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Introduction

In many problems, the predictors (features) interact in complex
ways in relation to the response.

Moreover, only a small number of features are usually relevant
for the response

Examples: Object or action recognition from images, SNPs
relation with certain diseases, etc.

In such cases, we need to go beyond linear models
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Introduction

Artificial neural networks (ANNs) can model complex nonlinear
interactions.

However, they need lots of training data.

What happens in the data starved regime?

The loss function has many local minima

The number of local minima grows exponentially with the
number of irrelevant variables.

Finding a deep local minimum results in good generalization
even in this case
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Introduction

Contributions:

An empirical study of the learnability of neural networks (NNs)
on non-linear, XOR-based data with irrelevant variables.

Extensive experiments on the number of local minima, and their
relation with the number of irrelevant variables.

A framework for node and feature selection to improve the
capability of the ANNs to find a deep local minimum.

Experiments confirm that our method helps improve
generalization on the XOR-like data and several real datasets.
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Related Work

Draxler et al. (2018) and Garipov et al. (2018) showed that the
local minima of some convolutional neural networks are
equivalent (have the same loss value) and a equi-energy path
can be found between the local minima.

Soudry and Carmon (2016) proved that all differentiable local
minima are global minima for the one hidden layer ANNs with
piecewise linear activation and square loss.

The Lottery Tickets Hypothesis (Frankle and Carbin, 2019): a
random initialized dense neural network contains a sub-network
that if trained in isolation, initialized with the original
parameters, will obtain the same test accuracy as the original
network.
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The Noisy XOR Data

Problem Statement

We look at an extreme case, the noisy exclusive-OR (XOR)
classification problem.

The k-dimensional XOR is a binary classification problem:

y(x) =

{
+1 if

∏k
i=1 xi < 0

−1 else
(1)

where x ∈ Rp is sampled uniformly from [−1,+1]p.

We call this data the k-D XOR in p dimensions, where k ≤ p.

In this work, we will use k ∈ {3, 4, 5}.
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The Noisy XOR Data
Problem Statement

The XOR data can only be modeled by using higher order
feature interactions.

Figure: 2D and 3D XOR data. Left: 2D XOR with p = 2. Right: 3D XOR with p = 3.
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Feature Interactions with Neural Networks

Neural Networks on the XOR Data

Neural network: fully connected, one hidden layer with h nodes,
ReLU activation, logistic loss

Can handle the non-noisy XOR data (p = k ∈ {3, 4, 5}) well
with sufficient samples and hidden nodes.

p = k = 3, h = 20 p = k = 4, h = 100 p = k = 5, h = 500

Figure: Test AUC for non-noisy XOR data.



Learning
Nonlinear
Feature

Interactions in
the Data
Starved
Regime

Adrian Barbu

Introduction

Related Work

Local Minima

Node Pruning

Experiments

Conclusions

References

9/33

Feature Interactions with Neural Networks
Neural Network

Figure: One hidden layer neural network.

The input layer is not a real layer, it contains the input variables that
feed into the NN.
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Feature Interactions with Neural Networks

Mathematical Formulation

We will work on XOR data with many irrelevant features.

The hidden node weights are vectors
wj = (wj1, ..., wjp, wjp+1)

T ∈ Rp+1, j = 1, ..., h.

The output neuron has weight vector β = (β1, ..., βh)
T ∈ Rh,

and bias β0 ∈ R.

Using ReLU activation σ(z) = max(0, z), the neural network is:

f(x) =

h∑
j=1

βjσ(w
T
j x) + β0 =

{
> 0 predict + 1

< 0 predict− 1
(2)
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Feature Interactions with Neural Networks
Neural Network Training

Unconstrained optimization with the logistic loss:

min
w,β,β0

L(w,β, β0)

L(w,β, β0) =
n∑
i=1

log

1 + exp

−yi
h∑
j=1

βjσ(w
T
j xi) + β0


 , (3)

where (xi, yi), i = 1, ..., n are the training examples.

