ON TWO METHODS OF DISTANCE SAMPLING

by

R. Johnson and N. A. Langberg

FSU Statistics Report M450

January, 1978
The Florida State University
Department of Statistics
Tallahassee, Florida 32306

Key Words: strong consistency, asymptotic normality.
ON TWO METHODS OF DISTANCE SAMPLING

by

R. Johnson and N. A. Langberg

ABSTRACT

We consider the estimation of the number of individuals in a unit area for phenomena where individuals are spread in a region.

Two methods of distance sampling are studied, estimators and their optimal properties are presented and a comparison between the two methods is conducted.
1. **Introduction and Summary.**

Trees in a forest, stars in a galaxy, and bacteria on a petri dish, are a few examples of a natural spread of individuals in a region, (say R). In the pursuit of a better understanding of these phenomena, attempts were made to use probabilistic and statistical tools.

We start with a short representation of a probabilistic model, useful in analyzing some aspects of the phenomena.

Let \(\{X(A)\}_{A \in \Sigma} \) be a stochastic process, where \(R \) is a Euclidian space, \(\Sigma \) the collection of Borel sets of finite Lebesgue measure (say \(\lambda \)) and \(X(A) \) the number of individuals in the set \(A \), \((A \in \Sigma) \).

On the stochastic process we impose the following two conditions:

The distribution of \(X(A) \) varies only with \(\lambda(A) \).

\[
(1.1)
\]

For every \(m \) disjoint sets in \(\Sigma \), \(A_1, A_2, \ldots, A_m \), the associated random variables \(X(A_1), \ldots, X(A_m) \) are independent.

\[
(1.2)
\]

Conditions (1.1) and (1.2) insure (1.3).

The processes \(\{Y_p(t)\}_{t>0} \) and \(\{\sum_{i=1}^{N(t)} Z_i\}_{t>0} \) are equivalent.

\[
(1.3)
\]

[Where \(Y_p(t) \) is the number of individuals in a sphere of Lebesgue measure \(t \) and arbitrary fixed center \(P \), \(\{N(t)\}_{t>0} \) is a Poisson process with parameter \(\mu \), \(\{Z_i\}_{i=1, 2, \ldots, n \ldots} \) is a i.i.d. sequence of random variables, independent of \(\{N(t)\}_{t>0} \), with values in \(\{1, 2, 3, \ldots, n \ldots\} \).]

Two distributions frequently used for \(X(A) \), \((A \in \Sigma) \), are the Poisson, where \(Z_1 \equiv 1 \) [Eberhardt (1967), Pollard (1971)]. and the Negative Binomial, where

\[
P(Z_1 = k) = \frac{-\theta^k}{k \cdot \ln(1 - \theta)} \quad k = 1, 2, \ldots, n \ldots, \quad 0 < \theta < 1. \quad \text{[Patil and Stiteler}
(1974).] We conclude by noting that (1.1) and (1.2) suffice to determine uniquely the process \(\{X(A), A \in \mathcal{L}\} \), in terms of \(\{Y_p(t)\}_{t \geq 0} \).

For inference purposes statisticians use two sampling methods: (a) Plot sampling, where disjoint regions are randomly selected and the number of individuals in each region is counted. [Pielow (1969). Patil and Stiteler (1974).] (b) Distance sampling, where distances between individuals or between points and individuals are measured. [Eberhardt (1967), Pielow (1969), Pollard (1971).]

Our objective is to estimate the average number of individuals in a region of Lebesgue measure one. Formally, by Wold identity and (1.3), our parameter of interest is \(\mu \in \mathbb{E} \mathcal{Z}_1 \), (say \(\theta \)). Naturally we assume that
\[
0 < \mathbb{E} X(A) < \infty \text{ for every } A \in \mathcal{L}.
\] (1.4)

We propose two different schemes, both in the category of distance sampling.

In scheme A we measure distances from a fixed point \(P_A \) to the \(n \) nearest clusters and count the number of individuals in each of the \(n \) clusters. In scheme B we measure distances from a fixed point \(P_B \), to enough successive clusters, stopping when for the first time we reach a total of at least \(L \) individuals. We again count the number of individuals in each cluster.

