Hierarchical Object Parsing from Structured Noisy Point Clouds

Adrian Barbu
Department of Statistics
Florida State University

Objective and Motivation

Objective

- Accurate object parsing: e.g. horse parsing
- Find the object and delineate its boundary and parts
- Input: noisy point cloud e.g. edge detection
- Fast and robust

Difficulties

- Large amounts of missing data
- Large amounts of noise
 - Points in the background
- Large shape variability due to
 - Viewpoint
 - Articulations: position of head and legs

Object Parsing

- Find position of points of interest of the object
 - E.g. aligned boundary
- Fill-in missing data using the shape prior

Edge detection

Parsing result

Active Shape Model

- Overview:
 - Start with an initial shape (A,β)
 - 2. Find most probable boundary edges along each normal
 - Obtain a rough shape
 - 3. Project rough shape to PCA space
 - Obtain new shape (A,β)
 - 4. Repeat 2-3 until convergence
- ASM Advantages:
 - Fast
 - Good dimensionality reduction
 - Works well on clean data

ASM Disadvantages

- Not accurate enough
 - Low dimensional representation cannot have high accuracy
 - Cannot be used for point clouds
- Depends on initialization
- Not clear what model it optimizes

Proposed Hierarchical Model

- Bayesian model
- \blacksquare PCA model (A, β) to limit shape variability
 - Serves as a backbone
- MRF deformation from PCA along normals
- Data term based on edge continuation

Hierarchical Model

Bayesian model:

$$E(C, A, \beta) = E_{data}(C) + E(C|A, \beta) + E_p(A) + E_p(\beta)$$

PCA Model (A,β)

Prior Models $E_p(A)$, $E_p(\beta)$

Object Shape
$$C=(C_1,...,C_N)$$

 $E(C|A,\beta) = \sum_{i} \alpha_i d_i^2 + \sum_{i} \gamma_i (d_i - d_{i-1})^2$

Noisy Point Cloud (edge detection)

$$E_{data}(C) = \sum_{i=1}^{N-1} \varphi(C_i, C_{i+1})$$

Hierarchical Model

Data Term:

$$E_{data}(C) = \sum_{i=1}^{N-1} \varphi(C_i, C_{i+1})$$

$$\varphi(P,Q) = \begin{cases} -1 & \text{if there is a edge connecting P and Q} \\ 0 & \text{otherwise} \end{cases}$$

Encourages deformations that have edges (chains of points)
 connecting them

Hierarchical Model

Shape C

d₁

PCA

d_{N-1}

Prior Term:

$$E(C|A,\beta) = \sum_{i} \alpha_{i} d_{i}^{2} + \sum_{i} \gamma_{i} (d_{i} - d_{i-1})^{2}$$

- Encourages small deformations that are parallel to the PCA
- Prior E(A) allows a range of orientations and scales
- Prior E(β) is from a multivariate normal based on the PCA eigenvalues N_{β}

$$E_p(\beta) = \rho \sum_{i=1}^{N} \frac{\beta_i^2}{\lambda_i}$$

Generative Model

Samples from the generative shape prior model

Advantages and Challenges of the Proposed Model

- Generative model
 - The shape model with prior can be sampled to get an idea on the shape variability
 - Small number of parameters means good generalization power
- Flexible yet not too flexible
 - Deformation term allows deviations from the PCA shapes
 - Can accurately follow the object boundary
 - PCA backbone limits the flexibility
- Challenges
 - Cannot use any existing fast inference algorithm
 - MCMC too slow

Towards an Inference Algorithm

- ASM inspired approach
 - Given the PCA shape (A,β) , the segmentation can be found by dynamic programming
 - Given the segmentation C, the PCA shape can be found by least squares

PCA shape and DP data edges

Parsing result

Towards an Inference Algorithm

- ASM-inspired Local Optimization
 - 1. Start with an initial PCA shape (A,β)
 - 2. Find segmentation C by Dynamic Programming
 - 3. Refine PCA shape (A,β) by least squares
 - 4. Iterate 2-3 until convergence

Drawbacks:

- Depends on initialization
- Obtains local minimum

PCA shape and DP data edges

Inference Algorithm

Proposed solution

- Consider many initial candidates (A_i, β_i) , $i=1,...,N_{cand}$
- Run local optimization for each candidate
- Pick lowest energy solution (C,A,β) as the result

Challenges:

- How to choose the initial candidates?
- How many candidates to use?

Our solution:

- Good data-driven (bottom-up) candidates
- Non-max suppression to avoid repeated candidates
- Number of candidates chosen based on training error

Related Work

- Recursive Compositional Models, Zhu, Chen & Yuille, 2009
 - Represents shape hierarchically using triplets of parts, each part is a triplet of parts, etc.
 - Dynamic programming with pruning for inference
- Multi-view Car Alignment, Li, Gu &Kanade, CVPR 2009
 - Shape model by Probabilistic PCA
 - Deformation is i.i.d. Gaussian
 - Data term based on classifiers at the model points
 - Uses intensity information
 - Data less noisy than the edge detection
 - Shape proposals obtained by RANSAC
 - Assumes 40% outliers

