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ABSTRACT

Active contours based on level sets are popular segmentation
algorithms but their local optimization approach makes their
results to depend on initialization, especially for edge-based
formulations. In this paper we present a novel energy min-
imization method based on directed graph optimization that
minimizes the same type of active contour energy function
without the need of an initialization.

Index Terms— active contours, Chan-Vese algorithm, di-
rected graph optimization

1. INTRODUCTION

Many segmentation problems are faced with the need to re-
fine a rough segmentation (e.g. obtained by a Convolutional
Neural Network or by an object detector) to closely fit the
object boundaries. In such cases the image edges could pro-
vide accurate clues where the boundary should be located, but
the challenge is how to deal with missing edges or with extra
edges belonging to other structures in the image.

Active contours are a possible solution to this problem,
which evolve a curve ¢ : [a,b] — R? to minimize the active
contour energy

b
E(e) = / Bautale(t) + Eamo(c(t)]dt (1)

The energy has a data term E 44, (c(t)) that is designed to pre-
fer edges of high gradient locations, and a smoothness term
Esmo(c(t)) that penalizes high curvatures or the curve length.

Evolving the curve to minimize the energy (1) can be dif-
ficult because many times the goal is to obtain closed curves
without self-intersections. For this reason most of the mod-
ern works on 2D active contours use the level set formulation
[1], which regards the curve as the zero level set of a 2D sur-
face and evolves the surface instead of the curve. Notable
examples include the Geodesic Active Contours [2] and the
Chan-Vese algorithm [3] that uses a region-based data term.
The level set methods evolve the curve using a variational ap-
proach based on partial differential equations. For this reason,
the results of the level set methods are local optima that de-
pend on initialization.

In this paper we propose a novel approach to minimizing
the active contour energy by representing the curves as a con-
catenation of small smooth curves, and each small smooth

curve is further represented as an edge in a directed graph.
The edge direction indicates on which side the foreground ob-
ject should be. This way each curve is represented as a path
in a directed graph and the energy minimization is solved by
finding the minimum path in the graph.

This formulation allows handling open and closed curves
in a unified framework. Curve self-intersections are avoided
by using a directed graph instead of an undirected graph.

A minimum path approach for optimizing active contours
has been used in [4]. However, for optimization they still used
the level set approach [1].

A graph optimization approach to finding open curves in
images was proposed in [5]. Here short curves were detected
and used as nodes of an undirected graph. Smooth curves
were proposed between the short segments using a principal
component analysis shape model and their weights were com-
puted using another trained classifier. Finally, a long curve
was obtained by the all-pairs shortest path algorithm. Our pa-
per takes this idea further based on two key aspects. First,
it uses directed edges to specify that the object of interest in
on the right or on the left of the curve. Thus it is able to
segment objects by obtaining closed directed paths and to ob-
tain partial segmentations with open paths. Second, the idea
has been generalized to optimize a standard active contour
energy with a curvature-based smoothness instead of ad-hoc
learning-based curve weights.

Directed edges and curvature regularization have been
used in [6] for region based segmentation. Our approach uses
a different representation and is aimed at applications where
the object information is around the contour and not inside
the regions. A shortest path approach with curvature regu-
larization has also been used in [7], but with a representation
requiring a very large undirected graph followed by varia-
tional optimization, whereas we use a small directed graph
without the need to the variational step.

A dynamic programming approach to object segmentation
and parsing has also been used in [8], where the boundary is
represented as a chain of segments and dynamic programming
is used to find the chain that best fits the boundary. Besides
being quite inefficient, their approach does not use directed
edges and sometimes obtains results containing degenerate
regions or self-intersections.



2. METHOD DESCRIPTION

This work will use the energy (1), which however depends
on the curve parameterization. To have an additive cost, we
will use the arc length parameterization, so the curves are de-
fined as ¢ : [0,/] — R? and ||c/(¢)|| = 1,Vt € [0,1]. Then
if a curve ¢ : [0,1; + lz] — R? is written as the concate-
nation of two curves ¢; : [0,1;] — R2 ¢1(t) = c(t) and
ca 1 [0,12] — RZ%,ca(t) = c(t + 1y) that also have the arc
length parametrization, then E(c) = E(c1) + E(cz). This
additivity to concatenation is important to make it possible to
map the curve energy as the cost of a path in a graph.