In Sections 2 and 3, we suggest estimators for \(\theta \), based on the two schemes respectively and present some of their optimal properties.

Section 4 is devoted to a comparison between the two schemes.
2. The analysis of scheme A.

The information collected in sampling scheme A contains two parts: n continuous random variables, \(W_1 < W_2 \ldots < W_n \), where \(W_i \) is the Lebesgue measure of the sphere determined by the center \(P_A \) and distance to the ith nearest cluster, \(i = 1, 2, \ldots, n \) and \(n \) independent discrete random variables, \(K_1, K_2, \ldots, K_n \), where \(K_i \) is the number of individuals in cluster \(i \), \(i = 1, 2, \ldots, n \).

From (1.3) we derive the following three conclusions:

The random vectors \((W_1, W_2, \ldots, W_n)\) and \((K_1, K_2, \ldots, K_n)\) are independent. \((2.1) \)

\(W_1, W_2 - W_1, \ldots, W_n - W_{n-1} \) are i.i.d. exponential random variables with mean \(1/\mu \). \((2.2) \)

The random vectors \((K_1, K_2, \ldots, K_n)\) and \((Z_1, Z_2, \ldots, Z_n)\) are identically distributed. \((2.3) \)

We start by estimating \(\theta \). We do so by estimating \(\mu \) by \(\hat{\mu}_n \) and \(\mu Z \) (say \(m \)) by \(\hat{m}_n \) and then use their product (say \(\hat{\theta}_n \)) to estimate \(\theta \).

Let

\[
\hat{\mu}_n = n/W_n, \quad \hat{m}_n = \frac{1}{n} \sum_{i=1}^{n} K_i/n \quad \text{and} \quad \hat{\theta}_n = \hat{\mu}_n \cdot \hat{m}_n. \]

\((2.4) \)

The Kolmogorov strong law of large numbers, (2.2) and (2.3), imply the strong consistency of \(\hat{\mu}_n, \hat{m}_n \) and \(\hat{\theta}_n \). In addition \(\hat{m}_n \) is unbiased and \(\hat{\mu}_n \) is asymptotically (when \(n \to \infty \)) unbiased. For the sample \((W_1, W_2, \ldots, W_n)\), \(\hat{\mu}_n \) is sufficient and a maximum likelihood estimator of \(\mu \). Since no additional information on the distribution of \(Z_1 \) is available, \(\hat{m}_n \) is the "best" we can do. Our next objective is to prove the asymptotic normality of \(\hat{\theta}_n \).
To obtain the asymptotic normality of $\hat{\theta}_n$, we apply classical central limit theory and (2.2) to $\sqrt{n}(\hat{\theta}_n - \theta)$ and then use the transformation $1/x$ to get that $\sqrt{n}(\hat{\mu}_n - \mu)$ converges in law when $n \to \infty$ to a centered normal random variable with variance μ^2.

To show the asymptotic normality of $\hat{\theta}_n$, we add the obvious assumption that Z_1 is a nondegenerate random variable. Since for every natural number k

$$\lim_{h \to 0} \frac{1}{h} \mathbb{P}(Y \Phi_h = k) = \mu \mathbb{P}(Z_1 = k),$$

we add condition (2.5).

For at least one natural k

$$0 < \lim_{h \to 0} \frac{1}{h} \mathbb{P}(Y \Phi_h = k) < 1. \tag{2.5}$$

Since $(\hat{\theta}_n - \theta)\sqrt{n} = m(\hat{\mu}_n - \mu) + \mu(\hat{\theta}_n - m) + A_n$ [where $A_n = \sqrt{n}(\hat{\mu}_n - \mu)(\hat{m}_n - m)$] and $A_n \xrightarrow{P} 0$, when $n \to \infty$, it suffices to consider the asymptotic behavior of $m(\hat{\mu}_n - \mu) + \mu(\hat{m}_n - m)$. Statement (2.1) insures the validity of (2.6).

If (2.5) is satisfied, then $\sqrt{n}(\hat{\theta}_n - \theta)$ converges in law to a centered normal random variable with variance $m^2\mu^2 + \mu^2 \sigma^2$. [where $\sigma^2 = \text{Var}(Z_1)$.]
3. The analysis of scheme B.

