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ABSTRACT
Shape modeling is a challenging task with many potential ap-
plications in computer vision and medical imaging. There are
many shape modeling methods in the literature, each with its
advantages and applications. However, many shape modeling
methods have difficulties handling shapes that have missing
pieces or outliers. In this regard, this paper introduces shape
denoising, a fundamental problem in shape modeling that lies
at the core of many computer vision and medical imaging ap-
plications and has not received enough attention in the litera-
ture. The paper introduces six types of noise that can be used
to perturb shapes as well as an objective measure for the noise
level and for comparing methods on their shape denoising ca-
pabilities. Finally, the paper evaluates seven methods capable
of accomplishing this task, of which six are based on deep
learning, including some generative models.

Index Terms— shape modeling, shape denoising, object
segmentation

1. INTRODUCTION
The analysis of shape has attracted attention for decades since
shape is the most basic visual feature of an object. Due to ex-
ternal circumstances, sometimes one cannot obtain any other
information such as the color or texture of an object besides
the shape. Moreover, other features of an object can be more
easily affected by environmental factors. For example, an ob-
ject’s appearance depends on the illumination direction and
light color. Hence, shape can be considered a more stable
feature of an object, and this is one reason why shape anal-
ysis plays an essential role in many computer vision tasks.
This paper investigates the problem of restoring object shapes
when the shape has been distorted by an external factor, a task
that can also be called ’shape denoising’.

To denoise shapes, one needs to use an appropriate shape
representation that is flexible enough for this purpose. In ear-
lier studies, different methods were designed to extract shape
features such as moments [1], shape context [2], curvature
[3], and mathematical morphology [4].

There are different ways to represent shape spaces.
Kendall [5] considers shapes as k-tuples of points in Rd.
Under this notion of shape space, [6] proposed the Active
Shape Model, which performs a PCA on the points of the

aligned shapes of the training objects. All shapes are rep-
resented using the same number of points, and these points
correspond to each other between objects.

In this work, the shape will be represented by a binary
image, which is a form of a level set representation. Con-
sidering a shape as a binary image allows many generative
models to be applied to shape modeling, such as Restricted
Boltzmann Machines (RBM) [7], Deep Boltzmann Machines
(DBM) [8], Centered Convolutional Deep Boltzmann Ma-
chines (CCDBM) [9] and Energy Based Models (EBM) [10].
Moreover, deep learning based methods for semantic segmen-
tation can also be used for shape modeling, e.g. U-Net [11],
DeepLabv3+ [12], masked autoencoder (MAE) [13], etc.
1.1. Related Work
The focus of this study is to evaluate and compare the per-
formance of different modeling methods for handling shapes
represented by binary images, corrupted by different types
of noise. There is a paucity of literature focusing on this
topic. However, there is some recent literature containing
works about shape modeling.

A recent study about 2D shape modeling [9] introduces
convolutions into a DBM-based shape model. The goal of
their work is to generate realistic shapes that are different
from all training shapes. In their study, the resulting images
are generated from test images without any noise. The qual-
ity of the generated images is judged subjectively. This eval-
uation process can not directly describe the shape modeling
capability of the proposed method. If the resulting shape is
similar to the test shape that has been used for initialization,
it only proves that the model can generate results similar to
the initial shapes, rather than the ability to represent the entire
shape space correctly. If the resulting shape is quite differ-
ent from the initialization, it is difficult to say whether it is
a good shape belonging to the shape space being modeled.
In our work, the aim is to recover the object shape from dif-
ferent kinds of noisy perturbations, which allows us to use
an objective evaluation criterion: the recovered shape must
be close to the original (unseen) shape. In [9], all models
used for comparison are based on Restricted Boltzmann Ma-
chines. Our work expands the scope of comparison by adding
more methods that include both classical ones such as the Ac-
tive Shape Model(ASM) and recent ones such as the Energy-



based Model(EBM) [10].
In the field of recovering shapes from noisy images, the

Active Shape Model (ASM) [6] learns a Point Distribution
Model (PDM) from training sets of correctly labeled images
with point correspondences, then exploits the linear formula-
tion of the PDM in an iterative search procedure to recover
the original shape from a noisy test image. In their study,
the authors are more focused on how the parameter of each
shape feature influences the final shape. In our work, we pay
more attention to the quality of recovered shape and use the
IoU (Intersection over Union) between the resulting shape
and corresponding ground truth shape for evaluation. More
importantly, as we will see in our experiments, the method
only works in some cases and with a good initialization. Our
works construct many types of noise for a more challenging
and realistic evaluation.