It is worth noting that even if a curve ¢ : [a,b] — R2
doesn’t have the arc length parameterization, we can still
compute the energy (1) for the arc length parameterization of

the curve using the equation:
b

(Edata(c(t)) + Esmo(c(W))I| (D)]1dt  (2)

We will rr;lap the optimization of the energy (2) to a di-
rected graph optimization problem. The energy minimizing
curve will have a direction, which has the meaning that the
object that is segmented is on a specific side of the curve.
For example if we use the “right hand rule” it means that the
object is on the right side of the curve when following the di-
rection of the curve. This “right hand rule” allows us to treat
in a unified manner a partial segmentation of the object as an
open curve and a full segmentation as a closed curve.

E(c) =

2.1. Constructing the Directed Graph

To construct the directed graph we will use a Canny edge de-
tection [9], which will provide image based evidence for the
graph nodes. We will also need a gradient field which will
provide the evidence for the directed graph edges.

Graph nodes. The nodes of the graph are the centers
of short line segments obtained from the edge detection by
finding chains of consecutive pixels and approximating them
with short line segments (e.g. 6 pixels long). This process is
illustrated in Figure 1.

&

Fig. 1. Left: an edge detection is used to obtain the graph
nodes. Right: The edge pixes are chained and the chains are
cut into short line segments. The graph nodes are the centers
of the short segments.

Each short line segment is endowed with a direction ob-
tained using the gradient field at the segment center location,
as illustrated in Figure 2. The segment direction is either
d = (ds,dy) = p—qord = (d;,dy) = q— p in such
a way that if g = (g, g,) is the gradient at the center, then
d x g must point up, which means d, g, — dyg, > 0.

Fig. 2. Left: a gradient field is used to obtain the directed
graph edges. Right: the short segments are oriented so that
the gradient field g is to the left of the segment direction d.

Graph edges. The graph edges are obtained between
pairs of nodes (v;,v;) that are less than a certain distance
d™** from each other and have compatible directions, as il-
lustrated in Figure 3. For that, if their directions are vectors
d;,d; (obtained from the gradient field as described above)
and the direction connecting the two nodes is d, then the
nodes are compatible if and only if (d - d;)(d - d;) > 0.
Observe that this condition does not depend on whether d =
vi—vjord=v; — v,

di d Vj

Vi
Fig. 3. Left: there are no edges between nodes with incompat-
ible directions. Right: for nodes with compatible directions,
smooth curves are fitted as degree three polynomials.

Curve candidates. Each graph edge E;; = (v;,v;) is
paired with a smooth curve ¢;; beginning in v; and ending in
v;. First a 2D coordinate system is built with the origin in v;,
the x-axis being v; — v; and the y axis orthogonal to it. Then
a degree three polynomial is fitted to pass through the two
graph nodes and be tangent to the short segments at those two
points. Observe that these four constraints fully determine the
degree three polynomial.

Edges E;; whose curves have length more than twice the
distance ||v; — v;|| are removed because the curves for sta-
bility reasons. An example of the obtained directed graph for
the edge map from Figure 1, the gradient field from Figure 2
and d™** = 40 is shown in Figure 4.

Fig. 4. Example of a directed graph obtained for the edge map
from Figure 1 using the gradient field from Figure 2.

The edge direction intuitively represents the side on which
the object is relative to the curve. This makes it possible to
use directed graph optimization to segment the whole object
or only a part of the object and to avoid self-intersections.



Fig. 5. Curves corresponding to minimum paths between different pairs of graph nodes.

Graph edge weights. The weight of the edge F;; with
its associated curve c¢;; is the cost E(c;;) defined in eq. (2).
Special attention is paid to the data term to be constructed in
such a way that it is always nonnegative. In our experiments
we used as Fy,t, (%) the distance transform to the edge detec-
tion result. For the smoothness term F,,,(c(t)) we used the
absolute value of the curvature at ¢(t) = (x(¢),y(t)),
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2.2. Directed Graph Optimization
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We now have a directed graph where the graph nodes are
points on the edge detection map, the graph edges are paired
with smooth curves and have directions that tell on which side
of the curve would the object be if this curve was on the ob-
ject boundary. Finally the edge weights represent partial ac-
tive contour costs along the smooth curves. Observe that the
edge weights are all nonnegative.

On this graph we run the Floyd-Warshall algorithm [10,
11] to obtain the shortest paths between all the node pairs.
The shortest paths and their costs are stored in two matri-
ces, a “next” matrix IV, with N;; specifying the next node
on the shortest path from node 7 to node j and a cost matrix
C with C;; specifying the cost of the shortest path from ¢ to
7. The “next” matrix N can be visualized as a directed graph,
as shown in Figure 5.

Finding minimum cost curves. The /N matrix gives the
minimum directed path between any pairs of nodes for which
such a directed path exists. For a given path, the associated
smooth curves for each directed edge are concatenated to ob-
tain a an associated minimal cost smooth curve between the
pair of nodes. Examples of curves between different pairs of
graph nodes obtained this way are shown in Figure 5.

