UNIFIED TREATMENT OF SOME INEQUALITIES AMONG RATIOS OF MEANS

by

Emad El-Neweihi* and Frank Proschan**

University of Illinois at Chicago Circle
and
Florida State University

FSU Statistics Report M524
AFOSR Technical Report No. 78-101

October, 1979
The Florida State University
Department of Statistics
Tallahassee, Florida 32306

AMS Subject Classification (1970). Primary 26A86.

Key Words: Inequality among means, generalized means, majorization, Schur functions, monotonicity.

*Research sponsored by Air Force Office of Scientific Research, AFSC, USAF, under Grant AFOSR-76-3050C.

**Research sponsored by the Air Force Office of Scientific Research, AFSC, USAF, under Grant AFOSR-78-3678.
UNIFIED TREATMENT OF SOME INEQUALITIES
AMONG RATIOS OF MEANS

by

Emad El-Neweihi and Frank Proschan

ABSTRACT

Using majorization and Schur-functions, Marshall, Olkin, and Proschan obtained a result concerning monotonicity of the ratio of means. This note shows that a slight extension of their result provides a unified method for obtaining and extending inequalities between means due to Chan, Goldberg, and Gonek, as well as deriving additional inequalities of the same type.
1. Introduction. Chan, Goldberg, and Gonek [1] show that:

\[
\left[\frac{x^p + y^p}{(1 - x)^p + (1 - y)^p} \right]^{1/p} < \left[\frac{x^q + y^q}{(1 - x)^q + (1 - y)^q} \right]^{1/q},
\]

where \(0 \leq x < y, x + y < 1,\) and \(p < q;\) and

\[
\left[\frac{n \sum_{i=1}^{n} x_i^{-p}}{\sum_{i=1}^{n} (1 - x_i)^{-p}} \right]^{-1/p} \leq \left[\frac{n \sum_{i=1}^{n} x_i^{-q}}{\sum_{i=1}^{n} (1 - x_i)^{-q}} \right]^{-1/q}
\]

where \(0 \leq x_1 \leq 1/2\) and \(p > 0.\) Strict inequality holds in (2) unless \(x_1 = x_2 = \ldots = x_n.\)

Earlier, Marshall, Olkin, and Proschan [2] showed:

\[
\left[\frac{n \sum_{i=1}^{n} \lambda_i a_i^r}{\sum_{i=1}^{n} \lambda_i b_i^r} \right]^{1/r}
\]

is increasing in \(r,\)

where \(a_1 \geq a_2 \geq \ldots \geq a_n > 0, b_1 \geq b_2 \geq \ldots \geq b_n > 0, \frac{b_1}{a_1} \leq \frac{b_2}{a_2} \leq \ldots \leq \frac{b_n}{a_n},\) and \(\lambda_i > 0, i = 1, \ldots, n,\) \(\sum_{i=1}^{n} \lambda_i = 1.\)

Result (3) was obtained using majorization and Schur-functions (for definitions see [2]).

The main purposes of this note are to show that using (3), (a) inequalities (1) and (2) can be proved in a unified way, (b) (1) and (2) can be extended, and (c) additional inequalities of a similar type can be obtained.
2. **Main Results.** Before we state and prove the main results, we present several remarks:

Remark 2.1. It is easy to verify that (3) holds even if certain of the \(a_i \)'s are equal to zero.

Remark 2.2. Careful inspection of the proof of (3) shows that in certain cases the ratio in (3) is strictly increasing in \(r \).

We may now prove:

Theorem 2.3. Let \(0 \leq x < y, \ x + y < 1, \ 0 < \lambda < 1, \) and \(p < q \). Then

\[
\left(\frac{\lambda x^p + (1 - \lambda) y^p}{\lambda (1 - x)^p + (1 - \lambda) (1 - y)^p} \right)^{1/p} < \left(\frac{\lambda x^q + (1 - \lambda) y^q}{\lambda (1 - x)^q + (1 - \lambda) (1 - y)^q} \right)^{1/q}.
\]

Proof. Clearly \((1 - x)x < (1 - y)y \). Let \(a_1 \equiv y, \ a_2 \equiv x, \ b_1 \equiv 1 - x, \) and \(b_2 \equiv 1 - y \). Inequality (4) follows from (3) by Remark 2.2.

Setting \(\lambda = \frac{1}{2} \) in (4) we get (1) as a special case.

