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ABSTRACT

Dictionary learning is a popular method for obtaining sparse
linear representations for high dimensional data, with many
applications in image classification, signal processing and
machine learning. In this paper, we introduce a novel dic-
tionary learning method based on a recent variable selection
algorithm called Feature Selection with Annealing (FSA).
Because FSA uses an L0 constraint instead of the L1 penalty,
it does not introduce any bias in the coefficients and obtains
a more accurate sparse representation. Furthermore, the L0

constraint makes it easy to directly specify the desired spar-
sity level instead of indirectly through a L1 penalty. Finally,
experimental validation on real gray-scale images shows that
the proposed method obtains higher accuracy and efficiency
in dictionary learning compared to classical methods based
on the L1 penalty.

Index Terms— sparse coding, dictionary learning, FSA,
LARS

1. INTRODUCTION

Sparse dictionary learning is a feature learning method that
aims to represent the input data as a linear combination of a
small number of elements of a dictionary, called atoms. Un-
like principal component analysis, the atoms in the dictionary
are not required to be orthogonal. Furthermore, the dictionary
usually contains more atoms that the dimensionality of the
data, which means that the dictionary gives an over-complete
representation.

In 1997, Olshausen [1] introduced the idea of sparse cod-
ing with an overcomplete basis, as a possible explanation of
the receptive cells in the V1 part of the brain. There has been
a lot of work on sparse coding since then, which could be
grouped into different categories based on the type of regu-
larization that was used to obtain the sparse representation. A
good survey of the different methods has been done in [2].

Given an observation x ∈ Rd and a dictionary D with p
atoms as a d × p matrix, sparse coding can be obtained by
minimizing the l0-norm with the constraint of exact recon-
struction [3]:

α = argmin ||α||0 s.t. x = Dα

where ||α||0 is the number of nonzero elements in the sparse
vector α.

Because l0-norm minimization is an NP-hard problem, a
popular approximation used in machine learning and statistics
[4, 5] is the l1-norm minimization, especially the Lasso [6]:

α = argmin
α
||x−Dα||22 + λ∥α∥1, (1)

where the penalty parameter λ can be tuned for a desired spar-
sity of the solution. One can also obtain the entire regulariza-
tion path using least angle regression(LARS)[7]. Recently,
other more efficient methods for global optimization of the
convex loss (1) have been proposed using gradient projection
and homotopy [8].

Another way to introduce sparse coding is through lp-
norm minimization, where 0 < p < 1. There are three typ-
ical algorithms for lp minimization [9]: General Iteratively
Reweighted Least Squares (GIRLS), Iteratively Threshold-
ing Method (ITM) and Iteratively Reweighted Least Squares
(IRLS). Experimental comparison of the three methods re-
vealed that IRLS has the best performance and is the fastest
as well. Furthermore, lp minimization with IRLS has been
used for robust face recognition [10].

Most recent methods for dictionary learning are based on
regression with sparsity inducing penalties such as the convex
l1 penalty or nonconvex penalties such as the SCAD penalty
[11]. Examples include the online dictionary learning [12]
and Fisher discrimination dictionary learning [13]. Dictio-
nary learning has been applied to face recognition using dis-
criminative K-SVD [14].

In this paper we will investigate a novel approach to
sparse dictionary learning based on a recent l0-based opti-
mization method named Feature Selection with Annealing
(FSA)[15]. In our context of dictionary learning, FSA can be
used for solving the l0-constraint optimization problem:

α = argmin
||α||0≤k

||x−Dα||22

where k is the desired number of nonzero entries of α. Com-
pared with Lasso, the FSA method can directly control the
sparsity of the solution and has better performance than l1-
norm and lp-norm minimization methods.

Through experiments we will see that FSA obtains a more
accurate reconstruction of the data for the same sparsity level
than LARS or ILRS, while being faster. We will also see



Fig. 1. Learned dictionaries. Left: dictionary obtained using
the l1 penalty. Right: dictionary obtained using FSA

that the obtained dictionary can be used for classification on
the MNIST data using different learning methods, obtaining
better results than LARS, IRLS and direct learning without
sparse coding.

2. DICTIONARY LEARNING WITH FSA

According to the classical dictionary learning [1], suppose we
have an input data set X ∈ Rd×n, each column representing
an m×m image patch and n >> d is the number of extracted
image patches. The goal of dictionary learning is to find a
dictionary D ∈ Rd×p where each column is an atom and:

X ≈ DA

where A = (α1, ...,αn) contains sparse vectors αi ∈ Rp.
Learning the dictionary D and the sparse representation

A is done by minimizing a cost function:

fn(D,A) ≜
1

n

n∑
i=1

l(xi,D,αi) (2)

where the loss function l(xi,D,αi) measures the difference
between xi and Dαi and encourages a sparse αi.

