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Inverse problems in imaging

Observe: y=Ax+¢

Goal: Recover x from y
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Learned solutions to inverse problems
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Neural network with
meters ¢ (and optionally

nputs y and outputs an
estimate X.
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Example: unrolled gradient decent for objective 5||y — Ax||5 + r(x)
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Arridge, Maass, Oktem, Schonlieb, 2019

Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020



Learned solutions to inverse problems

Y — R & =10 4.4

A
Neural network with parameters @ (and optionally A) inputs y
and outputs an estimate X.

What if we train for A, but then at deployment

have data corresponding to A; (model drift)?

Arridge, Maass, Oktem, Schonlieb, 2019
Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020



Motivating example: MR

e Substantial variation in the forward model

* (Cartesian vs. non-Cartesian k-space sampling
trajectories,

* different undersampling factors,

* different number of coils and coll sensitivity maps,

* magnetic field inhomogeneity maps...

* Network trained for one of these forward models
may perform poorly even a slightly different setting
(e.g., from four-fold to three-fold undersampling of
K-space)

e Jraining a new network from scratch may not
always be feasible after deployment due to a lack
of access to ground truth images (e.qg. privacy
concerns)
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Antun, Renna, Poon, Adcock, and Hansen 2020



Nalve reconstruction with known model drift
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A null space perspective

* A learned reconstruction network trained with data
corresponding to A, essentially learns how to fill in images

in the null space of A,

» If we then get data from A with a different null space, then
we haven't learned how to fill in its null space

Null space of A

Null space of A
P 0 Model adaptation

learns to fill this In

Shared null space — original net already fills this in



Our approach:
train a reconstruction network for a known forward model
then adapt to new forward model

without access to ground truth images,

and without knowing the exact parameters of the new forward
model




Sasic setup

« At train time, we have collection of training data {xl.(o), yl.(o)}

fori = 1,..., ny, all corresponding to same (perhaps
unknown) Ay

0) — (0) (0)
y. ' =Apx " + €

e After deployment, we have a collection of calibration data
{ yl.(l)} fori = 1,...,ny, all corresponding to same (perhaps

unknown) A;:
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Model vs. distribution drift and model vs. domain adaptation

» Distribution drift: p(X, Y) changes in unknown way between train
and deployment

« Model drift: p(Y | X) changes in known or partially known way

between train and deployment (know have change in linear
relationship)

« Domain adaptation: First train with many samples (xl.(o), yl.(o)) ~ Do

then adapt using few samples from (xl.(l), yl.(l)) ~ D1

« Model adaptation: First train with many samples (xl.(o), yl.(o)) ~ Do

and, then adapt using few samples from (?, yl.(l)) ~ Dy

Han, Yoo, Kim, Shin, Sung, and Ye, 2018



The Big Picture
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The Big Picture
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The Big Picture

Train for
Original A y=Apx+ &
S ‘ : test on

y=Apx +¢€
PSNR = 31

Train for

y =Agx + &
test on
y=Ax+e
with model

adaptation.
PSNR = 30




The Big Picture

Train for
Orgina A A i




Why not use generative models”

Our Our
method, method, GAN, GAN,
Truth deblurring  superres  deblurring  superres

 |earn a generative
model for images x

« Given Ay, generate
training samples
(x;, ;) by generating x;
from model and setting
y; = Ax;, then train a
reconstruction network

e (Generative models
can’t learn whole
distribution

Anirudh, Thiagarajan, Kailkhura, Bremer 2018



Approach 1: Parameterize and

Perturb (

P&

1 — R % = fOn; do + 6, A)

Basic idea: use calibration data to perturo parameters of

original reconstruction network

5=argmin ) [ly™ — A3+ All5]13

subject to £(5) = fy"; o+, A))



Ground truth images

Measurements Measurements
under original model under new model



Ground truth images

Original New
recon. net fO fl recon. net
A
‘A \

Measurements Measurements
under original model under new model



Ground truth images
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Map between
obbs. spaces
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Ground truth images

New
recon. net

Original
recon. net fO

4—
Map between

obbs. spaces

Measurements Measurements
under original model under new model



Approach 2: Condition and Correct (C&C)

+h(y;; 0)

. Map yV - 5O (condition): $@ = g(yV) = A,A Ty
* Use original reconstruction network to get initial estimate

 Correct errors with network A( - ; 0)

!
0 =argmin ) [ly® =A%)+ Al 0113
o iz

subject to x;(0) = fi (95(’); Po, Ag) + h()’i(l); o)



Performance with known A,

B Tran A_1, Test A 1 W Train A_O, Test A_1 | P&P B c&C

PSNR

Ronneberger, Fischer, and Bro, 2015
Jure Zbontar, Florian Knoll, and others 2019


https://arxiv.org/search/cs?searchtype=author&query=Zbontar%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Knoll%2C+F

Rl Example

Error
Images

Ground
Truth

IFFT TV-Regularized
Reconstruction Reconstruction







P&

P with unknown A

&
6=argmin ) Iy{" = A& O)II3 + Alloll3
o =l

subject 1o X,(5) =f(yi(1)§ $ot+0,A1)
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subject to £/(8) = f(y'"; py+6,A)




C&C with unknown A,

ny
= arg min Z Hyl.(l) — A ZO)|5 + M\h(yi(l); N
o

subject to 2(0) = flApA Ty "; ¢y, Ag) + h(y"; 0)
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subject to £(0) = f(AgATy"; ¢y, Ag) + h(y'V; 0)




PSNR

Performance with unknown A

B Tran A 0, TestA O B Train A 0, Test A_1




A data augmentation approach o

* |Imagine we want to use a network for image

deblurring : ..
+ We don’t know exactly what the blur kernel will - o, o o
be at test time v e
® ‘ N . -
* SO we perform “data augmentation” — train Sl
with multiple (x;, y;, A;) samples, witheach A, . . . .
corresponding to different kernels ¢ v % 8
s = . . ®

* Does that work just as well? : :
R .
Levin, 2006

Hradis§, Kotera, Zemcik, and Sroubek, 2015
Bahat, Efrat, and Irani, 2017



Nalvely learning to
deblur with a single
network and multiple

blur kernels sacrifices
performance on all
blurs.

=o=[Known, trained model

-e—New model

e==P&P with known model
P&P without known model

—C&C with known model

e C&C without known model

In green, the test-time accuracy of a network trained to deblur
multiple blurs, and tested on a known kernel. In . the
same network, but tested on a new blur that was not used
during training. In black, our proposed P&P approach with a
known model, and in the same with a learned forward
model. and red show the performance of our C&C
approach with and without a known forward model.
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A null space perspective

Model adaptation
learns to fill this In

Data
augmentation has
tolearntofilin —g

the union of many
null spaces




Role of calibration data
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Thank you!

* Model adaptation can dramatically improve reconstruction
quality under real-world challenge of model drift

» Off-the-shelf methods of data augmentation or using GANs
do not exploit known problem structure or calibration data,
hurting performance

e (Calibration data is easy to acquire without
sharing large quantities of training data.

Original New
recon. net fi recon. net
‘A S R
< 8
Map between &
obs. spaces

Measurements Measurements
under original model under new model

Ground truth images