In addition to external noise or occlusion, the variation in
viewing angles will also increase the shape modeling diffi-
culty. [14] proposed an elastic, affine-invariant shape model
to segment images of objects subject to perspective skew. Our
work focuses on external shape noise, that needs to be elim-
inated from objects viewed from a certain range of angles,
which should be the same for training and testing.

Since recovering shape from noisy shapes can be seen as
a degenerate version of semantic segmentation, the literature
in semantic segmentation is related to our work. The Fully
Convolutional Network (FCN) [15] converts the classification
network [16] into a fully convolutional network by replacing
all the fully connected layers with convolutions. FCN has two
advantages: it can process input images of any size without
losing spatial information and thus reduce computation costs.
The U-Net [11] adds a decoder that is symmetrical to encoder
based on the FCN architecture and concatenates feature maps
from the same level of the encoder and decoder before per-
forming convolutions. DeepLab [17] adopts atrous convo-
lution and fully connected conditional random fields (CRF).
In the process of improvement, including DeepLabv2 [18],
DeepLabv3 [19] and DeepLabv3+ [12], CRF is deprecated,
an atrous spatial pyramid pooling (ASPP) module was pro-
posed.

2. THE SHAPE DENOISING PROBLEM

Shape denoising is the process of removing the noise from
a shape, with the goal of obtaining a shape as close to the
original shape as possible. Figure 1 illustrates an example of
shape denoising.

In this chapter we introduce the shape representation that
will be used in our study and six different types of noise that
can be used to perturb shapes.

2.1. Shape Representation

In this work, shapes will be represented as binary images of a
certain size(128× 128 in our experiments). All the shape im-
ages have black background and white foreground. All fore-
grounds are centered in the image and have approximately

(a) Original shape (b) Noisy shape (c) Denoised shape
Fig. 1. Shape denoising example. The noisy shape (b) has
been obtained from the original shape (a) by a noise induc-
ing process such as those described in Section 2.2. A shape
denoising method is used to obtain the denoised shape (c).

similar sizes, obtained in an alignment step described below.
Shape alignment. For each binary image I , let I(x, y) ∈
{0, 1} be the intensity at location (x, y). Let C1 be the fore-
ground region, C1 = {(x, y)|I(x, y) = 1} and C0 the back-
ground, C0 = {(x, y)|I(x, y) = 0}. The center of mass of
the foreground is

(x̄, ȳ) =

(
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1

N

N∑
i=1

yi

)
, (1)

where N = |C1|, (xi, yi) ∈ C1, i = 1, N . Let d(xi, yi) be
the distance between point (xi, yi) ∈ C1 and the center point
(x̄, ȳ),

d(xi, yi) = ∥(xi − x̄, yi − ȳ)∥2 . (2)

Let p80 be the 80% percentile of the set D = {d(xi, yi)|i =
1, N}. The binary image is then rescaled using the scale
factor 40/p80 using bicubic interpolation. The obtained
grayscale image is then thresholded to obtain a binary image
again, denoted by I ′. Let C ′

1 = {(x, y)|I ′(x, y) = 1} and
C ′

0 = {(x, y)|I ′(x, y) = 0} be its foreground and back-
ground region respectively. The new center point of the
foreground is

(x̄′, ȳ′) =
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where N ′ = |C ′
1|, (xi, yi) ∈ C ′

1, i = 1, N ′. The image I ′ is
then cropped to obtain an image of size 128×128 centered at
(x̄′, ȳ′). Padding is used if necessary.

2.2. Introducing Noise in Shapes

We will introduce six types of noise that could be used for
perturbing shapes to evaluate the capability of different shape
denoising methods in recovering the original shape. The six
types of noise are: salt and pepper noise, circle noise, real im-
age noise, occlusion noise, detection image noise and thresh-
olded probability noise, illustrated in Fig. 2.
Salt and pepper noise is obtained by flipping each pixel to its
opposite value with a probability p. For this reason it could
also be called Bernoulli noise. The flipping probability p is
used to control the noise level.
Circle noise is obtained by adding semicircles or punching
holes at random locations on the boundary between the fore-
ground and the background. The radius r of the semicircles or
holes is used to control the noise level. For each noise image,
the radius is fixed.



