A NEW APPROACH TO INFERENCE FROM ACCELERATED LIFE TESTS

by

Frank Proschan*
The Florida State University, Tallahassee, Florida

and

Nozer D. Singpurwalla**
The George Washington University, Washington, D.C.
and
Stanford University, Palo Alto, California

FSU Statistics Report No. M480
AFOSR Technical Report No. 78-7

October, 1978
The Florida State University
Department of Statistics
Tallahassee, Florida 32306

Research supported by:

*Grant AFOSR-78-3678, Air Force Office of Scientific Research.

**Contract N00014-77-C-0263 Project NR 042-372 Office of Naval Research
and Army Research Office Grant DAAG29-77-G-0031.
ABSTRACT

In a recent paper, Proschan and Singpurwalla (1978) have proposed a new approach for making inferences from accelerated life tests. Their approach is significantly different from those that have been considered in the past, and is motivated by what is actually done in practice. A priori information which is generally available to the engineer is incorporated under their approach by adopting a Bayesian point of view. The usual assumptions about the failure distributions and the acceleration functions, which are appealing from a statistical point of view, have been sacrificed to achieve greater reality.

In this paper, we apply this new approach to some real life data arising from an accelerated life test. In the process, we explain our new approach in a manner which makes it easy to understand and apply by the reliability practitioner.
1. Introduction.

In practice, long life items are subjected to larger than normal stresses in order to obtain failure data in a short amount of test time. Such tests are called accelerated or overstress life tests, and the goal is to make inferences about the life distribution of the items at the normal stress levels using failure data from accelerated tests.

The current approach to this problem involves making assumptions about the distribution of failure times, and about the functional relationship between the parameters of the failure distribution and the applied stress. Such a relationship is known as an acceleration function or a time transformation function; examples of these are, the Power Law, the Arrhenius Law, the Eyring Law, etc. Another assumption commonly made states that at all stress levels, the failure times are governed by distributions which are members of the same parametric family, such as an exponential or a Weibull. These assumptions, though appealing from a statistical point of view, may be unreasonable in many practical situations. Of particular concern is the last assumption. The different stress levels may have different effects on the "failure mechanisms", and thus from an engineering point of view, it may be more realistic to allow for different forms of the failure distribution at the different stress levels.

In a recent paper, Proschan and Singpurwalla (1978) (hereafter referred as PS(1978)) have proposed a new approach for making inferences from accelerated life tests which requires neither distributional assumptions nor the specification of a time transformation function. Rather, their approach is Bayesian, and is motivated by procedures actually used
in practice by reliability engineers. The Bayesian point of view enables a user to incorporate some \textit{a priori} information which is available in accelerated life tests.

In Section 2 we shall review the \textit{pragmatic Bayesian} approach to accelerated life testing by PS(1978), and present it in a manner which makes it easy to understand. In Section 3 we shall demonstrate the usefulness of this approach by applying it to some real life data on accelerated life tests presented in Nelson (1970).

Our objective in writing this paper is to make this new approach to accelerated life testing accessible to the reliability engineer, and to demonstrate its usefulness by applying it to a realistic situation.
2. A Pragmatic Bayesian Approach to Accelerated Life Testing.

We shall denote the k accelerated stresses (environments) by E_1, E_2, \ldots, E_k, and the normal or use conditions stress (environment) by E_u. Let

$$E_1 > E_2 > \ldots > E_k > E_u,$$

where $E_i > E_j$ denotes the fact that E_i is more severe than E_j.

Let F_j be the failure distribution of the items tested under environment E_j, and let $\lambda_j(x)$ denote the failure rate of F_j at time point $x \geq 0$.

Because of condition (2.1) it is logical from a physical point of view to assume that for any $x \geq 0$,

$$\lambda_1(x) \geq \lambda_2(x) \geq \ldots \geq \lambda_k(x) \geq \lambda_u(x).$$

(2.2)

Using failure data obtained under E_1, E_2, \ldots, E_k, we would like to obtain $\hat{\lambda}_j(x)$, an estimate of $\lambda_j(x)$, $j = 1, 2, \ldots, k$, such that for some $0 \leq L < \infty$, and all $x \in [0, 1]$,

$$\hat{\lambda}_1(x) \overset{st}{\geq} \hat{\lambda}_2(x) \overset{st}{\geq} \ldots \overset{st}{\geq} \hat{\lambda}_k(x).$$

(2.3)

The notation $X \overset{st}{\geq} Y$ denotes the fact that X is stochastically larger than Y; that is

$$P[X \geq x] \geq P[Y \geq x] \text{ for all } x.$$

In order to obtain estimators $\hat{\lambda}_j(x)$, $j = 1, 2, \ldots, k$, which satisfy (2.3), we shall use a Bayesian approach. Under this approach, condition
(2.2) is incorporated as a prior assumption. However, we shall first define the "average failure rate" and discuss its Bayesian estimation unconstrained by (2.2).

