The Artificial Prediction Market

Adrian Barbu
Department of Statistics
Florida State University
Joint work with Nathan Lay, Siemens Corporate Research

Overview

Main Contributions

- A mathematical theory for Artificial Prediction Markets
 - Loss function.
 - Relation to existing methods:
 - Linear Aggregation
 - SVM
 - Logistic Regression
 - Extension to regression estimation.
 - Experimental comparison with Random Forest and Adaboost

Motivation

Main goal: Classification

- Let $\Omega \subset \mathbb{R}^F$ be the instance space
- K possible classes (outcomes) {1,...,K}

Supervised learning:

- Given training examples:
 - $(\mathbf{x}_{i}, \mathbf{y}_{i}) \in \Omega \times \{1, \dots, K\}$
- Learn a function

$$f(x): \Omega \to [0,1]^K, f(x) = (f_1(x), ..., f_K(x))$$

such that $f_k(x)$ is a good approximation of p(Y=k|x)

The Iowa Electronic Market

Market setup:

- Contracts for each outcome are bought and sold at market price
 0 < c < 1
- Each contract pays \$1 if outcome is realized.
- Market price of contract represents a good approximation of the probability that the corresponding event occurs

The Artificial Prediction Market

- Goal: predict class probability p(y|x)
- Market formulation:
 - Simulate the Iowa Electronic Market
 - Market participants = classifiers
 - Solve market price equations
 - Obtain total budget conservation
 - No price fluctuations
 - Train the market using training examples $(\mathbf{x}_i, \mathbf{y}_i) \in \Omega \times \{1, ..., K\}$
 - Participants bet on instance x_i
 - Wins are based on contracts purchased for correct class y_i
 - Participants become rich or poor based on prediction ability
 - The trained market predicts better

Other Prediction Markets

- Perols 2009
 - Parimutuel betting with odds update
 - Participants are not trained (have equal budgets)
 - Evaluated on UCI datasets
- Using the Market Maker
 - Chen and Vaughan, 2010, Abernethy et al, 2011
 - Participants enter the market sequentially
 - Are paid according to a scoring rule
 - See Tuesday's tutorial
- Machine Learning Markets (Storkey 2011)
 - Participants bet to maximize a utility function
 - Equilibrium price is computed by optimization

The Artificial Prediction Market

- A simulation of the lowa Electronic Market:
 - Each class k = 1, ...,K corresponds to a contract type
 - Market price is a vector $c = (c_1, ..., c_K)$. We enforce $\sum c_k = 1$
 - Contract for class k sells at market price 0<c_k<1 and pays 1 if the outcome is k.
- A market participant is not a human, but a pair of:
 - 1. A budget (or weight) β_m
 - Based on past ability in predicting correct class
 - 2. A betting function $\phi(\mathbf{x},\mathbf{c}): \Omega \times [0,1]^K \to [0,1]^K$
 - 3. Percentage of the budget on each class a participant allocates.

Constant Betting Functions

Allocate same amount independent of the price

$$\phi_k(\mathbf{x}, \mathbf{c}) = h_k(\mathbf{x})$$

Linear Betting Functions

$$\phi_k(\mathbf{x}, \mathbf{c}) = (1 - c_k)h_k(\mathbf{x})$$

Aggressive Betting Functions

Buy/sell based on classifier estimation of p(y|x)

Artificial Prediction Market Diagram

Market Update (x,y)

- 1. Compute equilibrium price c based on the price equations.
- 2. For each m=1,...,M
 - Update participant m's budget as

$$\beta_m \leftarrow \beta_m - \sum_{k=1}^K \beta_m \phi_{km}(\mathbf{x}, \mathbf{c}) + \frac{\beta_m \phi_{ym}(\mathbf{x}, \mathbf{c})}{c_y}$$

Price Equations

Main requirement:

- The total budget must remain the same after each market update, independent of the outcome y.
- This means:

$$\sum_{m=1}^{M} \sum_{k=1}^{K} \beta_m \phi_{km}(\mathbf{x}, \mathbf{c}) = \sum_{m=1}^{M} \frac{\beta_m \phi_{ym}(\mathbf{x}, \mathbf{c})}{c_y}$$

