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Events are central to human experience
An event is a segment of time 
at a given location that is 
perceived by an observer to 
have a beginning and an end.

--Zacks, Tversky, and Iyer, 2001 

It is described by
Who – nouns 
What – actions, activity 
Where – location
When – temporal 
Why – intention 
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Deep Learning 1.0

Person

guitarplaying
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Deep Learning 2.0

Person playing guitar
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Open World Event understanding

making connection to 
past knowledge and 
creating an event 
model that goes 
beyond what is 
sensed.
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Rich, open world interpretation
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The ability to support open world inference is 
limited by three main aspects: 
• the source of semantics, 
• the underlying representation, and 
• the ability to continuously learn or adapt.
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Over reliance on annotated data for semantics

9© Scaling Egocentric Vision: The EPIC-KITCHENS Dataset, Dima Damen et al. ECCV, 2018.
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Speer, Robert, and Catherine Havasi. "Representing General Relational Knowledge in ConceptNet 5." In LREC, 
pp. 3679-3686. 2012

Use Symbolic Knowledge-bases for Semantics
• Crowd-sourced knowledge-base 

mined from:
– Wiktionary and Wikipedia
– DBPedia (Auer et al., 2007)
– Freebase (Bollacker et al., 2008)
– WordNet (Fellbaum, 1998)

• It contains 12.5 million edges, 
representing about 8.7 million 
assertions connecting 3.9 million 
concepts (different languages).
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Rise of Neuro-Symbolic Approaches

• Stack of continuous-valued vectors
– The top-level vectors mapped to desired concepts
– Concepts: Labels, phrases, sentences

• Graph-based, explicit, symbolic
– Explainable, can be targeted for different 

applications
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Symbolic Reasoning using 
Grenander’s Canonical Representations
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Sketch of the approach
• Pattern theory is combinatorial in nature

– Complex structures are built from simpler ones.
– Much like elements combine to make molecules, proteins, etc.

• Symbols can interact with each other form larger combinations. 
• The interactions are constrained by how symbols interact locally 

and by the characteristic of the overall graph structure, 
• Probabilistic structures on the representations allow for expressing 

the variation of natural patterns. 
• A unified manner for viewing DAGs, MRFs, Gaussian random fields 

and probabilistic formal languages.

18
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Canonical Representation Involves

R(G,S,ρ,Σ)

19

Basic symbols 
(Generators)

Equivalences among symbols 
(Similarity group)

How symbols interact with each other.
(Local regularity)

Constraint on the overall structure
(Global Regularity)

Lastly, define a probability space over these structures
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Generators are the basic units of representation)

• Generator Space G

• Elementary symbols are our generators

giG = {g1,g2,…,gn}

R(G,S,ρ,Σ) 20
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Generators
(Basic Units of Representation)

• Generator Space G

• Bonds 
β j (gi )∈ B, j =1,…,w(gi )

gi β j

j

G = {g1,g2,…,gn}

R(G,S,ρ,Σ) 21
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Generators
(Basic Units of Representation)

• Generator Space G

• Bonds 
β j (gi )∈ B, j =1,…,w(gi )

gi β j

jG = {g1,g2,…,gn}

g !i β !j

!j

Bond interaction

R(G,S,ρ,Σ) 22
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Example Generators

23R(G,S,ρ,Σ)



UNIVERSITY  OF SOUTH FLORIDA

Similarity Group
• Define a similarity group S as

• Induces a partition of the generator space into 
equivalence classes (disjoint groups Gα)

• Such that

s :G→G | s ∈ S

sg = !g | g, !g ∈Gα

G = Gα

α∈A


R(G,S,ρ,Σ) 24
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Example Similarity Groups

25R(G,S,ρ,Σ)
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Bond Relation
(Local Regularity)

• Bond relation ρ specifies the rules of combination 
among generators, formally defined as

