Learning Nonlinear Feature Interactions in the Data Starved Regime

Adrian Barbu

Florida State University

March 28, 2021

Joint work with Yangzi Guo
Introduction

- In many problems, the predictors (features) interact in complex ways in relation to the response.
- Moreover, only a small number of features are usually relevant for the response.
- Examples: Object or action recognition from images, SNPs relation with certain diseases, etc.
- In such cases, we need to go beyond linear models.
Introduction

- Artificial neural networks (ANNs) can model complex nonlinear interactions.
- However, they need lots of training data.
- What happens in the data starved regime?
Introduction

- Artificial neural networks (ANNs) can model complex nonlinear interactions.

- However, they need lots of training data.

- What happens in the data starved regime?

- The loss function has many local minima

- The number of local minima grows exponentially with the number of irrelevant variables.

- Finding a deep local minimum results in good generalization even in this case
Contributions:

- An empirical study of the learnability of neural networks (NNs) on non-linear, XOR-based data with irrelevant variables.

- Extensive experiments on the number of local minima, and their relation with the number of irrelevant variables.

- A framework for node and feature selection to improve the capability of the ANNs to find a deep local minimum.

- Experiments confirm that our method helps improve generalization on the XOR-like data and several real datasets.
Related Work

- Draxler et al. (2018) and Garipov et al. (2018) showed that the local minima of some convolutional neural networks are equivalent (have the same loss value) and a equi-energy path can be found between the local minima.

- Soudry and Carmon (2016) proved that all differentiable local minima are global minima for the one hidden layer ANNs with piecewise linear activation and square loss.

- The Lottery Tickets Hypothesis (Frankle and Carbin, 2019): a random initialized dense neural network contains a sub-network that if trained in isolation, initialized with the original parameters, will obtain the same test accuracy as the original network.
The Noisy XOR Data

Problem Statement

- We look at an extreme case, the noisy exclusive-OR (XOR) classification problem.
- The k-dimensional XOR is a binary classification problem:

$$y(x) = \begin{cases}
+1 & \text{if } \prod_{i=1}^{k} x_i < 0 \\
-1 & \text{else}
\end{cases}$$

(1)

where $x \in \mathbb{R}^p$ is sampled uniformly from $[-1, +1]^p$.

- We call this data the k-D XOR in p dimensions, where $k \leq p$.
- In this work, we will use $k \in \{3, 4, 5\}$.
The XOR data can only be modeled by using higher order feature interactions.

Figure: 2D and 3D XOR data. Left: 2D XOR with $p = 2$. Right: 3D XOR with $p = 3$.
Neural Networks on the XOR Data

- Neural network: fully connected, one hidden layer with \(h \) nodes, ReLU activation, logistic loss
- Can handle the non-noisy XOR data \((p = k \in \{3, 4, 5\})\) well with sufficient samples and hidden nodes.

\[
p = k = 3, \ h = 20 \quad p = k = 4, \ h = 100 \quad p = k = 5, \ h = 500
\]

Figure: Test AUC for non-noisy XOR data.
The input layer is not a real layer, it contains the input variables that feed into the NN.
Mathematical Formulation

- We will work on XOR data with many irrelevant features.
- The hidden node weights are vectors
 \[w_j = (w_{j1}, ..., w_{jp}, w_{jp+1})^T \in \mathbb{R}^{p+1}, \ j = 1, ..., h. \]
- The output neuron has weight vector \(\beta = (\beta_1, ..., \beta_h)^T \in \mathbb{R}^h \), and bias \(\beta_0 \in \mathbb{R} \).
- Using ReLU activation \(\sigma(z) = \max(0, z) \), the neural network is:

\[
f(x) = \sum_{j=1}^{h} \beta_j \sigma(w_j^T x) + \beta_0 = \begin{cases} > 0 & \text{predict } +1 \\ < 0 & \text{predict } -1 \end{cases}
\]
Unconstrained optimization with the logistic loss:

\[\min_{w, \beta, \beta_0} L(w, \beta, \beta_0) \]

\[L(w, \beta, \beta_0) = \sum_{i=1}^{n} \log \left(1 + \exp \left\{ -y_i \sum_{j=1}^{h} \beta_j \sigma(w_j^T x_i) + \beta_0 \right\} \right), \]

where \((x_i, y_i), i = 1, \ldots, n\) are the training examples.

