AN INTEGRAL INEQUALITY WITH APPLICATIONS TO ORDER STATISTICS

by

Philip J. Boland and Frank Proschan

FSU Statistics Report No. M681
AFOSR Technical Report 83-169

June, 1984

University College, Dublin
Department of Mathematics
Belfield, Dublin 4, Ireland

and

The Florida State University
Department of Statistics
Tallahassee, Florida 32306

Key Words: Majorization, Convex and Concave functions, Order Statistics

Research sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant (or cooperative agreement) Number AFOSR82-K-0007. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

AMS Subject Classification: 62G30, 62N05
AN INTEGRAL INEQUALITY WITH APPLICATIONS TO ORDER STATISTICS

by

Philip J. Boland and Frank Proschan

ABSTRACT

We say the life distribution function G majorizes the life distribution function F (written \(G \gtrless F \)) if

\[
\int_x^\infty G(t) dt \geq \int_x^\infty F(t) dt \quad \text{for all } x \geq 0
\]

and

\[
\int_0^\infty G(t) dt = \int_0^\infty F(t) dt < +\infty.
\]

An integral inequality is proved giving sufficient conditions on functions \(\psi \) and \(\phi \) in order to ensure that whenever \(G_i \gtrless F_i \) for \(i=1,\ldots,n \), then

\[
\int_0^\infty \psi(t) \phi(G_1(t),\ldots,G_n(t)) dt \leq \int_0^\infty \psi(t) \phi(F_1(t),\ldots,F_n(t)) dt.
\]

Applications in reliability theory and order statistics are given.
1. Introduction.

For given life distribution functions F and G, the respective survival functions are $F = 1 - F$ and $G = 1 - G$. We define the partial ordering \preceq_m on the class of life distributions with finite means by $G \preceq_m F$ (m for majorization) if

$$
\int_0^\infty G(t) dt \geq \int_0^\infty F(t) dt \quad \text{for all } x \geq 0
$$

and

$$
\mu_G = \int_0^\infty G(t) dt = \int_0^\infty F(t) dt = \mu_F < + \infty.
$$

If X and Y are nonnegative random variables with respective distribution functions F and G, then Ross [11] says "Y is more variable than X" (written $Y \geq_v X$ or $G \geq_v F$) if (1.1) holds. Stoyan [14] equivalently defines Y to be "larger in mean residual life" than X (written $G \preceq_c F$ or in previous publications $G \preceq F(2)$) if (1.1) holds. Bessler and Veinott [3] use the terminology "Y is stochastically larger in mean than X." The notation of Stoyan (c for convex) is suggested by the following characterization:

$$
G \preceq_c F \iff \int_0^\infty \Psi(t) dG(t) \geq \int_0^\infty \Psi(t) dF(t)
$$

holds for all increasing (that is nondecreasing) convex functions Ψ, provided the integrals exist.

For life distribution functions F and G, $G \preceq_m F$ if and only if $G \preceq_c F$ (or $G \geq_v F$) and G and F have equal finite means ($\mu_F = \mu_G$). For distribution functions with finite means, the following useful characterization of $G \preceq_m F$ (see for example Ross [11] or Stoyan [14]) is an immediate corollary of Theorem 2.1:

$$
G \preceq_m F \iff \int_0^\infty \Psi(t) dG(t) \geq \int_0^\infty \Psi(t) dF(t)
$$

holds for all convex functions Ψ, provided the integrals exist.
We note in particular that if $G \succcurlyeq F$, then
\[
\sigma_G^2 = \int_0^\infty (t-\mu_G)^2 dG(t) \geq \int_0^\infty (t-\mu_F)^2 dF(t) = \sigma_F^2.
\]

Hence $G \succcurlyeq F$ implies that the life distribution represented by G is 'more dispersed' than that represented by F around their common mean.

For life distribution functions F and G with a common mean, $G \succcurlyeq F$ is a more general relationship than $G \succ F$ (F is star shaped with respect to G). When F and G are continuous life distributions (where $F(0) = G(0) = 0$, F and G have interval support and G is strictly increasing on its support), then $G \succ F$ if $G^{-1}F(x)$ is star-shaped (that is $\frac{G^{-1}\mathbb{F}(x)}{x}$ is increasing for $x > 0$).

