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Inverse problems in imaging

Observe:            
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Learned solutions to inverse problems

Arridge, Maass, Öktem, Schönlieb, 2019  
Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020
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Learned solutions to inverse problems

What if we train for , but then at deployment 
have data corresponding to  (model drift)?

A0
A1

Arridge, Maass, Öktem, Schönlieb, 2019  
Ongie, Jalal, Metzler, Baraniuk, Dimakis, Willett, 2020
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Motivating example: MRI
• Substantial variation in the forward model 

• Cartesian vs. non-Cartesian k-space sampling 
trajectories,  

• different undersampling factors,  
• different number of coils and coil sensitivity maps,  
• magnetic field inhomogeneity maps… 

• Network trained for one of these forward models 
may perform poorly even a slightly different setting 
(e.g., from four-fold to three-fold undersampling of 
k-space) 

• Training a new network from scratch may not 
always be feasible after deployment due to a lack 
of access to ground truth images (e.g. privacy 
concerns)

Antun, Renna, Poon, Adcock, and Hansen 2020



Naïve reconstruction with known model drift
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A null space perspective
• A learned reconstruction network trained with data 

corresponding to  essentially learns how to fill in images 
in the null space of  

• If we then get data from  with a different null space, then 
we haven’t learned how to fill in its null space

A0
A0

A1

Null space of A0

Null space of A1

Shared null space — original net already fills this in

Model adaptation 
learns to fill this in



Our approach:  
train a reconstruction network for a known forward model 

then adapt to new forward model  
without access to ground truth images,  

and without knowing the exact parameters of the new forward 
model



Basic setup

• At train time, we have collection of training data  
for , all corresponding to same (perhaps 
unknown) : 

  

• After deployment, we have a collection of calibration data 
 for , all corresponding to same (perhaps 

unknown) : 
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Model vs. distribution drift and model vs. domain adaptation

• Distribution drift:  changes in unknown way between train 
and deployment 

• Model drift:  changes in known or partially known way 
between train and deployment (know have change in linear 
relationship) 

• Domain adaptation: First train with many samples , 
then adapt using few samples from  

• Model adaptation: First train with many samples  
and, then adapt using few samples from 
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Han, Yoo, Kim, Shin, Sung, and Ye, 2018
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Why not use generative models?

• Learn a generative 
model for images   

• Given , generate 
training samples 

 by generating  
from model and setting 

, then train a 
reconstruction network  

• Generative models 
can’t learn whole 
distribution

x

A1

(xi, yi) xi

yi = A1xi

Truth

Our 
method, 

deblurring

Our 
method, 
superres

GAN, 
deblurring

GAN, 
superres

Anirudh, Thiagarajan, Kailkhura, Bremer 2018



Approach 1: Parameterize and Perturb (P&P)

Basic idea: use calibration data to perturb parameters of 
original reconstruction network

fϕ0+δy1

A1

̂x = f(y1; ϕ0 + δ, A1)

̂δ = arg min
δ
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i=1
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2

subject to  ̂xi(δ) = f(y(1)
i ; ϕ0+δ, A1)



Measurements 
under original model

Measurements 
under new model

Ground truth images

A1A0

x

y(0) y(1)



Measurements 
under original model

Measurements 
under new model

Ground truth images

A1A0

x

y(0) y(1)

f0 f1
Original 

recon. net
New 

recon. net



Measurements 
under original model

Measurements 
under new model

Ground truth images

A1A0

x

y(0) y(1)

f0 f1
Original 

recon. net
New 

recon. net

g
Map between 
obs. spaces



Measurements 
under original model

Measurements 
under new model

Ground truth images

A1A0

x

y(0) y(1)

f0 f1
Original 

recon. net
New 

recon. net

g
Map between 
obs. spaces



Approach 2: Condition and Correct (C&C)

• Map  (condition):    
• Use original reconstruction network to get initial estimate 
• Correct errors with network 

y(1) → ̂y(0) ̂y(0) = g(y(1)) = A0A†
1 y(1)

h( ⋅ ; θ)

̂θ = arg min
θ
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∑
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2
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i ; ϕ0, A0) + h(y(1)
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MRI Example

where g(·) is any map that takes measurements y1 2 Rm1 of an
image under forward model A1 to its corresponding measurement
y0 2 Rm0 under the forward model A0, i.e., g(y0) = y1. In par-
ticular, under the assumption N(A1) ⇢ N(A0), we have g(y) =
A0A

†
1y where A†

1 is psuedo-inverse of A1. In the context of MRI
reconstruction, the constraint in (5) says that f1 should not differ sig-
nificantly from the hypothetical system that discards the additional
k-space data gathered under the measurement operator A1 and in-
stead solves the inverse problem using f0.

