PREDICTION INTERVALS WITH THE DIRICHLET PRIOR

by

Gregory Campbell and Myles Hollander

FSU Statistics Report M422
AFOSR-N-76-3109 Technical Report No. 4
AFOSR-74-2581B Technical Report No. 72

June, 1977
Department of Statistics
The Florida State University
Tallahassee, Florida 32306

Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under Grants AFOSR-74-2581B and AFOSR-76-3109. The United States Government is authorized to reproduce and distribute reprints for governmental purposes.
Gregory Campbell is Assistant Professor, Department of Statistics,
Purdue University, West Lafayette, IN 47907. Myles Hollander is
Professor, Department of Statistics, Florida State University,
Tallahassee, FL 32306. The research was sponsored by the Air Force
Office of Scientific Research, AFSC, USAF, under Grants AFSOR-74-2581E
and AFSOR-76-3109.
Prediction Intervals with the Dirichlet Prior

by

Gregory Campbell and Myles Hollander

Let X_1, \ldots, X_n and Y_1, \ldots, Y_N be consecutive samples from a Dirichlet process on $(\mathbb{R}, \mathcal{B})$ (the real line \mathbb{R} with the Borel σ-field \mathcal{B}) with parameter α. Typically, prediction intervals employ the previous observations X_1, \ldots, X_n in order to predict a specified function of the future sample Y_1, \ldots, Y_N. Here one- and two-sided prediction intervals for at least k of N future observations are developed for the situation in which, in addition to the previous sample, there is prior information available. The information is specified via the parameter α of the Dirichlet process.

Key words: Prediction intervals; Dirichlet process; Bayesian nonparametric methods; Coverage property.

1. INTRODUCTION

Let X_1, \ldots, X_n be a random sample of size n from a distribution function F. Let Y_1, \ldots, Y_N be a second random sample of size N from the same distribution function F and let $g(Y_1, \ldots, Y_N)$ be some function of these random variables. Then, if $L_1(X_1, \ldots, X_n)$ and $L_2(X_1, \ldots, X_n)$ are statistics based on the initial sample, $[L_1, L_2]$ is said to be a 100γ percent prediction interval for $g(Y_1, \ldots, Y_N)$ if

$$\Pr(L_1(X_1, \ldots, X_n) \leq g(Y_1, \ldots, Y_N) \leq L_2(X_1, \ldots, X_n)) = \gamma.$$

*Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under Grants AFOSR-74-2581B and AFOSR-76-3109. The United States Government is authorized to reproduce and distribute reprints for governmental purposes.
Parametric prediction intervals have been considered by many authors, including Proschan (1953), Chew (1966), Hahn (1969, 1970a, 1970b, 1972). Wilks (1942, 1962) introduced nonparametric prediction intervals for the case in which F is an unknown continuous distribution function and one is interested in intervals to contain at least k of N future observations. Fligner and Wolfe (1976) have approached nonparametric prediction intervals via a sample analogue to the probability integral transformation and to a coverage property (see Section 4). In particular, they have reviewed the results of Wilks, developed additional prediction intervals, and generalized prediction intervals to the case of an unknown discontinuous distribution function. A Bayesian approach to prediction intervals is presented in Guttman (1970).

This paper combines nonparametric and Bayesian approaches to develop intervals which allow the use of both prior information and the data of the initial sample, without requiring strong parametric assumptions. Our Bayesian nonparametric prediction intervals are derived using Ferguson's (1973) Dirichlet process prior on the space of distribution functions. The Dirichlet process is introduced in Section 2. Section 3 presents the construction of one-sided Bayesian nonparametric prediction intervals for at least k of N future observations. The possibility of a coverage property for a sample from a Dirichlet process is investigated in Section 4. Section 4 also contains some useful results concerning the distribution of the order statistics from a Dirichlet sample. The two-sided prediction interval problem with prior information in the form of a Dirichlet process prior is solved in Section 5. The final section contains an example which illustrates the procedure of constructing Bayesian nonparametric prediction intervals, and discusses the implementation of such prediction intervals.
2. PRELIMINARIES