We use stochastic gradient descent (SGD) based optimizers via
backpropagation (Werbos, 1974) to minimize the loss in an
iterative way.
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Feature Interactions with Neural Networks
Local Minima and Generalization for NNs on XOR Data

We ran NNs with 100 random initializations, and report the
sorted local minima and corresponding test AUC.

Deeper minima have better generalization in the presence of
irrelevant variables, .

n = 3000, p = 4 n = 3000, p = 27 n = 3000, p = 100

Figure: Values of sorted local minima (top) and AUC (bottom) for 4D XOR.
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Feature Interactions with Neural Networks
NN Generalization vs Number of Irrelevant Variables

NN with h = 512 hidden nodes

Keep smallest loss solution out of 10 random initializations.

Test AUC vs p, averaged over 10 independent runs.

Deepest local minimum out of 10 initializations only works up
to some p

k = 3 k = 4 k = 5

Figure: Test AUC of best solution out of 10 random initializations vs. data dimension p for a NN with
h = 512 hidden nodes.
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Feature Interactions with Neural Networks
NN Generalization vs Number of Irrelevant Variables

NN with h = 20 hidden nodes, n = 3000.

Hit time: number of random training initializations until one
local minimum has train AUC ≥ 0.95.

Hit time vs p, averaged over 10 independent runs.

Number of tries (local optima) grows super-exponentially with p.
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Feature Interactions with Neural Networks
Loss Landscape and Local Minima of NNs on XOR Data

Conclusions from the above study:

If the training data is difficult (such as the XOR data), not all
local minima are equivalent.

For a fixed training size n, the number of shallow local minima
quickly blows up as the number of irrelevant variables increases
and finding the deep local minima becomes extremely hard.

If the number of irrelevant variables is not too large, an NN
with a sufficiently many hidden nodes will find a deep optimum
more often, but does not generalize.

These observations form the basis for the proposed node and feature
selection methodology presented next.
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Feature Interactions with Neural Networks

Node Selection with Annealing

We introduce a node selection method for training NNs, which
can avoid many local optima.

We start with a large model with many hidden nodes and
gradually remove neurons to obtain a compact network.

f(x) =

h∑
j=1

βjσ(w
T
j x) + β0 =

h∑
j=1

βjaj + β0 = βT · a+ β0, (4)
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Feature Interactions with Neural Networks
Node Selection with Annealing

We gradually drop the hidden nodes based on the magnitude of
the associated weights |βj | of the output neuron during the
training

We only keep a few relevant hidden nodes at the end.

The number of kept nodes at iteration e is:

Me =

p 1 ≤ e ≤ Npretrain

k + (p− k)max

(
0,

(N−Npretrain)−2e

2eµ+(N−Npretrain)

)
Npretrain < e ≤ N

(5)
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Feature Interactions with Neural Networks
Node Selection with Annealing

Figure: The number of kept features Me vs iteration e for different schedules with p = 1000, k = 10,
N = 500. Figure source from Barbu et al. (2017).
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Feature Interactions with Neural Networks
Node Selection with Annealing

Algorithm Node Selection with Annealing (NSA)

Input: Training set T = {(xi, yi) ∈ Rp × R}ni=1, desired number h of hidden
neurons, starting number H of hidden neurons, annealing schedule Me, e =
1, .., N iter.
Output: Trained NN with h hidden neurons.

1: Initialize a NN with H hidden neurons with random initialization
2: for e = 1 to N iter do
3: Update w, β and β0 via backpropagation with a gradient descent based

optimizer
4: Remove hidden nodes to keep the Me nodes with largest |βj |
5: end for



Learning
Nonlinear
Feature

Interactions in
the Data
Starved
Regime

Adrian Barbu

Introduction

Related Work

Local Minima

Node Pruning

Experiments

Conclusions

References

20/33

Feature Interactions with Neural Networks
Node Selection with Annealing

We compare NSA with Dropout (Hinton et al., 2012) for
different number of hidden nodes h.

