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ABSTRACT

Guidewire detection is an important and challenging problem
in image-guided interventions. The guidewire is barely visi-
ble in fluoroscopic sequences, since it is thin and the image
has poor quality. Most recent methods for guidewire local-
ization have a first level of pixel-wise detection based on a
trained classifier on hand-crafted features. A Convolutional
Neural Network (CNN) could in principle learn its own fea-
tures, however training a CNN for guidewire detection has
proved to be difficult because the wire is very thin and can
have any orientation. In this paper we present a method to
train a Fully Convolutional Neural Network for guidewire de-
tection, and highlight what challenges are encountered during
training for this particular problem. We also introduce the
Spherical Quadrature Filters (SQF) for guidewire detection
and show how they can be used to improve the training data.
Experiments show that the trained CNN outperforms many
popular approaches such as the Frangi filter, the SQF and a
trained classifier based on hand-crafted feature. Furthermore,
we observe that a CNN approach that uses the SQF to obtain
better aligned training examples further improves the detec-
tion accuracy.

Index Terms— guidewire detection, fluoroscopy, convo-
lutional neural networks, spherical quadrature filters

1. INTRODUCTION

Guidewire detection is a challenging problem with wide ap-
plications in coronary angioplasty interventions. During the
intervention, a catheter is inserted through the femoral artery
all the way to the heart, and a guidewire is used to guide
different tools beyond the catheter, inside the heart. Then
the cardiologist inserts a balloon into the obstructed coro-
nary artery, inflates it to widen the narrowing, and places a
stent there to keep the blood vessel open. All these operations
are monitored by the cardiologist using real-time X-ray (flu-
oroscopy) images. The fluoroscopy images are usually low-
dose to limit the amount of radiation received by the patient,
which makes them noisy and the guidewire poorly visible.

Examples of fluoroscopic images of guidewire are shown
in Figure 1. As the figure reveals, the guidewire is thin and
hardly visible. Thus, robust detection of the guidewire could

Fig. 1. Examples of the fluoroscopic images of guidewire(first
two images) and examples of fluoroscopic images with anno-
tations(last two images).

help the cardiologist have a better visualization and possibly
further reduce the radiation dose administered to the patient.

To detect the guidewire one needs to first obtain a low
level detection layer that tells how likely is the guidewire to
pass through any pixel of the image. As it will be discussed
in more detail in the related work section below, guidewire
detection works have two main types of approaches to ob-
tain this first level of pixelwise guidewire detection. The first
approach is filter based, which uses a predefined filter to ob-
tain a filter response map. The second approach is learning-
based, and uses a learning algorithm (Boosting, Random For-
est, etc) together with hand-crafted features (e.g. Haar or ro-
tated Haar) to obtain a per-pixel probability map. A third ap-
proach would be to train a CNN (Convolutional Neural Net-
work) for this purpose, which will learn its own features us-
ing the training data. We could not find any work that trains a
CNN for detecting the guidewire pixels, which is why it will
be investigated in this paper.

In this paper, we are interested in training a CNN for
guidewire detection. Because the wire is thin and hardly vis-



ible, it is difficult to train the CNN as the loss function is flat
near the random initialization. We will show how to over-
come this issue, through a better initialization obtained from
training on a single image.

Another guidewire specific issue is that imprecisions in
the annotation make the positive examples misaligned. We
will also show how to obtain better aligned training data us-
ing Spherical Quadrature Filters (SQF) [1]. The Spherical
Quadrature Filters (SQF) [1] are a type of steerable filters de-
rived analytically to obtain maximal responses to edge, line or
wedge structures. Examples of log-Gabor and Cauchy SQFs
are shown in Figure 2. Steerable filters, first introduced in
[2], are oriented filters obtained from a basis using predefined
weights that depend on the rotation angle. Moreover, the ori-
ented filter response can be computed using the same prede-
fined weights from the response maps obtained by the basis.

The SQFs have been used in [3] for person identification
from grayscale images of the ear and in [4] for detecting faint
streaks (space debris) in astronomical images. The ear images
have edge/ridge structures, and that is why the SQF were a
good fit, but the ear images have no noise. In this paper, we
introduce another potential application of SQF, guidewire de-
tection in fluoroscopy images. To our knowledge, we are the
first to apply the SQF for this problem.