- This must hold for any y, since the market price c must depend only on x for prediction purposes.
- We also have $\sum_{k=1}^{K} c_k = 1$

Solving the Price Equations

- Price Uniqueness
 If $\phi_k(\mathbf{x}, \mathbf{c})/c_k$ are monotonic, the price c is unique
- Holds for our betting functions.
- Solving the price equations
 - Analytically when possible:
 - For Constant Market
 - Two class linear market.
 - Numerically:
 - Double bisection method
 - Mann Iteration (faster)

Constant Betting is Linear Aggregation

In the case of constant betting functions

$$\phi_k(\mathbf{x}, \mathbf{c}) = h_k(\mathbf{x})$$

we obtain linear aggregation of classifiers

$$\mathbf{c} = \frac{1}{\|\beta\|_1} \sum_{m=1}^{M} \beta_m h_m(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m h_m(\mathbf{x})$$
 existent in Adaboost, Random Forest, etc.

We obtain a new online learning rule for linear aggregation:

$$\beta_m \leftarrow \beta_m(1-\eta)) + \eta \|\beta\|_1 \frac{\beta_m h_{ym}(\mathbf{x})}{\sum_{i=1}^M \beta_i h_{yi}(\mathbf{x})}$$

Logistic Regression Market

■ If $x \in \mathbb{R}^{M}$, then picking the betting functions

$$\phi_{1m}(\mathbf{x}, 1 - c) = (1 - c)(x_m^+ - \log(1 - c)) \quad x_m^+ = x_m I(x_m > 0)$$

$$\phi_{2m}(\mathbf{x}, c) = c(x_m^- - \log c) \quad x_m^- = x_m I(x_m \le 0)$$

Gives the price equilibrium equation

$$\sum_{m=1}^{M} \beta_m c (1-c)(x_m - \log(1-c) + \log c) = 0$$

$$\Rightarrow \log \frac{1-c}{c} = \sum_{m=1}^{M} \beta_m x_m = \mathbf{x}\beta$$

Which gives the logistic regression model

$$p(Y = 1|\mathbf{x}) = c = \frac{1}{1 + \exp(\sum_{m=1}^{M} \beta_m x_m)}$$

Logistic Regression Market Update

This has the update rule that conserves $\sum_{m=1}^{M} \beta_m$

$$\beta_m^{t+1} = \beta_m^t - \eta \beta_m^t \left(x_m - \mathbf{x} \beta^t \right) \left(y - \frac{1}{1 + \exp(\mathbf{x} \beta^t)} \right)$$

It resembles the online logistic regression update rule

$$\beta_m^{t+1} = \beta_m^t - \eta x_m \left(y - \frac{1}{1 + \exp(\mathbf{x}\beta^t)} \right)$$

An example of Logistic betting

Kernel Method for the Market

- Each instance x_i is a participant
- Each participant given as

$$\mathbf{h}_m(\mathbf{x}) = \begin{cases} \mathbf{e}_1 \cos \theta & \cos \theta \ge 0 \\ -\mathbf{e}_2 \cos \theta & \cos \theta < 0 \end{cases} \quad \cos \theta = \frac{\mathbf{x}^T \mathbf{x}_m}{\|\mathbf{x}\| \|\mathbf{x}_m\|}$$

Has decision boundary

$$h(\mathbf{x}) = \operatorname{sgn}\left(\sum_{m=1}^{M} \frac{\beta_m}{\|\mathbf{x}_m\|} (2y_m - 3)\mathbf{x}_m^T \mathbf{x}\right)$$

Kernel Method for the Market

Decision boundary

$$h(\mathbf{x}) = \operatorname{sgn}\left(\sum_{m=1}^{M} \frac{\beta_m}{\|\mathbf{x}_m\|} (2y_m - 3)\mathbf{x}_m^T \mathbf{x}\right)$$

- Can use the RBF Kernel Trick for nonlinear boundaries
 - No margin though

Figure 3: Left: 1000 training examples and learned decision boundary (right) for an RBF kernel-based market from eq. (8) with $\sigma = 0.1$. Right: estimated probability function.