For NN+NSA, we finally keep h = 8 hidden nodes for k = 3,
h = 16 for k = 4 and h = 64 for k = 5 at the end of training.

We show the average test AUC for NN+NSA and NN+Dropout
vs initial number of hidden nodes H.

k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure: Average test AUC vs number of hidden nodes H for NNs with NSA or Dropout.
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Feature Interactions with Neural Networks
Node Importance and Normalization

Node Importance and Normalization

The importance information of a hidden node lies in two parts:

f(x) =
h∑
j=1

 βj︸︷︷︸
I

·σ(wT
j x)︸ ︷︷ ︸
II

+ β0

The first part I is the weight β we considered as the node
importance measure.

In fact the second part II will also change value during
backpropagation.

The second part also carries importance information about the
hidden neurons for dropping consideration.
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Feature Interactions with Neural Networks
Node Importance and Normalization

The XOR data is uniformly distributed in range [−1,+1]p. The
norm of the inner product for j-th hidden node as:

||wT
j x|| = ||wj || · ||x|| · cos θ︸︷︷︸

≤1

≤ ||wj || · ||x||︸︷︷︸
≤1

≤ ||wj ||

where θ is the angle between vectors wj and x.

The range of a hidden node activation is determined by the
magnitude of the internal weight vector w.
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Feature Interactions with Neural Networks
Node Importance and Normalization

We can simultaneously incorporate the importance information
and rescale the activation of hidden nodes.

We only need to transform the NNs score function, due to the
usage of ReLU as activation

f(x) =
h∑
j=1

βjσ(w
T
j x) + β0

=
h∑
j=1

βj · ‖wj‖2 ·
1

‖wj‖2
· σ(wT

j x) + β0

=
h∑
j=1

(
βj · ‖wj‖2

)︸ ︷︷ ︸
incorporation

·
(
max

(
0,

wT
j x

‖wj‖2

))
︸ ︷︷ ︸

normalization

+β0

=

h∑
j=1

β̃jσ(w̃
T
j x) + β0
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Feature Interactions with Neural Networks
Node Selection with Normalization and Annealing

Algorithm Node Selection with Normalization and Anneal-
ing (NSNA)

Input: Training set T = {(xi, yi) ∈ Rp × R}ni=1, desired number h of hidden
neurons, starting number H of hidden neurons, annealing schedule Me, e =
1, .., N iter.
Output: Trained NN with h hidden neurons.

1: Initialize a NN with H hidden neurons with random initialization
2: for e = 1 to N iter do
3: Update w, β and β0 via backpropagation with a gradient descent based

optimizer
4: Normalize hidden nodes and incorporate the normalizers to βj :

β̃j←‖wj‖βj , w̃j←
wj

‖wj‖
, j = 1, ..., h (6)

5: Remove hidden nodes to keep the Me nodes with largest |β̃j |
6: end for
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Feature Interactions with Neural Networks
Node Selection with Normalization and Annealing

k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure: Average test AUC vs number of hidden nodes for NNs with NSNA or NSA.

k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure: Average test AUC vs number of hidden nodes for NNs with NSNA or Dropout.
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Experiments - Parity Data

The parity data is a classical problem in computational learning
theory (Zhang et al., 2017).

It has the same labels as the XOR data but each variable in x is
uniformly drawn from {−1,+1}.

We follow Zhang et al. (2017) to generate the data labels: 10%
of data will have the opposite labels

y =

{
xi1xi2 ...xik with probablity 0.9

− xi1xi2 ...xik with probablity 0.1

The perfect classifier would have a prediction error of 0.1.

Parity data is frequently used to test different optimizers and
regularization techniques for NNs.
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Experiments - Parity Data

We perform the experiment in p = 50 dimensional data with
parities k = 5.

The training set, validation set, and testing set contain
respectively 15,000, 5,000 and 5,000 data points.

