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Abstract

Guidewires are thin wires used in coronary angioplasty
to guide different tools to access and repair the obstructed
artery. The whole procedure is monitored using fluoro-
scopic (real-time X-ray) images. Due to the guidewire be-
ing thin in the low quality fluoroscopic images, it is usually
poorly visible. The poor quality of the X-ray images makes
the guidewire detection a challenging problem in image-
guided interventions. Localizing the guidewire could help
in enhancing its visibility and for other automatic proce-
dures. Guidewire localization methods usually contain a
first step of computing a pixelwise guidewire response map
on the entire image. In this paper, we present a steer-
able Convolutional Neural Network (CNN), which is a Fully
Convolutional Neural Network (FCNN) that can detect ob-
jects rotated by an arbitrary 2D angle, without being ro-
tation invariant. In fact, the steerable CNN has an angle
parameter that can be changed to make it sensitive to ob-
jects rotated by that angle. We present an application of
this idea to detecting the guidewire pixels, and compare
it with an FCNN trained to be invariant to the guidewire
orientation. Results reveal that the proposed method is a
good choice, outperforming some popular filter-based and
learning-based approaches such as Frangi Filter, Spherical
Quadrature Filter, FCNN and a state of the art trained clas-
sifier based on hand-crafted feature.

1. Introduction
Convolutional Neural Networks(CNNs) are widely used

and have an impressive performance in detecting and classi-
fying objects. However, the CNNs performance is sensitive
to variations in rotation, position or scaling of the objects
to be detected. In [14], capsules were proposed as accu-
rate generative models to handle such variations and ob-
tain more accurate representations, with promising results.
However, each capsule is trained to handle only a small
range of such variations, hence the need for multiple cap-
sules to handle the same object.

In this paper we propose a steerable CNN that can detect
an object rotated by an arbitrary angle without being rota-
tion invariant. The proposed model is discriminative like a
regular CNN, but it has a latent parameter representing the
object’s 2D orientation. For any value of this parameter,
the steerable CNN will be sensitive to detect only objects
having that orientation.

We apply the steerable CNN to detect the guidewire in
fluoroscopy (real-time X-ray) images. The guidewire is a
thin wire used in coronary angioplasty interventions, which
are visualized using fluoroscopic images. The fluoroscopic
images are usually low-dose in order to limit the amount of
radiation received by the patient. Under these conditions,
the guidewire is a thin and poorly visible wire-like struc-
ture with different orientations, as shown in Figure 1. In
this application, knowing the orientation of the guidewire is
important for its detection, but the scaling is not important
since all guidewires are one or two pixels wide.

In order to find the entire guidewire, a low level measure-
ment that shows how the guidewire passes through any pixel
of the image should be obtained first. More details about
this procedure will be explained in Section 2. There are
two main approaches to obtain the pixelwise detection map,
filter-based approaches and learning-based approaches. For
the filter-based approach, one applies a predefined filter
(Frangi Filter, Steerable Filters, Spherical Quadrature Fil-
ters) to obtain a filtered response map. The learning-based
approach is to find a per-pixel probability map by training a
classifier with some Haar or hand-crafted features.

The best performing methods are trained on rotation-
aligned samples and search for the maximum response ro-
tation angle at detection time. This is done by rotating the
image by a number of angles and applying the classifier to
the rotated images.

Recently, a CNN (Convolutional Neural Network) was
trained for this purpose, which learned its own features us-
ing the training data and obtained an invariant model that
can detect guidewires at any orientation.