2.1. A Bayesian Estimation of the Average Failure Rate.

Let $N_j(t)$ be the number of items undergoing life test at time t under environment E_j. Divide the time interval $[0, L]$ into sub-intervals of length $h > 0$, where h is chosen to make L a multiple of h. Thus, the total number of sub-intervals is L/h.

For convenience, we shall introduce the following notation:

$t_i = \text{the time point } (i-1)h, \ i = 1, 2, \ldots, (L/h)$.

$[t_i, t_i + h) = \text{the } i^{th} \text{ time interval}$

$N_{j,i} = \text{the number of items exposed to the environment } E_j \text{ at time } t_i$

$\lambda_{j,i} = \text{the failure rate of } F_j \text{ at } t_i$

$x_{j,i} = \text{the number of failures in the } i^{th} \text{ time interval under environment } E_j$

$p_{j,i} = \text{the probability of failure of a unit in the } i^{th} \text{ time interval under environment } E_j$.

Let

$$p_{j,i}^\# = \frac{p_{j,i}}{1 - \sum_{\ell=1}^{\infty} p_{j,\ell}} ;$$

then $p_{j,i}^\#$ is the conditional probability that an item which has survived to time t_i will fail by time $t_i + h$. We can also
interpret $p_{j,i}^*$ as the **average failure rate** over the interval $[t_i, t_i + h]$.

If we assume that there are no withdrawals, removals, or censoring, then

$$N_{j,i+1} = N_{j,i} - x_{j,i}, \quad i = 1, 2, \ldots, (L/h).$$

Our Bayesian analysis involves assigning prior distributions to the average failure rates. Suppose that the $p_{j,i}^*$, $i = 1, 2, \ldots, (L/h)$, are a priori independent beta random variables with prior parameters α and β_j, so that their marginal densities are

$$f(p_{j,i}^*) = \frac{\Gamma(\alpha + \beta_j)}{\Gamma(\alpha)\Gamma(\beta_j)} (p_{j,i}^*)^{\alpha-1}(1 - p_{j,i}^*)^{\beta_j-1}.$$

Then, given the $N_{j,i}$'s and the $x_{j,i}$'s, the posterior density of

$$(p_{j,1}^*, p_{j,2}^*, \ldots, p_{j(L/h)}^*)$$

is [cf. PS(1978)]

$$f(p_{j,1}^*, p_{j,2}^*, \ldots, p_{j(L/h)}^*) \propto \frac{\Gamma(\alpha + \beta_j + N_{j,i})}{\Gamma(\alpha + x_{j,i})\Gamma(\beta_j + N_{j,i} - x_{j,i})} (p_{j,i}^*)^{\alpha+x_{j,i}}(1 - p_{j,i}^*)^{\beta_j+N_{j,i}-x_{j,i}}. \quad (2.4).$$

2.2. A Bayesian Estimation of the Ordered Average Failure Rates.

In the Bayesian context, condition (2.2) leads us to the requirement that for every fixed value of i, $p_{j-1,i}^* \geq p_{j,i}^*$ for $j = 2, 3, \ldots, k$.

Thus, the prior distributions of $p_{j-1,i}^*$ and $p_{j,i}^*$ will have to be chosen so as to ensure that

$$P[p_{j-1,i}^* \geq p] \geq P[p_{j,i}^* \geq p] \text{ for all } p, 0 \leq p \leq 1. \quad (2.5)$$
One way of achieving the above condition is to require [see PS(1978), Appendix A] that
\[\beta_j \geq \beta_{j-1} \quad \text{for } j = 2, 3, \ldots, k. \]

To be assured that Condition (2.5) is also satisfied with respect to the posterior distributions of \(p_{j-1,i}^* \) and \(p_j^* \), it is sufficient that for every fixed value of \(i \),
\[x_{j,i} \leq x_{j-1,i} \]
and
\[\beta_j + N_{j,i} - x_{j,i} \geq \beta_{j-1} + N_{j-1,i} - x_{j-1,i} \quad (2.6) \]
for \(j = 2, 3, \ldots, k. \)

The first part of condition (2.6) states that the number of failures in the interval \([t_i, t_i + h]\) under environment \(E_j \) must not be greater than the number of failures in the same interval under environment \(E_{j-1} \), for all values of \(j \). Furthermore, as is discussed in PS(1978), a reasonable strategy is to have more items initially on test under the more severe environment \(E_{j-1} \) than under the environment \(E_j \), so that \(N_{j,1} < N_{j-1,1} \) for all \(j \).

