
Predicting Lane Change Decision Making with Compact Support

Hua Huang1 and Adrian Barbu2

Abstract— In the foreseeable future, autonomous vehicles will
have to drive alongside human drivers. In the absence of vehicle-
to-vehicle communication, they will have to be able to predict
the other road users’ intentions. Moreover, they will also need to
behave like a typical human driver so that other road users can
infer their actions. It is critical to be able to learn a human
driver’s mental model and integrate it into the Planning &
Control algorithm. In this paper, we present a robust method to
predict lane changes as cooperative or adversarial. For that, we
first introduce a method to extract and annotate lane changes
as cooperative and adversarial based on the entire lane change
trajectory. We then propose to train a specially designed neural
network to predict the lane change label before the lane change
has occurred and quantify the prediction uncertainty. The
model will make lane change decisions following human drivers’
driving habits and preferences, i.e., it will only change lanes
when the surrounding traffic is considered to be appropriate
for the majority of human drivers. It will also recognize
unseen novel samples and output low prediction confidence
correspondingly to alert the driver to take control in such
cases. We published the lane change dataset and codes at
https://github.com/huanghua1668/lc_csnn.

I. INTRODUCTION

One of the biggest obstacles in deploying autonomous
vehicles is the necessity for the autonomous vehicles to
interact with human drivers, especially in scenarios that
need cooperation, e.g., lane changes, unprotected left turns,
roundabouts, unsignaled intersections, etc. In particular, lane
changes are considered to be one of the most challenging
maneuvers even for human drivers. Around 18% of all
accidents happen during the execution of a lane change, and
most of them are rear-end collision [1]. As can be seen in
Fig. 1, ego has to consider both the relative position and
relative velocity of the surrounding 3 vehicles. In particular,
ego should understand the intentions of V0, which could be
either:
• Respect the cut-in request. If necessary, it will decelerate

to create enough space.
• Ignore the request and might even accelerate to close

the window to deter ego from merging.
• Keep its speed and wait for the ego’s next action, i.e.,

a wait-and-see mode.
Without vehicle-to-vehicle communication, ego has to be
able to recognise other road users’ intentions. If ego does
not recognize the environment and recklessly changes the
lane, the lag vehicle in the target lane might have to do
a harsh brake or be forced to change lane. In the worst

1Hua Huang is with Department of Mathematics, Florida State University,
Tallahassee, FL 32306 USA. hhuang@math.fsu.edu

2Adrian Barbu is with the Department of Statistics, Florida State Univer-
sity, Tallahassee, FL 32306 USA. abarbu@stat.fsu.edu

Fig. 1. Lane change illustration. V2 is the immediate leading vehicle in the
old lane, V1 is the leading vehicle in the target lane, V0 is the lag vehicle
in the target lane, and Ego is the autonomous vehicle carrying out the lane
change.

scenario, a collision might happen with the lag vehicle.
Equally importantly, ego has to behave like a vehicle driven
by a typical human driver so that other road users can
anticipate its actions.

To accelerate the integration of autonomous vehicles with
human driven vehicles, the human driver’s mental model
must be learned and incorporated in the Planning & Control
algorithm. Encouraged by the successful applications of deep
learning in object classification, language translation, game
playing and many other tasks [2], recently there has been a
surge of interest in applying deep learning to predict the lane
change decisions [3, 4, 5, 6].

Even though deep learning is a very powerful tool, it
can be fooled easily by adversarial samples [7, 8]. In many
cases, neural networks are overconfident in their predictions
[9]. The ReLU based neural networks have been proved to
produce almost always high confidence predictions far away
from the training data [10]. If one wants to apply neural
networks to safety-critical domains like autonomous driving,
the model has to be able to assess its prediction confidence
and detect OOD samples [11], i.e., know when it doesn’t
know.

The contributions of this paper are:
• We propose an annotation method that can extract

human drivers’ preferences and habits in lane changes.
• We investigate reliable neural networks for lane change

decision making. We demonstrated that the proposed
networks can assess their prediction uncertainty and
detect when the scenario is out-of-distribution (OOD)
to alert a human operator. The obtained models also
achieved similar test accuracy for in-distribution sam-
ples compared with normal neural networks and greatly
outperform them for OOD samples detection.

