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m Difficulties

Objective and Motivation

m Objective

Accurate object parsing: e.g. horse parsing
Find the object and delineate its boundary and parts
Input: noisy point cloud e.g. edge detection

Fast and robust
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Large amounts of missing data

Large amounts of noise
m Points in the background

Large shape variability due to
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m Articulations: position of head and legs




Object Parsing

m Find position of points of interest of the object

E.g. aligned boundary

m Fill-in missing data using the shape prior
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Edge detection

Parsing result




Active Shape Model

m  Overview:
Start with an initial shape (A,B)

Find most probable boundary edges along each normal
m Obtain a rough shape

Project rough shape to PCA space
L Obtaln new Shape (A,B) Normal to Model

Boundary Nearest Edge

Repeat 2-3 until convergence | on Nommal (€Y

m  ASM Advantages:
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Good dimensionality reduction
Works well on clean data



ASM Disadvantages

m Not accurate enough
Low dimensional representation cannot have high accuracy
Cannot be used for point clouds

m Depends on initialization
m Not clear what model it optimizes




Proposed Hierarchical Model

m Bayesian model

m PCA model (A,B) to limit shape variability
Serves as a backbone

m MRF deformation from PCA along normals
m Data term based on edge continuation



Hierarchical Model

» Shape C‘ N

m Bayesian model.
E(Oa A7 6) — Edata(C)+E(C’A, /8)+EP(A)+EP(/6)

Prior Models E(A), E (B)

E(C|A, B) = Zaa,/dQJrZ% —d;—

PCA Model
(A,B)

Object Shape
C=(C,.....G)

N—1
Noisy Point Cloud Edam Z 2 C@, O@H
(edge detection) i=1




Hierarchical Model

m Data Term: N1 PCA shape and DP data edges
Egata(C) = )Y ©(C;, Cipq)
1=1
)
—1 ifthere is a edge connecting P and Q
p(P,Q) = 5
O otherwise
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m Encourages deformations that have edges (chains of points)
connecting them



Hierarchical Model

» Shape C4 A

m Prior Term: | .
g RY-

E(CIA,B) =) oydi + > vi(d; —dij—1)
m Encourages small deformations that are parallel to the PCA

m Prior E(A) allows a range of orientations and scales

m Prior E(B) is from a multivariate normal based on the PCA

eigenvalues

2
Ey(8) = p Z &



Generative Model

m  Samples from the generative shape prior model
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Advantages and Challenges of the
Proposed Model

m Generative model

The shape model with prior can be sampled to get an idea on the
shape variability

Small number of parameters means good generalization power
m Flexible yet not too flexible
Deformation term allows deviations from the PCA shapes

Can accurately follow the object boundary
PCA backbone limits the flexibility

m Challenges

Cannot use any existing fast inference algorithm
MCMC too slow
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Towards an Inference Algorithm

m ASM inspired approach
Given the PCA shape (A,B3), the segmentation can be found by
dynamic programming
Given the segmentation C, the PCA shape can be found by least
squares

PCA shape and DP data edges Parsing result
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Towards an Inference Algorithm

m  ASM-inspired Local Optimization
Start with an initial PCA shape (A,B)
Find segmentation C by Dynamic Programming
Refine PCA shape (A,[3) by least squares
lterate 2-3 until convergence

m Drawbacks:

Depends on initialization
Obtains local minimum

PCA shape and DP data edges
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Inference Algorithm

m Proposed solution
Consider many initial candidates (A3, I=1,...,N
Run local optimization for each candidate
Pick lowest energy solution (C,A,B) as the result

cand

m Challenges:
How to choose the initial candidates?
How many candidates to use?

m  Our solution:
Good data-driven (bottom-up) candidates

Non-max suppression to avoid repeated candidates
Number of candidates chosen based on training error
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Related Work

m Recursive Compositional Models, Zhu, Chen & Yuille, 2009

Represents shape hierarchically using triplets of parts, each part is
a triplet of parts, etc.

