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Introduction to Generative Models



Generative Models

• Given training data, generate new samples from same distribution

(a) Training data ∼ pdata(x) (b) Generated samples ∼ pmodel(x)

• Address density estimation: Explicit density estimation vs. implicit density

estimation
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Why Generative Models are Important

• High dimensional data analysis, unsupervised learning, latent

representation, dimension reduction, embedding, etc.

• Challenging tasks: artwork, super-resolution, NLP, cyber-security, etc.
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Generative Model Frameworks

GAN

VAE FLOW

Other

Most generative models belong to latent variable models!
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Generative Model Frameworks

• GAN (Goodfellow et al. 2014):

• VAE (Kingma and Welling, 2013):

• FLOW (Rezende and Mohamed, 2015):
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Generative Model Frameworks

• GAN: X ∼ PX and G(Z) ∼ PG with Z ∼ N(0, I),

D(PX ,PG) = sup
f ∈F

{EX∼PX
φ1(f (X)) − EY∼PG

φ2(f (Y ))},

• VAE: Using qφ(z ∣x) = N[µ(x), σ(x)2] to approximate the true posterior

pθ(z ∣x),

log pθ(x) = Ez[ log pθ(x ∣z)] −DKL(qφ(z ∣x)∥pθ(z)) +DKL(qφ(z ∣x)∥pθ(z ∣x))

• FLOW: X = G(Z) with G being invertible and Z ∼ N(0, I),

log p(x) = log pZ(G−1(x)) + log ∣det
dG−1

dx
∣
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Challenges for Generative Models

• GAN: Unstable training; Mode collapsing

• VAE: Maximizing lower bound of likelihood; Low quality blurrier sample

• FLOW: Too high latent dimension; Invertible neural networks

Figure 2: image credits: Nalisnick et al., ICLR 2019

How to check the performance? How to learn the intrinsic dimension of the

data? How to perform out-of-distribution detection? 6



Inferential Wasserstein GANs (iWGAN)



What’s New

• Can we propose a model which provides a unifying framework combining

the best of VAEs and GANs in a principal way?

• Do there even exist these two mappings, the encoder Q and the decoder

G , for any high-dimensional random variable X such that Q(X) ∼ Z and

G(Z) ∼ X?

• Is there any probabilistic interpretation such as the maximum likelihood

principle on encoder-decoder GANs?

• Developments in this direction:

— VAE-GAN (Larsen, 2016)

— Adversarially Learned Inference (ALI) (Dumoulin, 2016)

— Auto-encoding GANs (α-GAN) (Rosca, 2017)

— Adversarial Generator Encoders (AGE) (Ulyanov, 2018)
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Inferential Wasserstein GANs (Chen, Gao, Wang, 2020)

Z G(Z)

X Q(X) G(Q(X)))

vs. X

vs. X

Decoder G

Decoder GEncoder Q

Autoencoders WGANsiWGAN

• Objectives:

• Match the distribution of the latent space with the prior distribution

• Match the decoded distribution with the data distribution

• Match the reconstructed distribution with the data distribution
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Encoder and Decoder

• Meaningful encoding and feasible decoder

• Nash’s embedding theorem (Nash, 1956)

Theorem

Consider a continuous random variable X ∈ X , where X is a d-dimensional

smooth Riemannian manifold. Then, there exist two mappings Q∗ ∶ X → Rp

and G∗ ∶ Rp → X , with p = max{d(d + 5)/2,d(d + 3)/2 + 5}, such that Q∗(X)
follows a multivariate normal distribution with zero mean and identity

covariance matrix and G∗ ○Q∗ is an identity mapping, i.e., X = G∗(Q∗(X)).
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WGAN

• Wasserstein distance: The natural geometry for probability measures

(Kantorovich, Koopmans, Nobel’75; Villani, Fields’10)

• WGAN:

W1(PX ,PG ) = inf
π∈Π(PX ,PZ )

E(X ,Z)∼π∥X −G(Z)∥

• By the Kantorovich-Rubinstein duality,

W1(PX ,PG ) = sup
f ∈F

EX∼PX
[f (X)] − EZ∼PZ

[f (G(Z))]

• Both are difficult constrained optimization problems.
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Primal and Dual Optimal Values

• The primal variable π for the primal problem is also a dual variable for the

dual problem, and the primal variable f for the dual problem is also a dual

variable for the primal problem.

• Introduce the encoder Q to approximate the posterior distribution p(z ∣x).