Since \(N_{j,1} = N_{j,1-1} - x_{j,1-1} \), the second part of condition (2.6) can be written as
\[\beta_{j-1} + N_{j-1,i+1} \leq \beta_j + N_{j,i+1} \quad \text{for } j = 2, 3, \ldots, k. \]
Thus for every fixed value of \(i \), the number surviving at the start of the \((i + 1)\text{st}\) interval plus the prior parameter \(\beta_{j-1} \) for the environment \(E_{j-1} \) must be not greater than the corresponding sum for the environment \(E_j \).

Since the number of failures in a particular interval is a function of the severity of the environment and the number on test, and since \(\beta_{j-1} \leq \beta_j \), a reasonable strategy is to choose \(\beta_{j-1} < \beta_j \).

Thus, the prior parameters \(\beta_{j-1} \) and \(\beta_j \) are indicative of the relative severity of the environmental conditions \(E_{j-1} \) and \(E_j \). Because of condition (2.1):

\[
\beta_1 < \beta_2 < \ldots < \beta_k,
\]

with the values of the \(\beta_j \)'s being indicative of the severity of the \(E_j \)'s.

If the prior parameters \(\beta_j \), the failure data \(x_{j,i} \), and the \(N_{j,i} \) are such that condition (2.6) is satisfied for every fixed value of \(i \), then the stochastic ordering condition (2.5) will be automatically satisfied with respect to the posterior distribution of \(\pi_j^1, \ldots, \pi_j^{(L/h)} \). If this is not the case, then we shall "pool" the adjacent violators using the pooling procedure described below; the purpose is to eliminate violations of (2.6).

2.3. The Pooling of Adjacent Violators.

The procedure for pooling adjacent violators described here is commonly used in isotonic regression; see Barlow, Bartholomew, Brenner and Brunk (1972).
Consider the time interval \([(i-1)h, ih)\); by Condition (2.6) we require

\[x_{1,i} \geq x_{2,i} \geq \ldots \geq x_{j-1,i} \geq x_{j,i} \geq \ldots \geq x_{k,i} \]

and

\[\beta_{1} + N_{1,i} - x_{1,i} \leq \beta_{2} + N_{2,i} - x_{2,i} \leq \ldots \leq \beta_{j-1} + N_{j-1,i} - x_{j-1,i} \leq \beta_{j} + N_{j,i} - x_{j,i} \leq \ldots \leq \beta_{k} + N_{k,i} - x_{k,i}. \]

If a reversal occurs, that is, if either

\[x_{j-1,i} < x_{j,i} \]

or if

\[\beta_{j-1} + N_{j-1,i} - x_{j-1,i} > \beta_{j} + N_{j,i} - x_{j,i}, \]

then we pool the violators and replace them as shown below.

Replace both \(x_{j-1,i}\) and \(x_{j,i}\) by \(\frac{1}{2}(x_{j-1,i} + x_{j,i})\) and

and \(\beta_{j-1} + N_{j-1,i} - x_{j-1,i}\) and \(\beta_{j} + N_{j,i} - x_{j,i}\) by

\[\frac{1}{2}(\beta_{j-1} + \beta_{j} + N_{j-1,i} + N_{j,i} - x_{j-1,i} - x_{j,i}). \]

We now test the new sequences to see if they are properly ordered. If not, we replace the adjacent violators by their appropriate averages. Thus if

\[\frac{1}{2}(x_{j-1,i} + x_{j,i}) = \frac{1}{2}(x_{j-1,i} + x_{j,i}) < x_{j+1,i}, \]

then we replace each of the three by the average

\[\frac{1}{3}(x_{j-1,i} + x_{j,i} + x_{j+1,i}). \]

The same procedure is used for the \((\beta_{j} + N_{j,i} - x_{j,i})'s.\)
We follow the above procedure for all time intervals and continue until all reversals are eliminated. Note that excessive pooling will occur if the relationship (2.2) does not actually hold, or if the environmental conditions are too similar to each other.