This paper brings the following contributions:
- It shows how to train a Fully Convolutional Neural Net-

work (FCNN) for guidewire detection and how to escape the
flat energy landscape present near a random initialization.

- It introduces the Spherical Quadrature Filters (SQF)
for guidewire detection, which work better than the popular
Frangi filters.

- It shows how to address another challenge in training a
CNN, which is due to the imprecision in the manual annota-
tion of the thin guidewire. For that, it show how to use the
SQF response map to obtain better aligned examples.

Our experiments reveal that the CNN trained with SQF-
aligned examples is the best, followed by the CNN and then
the SQF. Furthermore, all three methods introduced in this pa-
per greatly outperform the existing guidewire detection meth-
ods such as the Frangi filters and a trained classifier with
hand-crafted features.

1.1. Related Work
All guidewire detection methods rely on a first level of pixel-
wise guidewire detection that applies either a predefined filter
or a trained classifier to all locations of the image to obtain a
pixelwise guidewire response map.

Filter-based methods include [5] and the Frangi Filter [6],
are widely used to detect vessel-like structures. Both of these
methods are based on the sorted eigenvalues (λ1, λ2) of the
Hessian matrix at every pixel. The Frangi filter was used in
[7] as the data term for guidewire tracking in X-ray videos.
The filter-based approaches are attractive due to their sim-
plicity and interpretability. However, the Frangi filter was

Fig. 2. Spherical Quadrature Filters [1] of order 0,2,4,6,8.
Top: log-Gabor filters. Bottom: Cauchy filters.

compared in [8] with a voting-based approach that integrates
many candidate curves through each pixel, and the Frangi fil-
ter results were clearly inferior to the voting-based approach.

Learning-based methods include [9, 10, 11, 12, 13, 14,
15]. A hierarchical model for guidewire localization was
introduced in [10], where longer and longer parts of the
guidewire were detected using a Probabilistic Boosting Tree
(PBT) [16] and Haar or other hand-crafted features. The PBT
and hand-crafted features were also used in [11] for semiau-
tomatic guidewire localization with user constraints, in [12]
for guidewire tracking and in [15] for vessel detection. The
catheter was detected by a learning-based framework using
Boosting and Haar features in [9], and a comparison with the
Frangi filter showed that the learning based approach obtained
smaller tracking errors than the filter based approach. Their
work was aimed at detecting the catheter, while the guidewire
is much thinner and more challenging. In [13], a Boosted
classifier was trained on ridge and edge features to detect the
guidewire pixels. In [17] the guidewire was detected using a
Random Forest classifier trained on hand-crafted features.

A CNN approach to detecting the guidewire location was
presented in [18]. The method uses the Region Proposal
Network to place a bounding box around the guidewire, but
it does not obtain pixel-wise response map. In contrast,
the method proposed in this paper is aimed at detecting the
guidewire pixels using a CNN.

1.2. Overview of the Spherical Quadrature Filters
The Spherical Quadrature Filters (SQF) [1] are obtained by
the convolution of a generalized Hilbert transform kernel and
an isometric filter. The n-th order SQF has the following form
in the spatial domain:

SQF (n)(x, y) = G(x, y) ∗
(
n

2π
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)
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where “∗” denotes convolution, and in the Fourier domain
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where x, y ∈ R,u ∈ R2, n ∈ N∗ and G(x, y) is a bandpass
isometric filter. In this paper we will generate the SQFs using
bandpass filters such as the log-Gabor filters [19]
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)
, (3)

Gaussian derivative filters [19]
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2

exp(−(σω)2), if ω ≥ 0

0, otherwise
(4)

and Cauchy filters [19]

GCauchy(ω) =

{
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ω0σ exp(−σω), if ω ≥ 0

0, otherwise
(5)



Fig. 3. Steered SQF Filters. Top: log-Gabor filters of rank 9. Bottom: Cauchy filters of rank 11.

where ω0 ∈ R is the peak tuning frequency, and σ ∈ R such
that ω0σ ≥ 1. Eq. (3), (4) and (5) are defined in the frequency
domain. For more details see [1].