If $G \succ F$ and F and G have a common mean, then $\mathbb{F}(x)$ crosses $\mathbb{G}(x)$ once and from above as $x:0 \rightarrow \infty$, so that in particular $G \succcurlyeq F$ (see Barlow and Proschan [2]).

For a continuous life distribution function F with mean μ, let us define $G(x) = 1 - e^{-x/\mu}$ to be the exponential distribution with the same mean. Then F is IFRA (increasing failure rate average) $\iff G \succ F$, and F is HNBU (harmonic new better than used in expectation) $\iff G \succcurlyeq F$. See Klefsjö [6] for further properties of HNBU distributions.

If F and G are two life distribution functions with common mean and $\mathbb{F}(x)$ crosses $\mathbb{G}(x)$ once and from above as $x:0 \rightarrow \infty$, then $G \succcurlyeq F$, however the converse is clearly not true. For example let F and G be defined as follows:

\[
F(x) = \begin{cases}
0 & x < 2 \\
1/2 & 2 \leq x < 4 \\
1 & 4 \leq x
\end{cases} \quad G(x) = \begin{cases}
0 & x < 1 \\
1/4 & 1 \leq x < 3 \\
3/4 & 3 \leq x < 5 \\
1 & 5 \leq x
\end{cases}
\]

Then $G \succcurlyeq F$ and G 'crosses' F three times.
A vector \(\underline{b} = (b_1, \ldots, b_n) \) majorizes the vector \(\underline{a} = (a_1, \ldots, a_n) \) if
\[
\sum_{i=k}^{n} b[i] \geq \sum_{i=k}^{n} a[i] \quad \text{for } k=2, \ldots, n
\]

and
\[
\sum_{i=1}^{n} b[i] = \sum_{i=1}^{n} a[i],
\]
where the \(b[i] \)'s and \(a[i] \)'s are the components of \(\underline{b} \) and \(\underline{a} \) respectively in ascending order. When \(\underline{b} \) majorizes \(\underline{a} \) we write \(\underline{b} \succ_m \underline{a} \).

Suppose now that \(\underline{b} \) and \(\underline{a} \) are \(n \) dimensional vectors with nonnegative components such that \(\underline{b} \succ_m \underline{a} \). If \(G \) and \(F \) are respectively the distribution functions for the uniform distributions on the components of \(\underline{b} \) and \(\underline{a} \), then \(G \succ_m F \). This is our motivation for using the letter \(m \) for our partial ordering on the family of life distribution functions with finite means.

2. An Integral Inequality.

The following theorem is a variant of an integral inequality obtained by Fan and Lorentz [4].

Theorem 2.1. Let \(\phi = [0,1]^n \rightarrow [0,\infty) \) be a continuous increasing function, and assume that for \(i=1, \ldots, n \), \(F_i \) and \(G_i \) are life distribution functions where \(G_i \succ_m F_i \).

a) If \(\psi \) is nonnegative decreasing, \(\phi \) is convex in each variable separately and \(\phi \) satisfies the following property:

\[
\phi(u_i + h, u_j + k) - \phi(u_i, h, u_j) - \phi(u_i, u_j + k) + \phi(u_i, u_j) \geq 0
\]

for all \(i \neq j \), \(0 \leq u_i \leq u_i + h \leq 1 \), \(0 \leq u_j \leq u_j + k \leq 1 \)