Let Z_1, \ldots, Z_k be independent gamma random variables with shape parameters $\alpha_i \geq 0$ and scale parameter 1, $i=1, \ldots, k$. Define $Y_i = Z_i / \sum_{j=1}^{k} Z_j$. If $\sum_{i=1}^{k} \alpha_i > 0$, then (Y_1, \ldots, Y_k) is said to have a Dirichlet distribution with parameter $(\alpha_1, \ldots, \alpha_k)$. If all the α_i are strictly positive, the distribution of (Y_1, \ldots, Y_{k-1}) is absolutely continuous with density

$$f(y_1, \ldots, y_{k-1}) = \frac{\Gamma(\alpha_1 + \cdots + \alpha_k) \prod_{i=1}^{k-1} \Gamma(Y_i) \Gamma(1 - \sum_{i=1}^{k-1} Y_i)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k) \Gamma(1 - \sum_{i=1}^{k-1} Y_i)},$$

where S denotes the simplex $y_i \geq 0$ for $i=1, \ldots, k-1$ and $\sum_{i=1}^{k-1} Y_i \leq 1$. The Dirichlet distribution is also called the multi-beta, in that for $k=2$, it reduces to the beta distribution.

The following expression for the r_1, \ldots, r_{k-1} moment of the distribution of (Y_1, \ldots, Y_k), for $\ell \leq k$ and r_i a nonnegative integer, will be useful in the sequel:

$$E(Y_1^{r_1} \cdots Y_{\ell-1}^{r_{\ell-1}} Y_{\ell+1}^{r_{\ell+1}} \cdots Y_k^{r_k}) = \frac{\Gamma(\alpha_1 + \cdots + \alpha_k) \prod_{i=1}^{\ell} \Gamma(r_i) \Gamma(\alpha_{\ell+1} + \cdots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k) \Gamma(\alpha_{\ell+1} + \cdots + \alpha_k)},$$

(2.1)

where $\alpha = \sum_{i=1}^{k} \alpha_i$ and $r = \sum_{j=1}^{\ell} r_j$. (For a proof of this result and a more complete treatment of the Dirichlet distribution see Wilks (1962). For further background on the Dirichlet distribution and its generalizations, see, for example, Connor and Nosimann (1969) and Good (1965).) Let $y^{[k]}$ denote the ascending factorial $y(y-1) \cdots (y-k+1)$ with $y^{[0]} = 1$. Then the right-hand side of (2.1) can be rewritten as $\alpha_1^{r_1} \cdots \alpha_{\ell}^{r_{\ell}} / \alpha^{r_{\ell-1}}$.

The Dirichlet process on the real line can now be defined. Let α be a nonnegative measure on the real line \mathbb{R} with Borel σ-field \mathcal{B}. Then P is a Dirichlet process on $(\mathbb{R}, \mathcal{B})$ with parameter α if, for every $m=1, 2, \ldots$, and every
measurable partition B_1, \ldots, B_m of \mathbb{R}, $(P(B_1), \ldots, P(B_m))$ has a Dirichlet distribution with parameter $(\alpha(B_1), \ldots, \alpha(B_m))$. This process gives rise to a probability on the set of distribution functions, as shown in the landmark paper of Ferguson (1973). By a sample from the process, it will be understood that a distribution function F is chosen by this probability and then a random sample obtained from F. (See Ferguson (1973) and Berk and Savage (1977) for a more rigorous mathematical treatment.) The tractability of Ferguson's approach lies in part in the following result (Theorem 1 of Ferguson, 1973). The posterior distribution of the Dirichlet process P with parameter α, given a sample X_1, \ldots, X_r from P, is again a Dirichlet process with as a parameter the updated measure $\alpha + \sum_{i=1}^{r} \delta_{X_i}$, where δ_z is the measure which concentrates all its mass at the point z.

