A FUNCTIONAL CHARACTERIZATION OF A CLASS OF
COVARIANCE INEQUALITIES

by
George Kimeldorf and Allan R. Sampson

FSU Statistics Report M108
A FUNCTIONAL CHARACTERIZATION OF A CLASS OF
COVARIANCE INEQUALITIES

by
George Kimeldorf and Allan R. Sampson

1. Introduction and Summary. In this paper we consider the class
of inequalities of the form

(1)
\[\text{cov} \ (X,Y) \leq \text{var} \ (X,Y). \]

The functions \(g \) having continuous first partial derivatives and sat-
istifying (1) for all suitable random variables \(X \) and \(Y \) are shown to be
characterized by a functional inequality and an equivalent partial dif-
ferential inequality.

Since \(\text{var} \ g(X,Y) = \text{cov} \ [g(X,Y), g(X,Y)] \), we can view \(g \) as a function that
combines the individual random variables \(X \) and \(Y \) to create a new ran-
don variable \(Z = g(X,Y) \) which has the property that \(\text{cov} \ (Z,Z) \geq \text{cov} \ (X,Y) \).

Thus \(g \) can be considered as a covariance-increasing function. Koop [2]
considered the inequality \(\text{cov} \ (U, ZU^{-1}) \leq \text{var} \ (Z^2) \) for positive \(U \) and \(Z \).

It is easily seen that his inequality is a special case of (1) restricted
to the positive quadrant with \(X = U, Y = ZU^{-1} \), and \(g(x,y) = (xy)^2 \).

2. The main results. Let \(A \) be an open connected subset of the
plane \(\mathbb{R}^2 \) and define \(\mathcal{A} \) to be the class of all pairs \((X,Y) \) of real ran-
don variables having finite variances and jointly taking values in \(A \).

Assume \(g \) is a function with domain \(\mathcal{A} \) and with continuous first
partial derivatives.

Theorem 1. A necessary and sufficient condition that \(\text{cov} \ (X,Y) \leq \text{var} \ g(X,Y) \) for all \((X,Y) \in \mathcal{A}\) is that

(2)
\[
\begin{pmatrix}
\frac{\partial g}{\partial x} \\
\frac{\partial g}{\partial y}
\end{pmatrix}
\begin{pmatrix}
\frac{\partial g}{\partial x} \\
\frac{\partial g}{\partial y}
\end{pmatrix} \geq h^2
\]

for all points \((x,y) \in A\).
The proof of Theorem 1 follows immediately from the next two lemmas.

Lemma 1. Inequality (1) holds for all \((x, y) \in A\) if, and only if,

\[
(x - x_1)(y - y_1) \leq \left(g(x_2, y_2) - g(x_1, y_1) \right)^2.
\]

Proof. Suppose (1) holds for all \((x, y) \in A\). If \((x, y)\) only takes values \((x_1, y_1)\) and \((x_2, y_2)\), then (1) reduces immediately to (3).

Conversely, if (1) is violated, then it is violated by some pair \((x, y)\) of random variables jointly assuming only a finite number of values with equal probability. Let \((x, y)\) take values \((x_1, y_1), \ldots, (x_n, y_n)\), each with probability \(n^{-1}\). If (3) holds on \(A\), then

\[
\text{cov}(x, y) = n^{-1} \sum x_i y_i - n^{-2} \left(\sum x_i \right) \left(\sum y_i \right)
\]

\[
= n^{-2} \sum_{i \neq j} (x_i - x_j)(y_i - y_j)
\]

\[
\leq n^{-2} \sum_{i \neq j} \left(g(x_i, y_i) - g(x_j, y_j) \right)^2.
\]

This latter expression equals

\[
n^{-1} \left[g(x_1, y_1) \right]^2 - \left[n^{-1} \sum g(x_i, y_i) \right]^2 = \text{var}(g(x, y)).
\]

Lemma 2. Inequality (3) holds on \(A\) if, and only if, (2) holds on \(A\).

Proof. We first show that (2) is equivalent to the condition

\[
0 \leq \left(\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \right)^2 - \alpha
\]

for all real \(\alpha\),

where \(\frac{\partial g}{\partial x}\) and \(\frac{\partial g}{\partial y}\) are the partial derivatives of \(g\) with respect to \(x\) and \(y\), respectively. To see the equivalence, note that for any fixed \((x, y)\)
the right hand side of (4), a quadratic polynomial in \(z \), attains a minimum value of \((e_x e_y - \lambda)/e_y^2 \), which is non-negative if, and only if, (2) holds.