II. RELATED WORK

A. Predicting Lane Changes with Deep Learning

Xie et al. [3] employed deep belief networks to model the
lane change decision making and long-short-term-memory
(LSTM) networks to model lane change implementation.

Zhang et al. [4] proposed to use LSTM to model both
the lane change and lane following behaviors. Attention
mechanisms have also been introduced to improve prediction
accuracy [6]. Jeong et al. [5] trained an end-to-end deep
convolutional neural network from images directly to classify
whether it’s safe to initialize the lane change. Yan et al. [12]
built a neural-network based payoff model to describe the
interactions with other road users.

Deep learning has also been applied to reinforcement
learning to learn both the lane change decision making and
implementation [13, 14, 15, 16, 17]. The major disadvantage
of reinforcement learning is that a simulation bed has to be
built, in which behaviors of agents should be as close as
possible to human drivers’ behaviors. Compared with learn-
ing a good driving policy, characterizing high-fidelity agent
driving behaviors is equally difficult. Another challenge is
that the rewards need to be hand-crafted to be able to train
a smooth and natural policy.

B. OOD Detection

There are primarily four types of OOD detection tech-
niques. Deep ensembles [18] have been proven to work well
in high dimensional space as individual networks tend to
disagree on OOD samples and eventually lead to a higher
prediction entropy. The second approach is to modify the
training process by incorporating OOD samples and mini-
mize a hybrid loss function to penalize the high confidence
prediction on OOD samples [10, 19, 20, 21]. The major
disadvantage is that the space of OOD samples will be too
large to cover. The model trained on one set of OOD samples
might not be able to detect another unseen set of OOD
samples. The third type is modifying the score function.
Temperature scaling has been introduced into the softmax
score to enlarge the difference between in-distribution and
OOD samples [19]. Energy scores [22] have also been found
to better separate the in-distribution samples from OOD sam-
ples compared with softmax scores. Lastly, compact support
networks have also been introduced through variations of
Radial-Basis-Function networks [23, 24].

The Compact Support Neural Network (CSNN) [25]
smoothly interpolate between a ReLU-type network and a
traditional RBF network through a shape hyperparameter.
It has the same-level accuracy in predicting in-distribution
samples compared with normal neural network. It will have
zero output for samples outside the support, i.e., OOD
samples. In this paper, CSNN will be adopted to predict
human drivers’ lane change decision makings and detect
unseen OOD samples.

In this paper we will work with the NGSIM dataset [26],
which is described in Section V-B. It contains trajectory data
from the I-80 and the US-101 highways.

To capture the likely actions of human drivers in lane
change and the likely reactions of the lag vehicle in the target
lane, cooperative and adversarial lane changes need to be
defined and extracted from this data. Since human drivers’
intentions cannot be observed directly, there are various
methods in the literature to label cooperative/adversarial

Fig. 2. Lane changes for the I-80 dataset set with labels based on the
change in ∆x, as proposed by [12].

lane change behaviors. The positive samples (cooperative)
are relatively easy to characterize, however, the negative
(adversarial) samples are much more difficult to define. The
fact that a human driver does not begin the lane change
could be caused by many factors, e.g., competing behavior
of the lag vehicle in target lane, or the driver does not
have an intention to carry out the lane change and prefers
car-following for now. The implicit reasoning can not be
observed. For these reasons, different papers adopt different
ways to label the negative samples:
• Negative labels for the lane change preparation stage.

Lane changes usually experience a preparation process
for seeking a suitable acceptable gap or adjusting the
velocity before lane-changing execution. Thus, Scheel
et al. [1] labeled the lane-changing preparation stage as
a number of lane-changing execution rejecting events.

• Negative labels for observations before and after the ego
starts the lateral move [27]. Car following maneuvers
are also counted as negative samples. Under these
conditions less than 0.1% samples are positive.

• Negative labels for decreases in relative longitudinal
distance after lane change. The cooperative/adversarial
strategy is labeled based on whether the relative distance
between ego and lag vehicle ∆x = xego−x0 in the target
lane decreases or not from time t = −3 s to t = 0 s,
in which t = 0 s is the time the ego crosses the lane
divider. If the relative distance increases, it is labeled as
cooperative [12].