For the purposes of this paper, F is taken to be a random distribution function from Ferguson's Dirichlet process prior. Given F, the first sample X_1, \ldots, X_n is a random sample from F. The second sample Y_1, \ldots, Y_N is then a sample from the conditional Dirichlet process, given X_1, \ldots, X_n. One wishes to predict a specified function of the second sample. In particular, several prediction intervals are obtained to contain at least q of the N future observations.

3. ONE-SIDED PREDICTION INTERVALS WITH THE DIRICHLET PRIOR

In this section 100γ percent prediction intervals of the form (x, ∞) are found for at least q of N future observations. Let

\[R(x) = P(x < \text{at least } q \text{ of the } N \text{ } Y's < \infty). \] \hspace{1cm} (3.1)

Note that $R(x)$ is decreasing in x. The problem is to find x_0 such that $R(x_0) = \gamma$, for then (x_0, ∞) is the desired interval.
Unlike the nonparametric prediction intervals of Wilks (1942, 1962) and Fligner and Wolfe (1976), it is possible, using the Dirichlet process prior, to form prediction intervals for the case of no initial sample of X's (i.e., n=0). Call this problem the "no data" problem. This problem is first solved and then extended in a natural way to obtain the solution of the "data" problem (n > 0).

For fixed x, let \(I_x, J_x, \) and \(K_x \) denote the random variables for the number of Y's that are less than, equal to, and greater than x, respectively. In the "no data" problem, \(Y_1, \ldots, Y_N \) is merely a sample from a Dirichlet process with parameter \(\alpha \). For notational convenience, the subscript x for I, J, and K is suppressed.

Theorem 1: For \(Y_1, \ldots, Y_N \) a sample from a Dirichlet process with parameter \(\alpha \),

\[
Pr((I,J,K) = (i,j,k)) = \frac{\binom{N}{i,j,k} \alpha(-\infty,x)^{[i]} \alpha([x))^{[j]} \alpha((x,\infty)^{[k]}}{\alpha(N)^{[N]}}. \tag{3.2}
\]

Proof: For distribution function F given, a multinomial argument yields

\[
Pr((I,J,K) = (i,j,k)|F) = \binom{N}{i,j,k} F(x^-)^{i} F(x) F(x^-)^{-i} [1-F(x)]^{-j} [1-F(x)]^{k} \tag{3.3}
\]

Integration of both sides of (3.3) with respect to the probability \(Q_\alpha \) on the set of distribution function gives

\[
Pr((I,J,K) = (i,j,k)) = \binom{N}{i,j,k} \int F(x^-)^{i} [F(x^-)^{i} F(x) F(x^-)^{-i}]^{-j} [1-F(x)]^{-k} dQ_{\alpha}(F).
\]

Then, by definition of the Dirichlet process, \((F(x^-), F(x) - F(x^-), 1-F(x))\) has a Dirichlet distribution. Application of the \(i,j,k \)th moment of this Dirichlet distribution yields the right-hand-side of (3.2), completing the proof.||

The random variables \((I_1, \ldots, I_k) \) are said to have a Dirichlet compound multinomial distribution (see Johnson and Kotz, 1969, p. 309) with parameters \(N, \alpha_1, \ldots, \alpha_k \) if, for non-negative integers \(i_1, \ldots, i_k \) such that \(\sum_{j=1}^{k} i_j = N, \)
\[\Pr(I_1 = i_1, \ldots, I_k = i_k) = \frac{N!}{\prod_{j=1}^{k} i_j^N} \prod_{j=1}^{k} \frac{\alpha_{i_j}}{\sum_{j=1}^{N} i_j} \cdot \]

The Dirichlet compound multinomial results (as the name indicates) by placing a Dirichlet distribution on the parameters of a multinomial distribution.

It is clear that the distribution of \((I, J, K)\), given by (3.2), is Dirichlet compound multinomial with parameters \(N, \alpha(-\infty, x), \alpha((x), \alpha(x, \infty))\).