We use stochastic gradient descent (SGD) based optimizers via backpropagation (Werbos, 1974) to minimize the loss in an iterative way.
We ran NNs with 100 random initializations, and report the sorted local minima and corresponding test AUC.

Deeper minima have better generalization in the presence of irrelevant variables.

\[n = 3000, \quad p = 4 \]
\[n = 3000, \quad p = 27 \]
\[n = 3000, \quad p = 100 \]

Figure: Values of sorted local minima (top) and AUC (bottom) for 4D XOR.
Feature Interactions with Neural Networks
NN Generalization vs Number of Irrelevant Variables

- NN with $h = 512$ hidden nodes
- Keep smallest loss solution out of 10 random initializations.
- Test AUC vs p, averaged over 10 independent runs.
- Deepest local minimum out of 10 initializations only works up to some p

Figure: Test AUC of best solution out of 10 random initializations vs. data dimension p for a NN with $h = 512$ hidden nodes.
Feature Interactions with Neural Networks
NN Generalization vs Number of Irrelevant Variables

- NN with $h = 20$ hidden nodes, $n = 3000$.
- Hit time: number of random training initializations until one local minimum has train AUC ≥ 0.95.
- Hit time vs p, averaged over 10 independent runs.
NN with $h = 20$ hidden nodes, $n = 3000$.

Hit time: number of random training initializations until one local minimum has train AUC ≥ 0.95.

Hit time vs p, averaged over 10 independent runs.

Number of tries (local optima) grows super-exponentially with p.
Conclusions from the above study:

- If the training data is difficult (such as the XOR data), not all local minima are equivalent.

- For a fixed training size \(n \), the number of shallow local minima quickly blows up as the number of irrelevant variables increases and finding the deep local minima becomes extremely hard.

- If the number of irrelevant variables is not too large, an NN with a sufficiently many hidden nodes will find a deep optimum more often, but does not generalize.

These observations form the basis for the proposed node and feature selection methodology presented next.
Node Selection with Annealing

- We introduce a node selection method for training NNs, which can avoid many local optima.

- We start with a large model with many hidden nodes and gradually remove neurons to obtain a compact network.

\[f(x) = \sum_{j=1}^{h} \beta_j \sigma(w_j^T x) + \beta_0 = \sum_{j=1}^{h} \beta_j a_j + \beta_0 = \beta^T \cdot a + \beta_0, \]

(4)
Feature Interactions with Neural Networks
Node Selection with Annealing

- We gradually drop the hidden nodes based on the magnitude of the associated weights $|\beta_j|$ of the output neuron during the training.

- We only keep a few relevant hidden nodes at the end.

- The number of kept nodes at iteration e is:

$$M_e = \begin{cases}
 p & \text{if } 1 \leq e \leq N_{\text{pretrain}} \\
 k + (p - k) \max \left(0, \frac{(N - N_{\text{pretrain}}) - 2e}{2e\mu + (N - N_{\text{pretrain}})} \right) & \text{if } N_{\text{pretrain}} < e \leq N
\end{cases}$$

(5)
Feature Interactions with Neural Networks
Node Selection with Annealing

Figure: The number of kept features M_e vs iteration e for different schedules with $p = 1000$, $k = 10$, $N = 500$. Figure source from Barbu et al. (2017).
Algorithm Node Selection with Annealing (NSA)

Input: Training set \(T = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}\}_{i=1}^{n} \), desired number \(h \) of hidden neurons, starting number \(H \) of hidden neurons, annealing schedule \(M_e, e = 1, \ldots, N_{iter} \).

Output: Trained NN with \(h \) hidden neurons.

