NONPARAMETRIC ESTIMATION OF A DENSITY FUNCTIONAL

by

Ibrahim A. Ahmad, Memorial University of Newfoundland

and

Pi-Erh Lin, Florida State University

FSU Statistics Report M369

The Florida State University
Tallahassee, Florida 32306
January, 1976
NONPARAMETRIC ESTIMATION OF A DENSITY FUNCTIONAL

by

Ibrahim A. Ahmad, Memorial University of Newfoundland

and

Pi-Erh Lin, Florida State University

ABSTRACT

Let \(X \) be a random variable with distribution function \(F \) and density function \(f \). Let \(\phi \) and \(\psi \) be known measurable functions defined on the real line \(\mathbb{R} \) and the closed interval \([0, 1] \), respectively. This paper proposes a smooth nonparametric estimate of the density functional \(\theta = \int \phi(x)\psi(F(x))f^2(x)dx \) based on a random sample \(X_1, \ldots, X_n \) from \(F \) using a kernel function \(k \). The proposed estimate is given by

\[
\hat{\theta} = (n^2a_n)^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \phi(X_i)\psi(\hat{F}(X_i))k[(X_i - X_j)/a_n],
\]

where \(\{a_n\} \) is a sequence of positive real numbers converging to 0, as \(n \to \infty \), and where \(\hat{F}(x) = n^{-1}\sum_{i=1}^{n} K[(x - X_i)/a_n] \) with \(K(w) = \int_{-\infty}^{w} k(u)du \). The estimate \(\hat{\theta} \) is shown to be consistent both in the weak and strong senses. Conditions are obtained under which the asymptotic normality of \(n^{1/2}(\hat{\theta} - \theta) \) is established. Applications of the estimate to the study of asymptotic relative efficiency for various nonparametric tests are indicated, with particular reference to those using the Chernoff-Savage statistic.

Key words and phrases: Kernel function; strong consistency; asymptotic normality; asymptotic relative efficiency; Chernoff-Savage statistic.
NONPARAMETRIC ESTIMATION OF A DENSITY FUNCTIONAL

by

Ibrahim A. Ahmad, Memorial University of Newfoundland

and

Pi-Erh Lin¹, Florida State University

1. Introduction. Let X be a random variable with distribution function (df) F and probability density function (pdf) f. Let ϕ and ψ be known measurable functions defined on the real line $R = (-\infty, \infty)$ and the closed interval $[0, 1]$, respectively. Consider the density functional

\begin{equation}
\theta = \theta(\phi, \psi, f, F) = \int \phi(x) \psi[F(x)] f^2(x) dx.
\end{equation}

(Here and throughout the study no limits of integration are given whenever the integration extends from $-\infty$ to ∞.) The functional θ is useful in many applications. For example, special cases of θ appear as dominant terms in the asymptotic relative efficiency (ARE) of many nonparametric tests. These ARE's are unknown quantities when nothing is known about F. Thus a nonparametric estimate of θ is needed to provide information about the relative performance of two rival tests under suitable sequences of alternative hypotheses.

¹Research supported in part by the National Institute of General Medical Sciences through the Training Grant 5T01 GM-913.
with \(K(w) = \int_{-\infty}^{\infty} k(z)dz \), and

\[
\hat{f}(x) = \frac{1}{n} \int_{-\infty}^{\infty} k\left(\frac{x-y}{a_n}\right) dF_n(y) = \frac{1}{na_n} \sum_{j=1}^{n} k\left(\frac{x-x_j}{a_n}\right).
\]

The expressions of \(\hat{F}(x) \) and \(\hat{f}(x) \) given above are known as the kernel estimates of df and pdf, respectively.

Sen (1966), in studying confidence intervals for a shift parameter and the ARE's of nonparametric tests, has proposed a general method of estimating \(\theta(1, J', f, F) \) and \(\theta(x, J', f, F) \) using rank order statistics. (Here \(J' \) is the derivative of \(J \)). Among other results, he has obtained the asymptotic normality and weak consistency of his estimates. In a different context, Bhattacharaya and Roussas (1969) have proposed to estimate \(\theta(1, 1, f, F) \) by \(\int \hat{f}^2(x)dx \) and showed that their estimate is consistent in the first and second means. Also using a kernel function, Schuster (1971) proposes to estimate \(\theta(1, 1, f, F) \) by \(\int \hat{f}(x)dF_n(x) \) and obtains the convergence rate for his estimate. However, no limiting distribution is established for either estimate of \(\theta(1, 1, f, F) \).