The one-sided prediction interval problem is find \(x_0\) such that \(R(x_0) = \gamma\). This equation can be rewritten as

\[\sum_{k=q}^{N} \Pr(\text{exactly } k \text{ of the } N \text{ future } Y \text{ observations } > x_0) = \gamma. \]

Now, for the 'no data' problem,

\[\Pr(\text{exactly } k \text{ of } N \text{ future observations } > x) = P(K=k). \]

Since the distribution of \((I, J, K)\) is Dirichlet compound multinomial, the distribution of \(K\) has what is called a beta compound binomial distribution or a Pólya-Eggenberger distribution (see Johnson and Kotz, 1969, p. 229).

It follows that

\[\Pr(K=k) = \binom{N}{k} \alpha(-\infty, x)^{N-k} \alpha(x, \infty)^{k} / \alpha(R)^{N}. \]

Therefore, the solution is sought for the following equation in \(x\):

\[\sum_{k=q}^{N} \binom{N}{k} \alpha(-\infty, x)^{N-k} \alpha(x, \infty)^{k} / \alpha(R)^{N} = \gamma. \quad (3.4) \]

The monotonicity of \(R(x)\) from the definition ensures that, for \(0 < \gamma < 1\), there is either a solution \(x_0\) to equation (3.4) or there exists an \(x_1\) such that \(R(x_1) < \gamma \leq R(x_1^\ast)\). If the Dirichlet parameter \(\alpha\) is a nonatomic measure, so that \(\alpha(-\infty, t)\) is a continuous function in \(t\), then the left-hand-side of (3.4) is continuous. Further, since \(R(x)\) ranges from 1 to 0, in such a case a solution exists (it may not be unique). In the second case, if \(R(x_1) < \gamma \leq
R(x₁⁻), the interval [x₁,∞) is a prediction interval for at least q of N future observations with prediction coefficient at least γ.

The solution to the prediction interval "data" problem is now considered. Thus, suppose that an initial sample X₁,...,Xₙ is observed from a Dirichlet process. The development for the data problem is immediate in that the Dirichlet process with parameter α is merely replaced by the Dirichlet process with updated parameter α' = α + ∑ᵢ=1ⁿ δₓᵢ and one proceeds as in the "no data" problem. Thus, (I,J,K) given (X₁,...,Xₙ) has a Dirichlet compound multinomial distribution with parameters N,α'(−∞,x),α'((x)),α'(x,∞). The prediction interval is obtained upon the solution of

\[\sum_{k=q}^{N} \binom{N}{k} \alpha'(−∞,x)^{[N-k]} \alpha'(x,∞)^{[k]} / a'(N)^{[N]} = γ. \] (3.5)

Here, α' is not nonatomic so either a solution x₀ exists or there exists an x₁ such that [x₁,∞) is a prediction interval for at least q of N future observations with prediction coefficient at least γ.

There are two special cases of note. When q=N, one obtains the one-sided upper prediction interval for all N future observations; when q=1, the interval is the one-sided upper prediction interval for the largest of N future observations.

4. INVESTIGATION OF THE COVERAGE PROPERTY FOR A DIRICHLET SAMPLE

The coverage property for a continuous distribution function F₀ with Y₁,...,Yₙ a random sample from F₀ is as follows:

Coverage Property: If Y₁ ≤...≤ Yₙ denote the order statistics of the sample Y₁,...,Yₙ from F₀, then, for integers p and q such that 0 ≤ p < q ≤ N+1, the distribution of F₀(Yₚ) - F₀(Yₙ) has the same distribution as F₀(Yₚ) with, by convention F₀(Y₀) = 0 and F₀(Yₙ) = 1.
Fligner and Wolfe (1976) have extended the coverage property from the case of a continuous distribution function to that of the empirical distribution function F_n from the initial sample X_1, \ldots, X_n, also from F_0. In particular, they prove that the distribution of $F_n(Y_{(q)}) - F_n(Y_{(p)})$ has the same distribution as $F_n(Y_{(q-p)})$.