Above we assumed N(A1) ⇢ N(A0). If this condition is vio-
lated (e.g., if A0 and A1 correspond to a sampling of k-space, where
some k-space locations sampled in A0 are not sampled in A1), then
in general g(y1) 6= y0. In this case, the f0 may return a reconstruc-
tion with unpredictable artifacts. Additionally, if the measurements
contain noise, then g(y1) may have different noise statistics than
what f0 was trained on, which can also introduce artifacts. To rem-
edy this, we propose training an additional artifact removal network,
h(·; ✓) : Rm ! Rn. The new reconstruction network, f1, is then

f1(y; ✓) = f0(A0A
†
1y) + h(y; ✓). (6)

where h(·; ✓) is an additional trainable network that maps from mea-
surements to image space that is defined by network parameters ✓.

Using the representation of f1 in (6), the constraint in (5) be-
comes h(y1, ✓) ⇡ 0. Hence, we propose minimizing the following
training objective in terms of the network parameters ✓:

min
✓

NX

i=1

⇣
||A1

�
f0(A0A

†
1y

(i)
1 ) + h(y(i)

1 ; ✓)
�
� y(i)

1 ||22

+�||h(y(i)
1 ; ✓)||22

⌘
. (7)

4. EXPERIMENTS

In this section we empirically demonstrate our two approaches to
model adaptation for undersampled MRI reconstruction. We study
the case where there is a change in the geometry of the k-space sam-
pling pattern, as illustrated in Figure 2. Specifically, we assume the
original forward model A0 corresponds to an 8-fold undersampling
of k-space, and the new forward model A1 corresponds also to an
8-fold undersampling of k-space but under a 90 degree rotation of
the sampling mask. Figure 3 shows baseline reconstructions using a
zero-filled IFFT and total variation regularizatiion at this undersam-
pling rate.

4.1. Datasets and Architectures Used

The data used in our experiments were obtained from the NYU
fastMRI Initiative database [11]. The primary goal of the fastMRI
dataset is to test whether machine learning can aid in the reconstruc-
tion of medical images. We have trained and tested on a subset of the
single-coil knee dataset. The initial- and second-phase training sets
are disjoint subsets, containing randomly chosen 1000 MRI slices of
the original training set, which are retrospectively undersampled.

We compare the performance of two deep learning architectures
for the image reconstruction networks. First, we utilize the U-Net
architecture [12]. Our U-Net implementation takes as input the zero-
filled IFFT of the k-space samples which is then passed through sev-
eral CNN layers before obtaining a reconstructed image bx.

We also use the MoDL architecture [3], a learned architecture
designed for solving inverse problems with known forward mod-
els. MoDL is an iterative method, which alternates between data-
consistency steps and denoising steps, the latter of which is imple-

mented as a convolutional neural network mapping images to im-
ages. We use a U-Net architecture as the regularizer in our im-
plementation of MoDL, ensuring the same number of parameters in
both architectures, except for a learned scaling factor in MoDL.

We optimize (4) and (7) using the ADAM optimizer with a batch
size of 8. The � parameters in the cost functions (4) and (7) and
optimization parameters we use are tuned via cross-validation on a
test set of 64 MR knee images. Empirically, we found that choosing
� such that the two loss terms are rescaled to be similar orders of
magnitude worked well in practice.

(a) Initial k-space mask (A0) (b) Altered k-space mask (A1)

Fig. 2: Visualization of k-space masks used in our experiments.
Each mask represents an 8-fold undersampling with 4% of the cen-
ter k-space lines uniformly sampled and remaining lines sampled ac-
cording to a variable density scheme. The mask in (b) is a 90-degree
rotation of the mask in (a).

