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Gall (1758-1828) : Phrenology
Talairach (1911-2007) 

Vésale (1514-1564)
Paré (1509-1590)

2007

Science that studies the structure and the relationship in 
space of different organs and tissues in living systems 

[Hachette Dictionary]

Revolution of observation means (1980-1990):
 From dissection to in-vivo in-situ imaging
 From the description of one representative individual 

to generative statistical models of the population

Galien (131-201)

1er cerebral atlas, Vesale, 1543

Visible Human Project, NLM, 1996-2000
Voxel-Man, U. Hambourg, 2001

Talairach & Tournoux, 1988

Sylvius (1614-1672)
Willis (1621-1675)

Paré, 1585

From anatomy…
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Methods to compute statistics of organ shapes across 
subjects in species, populations, diseases… 
 Mean shape (atlas), subspace of normal vs pathologic shapes
 Shape variability (Covariance)
 Model development across time (growth, ageing, ages…)

Use for personalized medicine (diagnostic, follow-up, etc)
 Classical use: atlas-based segmentation

From anatomy… to Computational Anatomy
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Shape of RV in 18 patients

Methods of computational anatomy
Remodeling of the right ventricle of the heart in tetralogy of Fallot

 Mean shape
 Shape variability
 Correlation with clinical variables
 Predicting remodeling effect






Diffeomorphometry: 
Morphometry through Deformations
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]
 Observation = “random” deformation of a reference template 
 Reference template = Mean (atlas)
 Shape variability encoded by the deformations

Statistics on groups of transformations (Lie groups, diffeomorphism)?

Patient 3

Atlas

Patient 1

Patient 2

Patient 4

Patient 5

φ1

φ2
φ3

φ4

φ5
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Atlas and Deformations Joint Estimation

Average RV anatomy 
of 18 ToF patients 10 Deformation Modes = 90% of spectral energy

Method: LDDMM to compute atlas + PLS on momentum maps
 Find modes that are significantly correlated to clinical variables 

(body surface area, tricuspid and pulmonary valve regurgitations).
 Create a generative model by regressing shape vs age (BSA)

6 modes significantly correlated to BSA

[ Mansi et al, MICCAI 2009, TMI 2011]
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Statistical Remodeling of RV in Tetralogy of Fallot

Predicted remodeling effect 

[ Mansi et al, MICCAI 2009, TMI 2011]

Volume 
increases

Valve 
annuli 
deform

Pulmonary 
stenosis
reduces

RV 
pressure 

decreases

Septum 
pushed 
inwards

RV free-
wall 

outwards

… has a clinical interpretation

[ Mansi et al, MICCAI 2009, TMI 2011]



Geometric features in Computational Anatomy

Non-Euclidean geometric features
 Curves, sets of curves (fiber tracts)
 Surfaces
 Transformations

Modeling statistical variability at the group level
 Simple Statistics on non-linear manifolds?

 Mean, covariance of its estimation, PCA, PLS, ICA
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Advances in Geometric Statistics 

Motivations

Simple statistics on Riemannian manifolds

Extension to transformation groups with affine spaces 

Perspectives, open problems



Which non-linear space?

Constant curvatures spaces

 Sphere, 

 Euclidean, 

 Hyperbolic

Homogeneous spaces, Lie groups and symmetric spaces

Riemannian and affine connection spaces

Towards non-smooth quotient and stratified spaces
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Differentiable manifolds

Computing on a smooth manifold
 Extrinsic

 Embedding in ℝ𝑛𝑛

 Intrinsic
 Coordinates : charts
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 Measuring?
 Lengths
 Straight lines
 Volumes



Measuring length

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector
><= vvv ,

p

v
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γ(t)• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑑𝑑𝑑𝑑



Bernhard Riemann 
1826-1866

Measuring length

Basic tool: the scalar product

wvwv t>=< ,

• Norm of a vector

pp
vvv ><= ,

Bernhard Riemann 
1826-1866

wpGvwv t
p )(, =><
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑝𝑝 𝑑𝑑𝑑𝑑



• Geodesics
• Shortest path between 2 points

• Calculus of variations (E.L.) :
2nd order differential equation
(specifies acceleration)