Let $R(L)$ be the stopping rule associated with scheme B. From (1.3) it follows that $R(L)$ equals

$$
\min \left\{ k \mid \sum_{i=1}^{k} Z_i \geq L \right\}.
$$

(3.1)

The information collected under scheme B consists of $R(L)$ continuous random variables, $W_1 < W_2 \ldots < W_{R(L)}$, [where W_i is the Lebesgue measure of a sphere centered at P_B and determined by the distance to the ith nearest cluster, $i = 1, 2, \ldots, R(L)$] and $R(L)$ discrete random variables, $K_1, K_2, \ldots, K_{R(L)}$, [where K_i is the number of individuals in the ith cluster, $i = 1, 2, \ldots, R(L)$.]

From (1.3) we derive the following three conclusions:

(3.2)

$$
(W_1, W_2, \ldots, W_{R(L)}) \mid R(L) \text{ and } (K_1, K_2, \ldots, K_{R(L)}) \mid R(L) \text{ are independent.}
$$

(3.3)

$W_1, W_2 - W_1, \ldots, W_{R(L)} - W_{R(L)-1}$, are i.i.d. exponential random variables with mean $1/\mu$.

$$
(K_1, K_2, \ldots, K_{R(L)}, R(L)) \text{ and } (Z_1, Z_2, \ldots, Z_{R(L)}, R(L)) \text{ are identically distributed.}
$$

(3.4)

Let

$$
\hat{\mu}_L = R(L)/W_{R(L)}, \quad \hat{m}_L = \frac{R(L)}{\sum_{i=1}^{R(L)} K_i} \quad \text{and} \quad \hat{\theta}_L = \hat{\mu}_L \cdot \hat{m}_L
$$

(3.5)

be the respective estimators of μ, m and θ ($\theta = EZ_1$).

We claim that if, for some positive number δ, $EZ_1^{2+\delta} < \infty$, then the estimators defined in (3.5) are strongly consistent.

We show first that (3.6), (3.7), and (3.8) hold.

$$
\lim_{L \to \infty} \frac{K_{R(L)}}{L} = 0 \text{ (a.s.)}.
$$

(3.6)
\[
\lim_{L \to \infty} \frac{R(L)}{L} = 1 \quad \text{(a.s.)}.
\]

(3.7)

\[
\lim_{L \to \infty} \frac{R(L)}{L} = 1/m \quad \text{(a.s.)}.
\]

(3.8)

Since \(\sum_{K=1}^{\infty} \frac{1}{L^{1+\delta}} \) is finite, (3.6) is a corollary of (3.9) (with \(\beta = 1 \)).

\[
P(K_{R(L)} \geq L^{\beta} \epsilon) \leq \frac{1}{L} \sum_{k=1}^{L} P(Z_k \geq L^{\beta} \epsilon) \leq \frac{EZ^{2+\delta}/(\epsilon^{2+\delta}L^{2+\delta} \beta - 1)}{L^{2+\delta} \beta - 1}, \quad (\epsilon > 0).
\]

(3.9)

Statement (3.7) is a consequence of (3.6) and (3.10).

\[
R(L) \leq \sum_{i=1}^{L} K_i \leq L + K_{R(L)} - 1.
\]

(3.10)

Let \(\frac{R(L_n)}{L_n} \) converge to \(a \) for some sample point \(\omega \) and for \(\{L_n\} \) a subsequence of the natural numbers. Clearly \(0 \leq a \leq 1 \), since \(0 \leq \frac{R(L)}{L} \leq 1 \). For \(n \) sufficiently large, \(\frac{1}{n} \sum_{i=1}^{n} Z_i(w) \leq \frac{1}{n} \sum_{i=1}^{n} Z_i(w) \leq \frac{1}{n} \sum_{i=1}^{n} Z_i(w) \). [Where \([u] \) is the greatest integer less than or equal to \(u \) and \(\epsilon > 0 \).] By the strong law of large numbers and (3.7) we conclude that \(a = 1/m \). Hence (3.8) holds.

The consistency of \(\hat{n}_L \) follows from (3.7) and (3.8).