(where we have used the notational simplification of omitting those arguments of \(\phi \) which are the same in a given formula),

then providing the integrals exist,

\[
\int_0^\infty \psi(t)\phi(\overline{G}_1(t), \ldots, \overline{G}_n(t))dt \leq \int_0^\infty \psi(t)\phi(\overline{F}_1(t), \ldots, \overline{F}_n(t))dt.
\]
b) If \(\psi \) is nonnegative increasing, \(\phi \) is concave in each variable separately and \(\phi \) satisfies the following property:

\[
\phi(u_i + h, u_j + k) - \phi(u_i + h, u_j) - \phi(u_i, u_j + k) + \phi(u_i, u_j) \leq 0
\]

for all \(i \neq j, 0 \leq u_i \leq u_i + h \leq 1, 0 \leq u_j \leq u_j + k \leq 1 \),

then providing the integrals exist

\[
\int_0^\infty \psi(t) \phi(G_1(t), \ldots, G_n(t)) dt \geq \int_0^\infty \psi(t) \phi(F_1(t), \ldots, F_n(t)) dt.
\]

Proof: We prove only a), the proof of b) following in a similar fashion.

(i) Initially we show that it suffices to prove the result for the case when \(F_1, G_1, \ldots, F_n, G_n \) all have finite support. In turn to establish this we show that if the inequality is valid whenever \(F_1 \) and \(G_1 \) have finite support, then it is true in general.

Suppose now that \(F_1, G_1, \ldots, F_n, G_n \) are arbitrary life distributions where \(G_i \geq F_i \) for \(i = 1, \ldots, n \). Given \(\varepsilon > 0 \), we can find \(S \) so that

\[
\int_S^\infty \psi(t) \phi(G_1(t), \ldots, G_n(t)) dt < \varepsilon.
\]

Now define \(F_1' \) and \(G_1' \) by

\[
F_1'(t) = \begin{cases}
F_1(t) & t < S \\
0 & t \geq S
\end{cases}
\]

\[
G_1'(t) = \begin{cases}
G_1(t) & t < S \\
S \int_0^t F_1(\tau) d\tau - \int_0^S G_1(\tau) d\tau & S \leq t \leq S + \frac{G_1(S)}{G_1(S)} \\
0 & \text{otherwise,}
\end{cases}
\]
(if \(\overline{G}_1(S) = 0 \), then both \(G_1 \) and \(F_1 \) have finite support). Then \(G_1' > F_1' \), and

\[
\int_0^\infty \psi(t) \phi(F_1(t), F_2(t), \ldots, F_n(t)) \, dt \geq \int_0^\infty \psi(t) \phi(G_1'(t), G_2(t), \ldots, G_n(t)) \, dt \\
\geq \int_0^\infty \psi(t) \phi(G_1'(t), G_2(t), \ldots, G_n(t)) \, dt \\
\geq \int_0^\infty \psi(t) \phi(G_1(t), G_2(t), \ldots, G_n(t)) \, dt - \varepsilon.
\]

Since \(\varepsilon \) is arbitrary, the conclusion follows.

(ii) It now remains to show that

\[
\int_0^\infty \psi(t) \phi(G_1(t), G_2(t), \ldots, G_n(t)) \, dt \leq \int_0^\infty \psi(t) \phi(F_1(t), F_2(t), \ldots, F_n(t)) \, dt
\]

whenever \(G_1 > F_1 \) for all \(i = 1, \ldots, n \), and where the support of \(F_1 \) and \(G_1 \) is \([0, S]\) for all \(i = 1, \ldots, n \).

Let \(\varepsilon > 0 \) be given. As \(\phi \) is continuous, there exists a \(\delta > 0 \) such that whenever \(u, v \in [0,1]^n \) and \(\|u - v\| = \max_{i=1,\ldots,n} |u_i - v_i| < \delta \), then \(|\phi(u) - \phi(v)| < \varepsilon / 2S\psi(0) \).

There exist only a finite number of points \(r \) in \([0, S]\) where at least one of \(F_1, G_1, \ldots, F_n, G_n \) has a jump discontinuity with jump \(\geq \delta / 2 \). Hence we can find an integer \(N \) large enough so that