• Free parameters: initial speed 
and starting point 

wpGvwv t
p )(, =><

Bernhard Riemann 
1826-1866

Riemannian manifolds

Basic tool: the scalar product

Bernhard Riemann 
1826-1866
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• Length of a curve
𝐿𝐿 𝛾𝛾 = ∫ 𝛾̇𝛾 𝑡𝑡 𝑝𝑝 𝑑𝑑𝑑𝑑
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Bases of Algorithms in Riemannian Manifolds

Operation Euclidean space Riemannian

Subtraction
Addition
Distance

Gradient descent )( ttt xCxx ∇−=+ εε

)(yLogxy x=
xyxy +=

xyyx −=),(dist
x

xyyx =),(dist
)(xyExpy x=

))( ( txt xCExpx
t

∇−=+ εε

xyxy −=

Reformulate algorithms with expx and logx
Vector -> Bi-point (no more equivalence classes)

Exponential map (Normal coordinate system):
 Expx = geodesic shooting parameterized by the initial tangent
 Logx = unfolding the manifold in the tangent space along geodesics 

 Geodesics = straight lines with Euclidean distance 
 Geodesic completeness: covers M \ Cut(x)
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First statistical tools

Fréchet mean set 
 Integral only valid in Hilbert/Wiener spaces [Fréchet 44]

 𝜎𝜎2 𝑥𝑥 = 𝑇𝑇𝑟𝑟𝑔𝑔 𝔐𝔐2 𝑥𝑥 = ∫𝑀𝑀 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡2 𝑥𝑥, 𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧)

 Fréchet mean [1948] = global minima of Mean Sq. Dev.
 Exponential barycenters [Emery & Mokobodzki 1991]
𝔐𝔐1 𝑥̅𝑥 = ∫𝑀𝑀 𝑥̅𝑥𝑧𝑧 𝑃𝑃(𝑑𝑑𝑧𝑧) = 0 [critical points if P(C) =0]

Moments of a random variable: tensor fields
 𝔐𝔐1 𝑥𝑥 = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) Tangent mean: (0,1) tensor field

 𝔐𝔐2(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) Second moment: (0,2) tensor field
 Tangent covariance field: 𝐶𝐶𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝔐𝔐2(𝑥𝑥) −𝔐𝔐1(𝑥𝑥) ⊗𝔐𝔐1(𝑥𝑥)

 𝔐𝔐𝑘𝑘(𝑥𝑥) = ∫𝑀𝑀 𝑥𝑥𝑥𝑥 ⊗ 𝑥𝑥𝑥𝑥⊗⋯ ⊗ 𝑥𝑥𝑥𝑥 𝑃𝑃(𝑑𝑑𝑧𝑧) k-contravariant tensor field
X. Pennec  - ASA / FSU W. Stat. Imaging 05/10/2020 

Maurice Fréchet 
(1878-1973)



Estimation of Fréchet mean

Uniqueness of p-means with convex support
[Karcher 77 / Buser & Karcher 1981 / Kendall 90 / Afsari 10 / Le 11] 

 Non-positively curved metric spaces (Aleksandrov): OK [Gromov, Sturm]
 Positive curvature: [Karcher 77 & Kendall 89] concentration conditions:

Support in a regular geodesic ball of radius 𝑟𝑟 < 𝑟𝑟∗ = 1
2

min 𝑖𝑖𝑖𝑖𝑖𝑖 𝑀𝑀 ,𝜋𝜋/ 𝜅𝜅

Law of large numbers and CLT in manifolds
 Under Kendall-Karcher concentration conditions: FM is a consistent estimator 

𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 → 𝑁𝑁(0, �𝐻𝐻−1 𝛴𝛴 �𝐻𝐻−1) if  �𝐻𝐻 = 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝜎𝜎2 𝑋𝑋, 𝑥̅𝑥𝑛𝑛 invertible

[Bhattacharya & Patrangenaru 2005, Bhatt. & Bhatt. 2008; Kendall & Le 2011]

 Expression for Hessian? interpretation of covariance modulation?
 What happens for a small sample size?
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Non-Asymptotic behavior of empirical means
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Moments of the Fréchet mean of a n-sample

 New Taylor expansions in manifolds based on [Gavrilov 2007]

 Unexpected bias on empirical mean (gradient of curvature-cov.)

𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛(𝑥̅𝑥𝑛𝑛) = 𝑬𝑬 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
𝟏𝟏
𝟔𝟔𝟔𝟔

𝕸𝕸𝟐𝟐:𝛁𝛁𝑹𝑹:𝕸𝕸𝟐𝟐 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Concentration rate modulated by the curvature-covariance:

𝑪𝑪𝑪𝑪𝑪𝑪(𝑥̅𝑥𝑛𝑛) = 𝑬𝑬 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 ⊗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥̅𝑥 𝑥̅𝑥𝑛𝑛 =
𝟏𝟏
𝒏𝒏
𝕸𝕸𝟐𝟐 +

𝟏𝟏
𝟑𝟑𝟑𝟑

𝕸𝕸𝟐𝟐:𝑹𝑹:𝕸𝕸𝟐𝟐 + 𝑂𝑂 𝜖𝜖5, 1/𝑛𝑛2

 Asymptotically infinitely fast CV for negative curvature
 Lower speed convergence (LLN fails) may occur outside KKC conditions

Extension to large variance/curvature
 Explanation of stickiness/repulsiveness in stratified spaces? 
 Impact when learning highly curved functions with small data!

[XP, Curvature effects on the empirical mean in Manifolds 2019, arXiv:1906.07418 ]



Beyond the mean: principal components?

Maximize the explained variance
 Tangent PCA (tPCA): eigenvectors of covariance in 𝑇𝑇𝑥̅𝑥𝑀𝑀 generate a 

geodesic subspace 𝐺𝐺𝐺𝐺 𝑥̅𝑥,𝑣𝑣1, 𝑣𝑣2, … 𝑣𝑣𝑘𝑘

Minimize the sum of squared residuals to a subspace
 PGA, GPCA: Geodesic subspace 𝐺𝐺𝐺𝐺 𝑥̅𝑥, 𝑣𝑣1, 𝑣𝑣2, … 𝑣𝑣𝑘𝑘

[Fletcher et al., 2004, Sommer et al 2014, Huckeman et al., 2010]

 BSA: Affine span Aff 𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, …𝑥𝑥𝑘𝑘
Locus of weighted exponential barycenters (geodesic simplex for positive weights)

Sequence of properly embedded subspaces (flags)
 AUC criterion on flags generalizes PCA [XP, AoS 2018]
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[XP, Barycentric subspace analysis on Manifolds 2019, Annals of Statistics, 2018 ]
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Statistical Analysis of the Scoliotic Spine

Database
 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.
 3D Geometry from multi-planar X-rays

Left invariant Mean on 𝑺𝑺𝑶𝑶𝟑𝟑 ⋉ 𝑹𝑹𝟑𝟑 𝟏𝟏𝟏𝟏

 Main translation variability is axial (growth?)
 Main rot. var. around anterior-posterior axis 

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III
• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V
• Mode 4: King’s class V (+II)

PCA of the Covariance: 
4 first variation modes 
have clinical meaning

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
AMDO’06 best paper award, Best French-Quebec joint PhD 2009
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Advances in Geometric Statistics 

Motivations

Simple statistics on Riemannian manifolds

Extension to transformation groups with affine spaces 

Perspectives, open problems



Diffeomorphometry

Lie group: Smooth manifold with group structure
 Composition g o h and inversion g-1 are smooth
 Left and Right translation Lg(f) = g o f    Rg (f) = f o g
 Natural Riemannian metric choices : left or right-invariant metrics

Lift statistics to transformation groups
 [D’Arcy Thompson 1917, Grenander & Miller]
 LDDMM = right invariant kernel metric (Trouvé, Younes, Joshi, etc.)

No bi-invariant metric in general for Lie groups
 Incompatibility of the Fréchet mean with the group structure
 Examples with simple 2D rigid transformations

Is there a more natural structure for statistics on Lie groups?
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Patient 3

Atlas

Patient 1

Patient 2
Patient 4

Patient 5

φ1

φ2 φ3
φ4

φ5



Longitudinal deformation analysis

25

time

Dynamic obervations

How to transport longitudinal deformation across subjects?