• The optimal value of the primal problem satisfies

inf
π

sup
f

Eπ∥X − G(Z)∥ + ∫
x
f (x)(PX (x) − ∫

z
π(x, z)dz)dx − ∫

z
f (G(z))(PZ (z) − ∫

x
π(x, z)dx)dz

= inf
Q

sup
f

EX ∥X − G(Q(X))∥ + EX [f (G(Q(X)))] − EZ [f (G(Z))],

• The optimal value of the dual problem satisfies

sup
f

inf
π

EX [f (X)] − EZ [f (G(Z))] − ∫X×Z
π(x, z)(f (x) − f (G(z)) − ∥x − G(z)∥)dxdz

= sup
f

inf
Q

EX ∥X − G(Q(X))∥ + EX [f (G(Q(X)))] − EZ [f (G(Z))].
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iWGAN Objective

• iWGAN:

W 1(PX ,PG ) = inf
Q∈Q

sup
f ∈F

EX∼PX ∥X − G(Q(X))∥ + EX∼PX [f (G(Q(X)))] − EZ∼PZ [f (G(Z))].

• The iWGAN objective is equivalent to

W 1(PX ,PG ) = inf
Q∈Q

W1(PX ,PG(Q(X))) +W1(PG(Q(X)),PG ),

and W1(PX ,PG ) ≤W 1(PX ,PG ).

• This upper bound is tight. If there exists a Q∗ ∈ Q such that Q∗(X) has

the same distribution with PZ , then W1(PX ,PG ) =W 1(PX ,PG ). We have

W 1(PX ,PG ) = 0⇐⇒ PX = PG(Q∗(X)) = PG .
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Generalization Bound for iWGANs

• For supervised learning, the generalization error is the difference between

the expected loss (test error) and the empirical loss (training error).

• In practice, we minimize the empirical version, Ŵ 1(PX ,PG), of

W 1(PX ,PG) to learn both the encoder and the decoder.

Theorem

Given a generator G ∈ G, and given n samples (x1, . . . , xn) from
X = {x ∶ ∥x∥ ≤ B}, with probability at least 1 − δ for any δ ∈ (0,1), we have

W1(PX ,PG ) ≤
̂
W 1(PX ,PG ) + 2R̂n(F) + 3B

√
2

n
log (

2

δ
),

where R̂n(F) = Eε [supf ∈F n−1∑n
i=1 εi f (xi)] is the empirical Rademacher

complexity of the 1-Lipschitz function set F , in which εi is the Rademacher

variable.
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Generalization Bound for iWGANs

• The 1-Wasserstein distance between PX and PG can be dominantly upper

bounded by the empirical Ŵ 1(PX ,PG) and Rademacher complexity of F .

• The capacity of Q determines the value of Ŵ 1(PX ,PG).

• When F is a set of 1-Lipschitz neural network, Bartlett et al. (2017)

established R̂n(F) of order O(B
√
L3/n), where L denotes the depth of

network f ∈ F , and Li et al. (2018) showed a similar upper bound with an

order of O(B
√
Ld2/n) can be obtained by utilizing the results from ,

where d is the width of the network.
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The Algorithm

• When to stop training:

• The duality gap can be defined as

DualGap(G̃ , Q̃, f̃ ) = sup
f ∈F

L(G̃ , Q̃, f ) − inf
G∈G,Q∈Q

L(G ,Q, f̃ ),

where L(G ,Q, f ) = EX ∥X −G(Q(X))∥ +EX [f (G(Q(X)))] −EZ [f (G(Z))].

• If G̃ outputs the same distribution as X and Q̃ outputs the same

distribution as Z , the duality gap is zero and X = G̃(Q̃(X)) for X ∼ PX .
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Mixture of Gaussian

(a) RING (b) Swiss Roll (c) GRID

Figure 3: Three toy datasets with an increasing difficulty.
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Mixture of Gaussian: Generated Samples

Figure 4: Duality gap and generated samples from iWGANs on mixture of Gaussians

• The duality gap converges to 0

• Our model converges to the true distribution very fast without the mode

collapse.
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Mixture of Gaussian: Latent Space

(a) RING (b) Swiss Roll (c) GRID

Figure 5: Latent Space of Mixture of Gaussians
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CelebA: Generated Samples

Figure 6: Left:WGAN-GP; Right:iWGAN
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CelebA: Latent Space

Figure 7: Latent Space of CelebA dataset: the first 8 dimensions of the latent space

calculated by Q(x).
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CelebA: Interpolations

Figure 8: Interpolations between two images
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CelebA: Quality Check

(a) Samples with high quality scores (b) Samples with lower quality scores

Figure 9: Sample quality check by iWGAN on CelebA
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Conclusions

• We have compared iWGAN with WGAN-GP, WAE, ALI both visually and

numerically, in terms of reconstruction, generative sample quality, latent

distribution.

• iWGAN is a unified framework to fuse the best of VAEs and WGANs.

• Similar to rejection sampling, latent distribution can be refined to produce

the generative distribution which is the same as data distribution (Che et

al. 2020).

• Adaptively learn the intrinsic dimension of data manifold.
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