Dynamic programming with pruning for inference

m  Multi-view Car Alignment, Li, Gu &Kanade, CVPR 2009
Shape model by Probabilistic PCA

m Deformation is i.1.d. Gaussian

Data term based on classifiers at the model points
m Uses intensity information
m Data less noisy than the edge detection

Shape proposals obtained by RANSAC

m Assumes 40% outliers
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Related Work

Hierarchical Shape Matching, Felzenswald & Schwartz 2007
Shape model based on a tree
Focus on shape matching and retrieval

Active Skeleton, Bal et al, ICCV 2009

Skeleton-based shape model
Used for object detection

Knowledge based segmentation, Besbes et al, CVPR 2009

Shape prior based on pairwise cliques
Primal-dual algorithm for inference

Active Basis Model, Wu et al, IJCV 2009

A template with local deformations
Not used for object parsing
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Preprocessing: Segment Chains

m Detected edges are traced into pixel chains
m Pixel chains are cut into chains of short segments

Edge detection Segment chains

17




Preprocessing: Smooth Curves

m Parts of segment chains are approximated

with polynomial curves
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Segment chains

Smooth Polynomial Curves

18




Shape Candidates

m  Match smooth curves from edge detection to parts of the PCA model
Find transformation and PCA coeffs in a least square sense
Uses weighted least square fitting from Rogers & Graham, ECCV'02

m From one or more smooth curves
m Bestfit N4 candidates are kept after non-max suppression

Smooth Polynomial Curves Best 50 PCA Shape Candidates
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One Curve CG

m For each long smooth curve
Match it to different parts of the PCA
Keep only matches that fit well

m NMS over all obtained candidates to keep best

\

Best candidate of CG1

cand
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Two or More Curve CG

m For each curve candidate from previous CG
For each smooth curve close enough
Match it to closest points on the candidate

Refit PCA
Keep only matches that fit well

m NMS over all obtained candidates to keep best N,
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Best candidate of CG2
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Error closest candidate
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Learning-based Optimization

Model and algorithm parameters are tuned on training set
for best results

Less than 20 parameters totally
CG parameters are tuned with a different measure
Smallest distance of a candidate to GT

Error on test set follows same trend
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Learning-based Optimization

m Segmentation parameters are tuned on training set for best results
> parameters
Error measure is average pt-pt error of the result on the training set
Coordinate descent optimization

m Error on test set follows same trend
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Weilzmann Dataset

m 327 horse images
Similar size and orientation
Boundary manually delineated
50 train, 50 validation, 227 test

m  Manual Annotation
14 control points on each horse
Smooth curves btw control pts
96 interpolated boundary points

Same legs annotated as Zhu et al,
2009

24



Quantitative Evaluation Horses

Method Train Test | Contour | Train | Test | Time/img
images | images | points error | error (sec)
ASM 50 227 96 25.35 | 29.05 <1
RCM 1 227 27 - 18.7 3
RCM 50 227 27 - 16.04 23
Ours, with CG1 50 227 96 12.79 | 15.58 44
Ours, with CG2 50 227 96 12.74 | 15.36 69
CG2 no head/legs 50 227 60 8.21 | 11.42 20
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Example Results
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Cow Dataset

m 111 Cowimages
Binary manual segmentation

m First 25 images for training
m 8/ Point annotation




Quantitative Evaluation Cows

Method Train Test | Contour | Train | Test | Time/img
images | images | points error | error (sec)
ASM 25 111 87 48.81 | 49.23 <1
RCM 1 111 27 - 15.8 3.5
Ours, with CG1 25 111 87 13.78 | 14.98 14
Ours, with CG2 25 111 87 11.73 | 10.81 28
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Example Results
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More Results
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More Results
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IMM Face Dataset

m Stegman et al, TMI 2003

m 40 frontal face iImages
58 Landmarks

m Cross-validation
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Quantitative Evaluation Faces

Method Uses Automatic | X-val. | Train | Test | Time/img
intensity init. folds | error | error (sec)
ASM No Yes 4 21.47 | 21.56 0.08
Stegman B/W No 37 - 3.14 0.13
Stegman Color No 37 - 3.08 0.28
Ours, with CG1 No Yes 4 6.54 | 6.64 0.33
Ours, with CG2 No Yes 4 5.30 | 5.57 0.43
30
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Example Results




e Results
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Conclusion

m A simple PCA model+ MRF deformation
Accurate
Can be used for object parsing from point clouds

m Local optimization initialized at good locations
Data-driven method for generating candidate locations

m Competitive with state of the art in object parsing
Not using any intensity information
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Future Work

Better shape model
Part based model plus deformation

Shape deformation beyond normals.

Allow some control points to move in 2D (Kainmueller et al,
MICCAI 2010)

Use intensity information
Learning-based data term
3D Object Parsing

Parsing 3D faces from 2D Images

3D Liver or spleen segmentation in CT/MRI
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