• Determines local regularity of a connected 
structure of generators

ρ :B×B→ {TRUE,FALSE}

R(G,S,ρ,Σ) 26
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Configurations

27R(G,S,ρ,Σ)



UNIVERSITY  OF SOUTH FLORIDA
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Connection Graph  
(Global Regularity)

R(G,S,ρ,Σ)

σ ∈ Σ

29
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Connection Graph  
(Global Regularity)

• If S is fixed then we 
have MRF or Bayesian 
network, if directed

• Could be a tree 
structure like AND-OR 
graphs

30R(G,S,ρ,Σ)

σ ∈ Σ
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Connection Type 
(Global Regularity)

• Σ represents the connection type, in our example, 
Σ=POSET (partially ordered set)

• Partial ordering is based on the hierarchy of the 
representation

• More general than MRF, Bayesian networks, AND-OR, 
etc.

R(G,S,ρ,Σ) 31
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Relationship to Other Formalisms
• Undirected bonds, pre-specified, fixed structure, lattice 

connection graph à MRF
• Directed bonds, pre-specified, fixed structure, DAG 

connection graph à Bayesian Networks
• Undirected bonds, pre-specified, fixed structure, AND-

OR tree connection graph à AND-OR graph (Zhu et al. 
at UCLA)

• Grammar rules as generators, tree-structure as 
connection graph à Context Free Grammar

32



PROBABILITY MEASURE ON THE 
CONFIGURATION SPACE
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34
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35
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36

The partition function 
involves a double sum.
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Inference through Stochastic Search
• Searches over connection structures AND 

generators
– Gibbs ensemble
– Note difference with other graphical approaches that 

freeze the structure after training.
• Local and global proposals
• Combinatorics controlled by similarity structure 

and structure of the prior knowledge.
37
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38

Global Move

Local Move
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Aakur, S., de Souza, F., & Sarkar, S. (2019). Generating open world descriptions of video using common sense 
knowledge in a pattern theory framework. Quarterly of Applied Mathematics, 77(2), 323-356.
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Rich, open world interpretation

50
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51

It is also to be noted that for many of the interpretations, 
the label with the highest confidence score was not the 
one used in its final (best) interpretation.
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52

It is also to be noted that for many of the interpretations, 
the label with the highest confidence score was not the 
one used in its final (best) interpretation.
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Even “erroneous” interpretations are not 
semantically “bad”
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Error but semantics okay
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Egocentric videos…
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Aakur, S., de Souza, F., & Sarkar, S. (2019). Generating open world descriptions of video using common sense 
knowledge in a pattern theory framework. Quarterly of Applied Mathematics, 77(2), 323-356.
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Works on ego-centric videos
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Aakur, S., de Souza, F., & Sarkar, S. (2019). Generating open world descriptions of video using common sense 
knowledge in a pattern theory framework. Quarterly of Applied Mathematics, 77(2), 323-356.
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Aakur, S., de Souza, F., & Sarkar, S. (2019). Generating open world descriptions of video using common sense 
knowledge in a pattern theory framework. Quarterly of Applied Mathematics, 77(2), 323-356.
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Other graphical approaches

59

No tra
ining on

Object-action 

pairs

1000 recipe 
videos, 
consisting of
different 
scenarios with a 
combination of 
10 recipes
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MSVD: 1,970 videos taken from YouTube

60

No training needed other than for the basic categories of objects and actions

Aakur, S., de Souza, F., & Sarkar, S. (2019). Generating open world descriptions of video using common sense 
knowledge in a pattern theory framework. Quarterly of Applied Mathematics, 77(2), 323-356.
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61

9,848 videos across 
157 action classes
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Easily Extendible Formalism

• Object Clutter – introduce spatial proximity bond 
between action and object (IJCV 2016)

• Simultaneous events – introduce spatial proximity 
bond between action and object (IJCV 2016)

• Activity Sequence – introduce temporal bonds 
(CVPR 2015)
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