X. Pennec  - ASA / FSU W. Stat. Imaging 05/10/2020 

Patient A

Patient B

? ?Template



Basics of Lie groups

Flow of a left invariant vector field �𝑋𝑋 = 𝐷𝐷𝐷𝐷. 𝑥𝑥 from identity
 𝛾𝛾𝑥𝑥 𝑡𝑡 exists for all time
 One parameter subgroup: 𝛾𝛾𝑥𝑥 𝑠𝑠 + 𝑡𝑡 = 𝛾𝛾𝑥𝑥 𝑠𝑠 . 𝛾𝛾𝑥𝑥 𝑡𝑡

Lie group exponential
 Definition: 𝑥𝑥 ∈ 𝔤𝔤 𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥 = 𝛾𝛾𝑥𝑥 1 𝜖𝜖 𝐺𝐺
 Diffeomorphism from a neighborhood of 0 in g to a 

neighborhood of e in G (not true in general for inf. dim)

3 curves parameterized by the same tangent vector

 Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?
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Drop the metric, use connection to define geodesics

Affine Connection (infinitesimal parallel transport)
 Acceleration = derivative of the tangent vector along a curve
 Projection of a tangent space on 

a neighboring tangent space 

Geodesics = straight lines
 Null acceleration: 𝛻𝛻𝛾̇𝛾𝛾̇𝛾 = 0
 2nd order differential equation:

Normal coordinate system
 Local exp and log maps
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Adapted from Lê Nguyên Hoang, science4all.org

[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]

[XP & Arsigny, 2012, XP & Lorenzi, Beyond Riemannian Geometry, 2019]



Canonical Affine Connections on Lie Groups
A unique Cartan-Schouten connection

 Bi-invariant and symmetric (no torsion) 
 Geodesics through Id are one-parameter subgroups (group 

exponential)
 Matrices : M(t) = A exp(t.V)
 Diffeos : translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)
 Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Symmetric space with central symmetry 𝑺𝑺𝝍𝝍 𝝓𝝓 = 𝝍𝝍𝝓𝝓−𝟏𝟏𝝍𝝍
 Matrix geodesic symmetry: 𝑆𝑆𝐴𝐴 𝑀𝑀 𝑡𝑡 = 𝐴𝐴 exp −𝑡𝑡𝑡𝑡 𝐴𝐴−1𝐴𝐴 = 𝑀𝑀(−𝑡𝑡)
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[Lorenzi, Pennec. Geodesics, Parallel Transport & One-parameter Subgroups for 
Diffeomorphic Image Registration. Int. J. of Computer Vision, 105(2):111-127, 2013. ]



Generalization of the Statistical Framework
Fréchet mean: exponential barycenters

 ∑𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦𝑖𝑖 = 0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]

 Existence local uniqueness if local convexity [Arnaudon & Li, 2005]

Covariance matrix & higher order moments
 Defined as tensors in tangent space

Σ = ∫𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 ⊗ 𝐿𝐿𝐿𝐿𝐿𝐿𝑥𝑥 𝑦𝑦 𝜇𝜇(𝑑𝑑𝑑𝑑)

 Matrix expression changes with basis

Other statistical tools
 Previous thm on empirical LLN holds
 Mahalanobis distance, chi2 test
 Tangent Principal Component Analysis (t-PCA)
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[Pennec & Arsigny, 2012]
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Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]
 Exponential of a smooth vector field is a diffeomorphism
 Use time-varying Stationary Velocity Fields to parameterize deformation

Efficient numerical algorithms 
 Recursive Scaling and squaring algorithm [Arsigny MICCAI 2006]

 Deformation: exp(v)=exp(v/2) o exp(v/2)
 Jacobian: Dexp(v) = Dexp(v/2) o exp(v/2) . Dexp(v/2)

 Optimize deformation parameters:  BCH formula [Bossa MICCAI 2007]
 exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … ) where [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms

X. Pennec  - ASA / FSU W. Stat. Imaging 05/10/2020 

•exp

Stationary velocity field Diffeomorphism



Fast registration with deformation parameterized by SVF

- 32

Measuring Temporal Evolution with deformations:
Deformation-based morphometry

https://team.inria.fr/asclepios/software/lcclogdemons/
[LCC log-demons for longitudinal brain imaging. 
Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]
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Analysis of longitudinal datasets
Multilevel hierarchical framework

34

Single-subject, two time points

Single-subject, multiple time points

Multiple subjects, multiple time points

Log-Demons (LCC criteria)

4D registration of time series within 
the Log-Demons registration: 
geodesic regression

Population trend with parallel transport 
of SVF along inter-subject trajectories 