One popular loss function is the l1-penalized square loss
also known as the Lasso [6, 16, 7]:

l(xi,D,αi) ≜
1

2
||xi −Dαi||22 + λ||αi||1 (3)

where λ is a regularization parameter that imposes the desired
level of sparsity for αi. The Lasso has been used in sparse
sparse dictionary learning before, for example in online dic-
tionary learning [12].

However, the l1 approach has the disadvantage that it con-
trols the sparsity of αi only indirectly through the penalty λ.
We are interested in an approach where the sparsity of αi can
be directly specified as a constraint ||αi||0 ≤ k.

l(xi,D,αi) ≜

{
||xi −Dαi||22 if ||αi||0 ≤ k

∞ else
(4)

The cost function (2) depends on two variables: D and A. We
will use a straightforward approach that minimizes the cost
(2) by alternately minimizing over one variable while keeping
the other one fixed. When D is fixed, minimizing over A can
be obtained by independently minimizing (4) for each xi.

The whole alternating procedure for dictionary learning is
described in Algorithm 1. It depends on two other algorithms,
which will be described in the next two sections.
Algorithm 1 Dictionary learning with FSA

Input: Data matrix X ∈ Rd×n with n observations
x1, ...,xn as columns, sparsity level k.
Output: Trained dictionary D.

1: Initialize D0 with p random observations from X.
2: for t=1 to T do
3: for i=1 to n do
4: Use Algorithm 2 to compute

αi = argmin
||α||0≤k

||xi −Dt−1α||22

5: end for
6: Set A = (α1, ...,αn) ∈ Rp×n.
7: Compute Dt by Algorithm 3, with (X,A,Dt−1) as

input

Dt = argmin
D

1

n

n∑
i=1

||xi −Dt−1αi||22 (5)

8: end for
9: Return D = DT

2.1. Feature Selection with Annealing (FSA)

FSA is a novel variable selection method introduced in [15]
that minimizes a differentiable loss function L(α) with spar-
sity constraints

α = argmin
||α||0≤k

L(α).

In our case, the loss function L(α) is:
L(α) = ||x−Dα||22

where x is any of the columns of X and D is the current
dictionary.

FSA achieves sparsity by gradually reducing the dimen-
sionality of α from p to k, according to an annealing sched-
ule. It starts with a full α ∈ Rp and alternates the removal
of some variables with the updating of the remaining param-
eters by gradient descent. The whole procedure is described
in Algorithm 2.

Algorithm 2 Feature Selection with Annealing
Input: Observation x ∈ Rd, current dictionary D ∈ Rd×p,
sparsity level k
Output: Sparse α ∈ Rp with ∥α∥0 ≤ k.

1: Initialize β = 0 ∈ Rp, J = {1, ..., p}
2: for e=1 to N iter do
3: Update β ← β − ηDT (Dβ − x)
4: Find the indexes I, |I| = pe corresponding to the high-

est pe elements of |β|.
5: Keep only the entries with index I in β,x, J and D,

i.e.
β ← βI ,x← xI , J ← JI ,D← DII

6: end for
7: Set α = 0 ∈ Rp, then αJ = β.



Fig. 2. Data reconstruction error vs number of learning iterations for the three FSA hyper-parameters: η,N iter and µ.

The annealing schedule pe represents the number of non-
zero variables that are kept at the eth iteration. A fast an-
nealing schedule will save computation time but loose some
accuracy in selecting the correct variables. So it is important
to find a proper annealing schedule that balances speed and
accuracy. In [15], the authors provide an inverse schedule:

pe = k + (p− k)max(0,
N iter − 2e

2eµ+N iter
)

where p is the number of total variables and k is the sparsity
level. The parameter µ controls the speed of removing the
variables. Together with the learning rate η, they can be tuned
to obtain a small value of the loss function at the completion
of the algorithm.

2.2. Dictionary Update

The loss function (5) is quadratic in D and could be mini-
mized analytically. To avoid large matrix operations, we use
block-coordinate descent with warms starts, as described in
[12] and in Algorithm 3 below.