A question of interest is whether the coverage property holds for Y_1, \ldots, Y_n a sample from a Dirichlet process with parameter α. In particular, is it true that $\{\alpha(-\infty, Y_{(q)})/\alpha(R)\} - \{\alpha(-\infty, Y_{(p)})/\alpha(P)\}$ has the same distribution as $\alpha(-\infty, Y_{(q-p)})/\alpha(R)$? If the coverage property were to hold, it would aid in constructing two-sided prediction intervals directly from one-sided intervals in that if $(Y_{(q-p)}, \infty)$ were a one-sided 100γ percent prediction interval, then $(Y_{(p)}, Y_{(q)})$ would also be a 100γ percent prediction interval for fixed integers p and q with $0 \leq p < q \leq N+1$. In that event, one could employ the techniques derived in the preceding section.

However, the coverage property does not hold for samples from a Dirichlet process. It suffices to demonstrate this for the case $N = 2$, $p = 1$, and $q = 2$ by comparison of the mean of $\alpha(-\infty, Y_{(2)}) - \alpha(-\infty, Y_{(1)}) = \alpha(Y_{(1)}, Y_{(2)})$ and the mean of $\alpha(-\infty, Y_{(1)})$. If the coverage property were true, then, in particular, $E\alpha(-\infty, Y_{(1)}) = E\alpha(Y_{(1)}, Y_{(2)})$ or, equivalently,

$$2E\alpha(-\infty, Y_{(1)}) = E\alpha(-\infty, Y_{(2)}). \quad (4.1)$$

Theorem 2 below, which gives the distribution of the rth order statistic of a sample of size from a Dirichlet process, will be used to show that equality (4.1) does not hold. Since the Dirichlet process places all its mass on discrete distribution functions (see, for example, Ferguson (1973), Blackwell (1973), and Berk and Savage (1977)), there can be ties in the samples from Dirichlet processes. Nonetheless, one can order the random
variables from a sample of size n from a Dirichlet process and derive the distribution of the order statistics.

Theorem 2: For $1 \leq r \leq n$, the distribution F_r of the r^{th} order statistic of a sample of size n from a Dirichlet process with parameter α is given by

$$F_r(x) = \sum_{i=r}^{n} \binom{n}{i} \alpha(-\infty,x][i] \alpha(x,\infty)[n-i] / \alpha(n).$$ \hspace{1cm} (4.2)

Proof: Suppose F is a known distribution function with X_1,\ldots,X_n the random sample from F. Then the distribution of $X_{(r)}$, the r^{th} order statistic is:

$$\Pr(X_{(r)} \leq x | F) = \sum_{i=r}^{n} \binom{n}{i} F(x)^i(1-F(x))^{n-i}.$$ \hspace{1cm} (4.3)

If, in fact, F is a random distribution function from a Dirichlet process, then by definition, for x fixed, $F(x)$ has a beta distribution with parameters $\alpha(-\infty,x]$ and $\alpha(x,\infty)$. Then integrating both sides of (4.3) over F, one obtains

$$F_r(x) = \Pr(X_{(r)} \leq x) = \sum_{i=r}^{n} \binom{n}{i} \int F(x)^i(1-F(x))^{n-i} d\alpha(F).$$

$$= \sum_{i=r}^{n} \binom{n}{i} \alpha(-\infty,x][i] \alpha(x,\infty)[n-i] / \alpha(n).$$

The final line above follows by the moments of the beta (Dirichlet) distribution. \hspace{1cm} ||

It is a simple matter to also derive the joint distribution of the r^{th} and s^{th} order statistics ($r < s$).