Finding the minimum cost closed curve. The Floyd-
Warshall algorithm gives in the diagonal elements C;; the
minimum cost of the shortest loop starting and ending in 4,
if such a loop exists. Then the closed curve of minimum cost
starts and ends at ¢ = argmin; Cj;.

Observe that the smoothness term E,,0(c) = [ |r(s)ds|
is scale invariant, since E,,,(c) = Egsmo(Rc) for any scaling
factor R > 0. However, the data term is not scale invariant, so
longer curves might have a higher overall cost and therefore
shorter curves will be preferred. If this is the case one could
search for the closed curve with the smallest normalized cost
i = argmin,; C;;/len(c;), where len(c;) is the length of the

curve starting and ending at node 7. For the graph from Figure
4, the minimum cost closed curve is shown in Figure 5, left,
but the minimum normalized cost curve is shown in Figure 6.

Fig. 6. The segmentation result.

Handling multiple regions. After the first region has
been obtained, other regions can be added iteratively by com-
puting the distance transform of the current segmentation and
finding the minimum cost region that has all nodes at distance
at least 1 from the segmentation. The stopping criterion could
be a maximum number of regions or a cost threshold for each
region. An example of two regions segmented this way is
shown in the first row of Figure 7. Holes could be added in
a similar way by computing the distance transform inside the
existing regions.

3. RESULTS

We will experiment with two dataset, the Weizmann horse
dataset [12] and a liver dataset. In both cases we will compare
with the Chan-Vese (CV) algorithm [3] and the Geodesic Ac-
tive Contours (GAC) algorithm [2]. For both of these we used
the built-in Matlab implementation and we tuned the smooth-
ness parameter to obtain the best result.

The Weizmann dataset has 328 images of horses and their
corresponding manually delineated masks. We used the green
channel as the input to all the algorithms so the horses have
more contrast against the background. The liver images are
part of a standard multi-organ dataset [13]. This dataset con-
tains 82 CT volumes in which different organs were manually
annotated by a radiologist. All the 17 volumes that had liver
annotations were used for evaluation. From each volume 11
slices at location z = 100, 105, ..., 150 have been used, for a
total of 187 images. Preprocessing included obtaining a rough
liver segmentation with a CNN, an intensity histogram from
inside the rough segmentation, finally obtaining a liver likeli-
hood map using the histogram only. The likelihood map and
the initial CNN segmentation were used as input for the four
methods evaluated, and results are shown in Figure 7.



Fig. 7. Results from left to right: C

The Chan-Vese and GAC were run for 100 iterations, with
smooth factor O (horses) and 5 (livers), initialized from a cen-
tral circle of diameter half the smallest image size (horses)
and from the CNN segmentation (livers). Our graph based al-
gorithm was run on the edge detection image with the short
segments of length 6 pixels. For the gradient field necessary
to obtain the edge directions, we looked at two alternatives:
the image gradient or the gradient of the distance transform
(DT) to the image center (horses) or to the CNN segmenta-
tion (livers). The number of output regions was one for the
horses and at most two for the livers. Regions less than 1000
pixels were removed for the livers for all methods.

The results are summarized in Table 1, together with the
Dice coefficient of the initial contour used for the level set
methods. The GAC had difficulties advancing the contour
for the horses because of poor initialization. The Chan-Vese
algorithm did very well, outperforming our methods, but it
uses the region information while our methods mostly use
edge information. Our graph based approach with DT gra-
dient obtained very good results, outperforming the GAC on
both datasets, The image gradient based approach performed

an-Vese [3] , Geodesic Act

i_ve Contours [2], ours w/ fmaige gradieﬁt, ours w/ DT gradient.

very well on the livers and quite poorly on the horses, because
of many gross errors due to other edges in the image.

Table 1. Average Dice coefficients on two datasets for the
four methods that were evaluated.

Method Horses Livers
Initialization 51.49 83.40
Geodesic Active Contours 51.53 88.64
Chan-Vese 68.22 90.22
Ours w/ Image Gradient  46.76 89.46
Ours w/DT Gradient 61.81 89.99

4. CONCLUSION

This paper presented a novel approach to image segmentation
by active contours, which maps the optimization to the prob-
lem of finding shortest paths in a directed graph. The graph
nodes are points on the edges of the image, and the graph
edges are between nearby nodes and have direction dictated
by a gradient field. Experiments on two datasets show that the
proposed approach obtains better results than Geodesic active
Contours, and comparable to the Chan-Vese algorithm which
uses region instead of edge-based information.
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