Algorithm 3 Dictionary Update
Input: Data matrix X ∈ Rd×n, sparse matrix A =
(α1, ...,αn) ∈ Rp×n, input dictionary D = [d1, ...,dk] ∈
Rd×p

Output: dictionary D = [d1, ...,dk] ∈ Rd×p

1: Set B = AAT ∈ Rp×p,
2: Set C = XAT = [c1, ..., cp] ∈ Rd×p.
3: repeat
4: for j = 1 to p do
5: Set uj ←

1

Bjj
(cj −Dbj) + dj

6: Set dj ←
uj

max(||uj ||2, 1)
7: end for
8: until convergence
9: Return updated dictionary D.

3. EXPERIMENTS

Data Description. In the experiments we use two standard
gray images: Lena and Boat, resized to 128× 128. We work
with overlapping patches of size of 9×9 extracted from these
images, and our input data is X ∈ R81×14400.

For evaluating the quality of the learned dictionary D we
will use the MSE of the data reconstruction:

MSE =
1

n

n∑
i=1

||xi −Dαi||22

FSA Parameter Experiments. First, we need to find proper
hyper-parameter values for µ, η, and N iter for using FSA in
dictionary learning. We experimented with learning a 1024
atom dictionary on the Lena image. In Figure 2, left are
shown the MSE vs iteration number for different values the
learning rate η, for N iter = 100 and µ = 80. We see
that the quality of the dictionary is almost the same for η
between 0.01 and 0.03. In Figure 2, middle are shown the
MSE vs iteration number for different values of N iter, when
µ = 80, η = 0.01. We see that with more iterations, the
quality of the dictionary is better, at an increased computation
cost. We fixed N iter = 500, which has a comparable compu-
tation cost with LARS. In Figure 2, right are shown the MSE
vs iteration number for different values the annealing param-
eter µ, for N iter = 500 and η = 0.01. We see that the quality
of the dictionary is almost the same for µ between 100 and
500, the best being for µ = 200.
Comparison with other methods. In this experiment we
compare the dictionary learned with FSA with approaches
where Algorithm 2 was replaced by LARS or IRLS. We in-
vestigated three sparsity levels k = 3, 4, 5.

In Figure 3 are shown the reconstruction MSE for the
three methods for 256 and 1024 atoms on Lena, and 1024
atoms on the Lena and Boats images simultaneously. We see
that FSA obtains better dictionaries than LARS which is bet-
ter than IRLS. Furthermore, FSA with k = 4 has smaller
MSE than LARS and IRLS with k = 5 in all three cases.
Moreover, IRLS is at least 10 times slower than FSA, which
is why we didn’t include the Lena+Boats results for IRLS.

Examples of reconstructed images with the learned dic-
tionary are shown in Figure 4. We can see that FSA obtains a
more accurate and more clear image than LARS.
Digit Recognition Application. In this section, we use
dictionary learning to obtain a sparse representation of the
MNIST [17] handwritten digit database and apply several
multi-class classification methods on the sparse feature vec-
tors to compare the classification accuracy.

MNIST is a dataset containing 60,000 training examples
and 10,000 test examples as grayscale images of size 28× 28



Fig. 3. Comparison with other methods. Left: dictionary with 256 atoms on Lena. Middle: dictionary with 1024 atoms on
Lena. Right: dictionary with 1024 atoms on Lena+Boats.

of handwritten digits.

Fig. 4. Reconstructed images. Top: original images.
Middle: images reconstructed using LARS. MSELena =
0.0027,MSEBoat = 0.0035. Bottom: images reconstructed
using FSA. MSELena = 0.0024,MSEBoat = 0.0031.

In our experiment, we generate 256-atom dictionaries us-
ing different dictionary learning methods, one dictionary for
each digit from 0 to 9. Then for each observation we gener-
ated one sparse feature vector from each dictionary, and con-
catenated them to obtain a 2560 dimensional sparse feature
vector. This sparse feature vector was used as input for train-
ing and testing different classifiers.

As classifiers, we used SVM, Random Forest with 500
trees, and K-Nearest Neighbors with K = 3. We compared

Table 1. Test misclassification errors on MNIST data.
Method Sparsity SVM KNN(K=3) RF
FSA 5 0.0362 0.0915 0.0915
FSA 10 0.0257 0.0682 0.0394
FSA 20 0.0223 0.0561 0.0331
FSA 50 0.0239 0.0364 0.0270
LARS 5 0.0372 0.1062 0.0564
LARS 10 0.0323 0.1312 0.0463
LARS 20 0.0300 0.1012 0.0397
LARS 50 0.0330 0.0802 0.0357
IRLS 5 0.0848 0.1585 0.1030
IRLS 10 0.0759 0.1501 0.0904
IRLS 20 0.0527 0.1465 0.0582
IRLS 50 0.0503 0.0955 0.0539
Original data - 0.0562 0.0619 0.0352

different sparsity levels in the sparse representation, and also
tested the classifiers on the original data with no sparsity.