The same technique yields an extension of Inequality (2):

Theorem 2.4. Let \(0 \leq x_i \leq \frac{1}{2}, \ i = 1, \ldots, n, \ p > 0, \lambda_i \geq 0, \ i = 1, \ldots, n, \) and \(\sum_{i=1}^{n} \lambda_i = 1 \). Then

\[
\left(\frac{\sum_{i=1}^{n} \lambda_i x_i^{-p}}{\sum_{i=1}^{n} \lambda_i (1 - x_i)^{-p}} \right)^{-1/p} < \left(\frac{\sum_{i=1}^{n} \lambda_i x_i^{-p}}{\sum_{i=1}^{n} \lambda_i (1 - x_i)^{-p}} \right)^{1/p}
\]

unless \(x_1 = x_2 = \ldots = x_n \).
Proof. Let $x^{[1]}_1 \geq x^{[2]}_2 \geq \ldots \geq x^{[n]}_n$ denote the decreasing rearrangement of x_1, \ldots, x_n from now on. Let $a_i = x^{[i]}_i$, $b_i = (1 - x^{[i]}_i)^{-1}$, $i = 1, \ldots, n$. Since $-p < q$ and $(1 - x^{[j]}_i) a_i^{-1} b_i \leq (1 - x^{[j]}_i)^{-1} x^{[i]}_i$ for $i < j$, we have by (3):

$$
\left[\frac{\sum_{i=1}^{n} x_i^{-p}}{\sum_{i=1}^{n} (1 - x_i)^p} \right]^{1/p} \leq \left[\frac{\sum_{i=1}^{n} x_i^q}{\sum_{i=1}^{n} (1 - x_i)^q} \right]^{1/q} \leq \left[\frac{\sum_{i=1}^{n} x_i^q}{\sum_{i=1}^{n} (1 - x_i)^q} \right]^{1/q}
$$

unless $x_1 = x_2 = \ldots = x_n$ (see Remark 2.2). The desired result follows from (6). ||

Note that (2) is a special case of (5) by setting $\lambda_i = \frac{1}{n}$, $i = 1, \ldots, n$.

Finally, Theorem 2.5 below yields an inequality similar to (1) and (2).

This illustrates that majorization and Schur-functions can be used to generate through (3) a host of inequalities similar to (1) and (2).

Theorem 2.5. Let $x_i \geq 0$, $\lambda_i > 0$, $i = 1, \ldots, n$, $\sum_{i=1}^{n} \lambda_i = 1$, and $p < q$.

Then:

$$
\left[\frac{\sum_{i=1}^{n} \lambda_i x_i^p}{\sum_{i=1}^{n} (1 + x_i)^p} \right]^{1/p} \leq \left[\frac{\sum_{i=1}^{n} \lambda_i x_i^q}{\sum_{i=1}^{n} (1 - x_i)^q} \right]^{1/q}
$$

Strict inequality holds in (7) unless $x_1 = x_2 = \ldots = x_n$.

Proof. Let $a_i = x^{[i]}_i$ and $b_i = 1 + x^{[i]}_i$, $i = 1, \ldots, n$. Since $\frac{1 + x}{x}$ is decreasing, we apply (3) to get the desired result. By Remark 2.2, strict inequality holds in (7) unless $x_1 = x_2 = \ldots = x_n$. ||
REFERENCES

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. TITLE (and Subtitle)

UNIFIED TREATMENT OF SOME INEQUALITIES AMONG RATIOS OF MEANS

5. TYPE OF REPORT & PERIOD COVERED

Interim

6. PERFORMING ORG. REPORT NUMBER

FSU No. M524

7. AUTHOR(s)

Emad El-Neweihi
Frank Proschan

8. CONTRACT OR GRANT NUMBER(s)

AFOSR-76-3050C
AFOSR-78-3678

9. PERFORMING ORGANIZATION NAME AND ADDRESS

The Florida State University
Department of Statistics
Tallahassee, Florida 32306

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

61102F

11. CONTROLLING OFFICE NAME AND ADDRESS

Air Force Office of Scientific Research/NW
Bolling Air Force Base, Washington, DC 20332

12. REPORT DATE

October, 1979

13. NUMBER OF PAGES

4

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

15. SECURITY CLASS (of this report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS

Inequality among means, generalized means, majorization, Schur functions, monotonicity.

20. ABSTRACT

Using majorization and Schur-functions, Marshall, Olkin, and Proschan obtained a result concerning monotonicity of the ratio of means. This note shows that a slight extension of their result provides a unified method for obtaining and extending inequalities between means due to Chan, Goldberg, and Gonek, as well as deriving additional inequalities of the same type.