1: Initialize a NN with \(H \) hidden neurons with random initialization
2: for \(e = 1 \) to \(N_{iter} \) do
3: Update \(w, \beta \) and \(\beta_0 \) via backpropagation with a gradient descent based optimizer
4: Remove hidden nodes to keep the \(M_e \) nodes with largest \(|\beta_j| \)
5: end for
We compare NSA with Dropout (Hinton et al., 2012) for different number of hidden nodes h.

For NN+NSA, we finally keep $h = 8$ hidden nodes for $k = 3$, $h = 16$ for $k = 4$ and $h = 64$ for $k = 5$ at the end of training.

We show the average test AUC for NN+NSA and NN+Dropout vs initial number of hidden nodes H.

$k = 3$, $p = \{40, 45, 50\}$ \hspace{1cm} $k = 4$, $p = \{25, 30, 35\}$ \hspace{1cm} $k = 5$, $p = \{10, 15, 20\}$

Figure: Average test AUC vs number of hidden nodes H for NNs with NSA or Dropout.
Node Importance and Normalization

- The importance information of a hidden node lies in two parts:

\[f(x) = \sum_{j=1}^{h} \left(\beta_j \cdot \sigma(w_j^T x) \right) + \beta_0 \]

- The first part \(I \) is the weight \(\beta \) we considered as the node importance measure.

- In fact the second part \(II \) will also change value during backpropagation.

- The second part also carries importance information about the hidden neurons for dropping consideration.
The XOR data is uniformly distributed in range \([-1, +1]^p\). The norm of the inner product for \(j\)-th hidden node as:

\[
\|w_j^T x\| = \|w_j\| \cdot \|x\| \cdot \cos \theta \\
\leq \|w_j\| \cdot \|x\| \\
\leq \|w_j\|
\]

where \(\theta\) is the angle between vectors \(w_j\) and \(x\).

The range of a hidden node activation is determined by the magnitude of the internal weight vector \(w\).
We can simultaneously incorporate the importance information and rescale the activation of hidden nodes.

We only need to transform the NNs score function, due to the usage of ReLU as activation

\[
f(x) = \sum_{j=1}^{h} \beta_j \sigma(w_j^T x) + \beta_0
\]

\[
= \sum_{j=1}^{h} \beta_j \cdot \|w_j\|_2 \cdot \frac{1}{\|w_j\|_2} \cdot \sigma(w_j^T x) + \beta_0
\]

\[
= \sum_{j=1}^{h} (\beta_j \cdot \|w_j\|_2) \cdot \left(\max \left(0, \frac{w_j^T x}{\|w_j\|_2}\right)\right) + \beta_0
\]

\[
= \sum_{j=1}^{h} \tilde{\beta}_j \sigma(\tilde{w}_j^T x) + \beta_0
\]
Algorithm Node Selection with Normalization and Annealing (NSNA)

Input: Training set $T = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}\}_{i=1}^n$, desired number h of hidden neurons, starting number H of hidden neurons, annealing schedule $M_e, e = 1, \ldots, N_{iter}$.

Output: Trained NN with h hidden neurons.

1: Initialize a NN with H hidden neurons with random initialization
2: for $e = 1$ to N_{iter} do
3: Update w, β and β_0 via backpropagation with a gradient descent based optimizer
4: Normalize hidden nodes and incorporate the normalizers to β_j:
 \[\tilde{\beta}_j \leftarrow \|w_j\|\beta_j, \tilde{w}_j \leftarrow \frac{w_j}{\|w_j\|}, j = 1, \ldots, h \]
 (6)
5: Remove hidden nodes to keep the M_e nodes with largest $|\tilde{\beta}_j|$
6: end for
Feature Interactions with Neural Networks
Node Selection with Normalization and Annealing

$k = 3$, $p = \{40, 45, 50\}$ \hspace{1cm} $k = 4$, $p = \{25, 30, 35\}$ \hspace{1cm} $k = 5$, $p = \{10, 15, 20\}$

Figure: Average test AUC vs number of hidden nodes for NNs with NSNA or NSA.