In this paper, we are interested in seeing what is to gain
by training a CNN that is tuned to the guidewire orientation.
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Figure 1. Two frames of the guidewire under X-ray images(top
two images) and the X-ray frames of the guidewire with annota-
tions(bottom two images)

However, instead of training a CNN on rotation aligned
samples, which would require us to apply it to rotated im-
ages for detection, we introduce a steerable CNN that can
be trained on the original samples. This steerable CNN has
a steering parameter θ that can be used to make it sensitive
to the parts of the guidewire that have orientation θ. This
way, the steerable CNN eliminates the need to rotate the
image by many angles at detection time. This paper brings
three contributions:

- It introduces a method for training steerable filters [13]
by loss minimization. The steerable filters are rotated filters
that can be obtained from a basis using an arbitrary rota-
tion parameter. They were introduced in [13], but they were
defined by an equation instead of being trainable.

- It introduces a model for a steerable CNN composed of
a number of layers consisting of multiple steerable filters,
and a method for training the steerable CNN from training
examples.

- It presents an application to guidewire detection in
fluoroscopic images. Our experiments indicate that the
steerable CNN outperforms the regular CNN and the other
guidewire detection methods such as the Frangi Filter and a
trained classifier with Haar or hand-crafted features.

1.1. Related Work

Filter-based approaches include the Frangi Filter [12],
which is based on the sorted eigenvalues (λ1, λ2) of the
Hessian matrix. It is widely applied to vascular image anal-
ysis. The sorted eigenvalues of the Hessian matrix were
used to extract and track the guidewire through a spline op-
timization in [1]. [7] used the Frangi Filter as the data term

and fitted the guidewire with B-spline model in clinical X-
ray videos. The beauty of the filter-based approaches con-
sists in their simplicity and interpretability. [4] proposed
a method that votes on many candidate curves through all
pixels, and the method was compared with the Frangi Fil-
ter. Results showed that the Frangi Filter was inferior to the
path voting approach.
Steerable Filters have been introduced in [13] for detecting
edges and ridges in images. A more recent and powerful
type of steerable filters are the Spherical Quadrature Filters
(SQF) [19] that were used by [17] for guidewire detection.
Learning-based approaches include [5, 2, 20, 26, 15, 22,
8]. In [2], the pixel detection step was trained with exam-
ples that were rotated for alignment, using a Probabilistic
Boosting Tree (PBT) [24] and Haar features. The trained
classifier was applied to rotated images by many angles to
obtain the guidewire detection result. A user-constrained
algorithm with PBT was proposed in [20] to localize the
guidewire. The PBT and hand-crafted features were also
employed to track the guidewire in [26] and detecting ves-
sels in [8]. [5] introduced a framework using Boosting and
Haar features for catheter detection, and the method was
compared with the Frangi Filter. The tracking error results
obtained by the learning-based approach were smaller than
the results of the filter-based approach. A boosted classifier
was used to obtain the low-level detection of the guidewire
in [15]. It was trained on ridge and edge features. [9] de-
tected the catheter and vascular structures using a Random
Forest classifier of curvilinear structures trained on hand-
crafted features. A method used the Region Proposal Net-
work to detect the guidewire was presented in [25]. Differ-
ent from our method which is aimed at obtaining a pixel-
wise detection map using CNNs, their work is to place
bounding boxes around the guidewires.

A Fully Convolutional Neural Network was trained in
[17] for guidewire detection. The CNN was invariant to the
guidewire orientation, and difficulties in training were re-
ported. In contrast, the steerable CNN is sensitive to the
guidewire orientation, alleviating some of the training diffi-
culties and obtaining better detection results.
A steerable CNN theory was presented in [11]. The theory
is very generic and only discusses rotations by multiples of
90◦, lacking any specific details on how to apply it for steer-
ing by arbitrary angles. Moreover, the theory is directed
towards invariant models, whereas our steerable CNN ob-
tains models tuned to any orientation, in the spirit of the
steerable filters [13]. Furthermore, the rotation angle can be
estimated in our method as the angle of maximal response,
together with its uncertainty.
Steerable Filter CNNs were developed in [27]. The SFC-
NNs are both translational and rotational equivariant. The
SFCNNs learn the weights of a set of predefined basis of
equivariant steerable filters, while our formulation learns