The extracted negative samples in both the first and second
methods do not always fall in the adversarial category. For
the third approach, the extracted lane changes from the I-80
dataset are labeled and plotted in Fig. 2. The plot shows ∆x
vs ∆v at time t =−3 s for each trajectory. As one could see
from Fig. 2, when the ego is slower than the lag vehicle
in the target lane, i.e., ∆v = vego− v0 < 0, ∆x will almost
always decrease and the sample will be labeled as negative.
This labeling will lead to overly conservative lane change
decisions and cannot be used in moderate or heavy traffic.

III. LANE CHANGE EXTRACTION AND
ANNOTATION

Since motorcycle and truck change lanes differently from
cars, only lane changes carried out by cars are included
in this research. Lane changes from/to the rightmost lane

are also excluded as the rightmost lane is for ramp merg-
ing/diverging, in which vehicles have to finish the merg-
ing/diverging before the merge/diverge point, so drivers tend
to behave differently than a typical lane change.

Two types of lane changes are defined and extracted in
this research. Successful lane change is defined as merging
in front of the lag vehicle in the target lane V0. The positions
and velocities of ego and surrounding vehicles are extracted
in t ∈ [t0, 5s], in which t0 < 0 is defined as the time when the
ego starts to have a lateral velocity |vy|> 0.213 m/s2 [1] and
without oscillation thereafter. The time t = 0s corresponds
to when the ego crosses the lane divider. The other type is
aborting the current open window and merging after the lag
vehicle V0 in the target lane. When it is deemed too aggres-
sive or even dangerous to carry out lane change immediately,
ego will prefer to wait for the next available window. In this
scenario, we first find successful lane changes, and further
require that at t =−8s, ego is in front of V1.

For successful lane changes, instead of ∆x, the deceleration
of the lag vehicle in the target lane is inspected. If ego’s
lane change causes no forced harsh brake (a harsh brake
is defined as a deceleration smaller than the comfortable
deceleration [28] acom f ortable = −3 m/s2 as recommended
by the Institute of Transportation Engineers) for vehicle V0,
it will be labeled as a cooperative lane change. Since the
acceleration is calculated by the second order derivative of
the position and therefore can be noisy, we require the total
duration of deceleration at < −3 m/s2 in t ∈ [t0, 5s] for V0
be less then 1s for cooperative samples, otherwise, it will be
labeled as adversarial. Window abortion is also labeled as
adversarial.

Overall, 1,558 lane changes are extracted from the I-80
dataset and 1,290 lane changes from the US-101 dataset.
The statistics of the extracted lane change are summarized
in Table I. The extracted lane changes from the I-80 dataset
are plotted in Fig. 3, in which the samples are scattered
in the ∆x−∆v 2d space. The most significant observation
is that there is class overlap, i.e., data uncertainty. For
one particular relative velocity, timid or polite drivers will
choose to give up the current lane change window, while
aggressive or impatient drivers will perform the lane change.
Understandably, models should output low confidence in the
ambiguous region, meanwhile, they are also required to have
low confidence in OOD samples.

TABLE I
STATISTICS OF I-80 AND US-101 DATASETS

I-80 US-101
Location Emeryville Los Angeles

Time 4pm-4:15pm, 5pm-5:30pm 7:50am-8:35am
Samples 1,558 1,290

Merge in front coop 1,095 (70.28%) 1,116 (86.51%)
Merge in front adv 150 (9.63%) 32 (2.48%)

Merge after 313 (20.09%) 142 (11.01%)

IV. PROPOSED METHOD
The neuron with compact support [25] is defined as

f (x) = max(R2−||x−µ||2,0)
= max(α(R2−xT x−µ

T
µ)+2µ

T x,0)
(1)

Fig. 3. Lane changes extracted and labeled with the proposed approach
for the I-80 dataset.

When the shape parameter α = 0, it will be a standard ReLU
neuron. When α > 0, it will be a Compact Support Neuron.
In practice, CSNN is trained by starting from a regular
neuron network (α = 0) and then gradually increasing α to
1. It can be shown that the neuron only has support within
a sphere of radius

R2
α = R2 + ||µ||2(1

α2 −1) (2)

and center

c =
µ

α
(3)

R and µ are learnable parameters. To further constrain the
support, radius penalties are added to the loss function.
Experiments show that the infinity norm works best. For
this binary classification task, the overall loss is binary cross
entropy loss and radius penalty.

