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Overview

Main Contributions

m A mathematical theory for Artificial Prediction Markets
Introducing the Artificial Prediction Market
Equations governing the market equilibrium price.
Equilibrium price uniqueness.

Relation to existing aggregation methods:
m Linear Aggregation
m Logistic Regression

Experimental comparison with Random Forest on real and
synthetic data.

A. Barbu, N. Lay. Supervised Learning Using Artificial Prediction Markets. SRCOS, June 2010



Notation

Main goal: Classification
m et QCRF be the feature space
m K possible classes (outcomes) {1,...,K}

Supervised learning:

m  Given training examples:
(%,y)€ Q x {1,...K}

m [earn afunction

Fx):Q—[0,1]%, f(x) = (f1(%), ..., fi (X))

such that f,(x) is a good approximation of p(Y=i|x)
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Real Prediction Markets

Forums (e.g. on the web) where contracts on future events
are bought and sold.

Contract prices are based on supply and demand.

Contract price fuses the information possessed by the
participants
Confident participants “put their money where their mouth is”

Have successfully predicted outcomes of elections and sports
games.

E.g. the lowa Electronic Market
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The lowa Electronic Market

lowa Electronic Market: 2008 Democratic Convention Market
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Contracts for each outcome are bought and sold at market price

0<c<1
Each contract pays $1 if outcome is realized.

Market price of contract represents a good approximation of the

probability that the corresponding event occurs
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The Artificial Prediction Market

m A simulation of the lowa Electronic Market:
Each class k =1, ...,K corresponds to a contract type
Market price is a vector ¢ = (c,..., ¢ ). We enforce 2. ¢,=1
Contract for class k sells at market price 0<c,<1 and pays 1 if the
outcome is k.

m A market participant is not a human, but a pair of:
A budget (or weight) 3.,

m Based on past ability in predicting correct class
A betting function

4 O K

[ 2\ o A 11 1~ 11K
P&, L) . 3L X |U, 1] — Y, 1]
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Betting Function

m [s the percentage of its budget a participant will allocate for
each class.

m |tis afunction

K
3(x,¢) 1 2 x [0,1]" = [0,1]%, 3 ép(x,¢) <1
k=1
m Dependson

The feature vector x
m E.g. through a learned classifier that predicts the outcome

K
h:Q—[0,11%, Y h(x)=1
k=1
The market price c.
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Constant Betting Functions

m Allocate same amount independent of the price
Pk (x,¢) = hi(x)
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Linear Betting Functions

¢r(x,¢) = (1 — ci)hp(x)

A. Barbu, N. Lay. Supervised Learning Using Artificial Prediction Markets. SRCOS, June 2010



Aggressive Betting Functions
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Avoiding Price Fluctuation

The Atrtificial Prediction Market is not a real market!

For each given observation xe €2

m \We know what each classifier will do for any market price c.

m \We can use this to avoid price fluctuation:

Can find the equilibrium price numerically based on some
equations.

The market is started at equilibrium price
All contracts are sold and bought instantly at that price.
The price does not change.
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Artificial Prediction Market Diagram
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Supervised Training of the Market

Idea: train the market participants

For each training example (x;, y;) let participants bid and
reward those that bought contracts for the correct outcome.

Classifiers will get rich or poor depending on their prediction
ability.
The result is a market with trained participants.

We will see that prediction performance is significantly better
than an untrained market
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Supervised Training of the Market

m The proportion of the budget spent on contracts for class k at
price c is ¢, (X,C)
m Thus the number of contracts purchased for class k is

— ﬁm@bkm (X7 C)

Ck
Training: For each training example (x,y), run the
Market Update (x,y) i.e.:

m Find the market equilibrium price c.
m [or each participant subtract from {3, the amount bet
K
Z 5m¢km(xa C)
k=1
m Add to 3, the amount won n, .