Observe that except for the order 0 SQF, the higher or-
der SQFs come in pairs as the real and imaginary part of eq.
(1) or (2). For ridge detection, we only need the even order
(symmetric) SQFs, and we will use all the even SQFs of order
n < r where r is an odd number. Observe that for any odd
number r > 0 there are exactly r SQFs of even order n < r,
and we will call them the SQF of rank r.

The SQF bank of rank r can be steered to an angle θ by
dot product multiplication with the following weight vector:

w(θ)=[−1,−cos(2θk), sin(2θk), ...,−cos(2rθk), sin(2rθk)].
An example of steered log-Gabor SQFs of rank 9 and steered
Cauchy SQFs of rank 11 is shown in Figure 3.

One could directly obtain the filter response map by using
the SQFs or could use a Convolutional Neural Network for
detecting the guidewire pixels as described in the next section.

Fig. 4. The Fully Convolutional Neural Network (FCNN)
used in this paper with input patches of size 15× 15.

2. TRAINING A FULLY CONVOLUTIONAL
NETWORK FOR GUIDEWIRE DETECTION

Assume we are given n training patches (xi, yi), i = 1, ..., n

where xi ∈ Rp2 is the image of a patch of size p × p either
centered on the guidewire (a positive example) or away from
the guidewire (a negative), and yi is the label. The labels are
yi = −1 for negative patches and yi = 1 for patches centered
on the guidewire.
CNN architecture. We implemented a Fully Convolutional
Neural Network (FCNN) for guidewire detection. The net-
work (Figure 4) is composed of 5 convolutional layers, the
first three layers are followed by 2 × 2 max-pooling with
stride 1, while the fourth layer is followed by ReLU (Rec-
tified Linear Unit). The last convolutional layer obtains the
binary guidewire/non-guidewire response.

For a receptive field of size 15×15, the first convolutional
layer has 16 filters of size 3×3, and the next three layers have

Fig. 5. The plot of loss function for 100 epochs of a patch size
25×25. Top left: training loss with all training examples. Top
right: training loss with our approach. Bottom Left: training
loss using all NMS-based examples. Bottom right: training
loss of NMS examples with our approach

32 filters of size 3 × 3 each. The last layer is 4 × 4. For a
receptive field of size 25 × 25, the first layer has 16 filters of
size 5 × 5, the following layers have 32 filters of size 5 × 5,
and the last layer is 6× 6.

For training we used the Lorenz loss [20]

`(u) = log(1 + max(1− u, 0)2) (6)

due to its ease of training and robustness to outliers.
Training examples. As positive examples we used image
patches at distance at most 1 pixel from the annotation, while
negative examples were at distance at least 8 pixels from an-
notation.
Training initialization. All weights were initialized with
random Gaussian values with std 0.01. The initial learning
rate was 0.01 with mini-batch size 32. The learning rate was
multiplied by 0.8 and the minibatch was doubled every 50
epochs, for a total of 300 epochs.

Training the FCNN directly from the random initializa-
tion does not work because the guidewire is very thin and the
energy landscape becomes flat near the random initialization.
Indeed, as shown on the top left side of Figure 5, the loss be-
comes flat at around 0.285 after epoch 26. In this case, results
show that every pixel of the response map is considered de-
tected. To overcome this problem we started by training the
first 40-60 epochs using the training examples from only one
sequence as shown on the top right side of Figure 5. After
that, training was done on all training examples.
NMS-based alignment. Another issue we observed was that
the annotation was not precise enough to obtain a precise
alignment of the positive examples. As a result, the false
positive rate, while better than the other methods, was still



Fig. 6. Guidewire detection examples of 2 frames. From left to right: input image, Frangi filter [6], PBT and Haar features[10,
11, 12, 15], Cauchy SQF [1] of rank 11, SQF NMS image, FCNN 25× 25, FCNN NMS detection result.

rather high. To obtain a better alignment we used the Cauchy
rank 11 SQF maximum response map on which we performed
non-maximal suppression (NMS) in the direction of the im-
age gradients. An example of the SQF NMS map is shown
in Figure 6. Then we used as training examples only patches
centered on the NMS response map. The positives were at
distance at most 2 pixels from annotation, the negatives were
at least 8 pixels from annotation.