1. \(\psi(0)4rS \sup_{\varepsilon} |\phi| < N \)

and

2. on all but at most \(r \) of the \(N \) intervals \([0, S/N], \ldots, [(N-1)S/N, NS/N]\),

\[
\max_i \left[F_i \left(\frac{jS}{N} \right) - F_i \left(\frac{(j+1)S}{N} \right) \right] < \delta \quad \text{and} \quad \max_i \left[\overline{G}_i \left(\frac{jS}{N} \right) - \overline{G}_i \left(\frac{(j+1)S}{N} \right) \right] < \delta.
\]
Hence for each $i = 1, \ldots, n$, we define the following simple survival functions:

$$F_i''(t) = \left(\int_{jS/N}^{(j+1)S/N} F_i(t) \, dt \right) / S/N$$

and

$$G_i''(t) = \left(\int_{jS/N}^{(j+1)S/N} G_i(t) \, dt \right) / S/N$$

when $t \in \left[\frac{jS}{N}, \frac{(j+1)S}{N} \right]$ for some $j = 0, \ldots, N-1$, and zero otherwise.

Note that $G_i'' \leq F_i''$ for all $i = 1, \ldots, n$.

Moreover,

$$\left| \int_0^S \psi(t) \phi(F_1(t), \ldots, F_n(t)) \, dt - \int_0^S \psi(t) \phi(F_1''(t), \ldots, F_n''(t)) \, dt \right|$$

$$= \left| \sum_{j=0}^{N-1} \frac{(j+1)S}{N} \psi(t) \left[\phi(F_1(t), \ldots, F_n(t)) \, dt - \phi(F_1''(t), \ldots, F_n''(t)) \right] \right|$$

$$< \psi(0)2r \sup \left| \phi \right| \frac{S}{N} + \frac{\varepsilon}{2S} N \left(\frac{S}{N} \right)$$

$$< \varepsilon .$$

Similarly,

$$\left| \int_0^S \psi(t) \phi(G_1(t), \ldots, G_n(t)) \, dt - \int_0^S \psi(t) \phi(G_1''(t), \ldots, G_n''(t)) \, dt \right| < \varepsilon .$$

Therefore, it suffices to prove (2.2) for the case when all F_i, G_i are step functions which are constant on $\left[\frac{jS}{N}, \frac{(j+1)S}{N} \right]$, $j = 0, \ldots, N-1$. Furthermore, without loss of generality we may assume that ψ is constant on each interval of the form $\left[\frac{jS}{N}, \frac{(j+1)S}{N} \right]$ for $j = 0, \ldots, N-1$.
(iii) Assume now that $G_i > F_i$ for $i = 1, \ldots, n$ and that all $2n$ functions have support in $[0, S]$ and are constant on each interval $\left[\frac{jS}{N}, \frac{(j+1)S}{N} \right]$ for $j = 0, \ldots, N-1$. We also assume ψ is constant on each of these intervals and use the notational simplification $\psi(j) = \psi\left(\frac{jS}{N}\right)$ for $j = 0, \ldots, N-1$.

Each \bar{G}_i may be transformed into \bar{F}_i by a finite succession of
transformations τ of the following type (see Hardy, Littlewood and Pólya [5]). τ changes the value v_{ji} of \bar{G}_i on the interval $\left[\frac{jS}{N}, \frac{(j+1)S}{N} \right]$ into $v_{ji} + h$ and the value v_{ki} of \bar{G}_i on $\left[\frac{kS}{N}, \frac{(k+1)S}{N} \right]$ into $v_{ki} - h$ where $j < k$ and

$$0 \leq v_{ki} - h \leq v_{ki} \leq v_{ji} \leq v_{ji} + h \leq 1.$$

Letting Δ_{τ} denote the change in the integral $\int_0^\infty \psi(t) \phi(\bar{G}_1(t), \ldots, \bar{G}_n(t)) dt$ resulting from such a transformation τ, we complete the proof by showing that $\Delta_{\tau} \geq 0$. Without loss of generality $i = 1$, and hence

$$\Delta_{\tau} = \sum_{j=1}^{N} \psi(j) \left[\phi(v_{j1} + h, v_{j2}, \ldots, v_{jn}) - \phi(v_{j1}, v_{j2}, \ldots, v_{jn}) \right]$$

$$- \psi(k) \left[\phi(v_{k1}, v_{k2}, \ldots, v_{kn}) - \phi(v_{k1} - h, v_{k2}, \ldots, v_{kn}) \right]$$

$$\geq \psi(k) \sum_{j=1}^{N} \left[\phi(v_{j1} + h, v_{j2}, \ldots, v_{jn}) - \phi(v_{j1}, v_{j2}, \ldots, v_{jn}) \right]$$

$$- \phi(v_{j1} + h, v_{k2}, \ldots, v_{kn}) - \phi(v_{j1}, v_{k2}, \ldots, v_{kn}).$$