In Section 2 it is shown that \(\hat{\theta} \) converges to \(\theta \) in both the weak and strong senses. Asymptotic normality of \(n^{1/2}(\hat{\theta} - \theta) \) is established in Section 3. Section 4 gives some remarks on the functional \(\theta \), with particular reference to the ARE's of nonparametric tests using the Chernoff-Savage statistic.
Then

\[|\hat{\theta} - \theta| \leq I_{1n} + I_{2n} + I_{3n} + I_{4n}.\]

THEOREM 2.1. Assume the following conditions

(i) \(k\) is uniformly continuous satisfying (1.2);
(ii) \(n_{2n} \to \infty, \text{ as } n \to \infty;\)
(iii) \(C = \sup_{0 \leq t \leq 1} \left| \frac{d}{dt} \psi(t) \right| < \infty;\)
(iv) \(E[\psi(X)\psi(F(X))f(X)]^2 < \infty;\)
(v) \(E[\sup_x \hat{f}(x) - Ef(x)]^2 \to 0, \text{ as } n \to \infty;\)
(vi) \(E(G^4) \to 0 \text{ as } n \to \infty, \text{ where } G = \sup_x |\hat{F}(x) - F(x)|;\)
(vii) \(E\Phi^2(X) < \infty;\)
(viii) \(E[\psi(X)\psi(F(X))]^2 < \infty.\)

Then

\[E|\hat{\theta} - \theta| \to 0, \text{ as } n \to \infty.\]

PROOF. It suffices to show that, for \(\alpha = 1, 2, 3, 4,\)

\[E I_{\alpha n} \to 0, \text{ as } n \to \infty.\]

Since \(I_{4n}\) is a constant and since
where

\[(2.11) \quad D = \mathbb{E}\{\mathbb{E}[\text{sup}_{x} \hat{f}(X_1)|X_1 = x]\}^{1/4} \}.
\]

It follows from Condition (v) that \(\text{sup} \hat{f}(x)\) is bounded in probability. This implies that \(D < \infty\) for all \(n\). Thus, by Conditions (vi) and (vii), \(E_{1n} \to 0\) as \(n \to \infty\).

For \(\alpha = 2\), we have

\[(2.12) \quad E_{2n} \leq \mathbb{E}\left|\phi(x)\psi[F(x)]\right| \mathbb{E}[\hat{f}(x) - \mathbb{E}\hat{f}(x)]dF_n(x) \]

\[\leq \mathbb{E}[\text{sup}_{z} \hat{f}(z) - \mathbb{E}\hat{f}(z)]^2 \mathbb{E}\left[\mathbb{E}[\phi(x)\psi[F(x)]]dF_n(x)\right]^2.\]

In view of (v) we need only show that the second factor converges to a finite quantity. Now

\[(2.13) \quad \mathbb{E}\{\left|\phi(x)\psi[F(x)]\right| dF_n(x)\}^2 \]

\[= \mathbb{E}\left\{\frac{1}{n} \sum_{i=1}^{n} \phi(X_i)\psi[F(X_i)]\right\}^2 \]

\[= \text{Var} \{ \} + \mathbb{E}\{ \}^2 \]

\[= \frac{1}{n} \mathbb{E}\{\phi(X_1)\psi[F(X_1)]\}^2 + \frac{n-1}{n} \mathbb{E}\{\phi(X_1)\psi[F(X_1)]\}^2 \]

\[\to \{\mathbb{E}\phi(X_1)\psi[F(X_1)]\}^2 < \infty, \]
THEOREM 2.2. Assume (i) - (iv) of Theorem 2.1 and the following conditions:

(i) \(G = \sup_{x} |\hat{F}(x) - F(x)| \to 0 \), w.p.1, as \(n \to \infty \);

(ii) \(E[|\phi(X)|f(X)] < \infty \);

(iii) \(\sup_{x} |\hat{F}(x) - f(x)| \to 0 \), w.p.1, as \(n \to \infty \);

(iv) \(a_{n}^{-1} \sup_{x} \left| F_{n}(x) - F(x) \right| \to 0 \), w.p.1, as \(n \to \infty \);

(v) \(\mu = \int |\phi(x)|f(x) < \infty \); and

(vi) \(E[|\phi(X)|F(X)] E[\hat{f}(X)|X] < \infty \).

Then

\[|\hat{\theta} - \theta| \to 0 \), w.p.1, as \(n \to \infty \).

PROOF. Since \(I_{\alpha n} \to 0 \) as \(n \to \infty \), it suffices to show that, for \(\alpha = 1, 2, \) and \(3 \),

\[(2.14) \quad I_{\alpha n} \to 0 \), w.p.1, as \(n \to \infty \).

For \(\alpha = 1 \), we have

\[I_{1n} \leq C \sup_{z} \left| \hat{F}(z) - F(z) \right| \frac{1}{a_{n}} \int \int |\phi(x)| \left| k \left(\frac{x-y}{a_{n}} \right) \right| dF_{n}(x)dF_{n}(y) \]

\[= CG \int |\phi(x)| \hat{f}(x)dF_{n}(x). \]
\[I_{3n} = \left| \int \phi(x) \psi[F(x)] \hat{E}_n(x) dF_n(x) - \int \phi(x) \psi[F(x)] \hat{E}(x) dF(x) \right| \]

\[= \frac{1}{n} \sum_{i=1}^{n} Y_i - EY_1 \rightarrow 0, \text{ w.p.l, as } n \rightarrow \infty, \]

by the SLLN and (xiv), establishing (2.14) for \(\alpha = 3 \). \(\square \)

Some conditions assumed by the above theorems seem difficult to verify and undesirable. The following two lemmas provide a set of sufficient conditions under which Conditions (v), (vi), (ix), (xi), (xii), and (xiv) are automatically satisfied.