We observe that by (3.8), for almost every sample point,

\[
\left[\frac{L}{m} (1 - \epsilon) \right] \sum_{j=1}^{L} (W_j - W_{j-1}) \leq W_{R(L)} \leq \left[\frac{L}{m} (1 - \epsilon) \right] \sum_{j=1}^{L} (W_j - W_{j-1}), \quad (\epsilon > 0, W_0 = 0).
\]

Consequently, the consistency of \(\hat{n}_L \) follows from (3.3), (3.8) and the strong law of large numbers.

We summarize the results in Theorem 3.1.
Theorem 3.1. If, for some positive number δ, $E Z_1^{2+\delta} < \infty$, then $\hat{\mu}_L$, \hat{m}_L and $\hat{\theta}_L$ are strongly consistent estimators of μ, m and θ, respectively.

We note that for the sample $(W_1, W_2, \ldots, W_{R(L)})|_{R(L)}$, \hat{u}_L is sufficient and a maximum likelihood estimator of μ.

Our next objective is to establish the asymptotic normality of $\hat{\theta}_L$.

From (3.10) we get that $0 \leq \sqrt{L}(\hat{m}_L - m) - \sqrt{L}(\frac{L}{R(L)} - m) \leq \frac{K}{\sqrt{L}} \frac{L}{R(L)} - \frac{1}{\sqrt{R(L)}} \frac{L}{R(L)}$.

Consequently, by (3.8) and (3.9) (with $\beta = \frac{1}{2}$) we conclude that

$$\sqrt{L}(\hat{m}_L - m) - \sqrt{L}(\frac{L}{R(L)} - m) \xrightarrow{D} 0, \text{ when } L \to \infty. \quad (3.11)$$

Let u be a real number and $A(L) = [L/(\frac{\mu}{\sqrt{L}} + m)]$. Then $P(\sqrt{L}(\frac{L}{R(L)} - m) < u) = P(R(L) > A(L)) = P(\sum_{i=1}^{L} Z_i < L)$. Since $\lim_{L \to \infty} \frac{L - mA(L)}{\sqrt{A(L)}} = \frac{u}{\sqrt{m}}$, Lemma 3.2 follows from the central limit theorem.

Lemma 3.2. If, for some positive number δ, $E Z_1^{2+\delta} < \infty$ and (2.5) is satisfied, then $\sqrt{L}(\hat{m}_L - m)$ and $\sqrt{L}(\frac{L}{R(L)} - m)$ converge in law when $L \to \infty$ to a centered normal random variable with variance σ^2, $(\sigma^2 = \text{Var}(Z_1))$.

From the Berry and Esseen bound, [Loève (1963), pp. 288.] it follows that for every natural number k, that $\sup_{u} |P((-\frac{k}{k} - \mu)^{-1} \mu \sqrt{R} \leq u) - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt| \leq \frac{C}{\sqrt{k}}$.

[Where S_k is the sum of k i.i.d. exponential random variables with mean $1/\mu$ and C a positive constant.] By (3.2) and (3.3) $P(\alpha \sqrt{R(L)}(\hat{m}_L - \mu) + \beta \sqrt{R(L)}(\hat{m}_L - m) \leq u) = \sum_{j=1}^{\infty} P(R(L) = j) \int_{-\infty}^{\infty} P(\alpha \sqrt{\frac{S_j}{j}} - \mu \leq u - \beta \sigma \sqrt{R(L)}(\hat{m}_L - m) \leq w) \bigg|_{R(L) = j}$. [Where S_j is defined above.] Since $\lim_{L \to \infty} \frac{1}{\sqrt{R(L)}} = 0$, [By the dominated convergence theorem]
Theorem and (3.8).] it follows from the Berry and Esseen bound that

\[\lim_{L \to \infty} \text{Pr}(\hat{\boldsymbol{\theta}}_L - \mu - 1) + \beta \sqrt{\text{Var}(\hat{\mu}_L)} \leq u) = \lim_{L \to \infty} \text{Pr}(\alpha \hat{Z}_L + \beta \sqrt{\text{Var}(\hat{\mu}_L)} \leq u). \]

[Where \(Z \) is a standard normal random variable independent of \(\hat{\mu}_L \).]