(since ϕ is convex in each variable separately)
= \psi(k)^{S_N} \{ \phi(v_{j1} + h, v_{k2} + h, \ldots, v_{kn} + h_n) - \phi(v_{j1}, v_{k2} + h, \ldots, v_{kn} + h_n) - \phi(v_{j1} + h, v_{k2} + h, \ldots, v_{kn}) + \phi(v_{j1}, v_{k2} + h, \ldots, v_{kn}) \} + \ldots + \phi(v_{j1}, v_{k2} + h, \ldots, v_{kn}) - \phi(v_{j1}, v_{k2} + h, v_{k3}, \ldots, v_{kn}) - \phi(v_{j1} + h, v_{k2}, \ldots, v_{kn}) + \phi(v_{j1}, v_{k2}, \ldots, v_{kn}) \}

\geq 0

(since \phi satisfies property (2.1) and \psi is nonnegative).

Here \(h_i = v_{ji} - v_{ki} \) for \(i = 2, \ldots, n \).

Corollary 2.2. Let \(G \) and \(F \) be life distribution functions with finite means. Then \(G \succcurlyeq F \) if and only if

a) For all nonnegative increasing continuous convex \(\phi \) and nonnegative decreasing \(\psi \),

\[
\int_0^\infty \psi(t) \phi(G(t)) dt \leq \int_0^\infty \psi(t) \phi(F(t)) dt
\]

and

b) For all nonnegative increasing continuous concave \(\phi \) and nonnegative increasing \(\psi \),

\[
\int_0^\infty \psi(t) \phi(G(t)) dt \geq \int_0^\infty \psi(t) \phi(F(t)) dt,
\]

provided the integrals exist.

Proof. The only if part follows immediately from Theorem 2.1. Assume now a) and b) hold. Letting \(\phi(u) = u \) and \(\psi_x(t) = \chi_{[x, +\infty)} \) (that is the characteristic function of the interval \([x, +\infty)\)) it follows from b) that

\[
\int_0^\infty G(t) dt \geq \int_0^\infty F(t) dt \text{ for all } x \geq 0.
\]

Taking \(\psi(t) = 1 \), it follows from a) that

\[
\mu_F = \mu_G.
\]
Corollary 2.3. If G and F are life distributions with finite means, then

$$G \geq M F \iff\int_0^\infty \psi(t)dG(t) \geq \int_0^\infty \psi(t)dF(t)$$

holds for all convex functions ψ, provided the integrals exist.

Proof. The if part of the result is immediate. Now suppose $G \geq M F$. It suffices to prove (2.5) for the case where ψ has derivative ψ and $\psi(0)=0$.

Then

$$\int_0^\infty \psi(t)dG(t) = \int_0^\infty \psi(t)G(t)dt$$

$$= \int_0^\infty [\psi(t)-\psi(0)]G(t)dt + \psi(0)\mu_G$$

$$\geq \int_0^\infty [\psi(t)-\psi(0)]F(t)dt + \psi(0)\mu_F \ (by \ Theorem \ 2.1)$$

$$= \int_0^\infty \psi(t)dF(t).$$

Remark 2.4. Another approach to (2.5) in the proof of Corollary 2.3 is as follows. Suppose $G \geq M F$. Let Z_G and Z_F be the random variables with respective densities $\frac{1}{\mu_G} \int_0^t G(s)ds$ and $\frac{1}{\mu_F} \int_0^t F(s)ds$. Then $Z_G \geq_{st} Z_F$ (Z_G is stochastically larger than Z_F) and hence (see for example Ross [11]) $E(\psi(Z_G)) \geq E(\psi(Z_F))$ for all increasing ψ. But

$$\int_0^\infty \psi(t)G(t)dt = E(\psi(Z_G)) \geq E(\psi(Z_F)) = \int_0^\infty \psi(t)F(t)dt.$$