Related Work

- Hierarchical Shape Matching, Felzenswald & Schwartz 2007
 - Shape model based on a tree
 - Focus on shape matching and retrieval
- Active Skeleton, Bai et al, ICCV 2009
 - Skeleton-based shape model
 - Used for object detection
- Knowledge based segmentation, Besbes et al, CVPR 2009
 - Shape prior based on pairwise cliques
 - Primal-dual algorithm for inference
- Active Basis Model, Wu et al, IJCV 2009
 - A template with local deformations
 - Not used for object parsing

Preprocessing: Segment Chains

- Detected edges are traced into pixel chains
- Pixel chains are cut into chains of short segments

Preprocessing: Smooth Curves

 Parts of segment chains are approximated with polynomial curves

Segment chains

Smooth Polynomial Curves

Shape Candidates

- Match smooth curves from edge detection to parts of the PCA model
 - Find transformation and PCA coeffs in a least square sense
 - Uses weighted least square fitting from Rogers & Graham, ECCV'02
- From one or more smooth curves
- Best fit N_{cand} candidates are kept after non-max suppression

Smooth Polynomial Curves

Best 50 PCA Shape Candidates

One Curve CG

- For each long smooth curve
 - Match it to different parts of the PCA
 - Keep only matches that fit well
- NMS over all obtained candidates to keep best N_{cand}

Best candidate of CG1

Two or More Curve CG

- For each curve candidate from previous CG
 - For each smooth curve close enough
 - Match it to closest points on the candidate
 - Refit PCA
 - Keep only matches that fit well
- NMS over all obtained candidates to keep best N_{cand}

Best candidate of CG2

Learning-based Optimization

- Model and algorithm parameters are tuned on training set for best results
 - Less than 20 parameters totally
- CG parameters are tuned with a different measure
 - Smallest distance of a candidate to GT
- Error on test set follows same trend

Learning-based Optimization

- Segmentation parameters are tuned on training set for best results
 - 5 parameters
 - Error measure is average pt-pt error of the result on the training set
 - Coordinate descent optimization
- Error on test set follows same trend

Weizmann Dataset

- 327 horse images
 - Similar size and orientation
 - Boundary manually delineated
 - 50 train, 50 validation, 227 test
- Manual Annotation
 - 14 control points on each horse
 - Smooth curves btw control pts
 - 96 interpolated boundary points
 - Same legs annotated as Zhu et al, 2009

Quantitative Evaluation Horses

Method	Train	Test	Contour	Train	Test	Time/img
	images	images	points	error	error	(sec)
ASM	50	227	96	25.35	29.05	<1
RCM	1	227	27	_	18.7	3
RCM	50	227	27	_	16.04	23
Ours, with CG1	50	227	96	12.79	15.58	44
Ours, with CG2	50	227	96	12.74	15.36	69
CG2 no head/legs	50	227	60	8.21	11.42	20

Cow Dataset

- 111 Cow images
 - Binary manual segmentation
- First 25 images for training
- 87 Point annotation

Quantitative Evaluation Cows

Method	Train	Test Contour		Train	Test	Time/img
	images	images	points	error	error	(sec)
ASM	25	111	87	48.81	49.23	<1
RCM	1	111	27	_	15.8	3.5
Ours, with CG1	25	111	87	13.78	14.98	14
Ours, with CG2	25	111	87	11.73	10.81	28

More Results

More Results

IMM Face Dataset

- Stegman et al, TMI 2003
- 40 frontal face images
 - 58 Landmarks
- Cross-validation

Quantitative Evaluation Faces

Method	Uses	Automatic	X-val.	Train	Test	Time/img
	intensity	init.	folds	error	error	(sec)
ASM	No	Yes	4	21.47	21.56	0.08
Stegman	B/W	No	37	_	3.14	0.13
Stegman	Color	No	37	_	3.08	0.28
Ours, with CG1	No	Yes	4	6.54	6.64	0.33
Ours, with CG2	No	Yes	4	5.30	5.57	0.43

Conclusion

- A simple PCA model+ MRF deformation
 - Accurate
 - Can be used for object parsing from point clouds
- Local optimization initialized at good locations
 - Data-driven method for generating candidate locations

- Competitive with state of the art in object parsing
 - Not using any intensity information

Future Work

- Better shape model
 - Part based model plus deformation
- Shape deformation beyond normals.
 - Allow some control points to move in 2D (Kainmueller et al, MICCAI 2010)
- Use intensity information
 - Learning-based data term
- 3D Object Parsing
 - Parsing 3D faces from 2D Images
 - 3D Liver or spleen segmentation in CT/MRI

References

- A. Barbu. Hierarchical Object Parsing from Structured Noisy Point Clouds. To appear in *IEEE Trans. PAMI* 2013
- T. Cootes, C. Taylor, D. Cooper, J. Graham, et al. Active shape models-their training and application. *CVIU*, 61(1):38– 59, 1995.
- Y. Li, L. Gu, and T. Kanade. A robust shape model for multiview car alignment. CVPR, 2009.
- M. B. Stegmann, B. K. Ersboll, and R. Larsen. FAME a flexible appearance modelling environment. *IEEE Trans. Medical Imaging*, 22(10):1319–1331, 2003.
- L. Zhu, Y. Chen, and A. Yuille. Learning a hierarchical deformable template for rapid deformable object parsing. *IEEE Trans. PAMI*, 2009.