Theorem 3: If X_1,\ldots,X_n is a sample of size n from a Dirichlet process with parameter α, the joint distribution of the r^{th} order statistic $X_{(r)}$ and the s^{th} order statistic $X_{(s)}$, for $1 \leq r < s \leq n$, is given by
\[F_{r,s}(x,y) = \sum_{i=r}^{n} \sum_{j=\max(0,s-i)}^{n-i} \left[\begin{array}{c} n \\ i,j,n-i-j \end{array} \right] a(\alpha(x)[i] \alpha(x,y)[j] \\
\cdot a(y,\alpha)[n-i-j] / a(R)[n]. \quad (x<y) \]

Proof: Given the distribution function \(F \), the joint distribution of \(X_r \) and \(X_s \) is, for \(x < y \):

\[
\Pr(X_r \leq x, X_s \leq y) = \sum_{i=r}^{n} \sum_{j=\max(0,s-i)}^{n-i} \left[\begin{array}{c} n \\ i,j,n-i-j \end{array} \right] F(x)^i [F(y) - F(x)]^j [1 - F(y)]^{n-i-j}. \tag{4.5}
\]

Integrating both sides of (4.5) with respect to \(F \), using the definition of the Dirichlet process for the partition \((-\infty,x],(x,y],(y,\alpha)\), and employing the moments of the Dirichlet distribution completes the proof. ||

By an application of Theorem 2, the distributions, of the first and second order statistics, for the case \(N=2 \), are

\[
F_1(x) = \{(2\alpha(-\alpha,x] \alpha(x,\alpha)) + \alpha(-\alpha,x][2]\}/\alpha(R)[2],
\]

\[
F_2(x) = \alpha(-\alpha,x][2]/\alpha(R)[2].
\]

It suffices to consider the special case of \(\alpha(-\alpha,x] = x \) for \(x \in [0,1] \) with \(\alpha([0,1]) = 1 \) and \(\alpha(R - [0,1]) = 0 \). Then,

\[
\text{Ea}(\alpha(-\alpha,X_1)) = E(X_1) = \int_0^1 xdf_1(x)
\]

\[
= \int_0^1 (1 - F_1(x))dx = \int_0^1 \{1 - x(1-x) - \frac{1}{2}(x+1)\}dx = 5/12.
\]

In a similar fashion,

\[
\text{Ea}(\alpha(-\alpha,X_2)) = E(X_2) = \int_0^1 xdf_2(x)
\]

\[
= \int_0^1 (1 - F_2(x))dx = \int_0^1 \{1 - \frac{1}{2}(x+1)\}dx = 7/12.
\]
Thus equation (4.1) does not hold for this special case. Therefore, the
coverage property is not valid for a sample from a Dirichlet process.

5. TWO-SIDED PREDICTION INTERVALS WITH THE DIRICHLET PRIOR

The problem of generating two-sided 100\(\gamma\) percent prediction inter-
vals of the form \((x, y)\), for \(x < y\), to contain at least \(\alpha\) of \(N\) future ob-
servations from a Dirichlet process, requires more notational development.
Let \(I, J, K, L, M\) (all dependent on \(x\) and/or \(y\) with the notational
dependences suppressed) be random variables for the number of \(Y_1, \ldots, Y_N\)
that are less than \(x\), equal to \(x\), between \(x\) and \(y\), equal to \(y\), and greater
than \(y\), respectively. (Note that \(I, J, K\) have been redefined and should
not be confused with their use in Section 3.)

Theorem 4: If \(X_1, \ldots, X_n\) is a sample from a Dirichlet process \(P\) (say) with
parameter \(\alpha\) and \(Y_1, \ldots, Y_N\) is a second sample from the conditional process
\(P\) given \(X_1, \ldots, X_n\), then for \(x\) and \(y\) with \(x < y\),

\[
\Pr\{(I, J, K, L, M) = (i, j, k, \ell, m) | X_1, \ldots, X_n\} = \left\{ \frac{N}{i,j,k,\ell,m} \right\} \alpha'(-\infty, x][i] \alpha'((x]) [j] \alpha'(x, y][k] \alpha'(y]) [\ell] \\
\cdot \alpha'(y, \infty)[m]/\alpha'(R)^N \right\}, \tag{5.1}
\]

where \(\alpha' = \alpha + \sum_{i=1}^n \delta_{X_i}\)

Proof: The conditional probability distribution of \((I, J, K, L, M)\) given
\(X_1, \ldots, X_n\) and \(F\) is obtained by a multinomial argument. Integration over \(F\)
and application of the mean of the Dirichlet distribution for \((F(x^-),
F(x) - F(x^-), F(y^-) - F(x), F(y) - F(y^-), 1 - F(y))\) yields (5.1).