Figure 2. Diagram of the steerable CNN, steered (tuned) to an angle θ.

a basis that is not necessarily equivariant, but which is
made close to equivariant by using a special loss function.
Forthermore, the rotation and steering occurs only on the
first layer for the SFCNN and is followed by several group-
convolutional layers[10]. In our method, each layer is steer-
able by the same angle θ, making the entire CNN steerable.
Capsules were introduced in [14] and improved in [23].
The capsules represent object detectors together with pre-
cise values of the deformations and viewing parameters spe-
cific to each object instance. Each capsule is sensitive to a
small range of rotation angles and many capsules are needed
to cover the entire rotation range. In contrast, our steer-
able CNN is a single detector that can be rotated to an ar-
bitrary angle, thus it achieves the rotation goal of multiple
capsules.

2. The Steerable CNN
The steerable CNN consists of a number of steerable

convolutional layers, as illustrated in Figure 2. The steer-
able convolution filters are described next.

2.1. The Trainable Steerable Filters

The steerable filters are oriented filters f(θ) that are ob-
tained as a linear combination from a basis B, and can be
rotated to any angle θ by a simple re-weighting of the basis
as illustrated in Figure 3.

We are interested in deriving such a steerable represen-
tation for a filter f . For that, we start with the steerable filter
[13] of order 2, which for an angle θ is defined as

Gθ2 = B · a(θ) (1)

where a(θ) = (cos2 θ,−2 cos θ sin θ, sin2 θ)T , B = G
σ4 ·

(x2 − σ2,−xy, y2 − σ2), and G is the 2-D Gaussian with
variance σ2. This inspires us to represent a filter as

f(θ) = B · a(θ) (2)

with some unknown p2 × (d+1) matrix B that needs to be
learned and

a(θ) = (cosd θ, cosd−1 θ sin θ, ..., sind θ)T . (3)
However, higher powers d result in numerical instability,

and since the even powers of the sin and cos are related
to the sin and cos of the angle multiples, we will use an
alternate steerable representation

f(θ) = B ·w(θ) (4)

with

w(θ) = [1, cos(2θ), sin(2θ), ..., cos(2dθ), sin(2dθ)]T ,
(5)

where d controls the number of basis elements. We will
denote the dimension 2d + 1 of the basis B as the rank of
the steerable filter.

Figure 3. Diagram of a trainable steerable convolution filter.

Training steerable filters. Suppose we have n training ex-
amples (xi, yi), i = 1, ..., nwhere xi ∈ Rp2 is the extracted
patch of size p × p. The positives are patch with center on
the guidewire, and the negatives have center at some dis-
tance from the guidewire. The label of the example is yi,
with yi = −1 for negative patches and yi = k ∈ {1, ...,K}
for positive patches where the tangent angle is in the interval
[θk − π

2K , θk +
π
2K ), where θk = kπ

K .



Figure 4. A trained steerable filter example. First row: trained filter basis B. Second and third row: obtained steered filters for different
angles θ.

We can use the foreground-background (FB) loss

L(B) =
1

n−1

∑
i,yi=−1

K∑
k=1

`(−xTiBw(θk))

+

K∑
k=1

1

nk

∑
i,yi=k

`(xTiBw(θk))

(6)

for training the steerable filters, where `(u) is a per example
loss function such as the Lorenz loss [3]

`(u) = log(1 +ReLU(1− u)2), (7)

or the Focal loss [18]

`(u) = −αt(1− pt(u))γ log(pt(u)). (8)

where

pt(u) =

{
σ(u), if y = 1

1− σ(u), if y = −1
, (9)

where σ(u) is the sigmoid function

σ(u) =
1

1 + exp(−u)
. (10)

and αt = α = 0.25 for class 1, γ = 2.
Examples of a trained B with the Lorenz loss (7) for

d = 5 and some steered filters obtained from this B are
shown in Figure 4.