[Lorenzi et al, IPMI 2011, JMIV 2013]
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From geodesics to parallel transport
A numerical scheme to integrate symmetric connections: 

Schild’s Ladder [Elhers et al, 1972]
 Build geodesic parallelogramme
 Iterate along the curve 
 1st order approximation scheme [Kheyfets et al 2000]
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[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]



Parallel transport along geodesics
Simpler scheme along geodesics: Pole Ladder
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[ Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series
of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]
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Parallel transport along geodesics
Simpler scheme along geodesics: Pole Ladder
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P0
P’0

P1

u

−Π(u)
P’1

Numerical accuracy of one ladder step 
• Order 4 in general affine manifolds

• Exact in only one step symmetric spaces !

Numerical accuracy of several step 
• Order 2 with general numerical geodesics 

m

𝛾𝛾 𝑡𝑡 = exp𝑃𝑃0 𝑡𝑡 𝑢𝑢

𝛾𝛾𝛾 𝑡𝑡

[ XP. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine 
Connection Spaces which is Exact in Affine Symmetric Spaces. Arxiv 1805.11436 ]

pole(u) = Π(𝑢𝑢) + 1
12
𝛻𝛻𝑣𝑣𝑅𝑅 𝑢𝑢, 𝑣𝑣 5𝑢𝑢 − 2𝑣𝑣

+
1

12𝛻𝛻𝑢𝑢𝑅𝑅 𝑢𝑢, 𝑣𝑣 𝑣𝑣 − 2𝑢𝑢 + 𝑂𝑂(5)

v
[ N. Guigui, XP, Numerical 

Accuracy of Ladder Schemes 
for Parallel Transport on 

Manifolds. Arxiv 2007.07585 ]



The Stationnary Velocity Fields (SVF)
framework for diffeomorphisms

 SVF framework for diffeomorphisms is algorithmically simple
 Compatible with “inverse-consistency”
 Vector statistics directly generalized to diffeomorphisms.
 Exact parallel transport using one step of pole ladder [XP arxiv 1805.11436 2018]

Longitudinal modeling of AD: 70 subjects extrapolated from 1 to 15 years
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[Lorenzi, XP. IJCV, 2013 ]

ObservedExtrapolated Extrapolated

year



Modeling Normal and AD progression

Normal aging

Addition specific 
component for AD

mm/year

Triangulus
(Alzheimer) 

Quadratus 
(control) 

Mean geodesic 
trajectory for AD

Mean geodesic trajectory 
for normal aging 

Rutundus

(Reference)

SVF parametrizing the 
deformation trajectory 
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Study of prodromal Alzheimer’s disease 
Linear regression of the SVF over time: interpolation + prediction

40

0*))(~()( TtvExptT =

Multivariate group-wise comparison 
of the transported SVFs shows 
statistically significant differences 
(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
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Advances in Geometric Statistics 

Motivations

Simple statistics on Riemannian manifolds

Extension to transformation groups with affine spaces 

Conclusion
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Expx / Logx and Fréchet mean are the basis of algorithms 
to compute on Riemannian/affine manifolds

Simple statistics
 Mean through an exponential barycenter iteration 
 Covariance matrices and higher order moments 
 Tangent PCA or more complex PGA / BSA

Efficient Discrete parallel transport using Schild / Pole ladder
 Quadratic convergence in #step for general (non-closed form) geodesics

Manifold-valued image processing [XP, IJCV 2006]
 Interpolation / filtering / convolution: weighted means
 Diffusion, extrapolation: 

Discrete Laplacian in tangent space = Laplace-Beltrami 



http://geomstats.ai : a python library to implement 
generic algorithms on many Riemannian manifolds 

 Mean, PCA, clustering, parallel transport…
 15 manifolds / Lie groups already 

implemented (SPD, H(n), SE(n), etc)
 Generic manifolds with geodesics by 

integration / optimization

 scikit-learn API (hide geometry, compatible 
with GPU & learning tools).

 10 introductory tutorials
 ~ 35000 lines of code 
 ~20 academic developers
 2 hackathons organized in 2020
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Rotations-Translations SPD

Shild’s/pole Ladders

[ Miolane et al, JMLR 2020, in press ]

http://geomstats.ai/


Pushing the frontiers of Geometric Statistics
Beyond the Riemannian / metric structure

 Riemannian manifolds, Non-Positively Curved (NPC) metric spaces
 Affine connection, Quotient, Stratified spaces (trees, graphs)

Beyond the mean and unimodal concentrated laws
 Nested sequences (flags) of subspace in manifolds
 A continuum from PCA to Principal Cluster Analysis?