3. EXPERIMENTS

Dataset. Experiments are conducted on a dataset of 69 flu-
oroscopic sequences with a total of 766 frames of different
sizes in the range [512, 700] × [512, 1024]. The sequences
were divided into a training set containing 33 sequences with
342 frames and a test set containing 36 sequences with 424
frames. The guidewire was manually annotated in all the
frames using B-splines.

For training we used positive and negative patches of size
15×15 or 25×25. In both cases the training set contains about
213,000 positives and about twice as many negatives. The
training set using NMS alignment contains about 91,000 pos-
itives and as about twice as many negatives. We also imple-
mented the approach from [15] based on about 100,000 ori-
ented Haar features and a Probabilistic Boosting Tree (PBT)
[16] and trained it on the same data.
Comparison with other methods. We evaluated the detec-
tion performance on the training and test images. A guidewire
pixel was considered detected if there is a detection (response
above the threshold) at distance at most 2 pixels from it. A
detection was considered a false positive if it is at distance at
least 3 pixels from the guidewire or any catheter.

The response map obtained by any method was thresh-
olded to obtain a binary detection image as shown in Figure
6, with the threshold chosen so that the average detection rate
was about 90%. The input image on the second row is noisier
than the first one in Figure 6.

The results are shown in Table 1. FCNN has the lowest
false positive rate on the training set, but is outperformed by
the FCNN NMS on the test set. The SQF with a Cauchy fil-
ter of rank 11 performs the best among the SQFs, and also
outperforms the Frangi Filter [6] and the PBT with Haar Fea-

tures. This is very good considering that training the PBT
takes about 24h, and training the FCNN takes 6h.
Table 1. Per-image evaluation of different filter based and
training based guidewire detection methods

Det. rate FP rate
Method Train Test Train Test
Frangi Filter [6] 89.98 89.96 26.99 23.74
SQF [1] Gauss deriv, f0=1/2, rk. 9 89.52 89.55 13.78 15.28
SQF [1] Cauchy, f0 = 1/6, rank 9 90.06 89.91 10.04 10.31
SQF [1] Cauchy, f0 = 1/6, rank 11 89.56 89.63 9.56 10.12
SQF [1] Cauchy, f0 = 1/6, rank 13 90.58 89.50 10.41 10.18
SQF [1] log-Gabor, f0 = 1/6, rk. 9 90.55 89.62 11.09 10.39
SQF [1] log-Gabor, f0 = 1/6, rk. 11 90.19 89.43 10.17 10.22
SQF [1] log-Gabor, f0 = 1/6, rk. 13 90.31 89.54 10.73 10.39
25×25 rk. 9 Cauchy SQF, f0=1/6 89.92 89.98 10.31 10.93
PBT and Haar features[10, 11, 12, 15] 90.23 90.08 1.92 4.57
FCNN, size 15× 15 89.86 90.02 4.24 12.51
FCNN, size 25× 25 90.37 90.04 2.43 7.94
FCNN NMS patches, size 25× 25 90.06 90.06 2.53 4.28

4. CONCLUSION

In this paper, we presented a method to train a CNN for
guidewire detection in fluoroscopic images. Training the
CNN is not straightforward because the guidewire is thin,
noisy and can have any orientation. Moreover, imprecision
of the annotation makes the training even more difficult. To
address this problem we showed how to get a better initial-
ization with training examples from one image and how to
obtain better aligned training examples using the Spheri-
cal Quadrature Filters [1]. Experiments show that the Fully
Convolutional Neural Network trained with our SQF-aligned
data outperformed all other methods evaluated. In terms of
filter-based methods, we evaluated the Frangi filter [6] and
the Spherical Quadrature Filters [1]. Compared to a trained
classifier, the SQFs are more computationally efficient and
can simultaneously obtain the guidewire detection and the
orientation of the guidewire with uncertainty quantification.
In the future, we plan to apply the SQF and FCNN to auto-
matic guidewire localization. This is a higher level process
that uses the pixelwise detection as a data term to find the
most likely position of the guidewire by searching in the high
dimensional space of all possible curves.
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