Ground Zero-filled TV
Truth IFFT Reconstruction

Error
Images

Fig. 3: Visual example of baseline reconstructions that do not use
learning. Reconstructions use the forward model A0 associated with
the k-space sampling mask shown in Fig 2(a). Error images are
scaled by 5⇥. Best viewed electronically.

4.2. Main results

In Table 1 we present our main results, which are illustrated by vi-
sual examples in Figure 4. As expected, the learning-based methods
perform well when there is no model drift (“Train w/A0, Test w/A0”
and “Train w/A1, Test w/A1” in Table 1). However, in the presence
of model drift there is a significant drop in PSNR (“Train w/A0, Test
w/A1” in Table 1). In this case, the reconstructions obtained by the
learned approaches are less accurate than a TV-regularized recon-
struction (shown in Figure 3). This effect is particularly striking in
the MoDL reconstructions. After applying the proposed model adap-
tation methods, the learned methods achieve nearly the same PSNR
as before without model drift, which indicates that model adapta-
tion was successful. The PSNR improvements offered by the model
adaptation approaches (P&P and C&C) vary depending on the ar-
chitecture used (U-Net versus MoDL). In this case, MoDL and P&P
gives the highest median PSNR over the test set.
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4. EXPERIMENTS

In this section we empirically demonstrate our two approaches to
model adaptation for undersampled MRI reconstruction. We study
the case where there is a change in the geometry of the k-space sam-
pling pattern, as illustrated in Figure 2. Specifically, we assume the
original forward model A0 corresponds to an 8-fold undersampling
of k-space, and the new forward model A1 corresponds also to an
8-fold undersampling of k-space but under a 90 degree rotation of
the sampling mask. Figure 3 shows baseline reconstructions using a
zero-filled IFFT and total variation regularizatiion at this undersam-
pling rate.

4.1. Datasets and Architectures Used

The data used in our experiments were obtained from the NYU
fastMRI Initiative database [11]. The primary goal of the fastMRI
dataset is to test whether machine learning can aid in the reconstruc-
tion of medical images. We have trained and tested on a subset of the
single-coil knee dataset. The initial- and second-phase training sets
are disjoint subsets, containing randomly chosen 1000 MRI slices of
the original training set, which are retrospectively undersampled.

We compare the performance of two deep learning architectures
for the image reconstruction networks. First, we utilize the U-Net
architecture [12]. Our U-Net implementation takes as input the zero-
filled IFFT of the k-space samples which is then passed through sev-
eral CNN layers before obtaining a reconstructed image bx.

We also use the MoDL architecture [3], a learned architecture
designed for solving inverse problems with known forward mod-
els. MoDL is an iterative method, which alternates between data-
consistency steps and denoising steps, the latter of which is imple-

mented as a convolutional neural network mapping images to im-
ages. We use a U-Net architecture as the regularizer in our im-
plementation of MoDL, ensuring the same number of parameters in
both architectures, except for a learned scaling factor in MoDL.

We optimize (4) and (7) using the ADAM optimizer with a batch
size of 8. The � parameters in the cost functions (4) and (7) and
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learning. Reconstructions use the forward model A0 associated with
the k-space sampling mask shown in Fig 2(a). Error images are
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4.2. Main results

In Table 1 we present our main results, which are illustrated by vi-
sual examples in Figure 4. As expected, the learning-based methods
perform well when there is no model drift (“Train w/A0, Test w/A0”
and “Train w/A1, Test w/A1” in Table 1). However, in the presence
of model drift there is a significant drop in PSNR (“Train w/A0, Test
w/A1” in Table 1). In this case, the reconstructions obtained by the
learned approaches are less accurate than a TV-regularized recon-
struction (shown in Figure 3). This effect is particularly striking in
the MoDL reconstructions. After applying the proposed model adap-
tation methods, the learned methods achieve nearly the same PSNR
as before without model drift, which indicates that model adapta-
tion was successful. The PSNR improvements offered by the model
adaptation approaches (P&P and C&C) vary depending on the ar-
chitecture used (U-Net versus MoDL). In this case, MoDL and P&P
gives the highest median PSNR over the test set.

