1st loop, when 

representativeness weight λ2 is large and the uncertainty weight λ3= 0

• Examples of images selected by our algorithm in the 13th loop after λ2 has 
considerably decreased and λ3 increased. 

• VGG testing 
accuracies:



Algorithm selections at the beginning of training  
and 75% through the training process: SUN397

Lighthouse Landing deck Library interior

Laundromat Operating room Office building

Islet Iceberg Dining room



Problem 7: Prediction of critical events from 
heterogeneous data

• Inputs: a) Clinical, claims and specialized JHM research data on the particular patient; b) Similar data from prior system 
(consortium) experience projected from PMAP onto a clinical cohort database (registry); c) Outputs of video and speech 
processing algorithms; and d) Expert knowledge about the etiology of the health or disease condition. 

• Outputs: (1) the prediction, prevention, monitoring, and intervention of frailty and dementia, (2) the definition, 
measurement, and promotion of physical, physiological, and psychological well-being, and (3) the identification of robust 
signals, biomarkers, and processes of frailty and dementia.

• Bayesian hierarchical models (Zeger, Nishumura)

• More needs to be done!

Schematic of the information flow within the JHU Precision Medicine Analytics Platform (PMAP). The AI suite will analyze the 
integrated data and return the results to the clinician and patient to improve their interactive and collaborative shared decision 

making.



Problem 8: Mitigating AI bias
Hypothesis:  Expressivity leads to bias

Gender prediction acc. (MLP) 
82.06%

Gender prediction acc. (MLP) 
86.73%

Low gender predictability  low gender bias Low skin tone predictability  low skin tone bias

Skin tone prediction acc. 
(MLP) 89.30%

Skin tone prediction acc. (MLP) 87.15%



Bias mitigation using loss function

Bias mitigation loss reduces Gender bias in face descriptors from two SOTA network: Arcface and Crystalface

Dhar et al., Towards Gender-Neutral Face Descriptors for Mitigating Bias in Face Recognition. 2020. arxiv: 2006:07845



Problem 9: Robust statistics for handling adversarial 
attacks

• Huber’s robust statistics, M and GM estimates
• Robustness in time series – Outliers at the
scale of noise can cause issues-Doug Martin
• White, black and Carlini-Wagner attacks
• Defense-GAN [Samangouei, et al., 2019]
• Modify the incoming data to lie on the manifold
• generated by the trained GAN.
• On manifold and off-manifold cases
• Cohen et al., Detecting Adversarial Samples Using Influence Functions and Nearest 

Neighbors. 2019; arxiv:1909:06872

≠

Ostrich !Truck

Figure: Courtesy. [Szegedy et al., 2013]

https://arxiv.org/abs/1312.6199


Conclusions

• Recent trends in machine learning, deep learning and AI have tons of problems for which we need 
rigorous solutions based on mathematical statistics.

• Lot of alchemy

• Alchemy is producing gold once in a while
• If this happens more, folks may not care how the gold is produced.
• Time is of the essence!

42
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