We train a one hidden layer NN with default SGD or Adam
(Kingma and Ba, 2014) optimizer

Compare with BoostNet (Zhang et al., 2017) with various
number of hidden neurons h ∈ [1, 100].

We train a one hidden layer NN with Adam+NSNA starting
with H = 256 hidden nodes, and down to a hidden node
number h ∈ [1, 16] using annealing schedule Me.

We report the best result out from 10 independent random
initializations.
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Experiments - Parity Data

Figure: Test error vs number of hidden nodes.
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Experiments - Real Data

We compare a fully connected NN and the compact NN
obtained by FSA+NSNA on real datasets.

The real datasets were selected from the UCI ML repository
(Dua and Graff, 2017).

We ensure that the dataset is not too large and a one hidden
layer fully connected NN can generalize reasonably.

Dataset Number of classes Number of features Number of observations
Car Evaluation 4 21 1728
Image Segmentation 7 19 2310
Optical Recognition of 10 64 5620
Handwritten Digits
Multiple Features 10 216 2000
ISOLET 26 617 7797

Table: Datasets used for evaluating the performance of fully connected NN and sparse NN with FSA+NSNA.
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Experiments - Real Data

We split all real datasets into a training and test set with a ratio
4 : 1.

The obtained training dataset will be used in a 10-run averaged
5-fold cross-validation grid search to find the best
hyper-parameter settings of our trained NNs.

We use the best hyper-parameter to retrain the NNs with the
entire training dataset 10 different times, and each time we
record the best test accuracy.
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Experiments - Real Data

This procedure is used for the fully connected NN, and the NN
with FSA+NSNA with different sparsity levels.

An ”equivalent” fully connected NN with roughly the same
number of connections as the best sparse neural network we get
from FSA+NSNA is also trained.

The hidden node number, L2 regularization coefficient and
mini-batch size were searched in {16, 32, 64, 128, 256, 512},
{0.0001, 0.001, 0.01, 0.1}, and {16, 32, 64} respectively.
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Experiments - Real Data

NN(best) NN(equivalent) NN+FSA+NSNA

Car Evaluation, p = 21, n = 1728, 4 classes.

Number of weights (nodes) 1600 (64) 150 (6) 120+32 = 152
Test Accuracy 100.0±0.00 98.23±0.06 100.0±0.00

Image Segmentation, p = 19, n = 2310, 7 classes.

Number of weights (nodes) 6656 (256) 364 (14) 266+98 = 364
Test Accuracy 96.87±0.72 96.27±0.58 98.40±0.32

Optical Recognition of Handwritten Digits, p = 64, n = 5620, 10 classes.

Number of weights (nodes) 37888 (512) 1998 (27) 1792+160 = 1952
Test Accuracy 98.80±0.29 98.25±0.19 99.01±0.20

Multiple Features, p = 216, n = 2000, 10 classes.

Number of weights (nodes) 14464 (64) 904 (4) 583+320 = 903
Test Accuracy 97.85±0.80 95.45±0.98 98.15±0.82

ISOLET, p = 617, n = 7797, 26 classes.

Number of weights (nodes) 41152 (64) 5787 (9) 4683+1118 = 5801
Test Accuracy 96.73±0.50 94.31±0.61 96.91±0.54

Table: Performance results of NN(best), NN(equivalent) and NN+FSA+NSNA for each dataset.



Learning
Nonlinear
Feature

Interactions in
the Data
Starved
Regime

Adrian Barbu

Introduction

Related Work

Local Minima

Node Pruning

Experiments

Conclusions

References

33/33

Conclusions

A study of the number of local optima for training NNs in the
data starved regime, with irrelevant features

A node selection method for training a neural network to find
deep local optima, starting with a model with many hidden
neurons and gradually removing the weaker ones.

A neuron normalization technique to better measure node
importance during the dropping procedure.

Experiments show that the proposed approach on a two layer
neural network obtains very good results on XOR-related and
real UCI datasets.
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