Assuming a squared error loss, before pooling, the Bayes estimator of \(p_{j,i}^* \) is [see (2.7)]

\[
\hat{p}_{j,i}^* = \frac{\alpha + x_{j,i}}{\alpha + \beta_j + N_j,i}.
\]

If we have done some pooling, then the \(x_{j,i} \)'s and the \((\beta_j + N_j,i) \)'s are replaced by their appropriate pooled averages.

2.4. A Model for Extrapolation to Use Conditions Stress.

We shall use the \(\hat{p}_{j,i}^* \)'s to estimate \(p_{u,1}^*, p_{u,2}^*, \ldots, p_{u,(L/h)}^* \), the average failure rates under the use conditions environment \(E_u \).

In the absence of any physical or engineering knowledge about the relationship between the average failure rate and the corresponding stress, we shall postulate the following simple but reasonable relationship among the average failure rates.

For each value of \(i, i = 1, 2, \ldots, (L/h) \),

\[
p_{k,i}^* = w_0 + w_1 p_{k-1,i}^* + \cdots + w_{k-1} p_{1,i}^*.
\]

where \(w_0, w_1, \ldots, w_{k-1} \) are unknown constants.

The above relationship states that the average failure rate over a particular time interval under the environment \(E_k \) is a weighted sum of the average failure rates over the same time interval under the environments \(E_{k-1}, E_{k-2}, \ldots, E_1 \).
Let \(\hat{w}_0, \hat{w}_1, \ldots, \hat{w}_{k-1} \) be the least-squares estimators of \(w_0, w_1, \ldots, w_{k-1} \); these can be obtained routinely from Equation (2.8), but with \(\hat{p} \) in place of \(p \) throughout. Thus for \(i = 1, 2, \ldots, (L/h) \), we have

\[
\hat{p}_{u,i} = \hat{w}_0 + \hat{w}_1 \hat{p}_{k,i} + \cdots + \hat{w}_{k-1} \hat{p}_{2,i} (2.9)
\]

as the estimators of the average failure rate under \(E_u \). As a consequence, we also have

\[
\hat{p}_{u,(L/h)+1} = 1 - \sum_{i=1}^{(L/h)} \hat{p}_{u,i}.
\]

An estimator of \(\hat{F}_u(t) \), the probability of an item surviving to time \(t \) under \(E_u \), the use conditions stress, is

\[
\hat{F}_u(t) = \prod_{i=1}^{t/h} (1 - \hat{p}_{u,i}),
\]

where the \(\hat{p}_{u,i} \) are given by (2.9).
3. An Illustrative Real Life Example.

In this section we shall apply the methodology discussed in the previous section to some accelerated life test data given by Nelson (1970). These data represent the times to breakdown of an insulating fluid subjected to elevated voltage stress levels. For convenience, we shall consider here only 4 accelerated voltage levels – 36, 34, 32, and 30 kilovolts (KV's). The failure times (in minutes) under the various stress levels are given in Table 1. Nelson's original data correspond to 7 different stress levels, but some of these contain very few failure times and are therefore omitted.

We shall assume that the use conditions stress is 28 KV, and apply our approach to estimate the failure distribution of the breakdown times at this stress.

Following the notation of Section 2, we shall choose \(L \) to be 100 minutes, making the total number of time intervals equal to 100. For our prior parameters we shall, following the discussion in Sections (2.1) and (2.2), choose \(\alpha = 1 \), with \(\beta_1 = 1 \), \(\beta_2 = 2 \), \(\beta_3 = 7 \), and \(\beta_4 = 12 \). The above choice of our prior parameters \(\beta_1, \beta_2, \beta_3, \) and \(\beta_4 \) is motivated by an inspection of the failure times in Table 1. Observe that even though the stress levels decrease successively by only 2 KV's, the corresponding change in the failure times from one stress level to the next lower appears to be more drastic. This may be due to a change in the failure mechanism as we go to the lower stresses. Note that \(N_1 = 15, N_2 = 19, N_3 = 15 \), and \(N_4 = 11 \).

After computing the \(x_{j,i} \)'s and the \((\beta_j + N_{j,i} - x_{j,i})'s\) for
using Equation (2.7). These values are given in Table 2, wherein, for convenience, we have limited ourselves to time intervals of width 5. Observe that the pooling scheme ensures that for each time interval the

the \(\hat{p}_{j,i}^* \) 's decrease with increasing stress level. For example, \(\hat{p}_{1,20}^* = 0.3335 \), \(\hat{p}_{2,20}^* = 0.1250 \), and \(\hat{p}_{3,20}^* = 0.0714 \), and \(\hat{p}_{4,20}^* = ? ? ? \).