Now suppose (3) holds on \(A \). Setting \(x_2 = x_1 + \delta \) and \(y_2 = y_1 + \delta \) and taking limits as \(\delta \to 0 \), we derive (4). To show the converse implication, we fix \(x_1, x_2, y_1, \) and \(y_2 \) and set \(a = (y_2 - y_1)/(x_2 - x_1) \). Because \(A \) is connected, there exists by the mean value theorem a point \((\bar{x}, \bar{y}) \in A\) for which \(g(x_2, y_2) - g(x_1, y_1) = (x_2 - x_1)(ag_y + e_x) \) where the partials are evaluated at \((\bar{x}, \bar{y})\). Hence, (4) implies
\[
|g(x_2, y_2) - g(x_1, y_1)|^2 \leq (x_2 - x_1)^2 a = (y_2 - y_1)(x_2 - x_1).
\]

3. "tightness" considerations. It is immediately obvious that if \(g \) satisfies (1), then for \(|a| \geq 1 \) every linear transform \(ag + b \) also satisfies (1). This situation arises because we have not imposed the condition that (1) be a "tight" inequality, i.e., an equality for some particular set of random variables \(X \) and \(Y \). There are many such conditions that can be imposed. In numerous cases of interest, \(A \) contains an open interval of the line \((y = x) \). Hence, meaningful and reasonable conditions are that \(\text{var} g(X,X) = \text{cov} (X,X) \) and \(g(0,0) = 0 \). It can be readily shown that these "tightness" conditions hold if, and only if,
\[
(5) \quad g(x,x) = x \quad \text{for all} \ (x,x) \in A.
\]

Another justification of (5), albeit highly heuristic, is to consider \(g(x,y) \) as a quasilinear weighted mean (e.g., see Aczel [1, pp. 240ff]) of \(x \) and \(y \). Thus, we require reflexivity, i.e., \(g(x,x) = x \). Clearly, if \(A \) contains an open interval of the line \((y = x) \) and if \(g \) satisfies
(5), then no nontrivial linear function of g also satisfies (5).

4. Examples. One interesting example of inequality (1) is the case where $A = \mathbb{R}^2$. Under condition (5), we show that the only function g for which (1) is true for all $(X, Y) \in A$ is $g(x, y) = (x + y)/2$.

Corollary 1. If $A = \mathbb{R}^2$ and g satisfies (5), then (1) holds for all $(X, Y) \in A$ if, and only if, $g(x, y) = (x + y)/2$.

Proof. By Lemma 2, it is sufficient to show (3) implies $g(x, y) = (x + y)/2$, as the converse implication is immediate.

Let $x_1 = y_1 = z$, so that $g(x_1, y_1) = g(z, z) = z$. Inequality (3) now becomes after simplification

$$x_2y_2 - g^2(x_2, y_2) \leq z \left[x_2 + y_2 - 2g(x_2, y_2) \right].$$

For any fixed x_2 and y_2, we can always choose z to violate inequality (6) unless the expression in brackets is zero, and hence $g(x, y) = (x + y)/2$.

Another example is to take A to be the positive quadrant of \mathbb{R}^2, and thus X and Y to be positive random variables. Assuming that (5) holds, we demonstrate that there is no unique function g satisfying (1), although some necessary bounds on g are obtained.

Corollary 2. If A is the positive quadrant of \mathbb{R}^2 and g satisfies (5), then a necessary condition that (1) hold for all $(X, Y) \in A$ is

$$0 \leq g(x, y) \leq (x + y)/2$$

for all $x > 0$ and $y > 0$.

Proof. If A is the positive quadrant and g satisfies (1) and (5), then the argument in the proof of Corollary 1 implies that (6)
holds for all \(z > 0 \). If \(g(x, y) < (xy)^{\frac{1}{3}} \), then the left hand side of (6) is positive, so that the inequality can be violated for sufficiently small \(z \). Similarly, if \(g(x, y) > (x + y)/2 \), the right hand side of (6) is negative, so that (6) is violated for sufficiently large \(z \).

It is clear that (7) is not sufficient, for there exist \(g \) satisfying (7) but violating (2) at some point. Also, using the differential inequality (2), we can easily verify that \(g(x, y) = a(xy)^{\frac{1}{3}} + (1 - a)(x + y)/2 \) satisfies (1) for \(0 \leq a \leq 1 \).

5. Remarks. Observe that \((xy)^{\frac{1}{3}} \) and \((x + y)/2 \) are both means, being the geometric and arithmetic means, respectively. However, another mean, the harmonic mean, does not satisfy (2) for sufficiently small \(x \) or \(y \). The class of quasilinear weighted means may provide further functions that satisfy (1) for specific regions \(A \).

Although we have not pursued the question here, the covariance inequalities we have considered should have interesting multivariate analogs.

We thank Dr. Christopher Hunter for a helpful conversation.
REFERENCES