Observe that because of linearity, the convolution of an
image I with the steered filter f(θ) is a linear combination
with weight w(θ) of the convolutions with the filters from
B,

f(θ) ∗ I = (B ·w(θ)) ∗ I = (B ∗ I) ·w(θ). (11)

2.2. The Steerable CNN

The steerable CNN, illustrated in Figure 2, consists of a
number of layers containing multiple steerable filters.

If the basis of each steerable filter contains r filters, then
a layer with k steerable filters will contain r · k filters in
total, grouped in k groups of r filters. The response maps
of that layer for any angle θ can be obtained by convolution
with all the rk filters, followed by linearly combining the
kr responses corresponding to each group using the weight
vector w(θ) from Eq. (5).

2.3. Training the Steerable CNN

Suppose we are given n training examples
(xi, yi, αi), i = 1, ..., n where xi ∈ Rp2 is the patch
of size p × p either with center on the guidewire (a
positive example) or at some distance from the guidewire
(a negative), yi ∈ {−1, 1} is the label, and αi ∈ [0, π)
is the orientation. The orientation at the center location
of each patch is obtained by a Spherical Quadrature Filter
(SQF) [19]. The SQF is also used as a preprocessing step
for detection, so the training examples are extracted only
from locations with high SQF responses. This way the
angle information αi for each training patch has a reliable
value. Alternatively, the steerable CNN can be applied for
a number of discrete angles and the maximum response can
be used as detection map, as illustrated in Figure 5.

Similar to section 2.1, the range [0, π) is discretized
(modulo π) into a number of equally spaced angle bins bj =
[θj− π

2K , θj+
π
2K ), j ∈ {1, ...,K} , where θj = jπ

K (in this
paper we usedK = 30 angle bins). Then the orientation an-
gles αi of the training examples are converted to angle bin
indices ai ∈ {1, ...,K} and the examples with the same an-
gle index j are collected into the set Sj = {(xi, yi, ai), ai =
j}. For simplicity, we assume that all angles are equally
represented, so |Sj | = |Sk|,∀j, k ∈ {1, ...,K}.

Training is done using the Adam optimizer [16]. For
each minibatch, an angle index j ∈ {1, ...,K} is chosen
and only examples with ai = j are selected, so they have
approximately the same angle θj , the center of the bin bj .
In this case, the examples share the same weight vector
wj = w(θj) from Eq (5) and the network is equivalent to
a CNN where each convolution layer is followed by a lin-
ear layer that takes each group of k responses and combines
them linearly with weights wj . One epoch of the training is
described in Algorithm 1 below. An example of the trained
basis B of the first layer in the rank 11 4-layer steerable
CNN is show in Figure 6.

2.4. Implementation Details

CNN architecture. The Steerable CNN for this task con-
sists of 4 steerable convolutional layers. The third steerable
convolutional layer is followed by ReLU activation, and the



Figure 5. Examples of one frame Steerable CNN detection results: input image, response map for angle index j = 5, 10, 15, and final
detection result.

Algorithm 1 One epoch of Steerable CNN Training
Input: Training patches {(xi, yi, ai)}Ni=1, minibatch size
m
Output: Trained steerable CNN.

1: Set N batch = b|Sj |/mc.
2: for j = 1 to K do
3: Shuffle the set Sj .
4: end for
5: for b = 1 to N batch do
6: for j = 1 to K do
7: Set the steerable CNN angle θ = αj , so w(θ) =

wj

8: Use the b-th minibatch from Sj to update the
weights by backpropagation.

9: end for
10: end for

Figure 6. Trained basisB for the first layer of the rank 11 steerable
CNN.

last one returns the response.
The steerable filters are of size 7 × 7, with their basis

containing r = 7 filters or r = 11 filters. The first layer has

10 steerable filters (thus the layer has 70 or 110 total filters),
the second and the third one have 20 steerable filters and
the last one has 1 steerable filter. The receptive field of the
SCNN is of size 25× 25.