Our next step is to use the entries in Table 2 to obtain estimates of the \(w \)'s given in Equation (2.8). If we designate the 30 KV level as the level \(k(=4) \) of Equation (2.8), and the 32, 34, and the 36 KV levels as \(k - 1, k - 2, \) and \(k - 3 \), respectively, then, the least squares estimation of the \(w \)'s gives us for \(i = 1, 2, \ldots, 100, \)

\[
\hat{p}_{4,i}^* = 0.2360 + 0.1886 \hat{p}_{3,i}^* + 0.1358 \hat{p}_{2,i}^* + 0.09857 \hat{p}_{1,i}^*.
\]

We shall now use the following equation to estimate \(\hat{p}_{u,i}^* \), \(i = 1, 2, \ldots, 100, \)

where \(u(=5) \) denotes the use condition stress level of 28 KV:

\[
\hat{p}_{5,i}^* = 0.2360 + 0.1886 \hat{p}_{4,i}^* + 0.1358 \hat{p}_{3,i}^* + 0.09857 \hat{p}_{2,i}^*.
\]

An estimate of the survival probability at use conditions voltage of 28 KV is given by

\[
\hat{F}(t) = \prod_{i=1}^{t} (1 - \hat{p}_{5,i}^*).
\]

The values of \(\hat{F}_u(t) \), \(t = 5, 10, \ldots, 100 \), are given in Table 3, and plotted in Figure 1.
Figure 1. Graph of $\frac{t}{t_r}$ at the 26 K level.

Survival Probability
Table 1. Times to Breakdown of an Insulating Fluid (in Minutes) Under Various Values of the Stress (in Kilovolts).

<table>
<thead>
<tr>
<th>Stress</th>
<th>36 KV</th>
<th>34 KV</th>
<th>32 KV</th>
<th>30 KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>0.19</td>
<td>0.27</td>
<td></td>
<td>7.74</td>
</tr>
<tr>
<td>0.59</td>
<td>0.78</td>
<td>0.40</td>
<td></td>
<td>17.05</td>
</tr>
<tr>
<td>0.96</td>
<td>0.96</td>
<td>0.69</td>
<td></td>
<td>20.46</td>
</tr>
<tr>
<td>0.99</td>
<td>1.31</td>
<td>0.79</td>
<td></td>
<td>21.02</td>
</tr>
<tr>
<td>1.69</td>
<td>2.78</td>
<td>2.75</td>
<td></td>
<td>22.66</td>
</tr>
<tr>
<td>1.97</td>
<td>3.16</td>
<td>3.91</td>
<td></td>
<td>43.40</td>
</tr>
<tr>
<td>2.07</td>
<td>4.15</td>
<td>9.88</td>
<td></td>
<td>47.30</td>
</tr>
<tr>
<td>2.58</td>
<td>4.67</td>
<td>13.95</td>
<td></td>
<td>139.07</td>
</tr>
<tr>
<td>2.71</td>
<td>4.85</td>
<td>15.93</td>
<td></td>
<td>144.12</td>
</tr>
<tr>
<td>2.90</td>
<td>6.50</td>
<td>27.80</td>
<td></td>
<td>175.88</td>
</tr>
<tr>
<td>3.67</td>
<td>7.35</td>
<td>53.24</td>
<td></td>
<td>194.90</td>
</tr>
<tr>
<td>3.99</td>
<td>8.01</td>
<td>82.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.35</td>
<td>8.27</td>
<td>89.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.77</td>
<td>12.06</td>
<td>100.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.50</td>
<td>31.75</td>
<td>215.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Estimated Values $\hat{p}_{j, i}^*$ of the Average Failure Rates Under Various Values of the Stress (in Kilovolts)