`= ∑
i

yi log(pi)+(1− yi) log(1− pi)+λ ||R||∞ (4)

where λ is the radius penalty coefficient. It’s worth noting
that the ability to measure the distance from a testing
sample to training dataset is a necessary condition to get a
high-quality estimation of distribution uncertainty [24]. The
neuron output in the CSNN is determined by the distance of
the inputs to the neuron’s parameter vector, hence satisfies
the necessary condition.

V. EXPERIMENTS
A. Synthetic dataset

To show the effectiveness of the CSNN in detecting OOD
samples, CSNN models with α of 0 and 1 are trained on the
moons dataset. The moons dataset contains two interleaving
half circles corrupted by noise, one for each class, as
illustrated in Figure 4. We generated 1,500 samples using
the scikit-learn library [29]. Another 10,000 samples are
generated on a uniform grid spanning [−2.5, 3.5]× [−3, 2].
The samples are normalized to have 0 mean and standard
deviation 1/

√
d, in which d is the feature dimension, i.e., 2

here. A two layer CSNN model with 256 compact support
neurons in the 1st layer is implemented. The output layer
is a fully connected layer. The radius penalty coefficient is
λ = 0.64.

The samples and the prediction confidence are plotted in
Fig. 4. With α = 0, i.e., a ReLU-type neuron, the model will

Fig. 4. Confidence map and data points for the moons dataset. Left: regular
neural network, right: CSNN.

generalize the prediction far from the training dataset and
output high confidence for OOD samples. With α = 1, the
confidence is 0.5 away from the two circles, while around the
two circles, the confidence is near 1. Just as designed, CSNN
will shrink its support to a neighbouring domain surrounding
the training samples and will output a low confidence for
samples far from the training dataset. The confidence is also
low for samples between the two moons, i.e., in addition
to distribution uncertainty, model successfully identifies the
class overlap and data uncertainties [30].

B. NGSIM dataset
We will use the FHWA’s Next Generation Simulation

(NGSIM) dataset [26] for real data experiments. The NGSIM
dataset has been widely used to investigate human driving
behaviors. The dataset contains videos of the northbound
traffic on I-80 and southbound traffic on US-101. The de-
tailed location and time are given in Table I. The study site
is approximately 500m long for I-80 and 640m for US-101.
The vehicle positions were recorded every 0.1s. The dataset
contains 11,779 vehicle trajectories, out of which 11,328
trajectories are carried out by cars.

1) Classifiers: Multi-Layer Perceptron (MLP) networks
are trained on the NGSIM dataset will be used as baseline
models for in-distribution prediction performance. CSNN
models will then be trained and the test accuracy will be
compared with the MLP results. The Area under the ROC
curve (AUROC) score for classifying between in-distribution
and OOD samples will be used to gauge the OOD detection
performance. The in-distribution prediction accuracy and
OOD detection performance will also be compared with
results obtained from recently proposed OOD detection
algorithms.

2) Features: An instance at time t is represented by the
following features

x = [vego, ∆v0, ∆x0, ∆y0, ∆v1, ∆x1, ∆y1, ∆v2, ∆x2, ∆y2] (5)

containing the relative velocity ∆vi = vego− vi, relative lon-
gitudinal position ∆xi = xego−xi and relative lateral position
∆yi = yego− yi for i ∈ {0, 1, 2}. The features are extracted
every 0.1 s from t0−0.5 to t0 and averaged to get the final
features.

To facilitate the downstream OOD evaluation task, a
backward feature selection is carried out using MLP models
with two hidden layers with 64 neurons. Using just 4 features
out of the 10 original features (5),

x = [∆v0, ∆x0, ∆v1, ∆x1] (6)

we found the best average test accuracy over 10 independent
runs, dropping from 0.876 for the 10 features to 0.871. It
is reasonable to conclude only these 4 features are strongly
related to this prediction task, hence hereafter, this 4D feature
space will be used.

3) OOD sample generation: OOD samples are generated
through uniform sampling.

First, all the in-distribution samples, i.e., samples from
both datasets (I-80 and US-101), are normalized to have 0
mean and 1 std in each dimension.