$k = 3$, $p = \{40, 45, 50\}$ \hspace{1cm} $k = 4$, $p = \{25, 30, 35\}$ \hspace{1cm} $k = 5$, $p = \{10, 15, 20\}$

Figure: Average test AUC vs number of hidden nodes for NNs with NSNA or Dropout.
Experiments - Parity Data

- The parity data is a classical problem in computational learning theory (Zhang et al., 2017).
- It has the same labels as the XOR data but each variable in \(x \) is uniformly drawn from \(\{-1, +1\} \).
- We follow Zhang et al. (2017) to generate the data labels: 10% of data will have the opposite labels

\[
y = \begin{cases}
 x_{i_1} x_{i_2} \ldots x_{i_k} & \text{with probability 0.9} \\
 -x_{i_1} x_{i_2} \ldots x_{i_k} & \text{with probability 0.1}
\end{cases}
\]

- The perfect classifier would have a prediction error of 0.1.
- Parity data is frequently used to test different optimizers and regularization techniques for NNs.
Experiments - Parity Data

- We perform the experiment in $p = 50$ dimensional data with parities $k = 5$.
- The training set, validation set, and testing set contain respectively 15,000, 5,000 and 5,000 data points.
- We train a one hidden layer NN with default SGD or Adam (Kingma and Ba, 2014) optimizer.
- Compare with BoostNet (Zhang et al., 2017) with various number of hidden neurons $h \in [1, 100]$.
- We train a one hidden layer NN with Adam+NSNA starting with $H = 256$ hidden nodes, and down to a hidden node number $h \in [1, 16]$ using annealing schedule M_e.
- We report the best result out from 10 independent random initializations.
Experiments - Parity Data

Figure: Test error vs number of hidden nodes.
Experiments - Real Data

- We compare a fully connected NN and the compact NN obtained by FSA+NSNA on real datasets.

- The real datasets were selected from the UCI ML repository (Dua and Graff, 2017).

- We ensure that the dataset is not too large and a one hidden layer fully connected NN can generalize reasonably.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Number of classes</th>
<th>Number of features</th>
<th>Number of observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car Evaluation</td>
<td>4</td>
<td>21</td>
<td>1728</td>
</tr>
<tr>
<td>Image Segmentation</td>
<td>7</td>
<td>19</td>
<td>2310</td>
</tr>
<tr>
<td>Optical Recognition of Handwritten Digits</td>
<td>10</td>
<td>64</td>
<td>5620</td>
</tr>
<tr>
<td>Multiple Features</td>
<td>10</td>
<td>216</td>
<td>2000</td>
</tr>
<tr>
<td>ISOLET</td>
<td>26</td>
<td>617</td>
<td>7797</td>
</tr>
</tbody>
</table>

Table: Datasets used for evaluating the performance of fully connected NN and sparse NN with FSA+NSNA.
Experiments - Real Data

- We split all real datasets into a training and test set with a ratio 4 : 1.

- The obtained training dataset will be used in a 10-run averaged 5-fold cross-validation grid search to find the best hyper-parameter settings of our trained NNs.

- We use the best hyper-parameter to retrain the NNs with the entire training dataset 10 different times, and each time we record the best test accuracy.
Experiments - Real Data

- This procedure is used for the fully connected NN, and the NN with FSA+NSNA with different sparsity levels.

- An "equivalent" fully connected NN with roughly the same number of connections as the best sparse neural network we get from FSA+NSNA is also trained.

