A NOTE CONCERNING SOME RESULTS OF
LANDAU, SHEPP AND SATO

by

Emad El-Neweihi and J. Sethuraman
Florida State University
FSU Statistics Report M236
ONR Technical Report No. 68
USARO-D Technical Report No. 2

September, 1972

The Florida State University
Department of Statistics
Tallahassee, Florida

Research supported by the Army, Navy and Air Force under the Office
of Naval Research Contract No. NONR 988(08), Task Order NR 042-044
and the United States Army Research Office, Durham Grant No.
DA-ARO-D-31-124-72-G167. Reproduction in whole or in part permitted
for any purpose of the U. S. Government.
A NOTE CONCERNING SOME RESULTS OF

LANDAU, SHEPP AND SATO

by

Emad El-Neweih and J. Sethuraman

Summary. Two alternate and elementary proofs of the Landau-Shepp theorem are presented. An error in the proof of Sato's theorem is rectified.

Introduction. The Landau-Shepp (1970) theorem may be stated as follows:

Theorem 1 (Landau-Shepp).

Let \(\{X_n\}_n \) be a collection of random variables such that every finite subcollection has a normal distribution. Then

\[
(1) \quad \Pr\{\sup_n |X_n| < \infty\} = 0 \text{ or } 1.
\]

If

\[
(2) \quad \Pr\{\sup_n |X_n| < \infty\} = 1
\]

then

\[
(3) \quad \mathbb{E}(e^{\varepsilon \sup_n |X_n|^2}) < \infty
\]

for some \(\varepsilon > 0 \).
Sato (1971) proved the following using Theorem 1:

Theorem 2 (Sato)

Let \(m \) be a Gaussian measure on a separable Banach space \(X \).

Then

\[
(4) \quad \int_X e^{\varepsilon |x|^2} \, dm(x) < \infty
\]

for some \(\varepsilon > 0 \).

We present two alternate and simple proofs of (1) of Theorem 1 in this note. In proving Theorem 2 Sato (1971) actually used the assumption (see p. 228) that \(X^\vee \), the dual of \(X \), is separable. Thus he did not prove Theorem 2 as stated. We rectify this error in this note.

First Proof of (1) of Theorem 1.

We can construct independent random variables \(\{ Y_n \} \) and constants \(\{ a_{nk}, k = 1, \ldots, n, n = 1, 2, \ldots \} \) by the usual orthogonalization process such that

\[
(5) \quad X_n = \frac{1}{n} \sum_{k=1}^{n} a_{nk} Y_k, \quad n = 1, 2, \ldots
\]

Note that

\[
(6) \quad \{ \sup_n |X_n| < \infty \} = \bigcup_{N=1}^{\infty} \bigcap_{n=1}^{N} \{|X_n| \leq N\}
\]

\[
= \bigcup_{N=1}^{\infty} \bigcap_{n=1}^{N} \{| \sum_{k=1}^{n} a_{nk} Y_k | \leq N\}
\]

\[
= \bigcup_{n=1}^{\infty} \bigcap_{n=1}^{\infty} \{| \sum_{k=m}^{n} a_{nk} Y_k | \leq N\}
\]
for \(m = 1, 2, \ldots \). Thus the event \(\{ \sup_n |X_n| < \infty \} \) belongs to the tail \\
\(\sigma \)-field of \(\{ Y_n \} \) and by the Kolmogorov 0-1 law has probability 0 \\
or 1.

Second Proof of (1) of Theorem 1

If \(\{ E(X_n) \} \) is an unbounded sequence then it is easy to check \\
that

\[
P(\sup_n |X_n| < \infty) = 0.
\]

We shall therefore assume that \(\{ E(X_n) \} \) is bounded. By translating \\
the \(X_n \)'s we may assume that \(E(X_n) = 0, n = 1, 2, \ldots \). The joint \\
probability measure \(P \) of \(\{ X_1, X_2, \ldots \} \) may be considered as a Gaussian \\
measure on \((\mathbb{R}_\infty, \mathcal{B}_\infty) \). Here \(\mathbb{R}_\infty \) is the countable product of the real \\
line and \(\mathcal{B}_\infty \) is the product \(\sigma \)-field. Thus \(P \) is a Gaussian measure \\
on a separable Fréchet space and has mean 0. From a result due to \\
Rajput (1971, Theorem 5.1)

\[
P(C) = 0 \text{ or } 1
\]

for every measurable linear subspace \(C \) of \(\mathbb{R}_\infty \). It is easy to check \\
that \(\{(x_1, x_2, \ldots): \sup_n |X_n| < \infty\} \) is a measurable linear subspace of \\
\(\mathbb{R}_\infty \). The proof of (1) of Theorem 1 is complete.

Proof of Theorem 2

We first prove the following lemma.
Lemma 1. Let X be a separable Banach space. There exists a sequence
\{f_n\} in the dual X^* such that

(7) \[\|f_n\| \leq 1, \quad n = 1, 2, \ldots \]

and

(8) \[\|x\| = \sup_{n} |f_n(x)| \text{ for each } x \in X. \]

Proof of Lemma 1. Let $S^\#$ be the unit ball in $X^\#$. Since X is separable,
$S^\#$ is compact and metrizable in the $w^\#$-topology of X^* restricted
to S^* (see Dunford and Schwartz (1958), Part I, p. 424-426). Thus
there is a subset $D = \{f_n\}$ of $S^\#$ which countable and dense in $S^\#$.
For each x, $f(x)$ is $w^\#$-continuous in f. Thus

\[\|x\| = \sup_{f \in S^\#} |f(x)| = \sup_{n} |f_n(x)|. \]

Now, Theorem 2 follows immediately from Lemma 1 and Theorem 1.

Remark. It is easy to see that Lemma 1 is true when X is only
a separable normed space. Thus in Theorem 2 one need only assume
that X is a separable normed space.
REFERENCES

Rajput, Balram, Gaussian measures on L_p spaces, $1 \leq p \leq \infty$ (1971) Institute of Stat. Mimeo. Series No. 782, Dept. of Stat. Univ. of North Carolina, Chapel Hill.

1. **Originating Activity**
 The Florida State University Department of Statistics
 Tallahassee, Florida

2a. **Report Security Classification**
 Unclassified

2b. **Group**

3. **Report Title:** A Note Concerning Some Results of Landau, Shepp and Sato

4. **Descriptive Notes:** Technical Report, September 1972

5. **Authors:** Emad El-Newehi and J. Sethuraman

6. **Report Date:** September 1972

7a. **Total No. of Pages:** 5

7b. **Total No. of References:** 4

8. **Contract No.**
 i. NONR 988(08) Task No. 042-044
 ii. DA-ARO-D-31-124-72-G167

9a. **Originator's Report Number(s)**
 i. ONR Technical Report No. 68
 ii. USARO-D Technical Report No. 2

9b. **Other Report No(s)**
 FSU Statistics Report No. M236

10. **Availability/Limitation Notices**
 Releasable without limitations on dissemination

11. **Supplementary Notes**

12. **Sponsoring Military Activity**
 i. Logistics and Mathematical Statistical Branch
 Office of Naval Research
 Washington, D. C. 20360

 ii. U. S. Army Research Office
 Box CM, Duke Station
 Durham, North Carolina 27706

13. **Abstract**
 Two alternative and elementary proofs of the Landau–Shepp theorem are presented. An error in the proof of Sato's theorem is rectified.

14. **Key Words**
 Gaussian measures in abstract spaces
 Existence of the mgf of a Gaussian measure