3. Applications.

Theorem 3.1. Let $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ be independent nonnegative random variables where $X_i \sim F_i$ and $Y_i \sim G_i$ for $i=1, \ldots, n$, and let $X_{[1]}', \ldots, X_{[n]}'$ and $Y_{[1]}', \ldots, Y_{[n]}'$ be respectively the X (Y) observations in increasing order.
Assume that $G_i > F_i$ for $i = 1, \ldots, n$. Then

\begin{align*}
\text{a)} \quad \int_0^\infty \mathbb{P}[Y_n > \ldots > Y_k > t] \, dt & \geq \int_0^\infty \mathbb{P}[X_n > \ldots > X_k > t] \, dt \\
& \quad \text{for all } x \geq 0 \text{ and } k = 1, 2, \ldots, n.
\end{align*}

\begin{align*}
\text{b)} \quad (EY_1, \ldots, EY_n) & \geq (EX_1, \ldots, EX_n).
\end{align*}

Proof. b) follows immediately from a). In what follows $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_n)$ will denote any vector whose components are zeroes or ones. For $i = 1, \ldots, n$, we define $\phi_i : [0,1] \to [0, +\infty)$ by

$$
\phi_i(u_1, \ldots, u_n) = \sum_{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \geq u_1 + u_2 + \ldots + u_n \geq n-i+1} \varepsilon_1 \varepsilon_2 \ldots \varepsilon_n (1-u_1) (1-u_2) \ldots (1-u_n).
$$

We note that $EX_i = \int_0^\infty \phi_i(\overline{F}_1(t), \ldots, \overline{F}_n(t)) \, dt$ for $i = 1, \ldots, n$. Now for $k = 1, \ldots, n$ we define

$$
\phi_k(u_1, \ldots, u_n) = \sum_{i=k}^n \phi_i(u_1, \ldots, u_n)
$$

$$
= \sum_{i=k}^n \sum_{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \geq u_1 + u_2 + \ldots + u_n \geq n-i+1} \varepsilon_1 \varepsilon_2 \ldots \varepsilon_n (1-u_1) (1-u_2) \ldots (1-u_n)
$$

$$
= \sum_{j=1}^n \text{min}(j, n-k+1) \sum_{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \geq u_1 + u_2 + \ldots + u_n \geq j} \varepsilon_1 \varepsilon_2 \ldots \varepsilon_n (1-u_1) (1-u_2) \ldots (1-u_n).
$$

Since $\int_0^\infty \mathbb{P}[X_n > \ldots > X_k > t] \, dt = \int_0^\infty \phi_k(\overline{F}_1(t), \ldots, \overline{F}_n(t)) \, dt$, it suffices by Theorem 2.1 b to show that each ϕ_k satisfies (2.3) and is concave increasing in each variable separately.

Now $\frac{\partial}{\partial u_1} \phi_k(u_1, \ldots, u_n) = \sum_{j=0}^{n-k} \sum_{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \geq j} u_1 \varepsilon_1 \varepsilon_2 \ldots \varepsilon_n (1-u_1) (1-u_2) \ldots (1-u_n)$

where ε_1 represents an $n-1$ component vector of zeroes and ones.
As \(\phi_k(u_1, \ldots, u_n)\) is symmetric in \(u_1, \ldots, u_n\), it follows that \(\phi_k\) is an increasing function linear (and hence concave) in each variable separately. For a continuously twice differentiable function \(\phi\) on \([0,1]^n\), it is easy to verify that the following conditions are equivalent (see Lorentz [7]):

\[
\begin{align*}
(3.1) \quad & \phi(u_i + h, u_j + k) - \phi(u_i + h, u_j) - \phi(u_i, u_j + k) + \phi(u_i, u_j) \geq 0 \\
& \text{for all } i \neq j, \quad 0 \leq u_i \leq u_i + h \leq 1, \quad 0 \leq u_j \leq u_j + k \leq 1.
\end{align*}
\]