The results are shown in Table 1. We see that for each
type of classifier the sparse representation obtained by FSA
has smaller test misclassification error than LARS, IRLS and
the original data.

4. CONCLUSION

We introduced a new method to solve the sparse coding prob-
lem in dictionary learning that replaces the L1 penalty in
the loss function with a sparsity constraint ||α||0 ≤ k. The
method relies on a recent feature selection methods called
Feature Selection with Annealing (FSA). Using FSA we can
directly specify the number of non-zero variables we want
in the sparse representation, unlike the L1 penalized meth-
ods where the sparsity is controlled indirectly through the
regularization parameter λ.

The experimental results on image reconstruction showed
that the proposed method obtains smaller reconstruction er-
rors than LARS or IRLS for the same sparsity level and
dictionary size. Furthermore, experiments on the MNIST
dataset using SVM, Random Forest and K-Nearest Neigh-
bors showed that the method can be used to obtain a sparse
image representation that obtains a smaller misclassification
error on than directly using the image as input, Furthermore
the sparse representation by FSA again outperforms LARS
and IRLS in this classification task.



5. REFERENCES

[1] Bruno A Olshausen and David J Field, “Sparse coding
with an overcomplete basis set: A strategy employed by
v1?,” Vision research, vol. 37, no. 23, pp. 3311–3325,
1997.

[2] Zheng Zhang, Yong Xu, Jian Yang, Xuelong Li, and
David Zhang, “A survey of sparse representation: al-
gorithms and applications,” IEEE Access, vol. 3, pp.
490–530, 2015.

[3] David L Donoho and Michael Elad, “Optimally sparse
representation in general (nonorthogonal) dictionaries
via l1 minimization,” Proceedings of the National
Academy of Sciences, vol. 100, no. 5, pp. 2197–2202,
2003.

[4] Vishal M Patel and Rama Chellappa, “Sparse represen-
tations, compressive sensing and dictionaries for pattern
recognition,” in ACPR, 2011, pp. 325–329.

[5] Yong Yuan, Xiaoqiang Lu, and Xuelong Li, “Learning
hash functions using sparse reconstruction,” in Proceed-
ings of International Conference on Internet Multimedia
Computing and Service, 2014, p. 14.

[6] Robert Tibshirani, “Regression shrinkage and selection
via the lasso,” Journal of the Royal Statistical Society.
Series B (Methodological), pp. 267–288, 1996.

[7] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert
Tibshirani, et al., “Least angle regression,” The Annals
of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[8] Allen Y Yang, S Shankar Sastry, Arvind Ganesh, and
Yi Ma, “Fast l1-minimization algorithms and an appli-
cation in robust face recognition: A review,” in ICIP,
2010, pp. 1849–1852.

[9] Qin Lyu, Zhouchen Lin, Yiyuan She, and Chao Zhang,
“A comparison of typical lp minimization algorithms,”
Neurocomputing, vol. 119, pp. 413–424, 2013.

[10] Song Guo, Zhan Wang, and Qiuqi Ruan, “Enhancing
sparsity via lp (0¡ p¡ 1) minimization for robust face
recognition,” Neurocomputing, vol. 99, pp. 592–602,
2013.

[11] Jianqing Fan and Runze Li, “Variable selection via non-
concave penalized likelihood and its oracle properties,”
Journal of the American Statistical Association, vol. 96,
no. 456, pp. 1348–1360, 2001.

[12] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo
Sapiro, “Online dictionary learning for sparse coding,”
in ICML, 2009, pp. 689–696.

[13] Meng Yang, Lei Zhang, Xiangchu Feng, and David
Zhang, “Fisher discrimination dictionary learning for
sparse representation,” in ICCV, 2011, pp. 543–550.

[14] Qiang Zhang and Baoxin Li, “Discriminative k-svd for
dictionary learning in face recognition,” in CVPR, 2010,
pp. 2691–2698.

[15] Adrian Barbu, Yiyuan She, Liangjing Ding, and Gary
Gramajo, “Feature selection with annealing for com-
puter vision and big data learning,” IEEE Trans. PAMI,
vol. 39, no. 2, pp. 272–286, 2017.

[16] Wenjiang J Fu, “Penalized regressions: the bridge ver-
sus the lasso,” Journal of Computational and Graphical
Statistics, vol. 7, no. 3, pp. 397–416, 1998.

[17] Yann LeCun, “The mnist database of handwritten dig-
its,” http://yann. lecun. com/exdb/mnist/.