The distribution of \((I, J, K, L, M)\) given \(X_1, \ldots, X_n\) is Dirichlet compound
multinomial with parameters \(N, \alpha'(-\infty, x), \alpha'((x)), \alpha'(x, y) \alpha'(y), \alpha'(y, \infty)\).
Note that if \(n = 0 \) and \(x = y \) so that \(K = 0 \) and \(J \) and \(L \) are combined, Theorem 1 is obtained as a special case.

For \(x < y \), define
\[
R(x,y) = \Pr \{ \text{at least } q \text{ of the } Y's \text{ are in the interval } (x,y) \} \\
= \sum_{p=q}^{N} \Pr \{ \text{exactly } p \text{ of the } Y's \text{ are in the interval } (x,y) \}.
\]

Note that for \(x \) fixed, \(R(x,y) \) is increasing in \(y \) and that, for \(y \) fixed \(R(x,y) \) is decreasing in \(x \). The prediction interval problem is to find \((x_0, y_0) \) such that \(R(x_0, y_0) = \gamma \). However, from Theorem 4 and the fact that the marginals of the Dirichlet compound multinomial are beta compound binomial, \(K \) has a beta compound binomial with parameters \(N, \alpha'(x,y), \alpha'(R-(x,y)) \). Thus,
\[
R(x,y) = \sum_{p=q}^{N} \Pr \{ K = p \} = \sum_{p=q}^{N} \binom{N}{p} \alpha'(x,y)^{[p]} \alpha'(R-(x,y))^{[N-p]} / \alpha'(R)^{[N]}.
\]

A trial-by-error solution to find \((x_0, y_0) \) such that \(R(x_0, y_0) = \gamma \) is one way of proceeding. The solution (if it exists) need not be unique and in fact an uncountably infinite number of pairs is possible. Note that as \(x \) or \(y \) is shifted, \(\alpha'(x,y) \) may change, so that a computer in many cases is an invaluable aid in the determination of such prediction intervals for even small values of \(n \) and \(N \).

It is clear that one could easily construct prediction intervals of the form \([x, y]\), or \((x, y]\) instead of \((x, y)\). For example, for the interval \([x, y]\), one employs the fact that \(J + K + L \) has a beta compound binomial distribution with parameters \(N, \alpha'[x,y], \alpha'(R-[x,y]) \) and proceeds as above.

In the event that \(\alpha(R) \) is small, there may be no solution to \(R(x,y) = \gamma \). In that case, one could find \(x_1 \) and \(y_1 \) such that \(R(x_1, y_1) < \gamma \leq R(x_1^+, y_1^+) \). Then \([x_1, y_1]\) is a prediction interval for at least \(q \) of \(N \) future observations with prediction coefficient at least \(\gamma \).
6. AN EXAMPLE