Then for each in-distribution sample xi, the minimum
distance di to other in-distribution samples is computed. Then
we find a distance threshold τ as the 99 percentile of the di
values, thus 99% of the di will be less than τ .

Then we generate 160,000 samples through uniform sam-
pling in the hyper-rectangle

R =[1.5min
i

∆vi
0,1.5max

i
∆vi

0]× [−r0,0.5r0]

× [1.5min
i

∆vi
1,1.5max

i
∆vi

1]× [−0.5r0,r0]
(7)

where r0 = 100m is the detection range.
The generated samples are then transformed using the

mean and std of the in-distribution samples and the minimum
distance to any in-distribution samples is calculated. The
generated samples with a distance di < τ are discarded. This
way, 147,496 generated samples are kept as OOD samples.
In comparison, there are 2,848 in-distribution samples.

4) Architectures: For the baseline, MLP models with 2
hidden layers of 64 hidden neurons are trained. To have a
fair comparison, the CSNN models have the same number
of layers and neurons except that the neurons in the last
hidden layer are compact support neurons. There is also a
batch normalization layer without learnable parameters after
the first hidden layer.

5) Training: Samples from the I-80 and US-101 datasets
are combined as the in-distribution samples, in which 75%
samples are used for training and the remaining samples
for test. Adam optimization with learning rate 0.0001 is
employed. 10 independent runs are carried out for each
algorithm with different random initializations and shuffles
of the training data. The shape parameter α is increased
linearly from 0 to 1 as the epoch number increases to 1000,
i.e., we begin with normal type ReLU neurons and gradually
shrink the support. The parameter R is initialized to 1 and
is learnable. The radius penalty coefficient is set by grid
search over the range λ ∈ [0, 2] and the best test accuracy
is obtained at λ = 0.1.

6) Methods compared: The most similar OOD detection
approach to ours is the DUQ [23] algorithm. DUQ computes
a feature vector through MLP and then calculate the distance
between the feature vector with class centroids. The class
centroid is updated with an exponential moving average of
the feature vectors belonging to that class. When the distance
between the feature vector and any class centroid is large, it is
considered to be a OOD sample. To have a fair comparison,
a MLP with 1 hidden layer of 64 units is used to extract the
feature vector and the centroid is of size 64. The length scale

Fig. 5. Test accuracy and AUROC

σ and gradient penalty coefficient λ are set by grid search
over the space σ ∈ (0,1.0] and λ ∈ [0,1.0].

Another method we compared with is the deep ensemble.
Models with the same architecture but different random ini-
tializations have been experimentally demonstrated to tend to
disagree on OOD samples, hence leading to a higher entropy
in prediction. In deep ensemble, the average prediction is
defined as

p̂(y|x) = 1
N

N

∑
i=1

pθi(y|x) (8)

in which N is number of models and ith model is param-
eterized by θi. The entropy of the prediction is defined as

H(p̂(y|x)) =−
C

∑
i=0

p̂(yi|x)logp̂(yi|x) (9)

An ensemble was constructed from 10 independent nets and
each net is a MLP network with two hidden layers of 64
units.

7) Results: The results are presented in Table II. For the
baseline, the best test accuracy obtained by averaging 10
independent runs is 0.871±0.002. For the CSNN algorithm,
the average test accuracy and AUROC over 10 independent
runs are plotted in Fig. 5 as functions of α .

TABLE II
TEST ACCURACY AND AUROC IN OOD DETECTION

Test accuracy AUROC
MLP 0.871 (.002) 0.156 (.012)

CSNN 0.868 (.002) 0.991 (.001)
DUQ 0.868 (.002) 0.971 (.005)

Deep ensemble 0.873 (.001) 0.189 (.005)

As we can see in Fig. 5, the test accuracy increases as
α increases. The AUROC also increases as α increases
and the support becomes more compact. The best AUROC
0.991±0.001 is obtained at α = 0.33, where test accuracy is
0.868±0.002 . Compared with the baseline results 0.871±
0.002 obtained with normal neuron-based network, there is
only a 0.3% decrease, i.e., the in-distribution prediction per-
formance is comparable to a typical neuron-based network.
When the α keeps increasing, both the test accuracy and
AUROC decrease gently.