We proved the following:

Lemma 3.3. If, for some positive \(\delta \), \(EZ_1^{2+\delta} < \infty \) and (2.5) is satisfied, then

\[\sqrt{L}(\hat{\mu}_L - \mu) \Rightarrow \text{normal random vector with variances } \frac{m}{\mu^2} \text{ and } \frac{m \sigma^2}{\mu^2}, \]

respectively, and independent components, \(\sigma^2 = \text{Var}(Z_1) \).

In order to establish the asymptotic normality of \(\hat{\theta}_L \), it suffices to consider the asymptotic behavior of \(m \sqrt{L}(\hat{\mu}_L - \mu) + \mu \sqrt{L}(\hat{m}_L - m) \). [see Section 2.]

By applying the transformation \(m \sqrt{x + \mu y} \) and making use of Lemma 3.3, the asymptotic normality of \(m \sqrt{L}(\hat{\mu}_L - \mu) + \mu \sqrt{L}(\hat{m}_L - m) \) follows. We summarize the results in

Theorem 3.4. If, for some positive \(\delta \), \(EZ_1^{2+\delta} < \infty \) and (2.5) is satisfied, then

\[\sqrt{L}(\hat{\mu}_L - \mu), \sqrt{L}(\hat{m}_L - m) \text{ and } \sqrt{L}(\hat{\theta}_L - \theta) \text{ converge in law when } L \to \infty \text{ to centered normal random variables, with respective variances } \frac{m}{\mu^2}, \frac{m \sigma^2}{\mu^2} \text{ and } \frac{m^2 \sigma^2 (m^2 + \sigma^2)}, \]

\[\sigma^2 = \text{Var}(Z_1). \]
4. **Comparisons between the two schemes.**

In this section we compare the two methods based on the size of their asymptotic variances and the cost to perform them.

Let us assume that scheme A was used and that the total number of sampled individuals was L_n.

$$L_n = \sum_{i=1}^{n} Z_i.$$ \hspace{1cm} (4.1)

Since L_n/\sqrt{n} converges with probability one to m, $(m = EZ_1)$, when $n \to \infty$, the asymptotic results presented in Section 2 can be restated as follows.

$$\sqrt{L_n} (\hat{\mu}_n - \mu), \sqrt{L_n} (\hat{\sigma}_n - \sigma)$$

and $\sqrt{L_n} (\hat{\theta}_n - \theta)$ converge in law to centered normal random variables with respective variances μ^2, σ^2 and $\mu^2(\sigma^2 + m^2)$. \hspace{1cm} (4.2)

Hence, the asymptotic variances of (4.2) are equal, respectively, to those presented in Theorem (3.4) for scheme B with $L = L_n$.

The same argument applies when scheme B is used. The results of Theorem 3.4 can be restated in the following form.

$$\sqrt{R(L)} (\hat{\mu}_L - \mu), \sqrt{R(L)} (\hat{\sigma}_L - \sigma)$$

and $\sqrt{R(L)} (\hat{\theta}_L - \theta)$ converge in law to centered normal random variables with respective variances μ^2, σ^2 and $\mu^2(\sigma^2 + m^2)$. \hspace{1cm} (4.3)

[see (3.8).] The asymptotic variances of (4.3) are respectively equal to those of scheme A with $n = R(L)$.

Conclusion 4.1. Based on asymptotic variance comparisons the two methods are equivalent.

Let us assume that c and d are the respective costs of sampling a cluster and an individual and that the average number of clusters in scheme B is equal to n.

$$ER(L) = n.$$ \hspace{1cm} (4.4)
The average cost of performing scheme A is

\[(c + dm)n.\] \hspace{1cm} (4.5)

For scheme B the average cost is

\[cER(L) + dmER(L).\] \hspace{1cm} (4.6)

Hence, under (4.4) the costs of the two schemes are equal.

Conclusion 4.2. Based on cost comparison the two schemes are equivalent.

We note that in the Poisson model, where \(Z_1 \equiv 1\), the two schemes coincide.

Conclusion 4.1. remains valid if we equate \(L\) of scheme B to the average number of individuals in scheme A (\(nm\)).

The choice between scheme A and scheme B is a matter of practical convenience. If one's major desire is to control the number of clusters to be counted, then scheme A will be preferred. If the major desire is to control the total number of individuals to be counted, then scheme B will be used.
REFERENCES