In this section, two-sided non-Bayesian nonparametric and Bayesian nonparametric (Dirichlet) prediction intervals for at least \(q \) of \(N \) future observations are illustrated using a numerical example originally introduced by Hahn (1970a). He gives the following data, on failure times (in months) of a new type of machine, recorded for five prototypes: 51.4, 49.5, 48.7, 49.3, 51.6. To illustrate our procedure we suppose that there is prior evidence (from past experience relating to a similar machine) which suggests that the underlying life distribution can be approximated by a normal distribution with a mean of 50 and a standard deviation of 1.25. Thus, to apply the two-sided Bayesian nonparametric prediction interval introduced in Section 5, we will set \(\{a(-\infty, x]/a(R)\} = \phi((x-50)/1.25) \) where \(\phi(\cdot) \) is the standard normal cumulative distribution function. We must also specify a value for \(a(R) \). This specification hinges on the degree of confidence or belief that one invests in this choice for the measure \(a \). For this case, suppose we set \(a(R) = 5 \). Roughly speaking, this corresponds to a prior sample size of 5 observations. Since \(n \) also equals 5 here, the prior and the initial sample of size 5 are equally weighted in their contribution to the prediction interval. Rather than to construct the different prediction intervals (which may not be unique) for a fixed prediction coefficient, for simplification we let the prediction intervals \((X_{(1)}, X_{(5)}) \) and \([X_{(1)}, X_{(5)}] \) be chosen and the prediction coefficients computed. (Note that any order statistics could have been chosen for the sake of comparison of Dirichlet and nonparametric prediction intervals, but that unlike the Dirichlet intervals, the nonparametric ones demand that only order statistics of the initial sample serve as endpoints.)
Consider the two-sided prediction interval for a single future observation \((N = 1)\). The non-Bayesian nonparametric prediction coefficient for the interval \((X_{(1)}, X_{(5)}) = (48.7, 51.6)\) based on the \(n = 5\) initial observations is as follows [see Wilks (1942) or Danziger and Davis (1964) for details]:

\[
\Pr\{\text{exactly } N_0 \text{ of } N \text{ future observations fall in } (X_{(1)}, X_{(n)})\} = \frac{n(n-1)(N-N_0+1)^{N_0}(N_0+n-2)!}{N_0!(N+n)!}.
\]

(6.1)

Substituting into (6.1) with \(n = 5\) and \(N = N_0 = 1\) yields the value 2/3 for the prediction coefficient. Contrast this with the Dirichlet prediction coefficient, for the same interval, as given by (5.2):

\[
R(X_{(1)}, X_{(5)}) = \frac{1}{\Gamma} \alpha'(X_{(1)}, X_{(5)})^{[1]}/\alpha'(R)^{[1]}
\]

\[= \{5(.7505+3)/10 = .675.\]

However, if the interval is expanded to include the endpoints, the nonparametric prediction coefficient does not change, but the discreteness of the Dirichlet process causes an increase in the Dirichlet coefficient to \(\{\alpha'[X_{(1)}, X_{(5)}]/\alpha'(R)\} = \{5(.7505+5)/10 = .875.\)

To illustrate the crucial nature of the choice of \(\alpha(R)\), suppose \(\alpha(R) = 20\). Then the Dirichlet prediction coefficient of \((48.7, 51.6)\) is \((20(.7505+3)/25 = .720.\) The limit as \(\alpha(R)\) tends to infinity can also be easily computed. As \(\alpha(R)\) increases, greater confidence is placed on the prior at the expense of the initial sample. In this case that is reflected by the result that in the limit the prediction coefficient for \((48.7, 51.6)\) (and also for \([48.7, 51.6]\)) is .7505. This value is of course \(\Pr(48.7 < X < 51.6)\), where \(X\) is normal with mean 50 and standard deviation 1.25.

Note that the nonparametric and Dirichlet prediction coefficients also do not agree as \(\alpha(R)\) tends to zero (corresponding to less and less confidence in the prior). In our example, the nonparametric coefficient for \((48.7, 51.6)\) remains 2/3, whereas the Dirichlet coefficient approaches .6 as \(\alpha(R)\) tends to zero.
REFERENCES

Let X_1, \ldots, X_n and Y_1, \ldots, Y_N be consecutive samples from a Dirichlet process on (R, \mathcal{B}) (the real line R with the Borel σ-field \mathcal{B}) with parameter α. Typically, prediction intervals employ the previous observations X_1, \ldots, X_n in order to predict a specified function of the future sample Y_1, \ldots, Y_N. Here one- and two-sided prediction intervals for at least k of N future observations are developed for the situation in which, in addition to the previous sample, there is prior information available. The information is specified via the parameter α of the Dirichlet process.