- The hidden node number, L_2 regularization coefficient and mini-batch size were searched in $\{16, 32, 64, 128, 256, 512\}$, $\{0.0001, 0.001, 0.01, 0.1\}$, and $\{16, 32, 64\}$ respectively.
Experiments - Real Data

<table>
<thead>
<tr>
<th></th>
<th>NN(best)</th>
<th>NN(equivalent)</th>
<th>NN+FSA+NSNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car Evaluation</td>
<td>100.0±0.00</td>
<td>98.23±0.06</td>
<td>100.0±0.00</td>
</tr>
<tr>
<td>(p = 21, n = 1728), (4) classes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of weights (nodes)</td>
<td>1600 (64)</td>
<td>150 (6)</td>
<td>120+32 = 152</td>
</tr>
<tr>
<td>Test Accuracy</td>
<td>98.40±0.32</td>
<td>96.87±0.72</td>
<td>96.27±0.58</td>
</tr>
<tr>
<td>Image Segmentation</td>
<td>96.87±0.72</td>
<td>96.27±0.58</td>
<td>98.40±0.32</td>
</tr>
<tr>
<td>(p = 19, n = 2310), (7) classes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of weights (nodes)</td>
<td>6656 (256)</td>
<td>364 (14)</td>
<td>266+98 = 364</td>
</tr>
<tr>
<td>Test Accuracy</td>
<td>99.01±0.20</td>
<td>97.85±0.29</td>
<td>99.01±0.20</td>
</tr>
<tr>
<td>Optical Recognition of Handwritten Digits</td>
<td>97.85±0.29</td>
<td>95.45±0.98</td>
<td>98.15±0.82</td>
</tr>
<tr>
<td>(p = 64, n = 5620), (10) classes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of weights (nodes)</td>
<td>37888 (512)</td>
<td>1998 (27)</td>
<td>1792+160 = 1952</td>
</tr>
<tr>
<td>Test Accuracy</td>
<td>98.25±0.19</td>
<td>98.25±0.19</td>
<td>98.25±0.19</td>
</tr>
<tr>
<td>Multiple Features</td>
<td>98.25±0.19</td>
<td>98.25±0.19</td>
<td>99.01±0.20</td>
</tr>
<tr>
<td>(p = 216, n = 2000), (10) classes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of weights (nodes)</td>
<td>14464 (64)</td>
<td>904 (4)</td>
<td>583+320 = 903</td>
</tr>
<tr>
<td>Test Accuracy</td>
<td>97.85±0.80</td>
<td>95.45±0.98</td>
<td>98.15±0.82</td>
</tr>
<tr>
<td>ISOLET</td>
<td>97.85±0.80</td>
<td>95.45±0.98</td>
<td>98.15±0.82</td>
</tr>
<tr>
<td>(p = 617, n = 7797), (26) classes.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of weights (nodes)</td>
<td>41152 (64)</td>
<td>5787 (9)</td>
<td>4683+1118 = 5801</td>
</tr>
<tr>
<td>Test Accuracy</td>
<td>96.73±0.50</td>
<td>94.31±0.61</td>
<td>96.91±0.54</td>
</tr>
</tbody>
</table>

Table: Performance results of NN(best), NN(equivalent) and NN+FSA+NSNA for each dataset.
Conclusions

- A study of the number of local optima for training NNs in the data starved regime, with irrelevant features.

- A node selection method for training a neural network to find deep local optima, starting with a model with many hidden neurons and gradually removing the weaker ones.

- A neuron normalization technique to better measure node importance during the dropping procedure.

- Experiments show that the proposed approach on a two layer neural network obtains very good results on XOR-related and real UCI datasets.
Barbu, A., Y. She, L. Ding, and G. Gramajo
2017. Feature selection with annealing for computer vision and big
data learning. *IEEE Transactions on Pattern Analysis and Machine

Draxler, F., K. Veschgini, M. Salmhofer, and F. A. Hamprecht

Dua, D. and C. Graff
2017. UCI machine learning repository.

Frankle, J. and M. Carbin
2019. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. *ICLR*.

Garipov, T., P. Izmailov, D. Podoprikhin, D. P. Vetrov, and A. G. Wilson
2018. Loss surfaces, mode connectivity, and fast ensembling of dnns. In

Salakhutdinov
2012. Improving neural networks by preventing co-adaptation of feature
Kingma, D. P. and J. Ba

Soudry, D. and Y. Carmon

Werbos, P.

Zhang, Y., J. Lee, M. Wainwright, and M. Jordan