Maximum Likelihood

The Constant Market maximizes the log likelihood

$$L(\beta) = \frac{1}{N} \sum_{n=1}^{N} \log c_{y_n}(\mathbf{x}_n; \beta)$$

The update

$$\beta_m^{t+1} = (1 - \eta)\beta_m^t + \eta \beta_m^t \frac{1}{N} \sum_{n=1}^N \frac{h_{y_n m}(\mathbf{x}_n)}{c_{y_n}(\mathbf{x}_n; \beta^t)}$$

can be viewed as a gradient ascent on $L(\beta)$

The Market update is stochastic gradient ascent

$$\beta_m^{t+1} = \left(1 - \frac{1}{N}\eta\right)\beta_m^t + \frac{1}{N}\eta\beta_m^t \frac{h_{y_n m}(\mathbf{x}_n)}{c_{y_n}(\mathbf{x}_n; \beta^t)}$$

Batch vs Incremental Market Updates

Loss functions for both the batch and Market (incremental) updates.

Specialization

- In Boosting and Random Forrest, all classifiers are aggregated for any observation $x \in \Omega$.
- The Market participants can be specialized
 - A participant can predict very well on a subregion of Ω .
 - It will not bet on any x outside its region.
 - For each observation, a different subset of classifiers could participate in betting
 - Example: a leaf node of a random tree

Decision Tree Rules as Specialized Classifiers

 Decision tree rules (leaves) can perfectly classify training data in their specialized domain.

Real Data Results

- 21 datasets from the UC Irvine Machine Learning repository
 - Many are small (≈ 200 examples).
 - Training and test sets are randomly subsampled, 90% for training and 10% for testing.
 - Exceptions are satimage and poker datasets with test sets of size
 2000 and 10⁶ respectively
- All results are averaged over 100 runs.
- Significance comparison tests (α <0.01):
 - Mean differences from RF results from Breiman'01
 - Paired t-tests with our RF implementation

Results on UCI Data

Table 1. Misclassification errors in percent (%) for 21 UCI datasets from the UC Irvine Repository. The markets evaluated are Random Forest (RF), and Constant (CB), Linear (LB) and Aggressive (AB) betting.

0 100111 1 01000 (101)		(/,	(11)		-98-0001	()				
Data	Train Size	Test Size	Feat.	Cls	ADB	RFB	RF	CB	LB	AB
cancer	699	_	9	2	3.2	2.9	3.0	2.9	2.9	2.9
sonar	208	_	60	2	15.6	15.9	14.8	14.1	14.3	14.1
vowel	990	_	10	11	4.1	3.4	3.3	3.1 ●	3.2	3.1 ●
diabetes	768	_	8	2	26.6	24.2	23.4	23.4	23.4	23.5
ecoli	336	_	8	8	14.8	12.8	13.1	13.0	13.0	13.1
german	1000	_	20	2	23.5	24.4	23.7	23.7	23.6	23.7
glass	214	_	9	6	22.0	20.6	20.0	20.1	20.1	20.2
ionosphere	351	_	34	2	6.4	7.1	5.8	5.7	5.7	5.7
letter-recognition	20000	_	16	26	3.4	3.5	3.3	3.2 ●	3.2 ●	3.2 ●
satimage	4435	2000	36	6	8.8	8.6	8.8	8.6 •	8.7 ●	8.6 ●
image	2310	_	19	7	1.6	2.1	1.8	1.6 •	1.6 •	1.6 •
vehicle	846	_	18	4	23.2	25.8	24.8	24.5	24.6	24.5
voting-records	435	_	16	2	4.8	4.1	3.0	3.0	3.0	3.0
car	1728	_	6	4	_	_	2.4	1.2 •	1.4 •	1.2 •
poker	25010	1000000	10	10	_	_	38.0	35.7 •	36.0 ●	35.7 ●
cylinder-bands	540	_	39	2	_	_	20.3	20.2	20.1	20.0
yeast	1484	_	9	10	_	_	35.9	35.8	35.7	35.8
magic	19020	_	10	2	_	_	12.0	11.7 •	11.8 ●	11.8 •
king-rook-vs-king	28056	_	6	18	_	_	21.6	11.0 ●	11.8 ●	11.0 •
connect-4	67557	_	42	3	_	_	19.9	16.7 •	16.9 •	16.7 •
splice-junction-gene	3190	_	59	3	_	_	4.9	4.6 •	4.6	4.6 ●