\[
\begin{align*}
(3.2) \quad & \phi(u_i + h, u_j + h) - \phi(u_i + h, u_j) - \phi(u_i, u_j + h) + \phi(u_i, u_j) \geq 0 \\
& \text{for all } i \neq j, \quad 0 \leq u_i \leq u_i + h \leq 1, \quad 0 \leq u_j \leq u_j + h \leq 1.
\end{align*}
\]

\[
\begin{align*}
(3.3) \quad & \frac{\partial}{\partial u_i} \frac{\partial}{\partial u_j} \phi(u_1, \ldots, u_n) \geq 0 \\
& \text{for all } i \neq j.
\end{align*}
\]

Therefore, due to the symmetry of \(\phi_k\) and the above equivalence, it suffices to note that

\[
\frac{\partial}{\partial u_1} \frac{\partial}{\partial u_2} \phi_k(u_1, \ldots, u_n) = - \sum_{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n = 0}^{n-k} \varepsilon_1 \varepsilon_2 \varepsilon_3 \cdots \varepsilon_n (1-u_1)^{1-\varepsilon_1} (1-u_2)^{1-\varepsilon_2} \cdots (1-u_n)^{1-\varepsilon_n} \leq 0
\]

(where \(\varepsilon_{12}\) represents an \(n-2\) component vector of zeroes and ones).

Remark 3.2. Let \((X_1, \ldots, X_n)\) and \((Y_1, \ldots, Y_n)\) be random samples of size \(n\) from populations with life distribution functions \(F\) and \(G\) respectively. Barlow and Proschan [1] show that if \(G \succeq F\) where \(G\) and \(F\) have common mean, then

\[
(\text{EY}_1, \ldots, \text{EY}_n) \succ (\text{EX}_1, \ldots, \text{EX}_n).
\]
Shaked [13] proves the same result under the more general assumption that $G \geq F$. His proof uses the characterization of Corollary 2.3 together with the fact that

$$
\psi_k(t_1, \ldots, t_n) = t_{[n]}^+ \ldots + t_{[k]}
$$

is (separately) convex for each k. It follows that

$$
EY_{[n]}^+ \ldots + EY_{[k]} = \int_0^\infty \int_0^\infty \ldots \int_0^\infty \psi_k(t_1, \ldots, t_n)dG(t_1) \ldots dG(t_n)
$$

$$
\geq \int_0^\infty \int_0^\infty \ldots \int_0^\infty \psi_k(t_1, \ldots, t_n)dF(t_1) \ldots dF(t_n)
$$

$$
= EX_{[n]}^+ \ldots + EX_{[k]}.
$$

Remark 3.3 Suppose that for each $a \in A$, $F^{(a)}$ is distribution function on \mathbb{R}, and that γ is a probability measure defined on a σ-field of subsets of A. One may define the n-variate distribution function assuming appropriate measurability conditions on $F^{(a)}$

$$
F(x_1, \ldots, x_n) = \int_A F^{(a)}(x_1) \ldots F^{(a)}(x_n) d\gamma(a).
$$

If random variables X_1, \ldots, X_n have such a joint distribution function, they are said to be 'positively dependent by mixture'. Given X_1, \ldots, X_n positively dependent by mixture, let Y_1, \ldots, Y_n be independent random variables where Y_i is distributed as X_i for $i = 1, \ldots, n$. Shaked [12] (See also Marshall and Olkin [9] and Proschan [10]) has shown that in this case

$$
(EY_{[1]}^+ \ldots , EY_{[n]}) \overset{\text{m}}{\succ} (EX_{[1]} \ldots , EX_{[n]}).
$$