The best average test accuracy for DUQ 0.868± 0.002
over 10 independent runs is obtained at σ = 0.4 and λ = 0.3,
where the AUROC in detecting OOD is 0.971± 0.005. As
shown in Table II, CSNN obtained the same in-distribution
prediction accuracy compared with DUQ but beat DUQ
in detecting OOD samples for this task. CSNN has more

flexibility and fewer assumptions as each neuron has its own
support, while in DUQ, each class is assumed to have its own
centroid, hence stronger assumptions and less flexibility.

The best average test accuracy of the deep ensemble is
0.873± 0.001, where the AUROC is 0.189± 0.005. The
deep ensemble completely failed in this low-dimension OOD
prediction task. Van Amersfoort et al. [23] also reported that
deep ensembles do not work in low dimensional applications
for the OOD detection task.

To reveal the reasons, the entropy of average prediction in
another low-dimension ODD detection task, i.e. the moons
dataset, is plotted in Fig. 6. In contrast to the high-dimension
applications like image classification, in the low-dimensional
scenario, the nets tend to only disagree with each other on
the class overlap and near the decision boundary, i.e., data
uncertainty, instead of the distributional uncertainty.

Fig. 6. Entropy of average prediction

The generalization capability of CSNN algorithm is in-
vestigated by training on dataset I-80 and testing on dataset
US-101 and vice-versa. We first trained MLP networks and
set the test accuracy as the baseline. CSNN algorithms are
then trained and the test accuracy and AUROC are given in
Table III. When CSNN is trained on dataset I-80 and tested
on dataset US-101, the test accuracy decreases negligibly
and the AUROC in detecting OOD samples is still high.
There is a noticeable downgrade in OOD detection when
CSNN is trained on dataset US-101 and tested on dataset
I-80, i.e., some samples from dataset I-80 are recognized as
OOD samples. We can conclude that there is a more diverse
behavior in dataset I-80 than in dataset US-101.

TABLE III
TEST ACCURACY AND AUROC IN OOD DETECTION

Train I-80, test US-101 Train US-101, test I-80
Test accuracy AUROC Test accuracy AUROC

MLP 0.925 (.003) 0.158 (.020) 0.8 (.004) 0.102 (.007)
CSNN 0.923 (.003) 0.993 (.002) 0.797 (.003) 0.974 (.003)
DUQ 0.923 (.001) 0.982 (.005) 0.809 (.003) 0.972 (.007)

Deep ensemble 0.924 (.001) 0.177 (.009) 0.803 (.002) 0.145 (.006)

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a method for predicting human
drivers’ lane change decisions using Compact Support Neural
Networks. We first extracted lane changes from a naturalistic
driving dataset and labeled them based on the reactions of
the lag vehicle in the target lane and the window preferences
in lane change. We then trained CSNN models to predict the
lane change behaviors and experimentally demonstrated that
the trained models have comparable in-distribution prediction
accuracy compared with normal neuron-based networks. The

model achieved an AUROC of 0.991 in detecting OOD
samples. We also compared the in-distribution prediction
accuracy and OOD detection performance with recently de-
veloped OOD methods. The trained model can be integrated
to the planning & control module of an autonomous vehicle
and the vehicle will mimic human driving behavior, i.e., only
carry out lane change when most human drivers consider
it is appropriate. The model can also separate the unseen
novel samples from the training dataset and alleviate over-
generalization.

In the future, we will try to separate the distribution
uncertainty from the data uncertainty. Currently the model
will output low confidence when the sample is far from
training dataset or when there is class overlap. Uncertainty
from class overlap is arguably less risky compared with
distribution uncertainty as human drivers will do both of
them, while for distribution uncertainty, we simply do not
know what might happen.

REFERENCES

[1] O. Scheel et al. “Situation assessment for planning
lane changes: Combining recurrent models and pre-
diction”. In: ICRA. 2018, pp. 2082–2088.

[2] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”.
In: Nature 521.7553 (2015), pp. 436–444.

[3] D.-F. Xie et al. “A data-driven lane-changing model
based on deep learning”. In: Transp. res. C: emerging
technologies 106 (2019), pp. 41–60.

[4] X. Zhang et al. “Simultaneous modeling of car-
following and lane-changing behaviors using deep
learning”. In: Transpp. res. C: emerging technologies
104 (2019), pp. 287–304.