Baselines Proposed Model Adaptation Methods
Train w/A0 Train w/A1 Train w/A0

Test w/A0 Test w/A1 Test w/A1 P&P (Eq. 4) C&C (Eq. 7)
U-Net 29.0-29.7-30.5 29.2-30.3-30.9 25.4-26.1-26.9 28.9-29.6-30.1 28.8-29.8-30.6
MoDL 30.3-31.4-32.4 31.6-32.6-33.3 4.1-4.5-5.3 29.6-30.8-31.6 28.8-29.9-30.6

Table 1: Comparison of proposed model adaptation approaches for the MoDL and U-Net learned reconstruction methods. Bolded numbers
indicate the median PSNR across the test set, and numbers before and after the median indicate the PSNR at the 25th and 75th percentile
respectively. TV-regularized reconstructions achieve a median of 27.6 dB PSNR on the same test set.

Train A0

Test A0

Train A0

Test A1
P&P C&C

U-Net

Error
images

MoDL

Error
images

Fig. 4: Visual examples of learned reconstruction approaches for
undersampled MRI reconstruction with model drift before and after
our proposed model adaptation methods (P&P and C&C). All error
images are scaled by 5⇥. Best viewed electronically.

5. DISCUSSION AND CONCLUSION

The fragility of deep learning based reconstruction methods to model
drift is a major hurdle for real-world adoption of these powerful
techniques in biomedical imaging applications. We confirm that
such a fragility is present in applying learning based reconstruc-
tion methods to undersampled MRI reconstruction under a change
to the k-space sampling pattern. However, we also show that our
proposed model adaptation techniques, which involve a retraining
or augmentation of the learned reconstruction network, can amelio-
rate this effect and can do so without access to ground truth im-
age/measurement pairs. While our approach assumes the change to
the forward model is known, our methods can potentially be applied
even if the new forward model is not known, or relies on additional
unknown calibration parameters. This is something we plan to in-
vestigate in future work.

6. COMPLIANCE WITH ETHICAL STANDARDS

This work performs numerical studies using a subset of the NYU
fastMRI database, made available by the authors of [11]. As such,
NYU fastMRI investigators provided data but did not participate in

analysis or writing of this report. Ethical approval was not required,
per the license agreement required before access was provided.
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P&P with unknown A1

̂δ = arg min
δ
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2 + λ∥δ∥2
2

subject to  ̂xi(δ) = f(y(1)
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( ̂δ, ̂A) = arg min
δ,A

n1

∑
i=1

∥y(1)
i −A ̂xi(δ)∥2

2 + λ∥δ∥2
2

subject to  ̂xi(δ) = f(y(1)
i ; ϕ0+δ, A)



C&C with unknown A1

̂θ = arg min
θ
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A data augmentation approach

• Imagine we want to use a network for image 
deblurring 

• We don’t know exactly what the blur kernel will 
be at test time 

• So we perform “data augmentation” — train 
with multiple  samples, with each  
corresponding to different kernels 

• Does that work just as well? 

(xi, yi, Ai) Ai

Levin, 2006 
Hradiš, Kotera, Zemcık, and Šroubek, 2015 

Bahat, Efrat, and Irani, 2017
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In green, the test-time accuracy of a network trained to deblur 
multiple blurs, and tested on a known kernel. In orange, the 
same network, but tested on a new blur that was not used 
during training. In black, our proposed P&P approach with a 
known model, and in yellow the same with a learned forward 
model. Blue and red show the performance of our C&C 
approach with and without a known forward model.

Naïvely learning to 
deblur with a single 

network and multiple 
blur kernels sacrifices 

performance on all 
blurs.



A null space perspective

Model adaptation 
learns to fill this in

Data 
augmentation has 

to learn to fill in 
the union of many 

null spaces



Role of calibration data
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Thank you!
• Model adaptation can dramatically improve reconstruction 

quality under real-world challenge of model drift 

• Off-the-shelf methods of data augmentation or using GANs 
do not exploit known problem structure or calibration data, 
hurting performance 

• Calibration data is easy to acquire without  
sharing large quantities of training data.