Remark 3.4 Theorem 3.1 shows that if $G_i \overset{\text{m}}{\succeq} F_i$ for all $i=1, \ldots, n$, then for any $k \sum_{i=k}^n Y_{[i]}$ is "more variable" than $\sum_{i=k}^n X_{[i]}$ (in the terminology of Ross [11]) or that $\sum_{i=k}^n Y_{[i]}$ is "larger in mean residual life" than $\sum_{i=k}^n X_{[i]}$.
(in the terminology of Stoyan [14]). Since \(\psi_k(t_1, \ldots, t_n) = t_{[n]}^* + \cdots + t_{[k]} \)

is convex, this also follows by using the result that if \(X_1, \ldots, X_n, Y_1, \ldots, Y_n \) are independent and \(Y_i \) is "more variable" than \(X_i \) for \(i = 1, \ldots, n \), then \(\psi_k(Y_1, \ldots, Y_n) \) is "more variable" than \(\psi_k(X_1, \ldots, X_n) \) (see Ross [11]).

Remark 3.5 If \(X_1, \ldots, X_n \) are independent HNBUE random variables, then Theorem 3.1 (b) could be useful in constructing bounds on the expected order statistics \(EX_1, \ldots, EX_n \).

Example 3.6 Let us consider the following problem of general interest. \(n \) components are to be purchased in order to form a coherent system (for example a \(k \) out of \(n \) system), and all of the components are to be purchased from either company A or company B. Let us suppose that each company makes the claim that components of type \(i \) have mean life \(\mu_i \) (\(i = 1, \ldots, n \)), but that company B is known to be 'more variable' than company A in the production of any type of component. If we wish to maximize the mean life of the system, from which company should we buy?

Let \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_n \) be random variables representing the lifetimes of the components from A and B respectively. If we can assume that the components function independently within the system and that \(Y_i \) is more variable than \(X_i \) in the sense that \(G_i \overset{m}{\succ} F_i \) (where \(X_i \sim F_i \) and \(Y_i \sim G_i \)) for all \(i = 1, \ldots, n \), then we know that

\[
(EY_{[1]}, \ldots, EY_{[n]}) \overset{m}{\succ} (EX_{[1]}, \ldots, EX_{[n]}).
\]

In particular \(EY_{[1]} - EX_{[1]} \leq 0 \) and \(EY_{[n]} - EX_{[n]} \geq 0 \). Therefore if our system is a series system we would buy from A, while if it is parallel we would buy from B. This result was observed by Marshall and Proschan [8].
For a more general k out of n system, we would be interested in the expected order statistics \(EX[n-k+1] \) and \(EY[n-k+1] \) in order to compare companies A and B. Although

\[
(\text{EY}[1], \ldots, \text{EY}[n]) \cong (\text{EX}[1], \ldots, \text{EX}[n]),
\]

\(\text{EY}[i] - \text{EX}[i] \) may theoretically at least undergo many sign changes as \(i:1 \to n \) even in the case when \(F_1 = F \) and \(G_1 = G \) for all \(i=1, \ldots, n \). However under the assumption that \(G \cong F \) where \(G \) and \(F \) are continuous, \(G \) is strictly increasing on its interval support and \(G(0)=F(0)=0 \), one may show that the number of sign changes in \(\text{EY}[i] - \text{EX}[i] \) is no greater than the number of sign changes in \(\bar{G}(x) - \bar{F}(x) \) as \(x:0 \to \infty \). Since \(\binom{n-1}{i-1} F^{i-1}(t) \bar{F}^{n-i}(t) \) is totally positive of order \(\infty \) in \(i \) and \(t \), this follows using the variation diminishing property of totally positive functions and the identity

\[
\text{EY}[i] - \text{EX}[i] = \int_0^\infty n(G^{-1}F(t) - t) \binom{n-1}{i-1} F^{i-1}(t) \bar{F}^{n-i}(t) dt
\]

(see Barlow and Proschan [1]). In particular if \(\bar{F} \) crosses \(\bar{G} \) once then there exists a constant \(C \) (depending on \(n, F \) and \(G \)) such that

\[
\text{EY}[i] - \text{EX}[i] \leq 0 \quad \text{for} \quad i < C
\]

and

\[
\text{EY}[i] - \text{EX}[i] \geq 0 \quad \text{for} \quad i > C.
\]
References