We also implemented a Fully Convolutional Network
(FCNN) for comparison. The network consist of 4 convo-
lutional layers, the third one is followed by ReLU, and the
last convolutional layer returns a guidewire/non-guidewire
response.

The first convolutional layer for a 25× 25 receptive field
of size contains 16 filters size 7 × 7, the next two convolu-
tional layers contain 32 7 × 7 filters, and the last convolu-
tional layer contains one 7× 7 filter.

For both the FCNN and the steerable CNN we used the
Pytorch[21] Soft Margin Loss

`(u, y) =
1

m

∑
i

log(1 + exp(−yiui)) (12)

to guide the training, where m is the minibatch size.
We also used the Focal loss [18] in Eq 8, since it can deal

with the class imbalance.
Training details. The weights of convolutional layers were
initialized from the normal distribution with standard devi-
ation 0.01. For the Steerable CNN of rank 7 and rank 11,
we started with a learning rate of 3 · 10−6 and a mini-batch
of 32. For training the FCNN, we started with learning rate
10−5 and mini-batch 32. After every 50 epochs the learning
rate was multiplied by 0.8 and the minibatch was doubled.
The training was done for a total of 300 epochs.

3. Experiments
Dataset. The evaluation results are conducted on 75 flu-
oroscopic sequences obtained during coronary angioplasty
intervention. The sequences contain a total of 826 frames
of various sizes and aspect ratios in the range [512, 1024]×
[512, 960]. In the 75 fluoroscopic sequences, 39 sequences
are used for training, with 424 frames in total, and the re-
maining 36 sequences with 402 frames are used for testing.
The guidewire annotations of each frame were obtained us-
ing B-splines. An examples of B-spline annotation is shown
in Figure 7.
SQF NMS Alignment In [17], the authors observed that
the guidewire annotation is imprecise because the wire is



Figure 7. Example of input frame (left), and its B-spline annotation
(right).

so thin and barely visible. For that reason we decided to
use the Cauchy SQF filter followed by non-maximum sup-
pression in the style of the Canny edge detection [6] as a
preprocessing step.
Training examples. The size of the training patches are of
size 25× 25 for both the positive and negative examples.

For the training set without SQF NMS alignment we ex-
tracted positive patches centered on the guidewire, and neg-
ative patches at a distance between 8 and 30 pixels from the
guidewire, subsampled to 5%.

The SQF NMS aligned training examples were extracted
from locations that were detected by the SQF with NMS de-
scribed above. The positives patches were centered at dis-
tance at most 2 from the guidewire annotation and the neg-
atives at distance at least 5, subsampled to 5%. The training
set without SQF NMS alignment has 279,000 positives and
578,000 negatives. The training set with SQF NMS align-
ment has 193,000 positives and 535,000 negatives.

3.1. Angle estimation Experiments

In a first experiment, we evaluate the accuracy of differ-
ent methods in estimating the guidewire angle. First, we
show in Figure 8 the average responses for different meth-
ods on positive patches with true angle 60 degrees. We see
that all methods have a peak at 60 degrees, and some other
smaller peaks.

The evaluation of the Frangi filter, Cauchy SQF, Trained
steerable filters of ranks 5-11 trained with different losses
and the rank 11 steerable CNN on the training and test pos-
itive patches is shown in Table 1. We see that the trained
steerable filters have better accuracy than the predefined
steerable filters. Also, the steerable filters trained with
NMS-aligned patches have a much better accuracy than
those trained on non-NMS aligned patches.

3.2. Guidewire Detection Experiments

We present an evaluation of the pixelwise guidewire de-
tection for both filter-based methods and learning based
methods. As filter-based approaches we evaluated the pop-
ular Frangi Filter [12], as well as the Spherical Quadrature

Figure 8. Average responses for test patches with angle 60◦.