- ADB and RFB are Adaboost and Random Forest from Breiman'01
- CB and AB perform best and significantly outperform RF in many cases
- Trained markets never performed significantly worse than RF

Application: Lymph Node Detection

- About 2000 candidate lymph node centers are obtained with a trained detector (Barbu et al, 2012)
- At each candidate, a segmentation is obtained
- From each segmentation17000 features are extracted
- ~30 are selected by Adaboost

Detected lymph node candidates

Example Axillary Region

Detected LN candidates

Detected Lymph Nodes

Detected Lymph Nodes

A Market of Classifier Bins

Adaboost is based on histogram classifiers with 64 bins

- Converted to Constant Market
 - Each bin is a specialized participant bidding for one class
 - Initial budgets are the Adaboost coefficients
 - Totally 2048 participants
 - Weighted update with $w_{+}=0.5/N_{+}$, $w_{-}=0.5/N_{-}$

Lymph Node Detection Results

- Detection rate at 3FP/vol (clinically acceptable)
- Six fold cross-validation

Lymph Node Detection Results

- Market performance at 7 epochs
- *p*-value 0.028

The Regression Market

- Extend class labels to have "uncountably many" labels
- Participants' bets and prices become conditional densities
- Equilibrium price and updates generalize
- As with Classification Market, it maximizes log likelihood and minimizes an approximation of the $E[KL(p(y|x),c(y|x;\beta)].$

The Regression Market

- The proportion of the budget spent on cony acts for "class" at price $c(y|\mathbf{x};\boldsymbol{\beta})$ is $h(y|\mathbf{x})$
- \blacksquare The number of contracts purchased for y is

$$n_m(y) = \beta_m \frac{h_m(y|\mathbf{x})}{c(y|\mathbf{x};\boldsymbol{\beta})}$$

Introduce reward kernel K(t; y) that rewards for "almost" correct predictions (e.g. Gaussian, Dirac Delta).

winnings =
$$\int_Y K(t;y)n_m(t)dt$$

Constant Betting Update Rule

This gives the update rule:

$$\beta_m \leftarrow \beta_m + \eta \beta_m \left(\int_Y K(t; y) \frac{h_m(t|\mathbf{x})}{c(t|\mathbf{x}; \boldsymbol{\beta})} dt - 1 \right)$$

- \blacksquare η caps the total proportion bet
- This prevents instantaneous bankruptcies (i.e. $\beta = 0$)
- \blacksquare η is also the learning rate.

Constant Betting Update Rule: Delta Update

• When $K(t; y) = \delta(t - y)$

$$\beta_m \leftarrow \beta_m + \eta \beta_m \left(\frac{h_m(y|\mathbf{x})}{c(y|\mathbf{x})} - 1 \right)$$

- Same update rule as classification market.
- Still improves aggregation but prone to overfitting.

Constant Betting Update Rule: Gaussian Update

When

$$K(t;y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(t-y)^2}{2\sigma^2}}$$

Have to evaluate an integral. Use Gaussian-Quadrature.

$$\beta_m \leftarrow \beta_m + \eta \beta_m \left(-1 + \frac{1}{\sqrt{\pi}} \sum_{i=1}^n \omega_i \frac{h_m(y + \sqrt{2}\sigma t_i | \mathbf{x})}{c(y + \sqrt{2}\sigma t_i | \mathbf{x})} \right)$$

- t_i , ω_i are the Hermite-Gauss nodal points and weights.
- lacksquare should reflect noise level of training data.