LEMMA 2.3. (Nadaraya).

(2.17) \hspace{1cm} \text{Let } k \text{ be a function of bounded variation.}

(2.18) \hspace{1cm} \text{If, for any } c > 0, \sum_{n=1}^{\infty} \exp(-cna_n^2) < \infty,

then

(2.19) \hspace{1cm} \sup_{x} |\hat{f}(x) - \hat{E}(x)| \rightarrow 0, \text{ w.p.l, as } n \rightarrow \infty.

Furthermore, if

(2.20) \hspace{1cm} f \text{ is a uniformly continuous pdf,}
where \(c = 2\epsilon^2 \) and \(0 < c_1 < \infty \). The last inequality in (2.22) is obtained by applying a result of Dvoretzky, Kiefer and Wolfowitz (1956). Thus, in view of the Borel-Cantelli lemma and (2.18), we have

\[
(2.23) \quad \sup_x |\hat{F}(x) - EF(x)| \to 0, \text{w.p.1, as } n \to \infty.
\]

Furthermore,

\[
(2.24) \quad \sup_x |EF(x) - F(x)| \leq \sup_x \int_{x^-}^x \sup_{u \leq x} \int_{(x-u)/a_n}^\infty k(z)dz f(u)du
\]

\[
+ \sup_x \int_x^\infty \sup_{u > x} \int_{-\infty}^{(x-u)/a_n} k(z)dz f(u)du.
\]

Let \(\gamma \) be an arbitrary small positive quantity. Then there exists \(M > 0 \) such that, for all \(n \geq M \), we have

\[
(2.25) \quad 1 - K\left(\frac{x-u}{a_n}\right) < \frac{1}{2}\gamma \quad \text{whenever } u < x, \text{ and}
\]

\[
(2.26) \quad K\left(\frac{x-u}{a_n}\right) < \frac{1}{2}\gamma \quad \text{whenever } u > x.
\]

Note that \(\gamma \) does not depend on \(x \) since \(K \) is a uniformly continuous df and thus for all \(x \) such that \(u < x, (u > x) \) the argument of \(K \) is
PROOF. It suffices to verify Conditions (iv), (ix) – (xiv). Now, (iv) is implied by (viii) and (2.20); (ix) is implied by (xii) which, in turn, is implied by (2.17) and (2.18); (x) is implied by (2.20); (xi) is implied by (2.17), (2.18), and (2.20); (xiii) is now replaced by (xv) in that \(\mu \) in (2.15) is replaced by \(\nu \sup f \); and, finally, (xiv) is implied by (2.20) and (viii). \(\square \)

3. Asymptotic Normality of the Estimate. In this section, asymptotic normality (AN) of \(n^{1/2}(\hat{\theta} - \theta) \) is established under some regularity conditions. This result enables us to obtain an approximate \((1 - \alpha)100\%\) confidence interval for the density functional \(\theta \). The method of proof is to find an appropriate sequence of i.i.d. random variables \(W_1, \ldots, W_n \), say, with \(E W_1^2 < \infty \); and then show that the asymptotic distribution of \(\hat{\theta} \) is the same as that of \((1/n)\sum_{i=1}^{n} W_i \).

Theorem 3.1. Assume (iv) and the conditions of Theorem 2.2. Then, as \(n \to \infty \)

\[
(3.1) \quad n^{1/2}(\hat{\theta} - \theta) \sim \text{AN}(0, \sigma^2),
\]

where

\[
(3.2) \quad \sigma^2 = E[\phi(X)\psi[F(X)]f(X)]^2 - \theta^2.
\]
\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \{ \phi(X_i) \psi(\hat{F}(X_i)) \hat{f}(X_i) \}^2 - \hat{\theta}^2 \]

is a consistent estimate for \(\sigma^2 \) provided that \(\sigma^2 < \infty \).

4. Some Remarks. The functional \(\theta \) has many special cases that stem from studying the ARE's of various rank tests. Two examples of the two-sample problem are given here to illustrate the usefulness of the estimate \(\hat{\theta} \) obtained in (1.3). Let \(F \) and \(G \) be two univariate df's. First, consider testing \(H_0: F = G \) vs \(H_1: G(x) = F(x - \nu) \), where \(\nu \neq 0 \) is a location shift parameter. The ARE of the test using the celebrated Chernoff-Savage statistic \(T_N \) (see, e.g., Puri and Sen (1971), pp. 93-100) with respect to the t-test, when \(F \) is arbitrary and has finite variance \(\sigma^2 \), is given by (Puri and Sen (1971), p. 117)

\[e_{T_N,t} = \sigma^2 \left[\int J'(F(x)) f^2(x) dx \right]^2 / A^2. \]

where

\[A^2 = \int_0^1 J^2(x) dx - \left[\int_0^1 J(x) dx \right]^2. \]

Note that the dominant term in (4.1) is a special case of \(\theta \) with \(\phi(x) = 1 \) and \(\psi = J' \). A special case of the Chernoff-Savage statistic is the Mann-Whitney-Wilcoxon statistic for which the ARE with respect to the t-test becomes
REFERENCES