Angle Error
Method Train Test
Frangi filter [12] 13.16 13.69
SQF [19] Cauchy, f0 = 1/6, rk. 11 7.58 7.13
Steerable filter (6), rk. 5 8.89 9.72
Steerable filter (6), rk. 7 4.49 5.20
Steerable filter (6), rk. 9 4.85 5.69
Steerable filter (6), rk. 11 5.12 6.02
Steerable filter (6), rk. 11 w/ NMS 2.14 2.42
Steerable filter (6) Focal[18], rk. 11 6.62 7.51
Steerable filter (6), Focal [18], rk. 11 w/NMS 2.63 2.78
Steerable CNN, rk. 11 w/ NMS (Focal [18]) 4.68 6.70
Table 1. Average angle estimation error (degrees) of different
methods on 25× 25 patches.

Filters (SQF) [19] with different types and ranks (dimension
of the basis), and we show the performance of the best rank
with different isometric filters. As learning based meth-
ods we compare the steerable CNN, the FCNN, and trained
25 × 25 steerable filters with the Lorenz loss[3] and Fo-
cal loss[18], which can be considered as using only the last
layer of the steerable CNN, with a larger filter size. We
also implemented [8] using about 100,000 oriented Haar
features and PBT [24], and trained it on our training set
without SQF NMS alignment.

The guidewire detection examples are shown in Figures
9 (one frame from the train set) and 10 (one frame from the
test set). A threshold was chosen to obtain the results with
an average detection rate of 90% from the response map.
Note that the input image shown in Figure 10 is noisier than
the one from Figure 9.

The detection performance was evaluated on the training
and test sets. The detected guidewire pixels were those that
had a corresponding response above the detection thresh-
old at a distance of at most 2 pixels. A response above
the detection threshold was considered a false positive if it



Figure 9. Guidewire detection training examples. First row: input image, Frangi filter [12], Cauchy SQF [19] of rank 11, trained Steerable
filters(Focal loss[18] w/ NMS) rank 11. Second row: PBT with Haar features[2, 20, 26, 8], FCNN w/ NMS-aligned training examples,
Steerable CNN of rank 11 w/o NMS-aligned training examples, Steerable CNN of rank 11(Focal loss[18]).

Det. rate FP rate # of trained
Method Train Test Train Test parameters
Frangi Filter [12] 90.44 90.44 26.99 24.19 -
SQF [19] Gauss deriv, f0=1/2, rk. 7 90.00 90.08 6.92 7.04 -
SQF [19] Cauchy, f0 = 1/6, rank 7 89.98 90.00 5.98 6.35 -
SQF [19] log-Gabor, f0 = 1/6, rk. 11 90.04 90.03 5.32 5.21 -
SQF [19] Cauchy, f0 = 1/6, rk. 11 90.13 90.02 5.12 5.87 -
SQF [19] Cauchy, f0 = 1/6, rk. 11 w/ SQF NMS 90.03 90.00 4.19 3.93 -
Trained equivariant SFCNN Filters [27] w/ SQF NMS 89.99 90.00 6.31 6.46 0.12k
Trained rank 11 steerable filter, FB loss (6) + Lorenz loss[3] w/ NMS 90.09 89.98 2.48 2.94 6.9k
Trained rank 11 steerable filter, FB loss (6) + Focal loss[18] w/ NMS 90.01 90.11 2.91 3.44 6.9k
PBT and Haar features[2, 20, 26, 8] 90.07 90.19 3.87 3.98 8.4k
2-layer Steerable CNN rank 11, FB loss (6) + Lorenz loss[3] w/ NMS 89.78 89.96 2.17 2.89 18.7k
FCNN with NMS-aligned training examples 90.07 90.08 1.43 2.65 78k
4-layer Steerable CNN rank 7 w/ SQF NMS (Soft Margin loss (12)) 90.08 90.02 0.94 2.01 217k
4-layer Steerable CNN rank 11 w/ SQF NMS (Soft Margin loss (12)) 90.05 90.05 0.78 1.90 341k
4-layer Steerable CNN rank 11 w/ SQF NMS (Focal loss [18]) 90.18 90.10 0.76 1.82 341k
FCNN w/o NMS-aligned training examples 90.09 90.01 3.72 8.28 78k
4-layer Steerable CNN rank 7 w/o SQF NMS (Soft Margin loss (12)) 89.96 90.01 3.34 6.69 217k
4-layer Steerable CNN rank 11 w/o SQF NMS (Soft Margin loss (12)) 90.01 90.07 2.95 5.94 341k
4-layer Steerable CNN rank 11 w/o SQF NMS (Focal loss [18]) 90.07 90.01 2.92 6.08 341k