Loss Examples

Training, test RMSD and loss for abalone and cpu-performance data sets

Real Data Results

Table 1. Table of MSE for forests and markets on UCI and LIAAD data sets. The F column is the number of inputs, Y is the range of regression, RFB is Breiman's reported error, RF is our forest implementation, DM is the Market with delta updates, and GM is the Market with Gaussian updates. Bullets/daggers represent pairwise significantly better/worse than RF while $\pm / -$ represent significantly better/worse than RFB.

than Kr while $\pm /-$ represent significantly better/worse than Kr B.									
Data	N_{train}	$N_{ m test}$	F	Y	RFB	RF	DM	GM	
abalone	4177	_	8	[1.00, 29.00]	4.600	4.571	4.571	4.571	
friedman1	200	2000	10	[4.30, 26.03]	5.700	4.343+	$4.335 \bullet +$	$4.193 \bullet +$	
friedman2	200	2000	4	[-167.99, 1633.87]	19600.0	19431.852	19232.482•	$18369.546 \bullet +$	
friedman3	200	2000	4	[0.13, 1.73]	0.022	0.028-	0.028•	$0.026 \bullet -$	
housing	506	_	13	[5.00, 50.00]	10.200	10.471	10.130•	10.128●	
ozone	330	_	8	[1.00, 38.00]	16.300	16.916	16.925	16.917	
servo	167	_	4	[0.13, 7.10]	0.246	0.336	0.295	0.322	
ailerons	7154	6596	40	[-0.00, -0.00]	_	2.814e-008	2.814e-008•	2.814e-008•	
auto-mpg	392	_	7	[9.00, 46.60]	_	6.469	6.444	6.405●	
auto-price	159	_	15	[5118.00, 35056.00]	_	3823550.43	3723413.430	3815863.98	
bank	4500	3693	32	[0.00, 0.67]	_	7.238e-003	7.212e-003•	7.210e-003•	
breast cancer	194	_	32	[1.00, 125.00]	_	1112.270	1112.509	1108.325	
cartexample	40768	_	10	[-12.69, 12.20]	_	1.233	1.233†	1.232•	
computeractivity	8192	_	21	[0.00, 99.00]	_	5.414	5.398•	5.414†	
diabetes	43	_	2	[3.00, 6.60]	_	0.415	$0.426\dagger$	0.415	
elevators	8752	7847	18	[0.01, 0.08]	_	9.319e-006	9.288e-006	9.225e-006	
forestfires	517	_	12	[0.00, 1090.84]	_	5834.819	5844.493†	5680.131•	
kinematics	8192	_	8	[0.04, 1.46]	_	0.013	0.013•	0.013•	
machine	209	_	6	[6.00, 1150.00]	_	3154.521	2991.798•	3042.336	
poletelecomm	5000	10000	48	[0.00, 100.00]	_	29.813	28.855•	29.863†	
pumadyn	4499	3693	32	[-0.09, 0.09]	_	9.237e-005	8.917e-005•	8.888e-005•	
pyrimidines	74	_	27	[0.10, 0.90]	_	0.013	0.013	0.012	
triazines	186	_	60	[0.10, 0.90]	_	0.015	0.015	0.015	

- RFB is Regression Forest from Breiman'01
- GM, DM perform best and significantly outperforms RF in most cases

Clustering Regression Tree

- Want to "regress" multimodal responses (e.g. circle).
- Generalize Regression Tree to cluster Y values
- Use Market to "weed out" poorly clustered branches of a forest.

A single clustering regression tree on the spiral data.

Conclusion

A theory for Artificial Prediction Markets based on the lowa Electronic Market:

- Aggregate classifiers, regressors, and densities.
- Very simple update rules.
- Logistic Regression and Kernel methods.
- Can be used for both online and offline learning.
- Significantly outperforms Random Forest in many cases, in both prediction and probability estimation.

Future Work

- Generalization error and VC dimension of the Market
- Feature (participant) selection
- Learning betting functions
- Regression Market applications in Computer Vision and Medical Imaging
- Other types of Market participants

References

- N. Lay, A. Barbu. Supervised Aggregation of Classifiers using Artificial Prediction Markets. ICML 2010
- N. Lay, A. Barbu. The Artificial Regression Market. Arxiv.
- A. Barbu, M. Suehling, X. Xu, D. Liu, S. K. Zhou, D.
 Comaniciu. Automatic Detection and Segmentation of Lymph Nodes from CT Data. IEEE Trans Medical Imaging, 31, No. 2, 240–250, 2012.
- A. Barbu, N. Lay. An Introduction to Artificial Prediction Markets. JMLR 2012