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>36 KV</th>
<th>34 KV</th>
<th>32 KV</th>
<th>30 KV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.3046</td>
<td>.1724</td>
<td>.0588</td>
<td>.0417</td>
</tr>
<tr>
<td>10</td>
<td>.3077</td>
<td>.1429</td>
<td>.0816</td>
<td>.0435</td>
</tr>
<tr>
<td>15</td>
<td>.3333</td>
<td>.1250</td>
<td>.0667</td>
<td>.0435</td>
</tr>
<tr>
<td>20</td>
<td>.3333</td>
<td>.1250</td>
<td>.0714</td>
<td>.0454</td>
</tr>
<tr>
<td>25</td>
<td>.3333</td>
<td>.1250</td>
<td>.0714</td>
<td>.0526</td>
</tr>
<tr>
<td>30</td>
<td>.5000</td>
<td>.1250</td>
<td>.0769</td>
<td>.0526</td>
</tr>
<tr>
<td>35</td>
<td>.5000</td>
<td>.2000</td>
<td>.0769</td>
<td>.0526</td>
</tr>
<tr>
<td>40</td>
<td>.5000</td>
<td>.2500</td>
<td>.0769</td>
<td>.0526</td>
</tr>
<tr>
<td>45</td>
<td>.5000</td>
<td>.2500</td>
<td>.0769</td>
<td>.0526</td>
</tr>
<tr>
<td>50</td>
<td>.5000</td>
<td>.2500</td>
<td>.0769</td>
<td>.0526</td>
</tr>
<tr>
<td>55</td>
<td>.5000</td>
<td>.2500</td>
<td>.0769</td>
<td>.0588</td>
</tr>
<tr>
<td>60</td>
<td>.5000</td>
<td>.2500</td>
<td>.0833</td>
<td>.0588</td>
</tr>
<tr>
<td>65</td>
<td>.5000</td>
<td>.2500</td>
<td>.0833</td>
<td>.0588</td>
</tr>
<tr>
<td>70</td>
<td>.5000</td>
<td>.2500</td>
<td>.0833</td>
<td>.0588</td>
</tr>
<tr>
<td>75</td>
<td>.5000</td>
<td>.3333</td>
<td>.0833</td>
<td>.0588</td>
</tr>
<tr>
<td>80</td>
<td>.5000</td>
<td>.3333</td>
<td>.0833</td>
<td>.0588</td>
</tr>
<tr>
<td>85</td>
<td>.5000</td>
<td>.3333</td>
<td>.0909</td>
<td>.0588</td>
</tr>
<tr>
<td>90</td>
<td>.5714</td>
<td>.4000</td>
<td>.1290</td>
<td>.0588</td>
</tr>
<tr>
<td>95</td>
<td>.5000</td>
<td>.3333</td>
<td>.1000</td>
<td>.0588</td>
</tr>
<tr>
<td>100</td>
<td>.5000</td>
<td>.3333</td>
<td>.1000</td>
<td>.0588</td>
</tr>
</tbody>
</table>
Table 3. Values of \(\hat{F}(t) \) at the 28 KV level.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\hat{F}(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.803</td>
</tr>
<tr>
<td>10</td>
<td>.650</td>
</tr>
<tr>
<td>15</td>
<td>.525</td>
</tr>
<tr>
<td>20</td>
<td>.424</td>
</tr>
<tr>
<td>25</td>
<td>.343</td>
</tr>
<tr>
<td>30</td>
<td>.277</td>
</tr>
<tr>
<td>35</td>
<td>.222</td>
</tr>
<tr>
<td>40</td>
<td>.177</td>
</tr>
<tr>
<td>45</td>
<td>.141</td>
</tr>
<tr>
<td>50</td>
<td>.112</td>
</tr>
<tr>
<td>55</td>
<td>.090</td>
</tr>
<tr>
<td>60</td>
<td>.071</td>
</tr>
<tr>
<td>65</td>
<td>.057</td>
</tr>
<tr>
<td>70</td>
<td>.045</td>
</tr>
<tr>
<td>75</td>
<td>.036</td>
</tr>
<tr>
<td>80</td>
<td>.028</td>
</tr>
<tr>
<td>85</td>
<td>.022</td>
</tr>
<tr>
<td>90</td>
<td>.017</td>
</tr>
<tr>
<td>95</td>
<td>.014</td>
</tr>
<tr>
<td>100</td>
<td>.011</td>
</tr>
</tbody>
</table>
Figure 1. Graph of $\frac{\delta}{\delta t}$ at the 50% level.
REFERENCES

A NEW APPROACH TO INFERENCE FROM ACCELERATED LIFE TESTS

This paper proposes a new approach for making inferences from accelerated life tests. Their approach is significantly different from those that have been considered in the past, and is motivated by what is actually done in practice. A priori information which is generally available to the engineer is incorporated under their approach by adopting a Bayesian point of view. The usual assumptions about the failure distributions and the acceleration functions, which are appealing from a statistical point of view, have been sacrificed to achieve greater reality.

In this paper, we apply this new approach to some real life data arising from an accelerated life test. In the process, we explain our new approach in a manner which makes it easy to understand and apply by the reliability practitioner.