Table 2. Evaluation of different guidewire detection approaches.

was at distance of at least 3 pixels from the guidewires and
catheters.

In Table 2 are shown the average per-image detection
rates and false positive rates for the different methods eval-
uated. The steerable CNN obtains the lowest false posi-
tive rate on both the training and test set. It outperforms
all the other methods. Among the filter-based methods, the
SQF with a Cauchy filter of rank 11 with NMS performs the

best, but it is outperformed by all the training based meth-
ods. The FCNN with NMS training examples has a very
small training error but it does not generalize as well as the
steerable CNN.

Ablation study. We also show in Table 2 the influence of
training the FCNN with the NMS-based training examples
vs examples extracted directly based on the annotation. We
see that both training and test FP rate are lower using the



Figure 10. Guidewire detection test examples. First row: input image, Frangi filter [12], Cauchy SQF [19] of rank 11, trained Steerable
filters(Focal loss[18] w/ NMS) rank 11. Second row: PBT with Haar features[2, 20, 26, 8], FCNN w/ NMS-aligned training examples,
Steerable CNN of rank 11 w/o NMS-aligned training examples, Steerable CNN of rank 11(Focal loss[18]).

NMS-aligned examples.
To see whether the SQF are useful in screening the im-

age and proposing the angle for the steerable CNN, we also
evaluated in Table 2 the trained steerable CNN by directly
applying it to the whole image and obtaining the maximum
response from 30 discrete angles in the range [0, π] (Steer-
able CNN w/o SQF NMS). Again we see that the SQF-
based screening is useful, reducing the test FP rate from
6.08 to 1.82.

4. Conclusion

In this paper, we introduced a simple steerable CNN that
can be tuned using a parameter θ to be sensitive to objects
aligned to any orientation θ, instead of being rotation invari-
ant.

We presented the mathematical formulation of the train-
able steerable filters and the steerable CNN, and how to
train it using examples at any orientation, without rotating
them for alignment. As an application, we used the steer-
able CNN to detect guidewire pixels in fluoroscopic images,
where a regular CNN overfits because the wire is very thin
and covers only a small percentage of the receptive field.

We reported the difficulties we encountered while train-
ing the steerable or the regular CNN due to the fact that
the guidewire is thin and noisy, and imprecision in anno-
tation makes the training more difficult. To address these
issues, we explained how to obtain better aligned training
patches using the Spherical Quadrature Filters [19] and non-

maximal suppression.
Experiments reveal that the Steerable Convolutional

Neural Network trained on SQF NMS-aligned data per-
formed the best. We also observed that the learning based
methods outperform the filter-based methods such as the
Frangi filter [12] and the Spherical Quadrature Filters [19].

For the future study, we plan to employ the steerable
CNN for automatic guidewire localization and for retina
vessel detection. The guidewire localization is the higher-
level process of finding in the image the entire guidewire
as a curve. It will use the guidewire detection response
as a data term to guide the search in the high dimensional
space of smooth curves for the most likely guidewire lo-
cation. The retina vessel detection problem has the added
challenge that the vessel can have a wide range of widths,
and a classifier should accommodate them in some way. It
would be interesting to see whether a steerable CNN could
be designed to be steered in both the orientation and the
width of the vessel that needs to be detected.
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