Nkm
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Market Update (x,y)

1. Compute equilibrium price ¢ based on the price equations.

2. Foreachm=1,.. M
Update participant m’'s budget as

5m¢ym(Xa c)

K
Bm < Bm — Z BmPrm (X, ¢)
k=1

Cy
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Budget Conservation

Main requirement:

m The total budget must remain the same after each market
update, independent of the outcome y.

m [his means:

M K Y
Z Z @mqbkm(x, c) — Z ﬁmﬁbym(X, C)

m This must hold for any y, since the market price ¢ must
depend only on X for prediction purposes.
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Price Equations

Theorem.

The total budget 2,5, is conserved after the Market Update(x,y),
independent of the outcome y, if and only if there exists n& R*

such that

M
Z BmPrm(X,c) =nc,, Vk=1 . ,K

m=1

m These are the equations that govern the market price c,

together with K
\ . — 1
L b/ﬂ 4
k=1
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Constant Betting Is Linear Aggregation

In the case of constant betting functions
Pk (x,¢) = hi(x)

the budget equations become
M

Z ﬁmhkm(X) — NcCg., \V/k — 1, ...,K

m=1

Can prove that n = || 8|1 = Z Bm

m=1
We obtain linear aggregation of classifiers

mhm(X) = \amth
Hﬂl\ Lﬁ () L ()

existent in Adaboost Random Forest etc
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Constant Betting Update Rule

m \We obtain a new online learning rule for linear aggregation:

Brr — B (1 — 1)) 4+ nll 3l
Pm Fm\ 177 il

m Bunea & Nobel, 2008 introduced online linear aggregation
with exponential weights, different from this rule.
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Price Uniqueness

m Reasonable assumption:

Betting functions should be monotonically decreasing i.e. if
contract price is higher, invest less.

Theorem (Monotonic Betting Functions).
If all betting functions @,,.(X,c,), m=1,...,M, k=1, ..,K are
continuous and monotonically decreasing, then for each

Market Update(x,y) there is a unique price c=(c,,...,Cx) Such
that the total budget |4\, is conserved.

m [t holds for the constant, linear and aggressive betting
functions.
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Two Class Formulation

m \Write c=(1-c,c), then the budget is conserved if and only if

¢S Bmdom(x,0) = (1 =) S Bmdim(x,c)

m This again has a unique solution that can be found easily by
the bisection method.
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Specialization

m |n Boosting and Random Forrest, all classifiers are
aggregated for any observation xeQ.

m The Market participants can be specialized
A participant can predict very well on a subregion of Q.
It will not bet on any x outside its region.

For each observation, a different subset of classifiers could
participate in betting

Example: a leaf node of a random tree
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Decision Tree Rules as Specialized Classifiers

m Decision tree rules (leaves) can perfectly classify training data
In their specialized domain.

Branch

Branch Domaim cosss
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Related Work in Economics

m Extensive recent work in Economics.

Plott'03, Manski'06, Perols’09 study the information fusion
capability of the market.

Plott’'03, Perols’09, use the parimutuel betting mechanisms, not the
lowa Market

None of them uses a supervised approach or specialization
All focus on two-class problems

Perols’09 evaluates on real datasets but participants are not
trained (have equal budgets).

m \We will see that training the participants significantly improves
market accuracy.
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Related Work in Statistics and Machine Learning

m Specialization is a sort of reject rule (Chow'70, Tortorella’04)
But for each participant
Not for the aggregated classifier

An overall reject rule can be obtained from the individual reject
rules

m Delegated Classifiers (Ferri'04)
Two classifiers with disjoint specialization domains
First classifier decides on easy instances
Second classifier decides on the rest

m Rule Ensemble (Friedman’08) combines leaves of random
trees with linear aggregation.
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Results on Synthetic Data

m [wo-class datasets coming from two 100D Gaussians.
True probability p(y = 1|x) can be computed analytically.
Evaluated for 50 Bayes error increments from 0.01 to 0.5.
Gaussian centers placed so that desired Bayes error is obtained
For each Bayes error, 100 datasets of size 200 were created.

m Totally 5000 datasets.