Geometrization of statistics
 Geometry of sample spaces [Harms, Michor, XP, Sommer, arXiv:2010.08039 ]

 Stratified boundary of the smooth manifold of probability densities

 Explore influence of curvature, singularities 
(borders, corners, stratifications)
on non-asymptotic estimation theory

Make G-Statistics an effective discipline for life sciences 
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https://arxiv.org/abs/2010.08039


Thank you for 
your attention 

X. Pennec  - ASA / FSU W. Stat. Imaging 05/10/2020 45

2020, Academic Press

Thanks to many 
collaborators
• Marco Lorenzi
• Jonathan Boisvert
• Pierre Fillard
• Vincent Arsigny
• Maxime Sermesant
• Nicholas Ayache
• Kristin McLeod
• Nina Miolane
• Loic Devillier
• Marc-Michel Rohé
• Yann Thanwerdas
• Nicolas Guigui
• …….



A few selected References
Statistics on Riemannnian manifolds 

 XP. Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric
Measurements. JMIV, 25(1):127-154, July 2006. 

Invariant metric on SPD matrices and of Frechet mean to define manifold-
valued image processing algorithms
 XP, Pierre Fillard, and Nicholas Ayache. A Riemannian Framework for Tensor

Computing. IJCV, 66(1):41-66, Jan. 2006. 

Bi-invariant means with Cartan connections on Lie groups
 XP and Vincent Arsigny. Exponential Barycenters of the Canonical Cartan Connection 

and Invariant Means on Lie Groups. In Frederic Barbaresco, Amit Mishra, and Frank 
Nielsen, editors, Matrix Information Geometry, pages 123-166. Springer, May 2012. 

Cartan connexion for diffeomorphisms: 
 Marco Lorenzi and XP. Geodesics, Parallel Transport & One-parameter Subgroups for 

Diffeomorphic Image Registration. IJCV, 105(2), November 2013

Manifold dimension reduction (extension of PCA)
 XP. Barycentric Subspace Analysis on Manifolds. Annals of Statistics. 46(6A):2711-

2746, 2018. [arXiv:1607.02833]

X. Pennec  - ASA / FSU W. Stat. Imaging 05/10/2020 46


	Diapositive numéro 1
	Diapositive numéro 2
	Diapositive numéro 3
	Methods of computational anatomy
	Diffeomorphometry: �Morphometry through Deformations
	Atlas and Deformations Joint Estimation
	Statistical Remodeling of RV in Tetralogy of Fallot
	Geometric features in Computational Anatomy
	Advances in Geometric Statistics ��
	Which non-linear space?
	Differentiable manifolds
	Measuring length
	Measuring length
	Riemannian manifolds
	Bases of Algorithms in Riemannian Manifolds
	Diapositive numéro 17
	Estimation of Fréchet mean
	Non-Asymptotic behavior of empirical means
	Beyond the mean: principal components?
	Statistical Analysis of the Scoliotic Spine
	Statistical Analysis of the Scoliotic Spine
	Advances in Geometric Statistics ��
	Diffeomorphometry
	Longitudinal deformation analysis
	Basics of Lie groups
	Drop the metric, use connection to define geodesics
	Canonical Affine Connections on Lie Groups
	Generalization of the Statistical Framework
	The SVF framework for  Diffeomorphisms
	Diapositive numéro 32
	Analysis of longitudinal datasets�Multilevel hierarchical framework
	From geodesics to parallel transport
	Parallel transport along geodesics
	Parallel transport along geodesics
	The Stationnary Velocity Fields (SVF)�framework for diffeomorphisms
	Modeling Normal and AD progression
	Study of prodromal Alzheimer’s disease �
	Advances in Geometric Statistics ��
	Expx / Logx  and Fréchet mean are the basis of algorithms to compute on Riemannian/affine manifolds
	http://geomstats.ai : a python library to implement generic algorithms on many Riemannian manifolds 
	Pushing the frontiers of Geometric Statistics
	Diapositive numéro 45
	A few selected References
	Diapositive numéro 90