[5] S.-G. Jeong et al. “End-to-end learning of image based
lane-change decision”. In: IV. 2017, pp. 1602–1607.

[6] O. Scheel et al. “Attention-based lane change predic-
tion”. In: ICRA. 2019, pp. 8655–8661.

[7] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explain-
ing and harnessing adversarial examples”. In: arXiv
preprint arXiv:1412.6572 (2014).

[8] A. Nguyen, J. Yosinski, and J. Clune. “Deep neural
networks are easily fooled: High confidence predic-
tions for unrecognizable images”. In: CVPR. 2015,
pp. 427–436.

[9] C. Guo et al. “On calibration of modern neural net-
works”. In: ICML. 2017, pp. 1321–1330.

[10] M. Hein, M. Andriushchenko, and J. Bitterwolf. “Why
ReLU networks yield high-confidence predictions far
away from the training data and how to mitigate the
problem”. In: CVPR. 2019, pp. 41–50.

[11] D. Amodei et al. “Concrete problems in AI safety”.
In: arXiv preprint arXiv:1606.06565 (2016).

[12] Z. Yan, J. Wang, and Y. Zhang. “A game-theoretical
approach to driving decision making in highway sce-
narios”. In: IV. 2018, pp. 1221–1226.

[13] C.-J. Hoel, K. Wolff, and L. Laine. “Automated speed
and lane change decision making using deep reinforce-
ment learning”. In: ITSC. 2018, pp. 2148–2155.

[14] Y. Chen et al. “Attention-based Hierarchical Deep
Reinforcement Learning for Lane Change Behaviors
in Autonomous Driving”. In: IROS. 2019.

[15] A. Alizadeh et al. “Automated Lane Change Deci-
sion Making using Deep Reinforcement Learning in
Dynamic and Uncertain Highway Environment”. In:
ITSC. 2019, pp. 1399–1404.

[16] T. Shi et al. “Driving decision and control for auto-
mated lane change behavior based on deep reinforce-
ment learning”. In: ITSC. 2019, pp. 2895–2900.

[17] B. Mirchevska et al. “High-level decision making for
safe and reasonable autonomous lane changing using
reinforcement learning”. In: ITSC. 2018.

[18] B. Lakshminarayanan, A. Pritzel, and C. Blundell.
“Simple and scalable predictive uncertainty estimation
using deep ensembles”. In: NeurIPS. 2017.

[19] S. Liang, Y. Li, and R. Srikant. “Enhancing the relia-
bility of out-of-distribution image detection in neural
networks”. In: ICLR. 2018.

[20] K. Lee et al. “Training Confidence-Calibrated Classi-
fiers for Detecting Out-of-Distribution Samples”. In:
ICLR. 2018.

[21] J. Ren et al. “Likelihood ratios for out-of-distribution
detection”. In: NeurIPS. 2019, pp. 14680–14691.

[22] W. Liu et al. “Energy-based Out-of-distribution De-
tection”. In: NeurIPS 33 (2020).

[23] J. Van Amersfoort et al. “Uncertainty estimation using
a single deep deterministic neural network”. In: ICML.
2020, pp. 9690–9700.

[24] J. Liu et al. “Simple and principled uncertainty esti-
mation with deterministic deep learning via distance
awareness”. In: NeurIPS 33 (2020).

[25] A. Barbu and H. Mou. “The Compact Support Neu-
ral Network”. In: arXiv preprint arXiv:2104.00269
(2021).

[26] V. G. Kovvali, V. Alexiadis, and L. Zhang PE. “Video-
based vehicle trajectory data collection”. In: Transp.
Res. Board Annual Meeting. 2007.

[27] E. Balal, R. L. Cheu, and T. Sarkodie-Gyan. “A binary
decision model for discretionary lane changing move
based on fuzzy inference system”. In: Transp. Res. C:
Emerging Technologies 67 (2016), pp. 47–61.

[28] B. Wolshon and A. Pande. Traffic engineering hand-
book. John Wiley & Sons, 2016.

[29] F. Pedregosa et al. “Scikit-learn: Machine learning in
Python”. In: JMLR 12 (2011), pp. 2825–2830.

[30] A. Malinin and M. Gales. “Predictive uncertainty
estimation via prior networks”. In: NeurIPS. 2018.