Mixture of Gaussians in 1D
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Evaluation Detalls

50 random trees were trained for each dataset.

The tree branches were used as the market participants.

Market Update was run on each data set

Betting functions were multiplied by n = 0.1 to limit the maximum bet.

Markets evaluated:

1. Random Forest = Constant betting with equal budgets
2. Trained Constant Betting

3. Trained Linear Betting

4. Trained Aggressive Betting

Two Evaluations:

m  Probability Estimation Error as E[||p™ — p||>] approximated with a
sample of size 1000.

m Misclassification error on a sample of size 1000
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Estimation Error

Probability Estimation Evaluation
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Probability Estimation Evaluation
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Real Data Results

m 21 datasets from the UC Irvine Machine Learning repository

Many are small (= 200 examples).

Training and test sets are randomly subsampled, 90% for training
and 10% for testing.

Exceptions are satimage and poker datasets with test sets of size
2000 and 100 respectively

m All results are averaged over 100 runs.

m Significance comparison tests (.<0.01):
Mean differences from RF results from Breiman’'01
Paired t-tests with our RF implementation
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Results on UCI Data

Table 1. Misclassification errors in percent (%) for 21 UCI datasets from the UC Irvine Repository. The markets evaluated
are Random Forest (RF), and Constant (CB), Linear (LB) and Aggressive (AB) betting.

Data Train Size | Test Size | Feat. | Cls | ADB | RFB RF CB LB AB
cancer 699 — 0 2 3.2 2.9 3.0 2.9 2.9 2.9
SONAT 208 — 6 2 15.6 15.9 14.8 14.1 14.3 14.1
vowel 090 — 10 11 4.1 3.4 3.3 3.1 e 3.2 3.1 e
diabetes T68 - 5 2 26.6 24.2 234 23.4 234 23.5
ecoll 336 — 8 8 14.8 12.8 13.1 13.0 13.0 13.1
CETTIIAT 1000 — 20 2 23.5 24.4 23.7 23.7 23.6 23.7
glass 214 — 0 6 22.0 20.6 20.0 20.1 20.1 20.2
ionosphere 351 - a4 2 6.4 7.1 5.8 5.7 5.7 5.T
letter-recognition 20000 - 16 26 3.4 3.5 3.3 3.2 3.2 e 3.2 e
satimage 4435 2000 a6 G 8.8 8.6 8.8 G e 5.7 e H.6 e
image 2310 — 19 T 1.6 2.1 1.8 1.6 e 1.6 e 1.6 e
vehicle 846 — 18 4 23.2 25.8 248 24.5 24.6 24.5
voting-records 435 - 16 2 4.5 4.1 3.0 3.0 3.0 3.0
car 1728 — 6 4 - — 2.4 1.2 e 1.4 e 1.2 e
poker 25010 1000000 10 10 - — 380 | 35.7e | 360 e 35T e
cylinder-bands 540 - a9 2 - - 20.3 20.2 20.1 20.0
veast 1454 - 0 10 - - 35.9 35.8 35.7 35.8
magic 19020 — 10 2 - — 12.0 11.7 » 11.8e | 118 e
king-rook-vs-king 28056 - § 15 - - 21.6 110 e | 11.8 e 11.0
connect-4 67557 - 42 3 - - 19.9 16.7 » 16.9 16.7 »
splice-junction-gene 3190 - 59 3 - - 4.9 16 e 4.6 4.6 e

m ADB and RFB are Adaboost and Random Forest from Breiman'01
m (B and AB perform best and significantly outperform RF in many cases
m Trained markets never performed significantly worse than RF
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Conclusion

A theory for Artificial Prediction Markets based on the
lowa Electronic Market:

m Online, supervised training of participants by updating their
budgets.

m Price equations that guarantee total budget conservation after
each budget update.

m Equilibrium price is unique under some mild assumptions.
m Specialized participants are fused very well by the market.

m Significantly outperforms Random Forest in many cases, in
both prediction and probability estimation.
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