(a) Original (b) Aligned (c) Salt (d) Circle

(e) Real (f) Occlusion (g) Thr. prob. (h) Detection
Fig. 2. Illustration of shape alignment and the six types of
shape noise introduced in this work. (a) Shape before align-
ment, (b) Shape after alignment, (c) Salt and pepper noise,
(d) Circle noise, (e) Real image noise, (f) Occlusion noise,
(g) Thresholded probability noise, (h) Detection image noise.

Real image noise. Real images are binarized by thresholding
with various thresholds and the obtained binary image is used
to replace the background pixels.
Occlusion noise. Part of the shape is occluded.
Thresholded probability noise. For any binary segmenta-
tion M , the corresponding original color image I is used
to generate a probability map as follows. Let I(x, y) ∈
{0, 1, ..., 255}3 be the image intensity at location (x, y). De-
note N as the number of pixels in the color image, the intensi-
ties of all pixels can be represented by a N points in R3. The
N points are clustered into k clusters using k-means cluster-
ing, obtaining cluster indices for all pixels L ∈ {1, 2, ..., k}N .
Let C1 = {(x, y),M(x, y) = 1} be the foreground region
and C0 = {(x, y),M(x, y) = 0} the background region.
For each cluster i ∈ {1, 2, ..k}, the number of pixels to the
foreground region or the background are computed:

Ni1 = |{(x, y)|L(x, y) = i ∧ (x, y) ∈ C1}| (4)
Ni0 = |{(x, y)|L(x, y) = i ∧ (x, y) ∈ C0}| (5)

Then the probability map of color image I can be computed
as follows:

P (x, y) =
Nj1

Nj1 +Nj0
, where j = L(x, y). (6)

Then binary noisy shapes are obtained by applying different
thresholds to the probability map.
Detection noise. This is the noise introduced during the seg-
mentation of an object from a color or grayscale image. In our
experiments, we used a trained Fully Convolutional Network
classifier to predict the foreground/background label for the
pixels of an image.
2.3. Shape Denoising Evaluation
The capability of a shape modeling method to extract the ob-
ject shape from a noisy input will be measured using the In-
tersection over Union (IoU), also known as the Jaccard In-
dex. The IoU is a measure of similarity between two sets,
with a range from 0 to 1, with larger values indicating higher
similarity. For a binary image I , let CI be the foreground
region, CI = {(x, y)|I(x, y) = 1}. For two binary images
A,B the IoU is defined as:

IoU(A,B)=
|CA ∩ CB |
|CA ∪ CB |

=
|CA ∩ CB |

|CA|+|CB |−|CA ∩ CB |
(7)

This measure will be used to evaluate the IoU between the de-
noised shape obtained by a denoising method and the ground
truth shape on which the noise was applied to.

3. EVALUATION OF SHAPE DENOISING METHODS
We evaluate seven shape denoising methods (ASM [6], DBM
[8], CDBM [9], EBM [10], U-Net [11], Deeplabv3+ [12],
MAE [13]) for denoising shapes corrupted by the six types
of noise introduced in Section 2.2. The criterion we use to
estimate the quality of the denoising result is the IoU (7).
The Weizmann Horse dataset [20] contains 327 horse im-
ages and their corresponding mask images. All mask images
were aligned as described in section 2.1 to have all shapes
centered and of approximately the same size. The aligned
images were resized to 128× 128. From the 327 aligned im-
ages,159 images were randomly selected as the training set
Sclean
train and the other 168 images as the test set Sclean

test .
The Caltech-UCSD Birds 200 dataset [21] contains photos
of 200 bird species. We use 417 images of seven Flycatcher
species in our experiment. The images had ground truth seg-
mentations and were aligned as described in section 2.1 and
resized to 128 × 128. From the 417 aligned images, 207 im-
ages were randomly selected as the training set Sclean

train and the
other 210 images as the test set Sclean

test .
Training Sets. For each image in the training set Sclean

train ,
noisy versions were generated as follows. Salt and pep-
per noise was generated using 16 flipping probabilities
p ∈ {0, 0.01, 0.02, ..., 0.15}. Circle noise was generated
using 11 radii r ∈ {0, 1, 2, ..., 10}. Real image noise was
generated by randomly selecting a 128 × 128 size random
patches from a randomly image of the PASCAL VOC 2012
Dataset. The thresholds to generate binary noise images are
{10/255, 20/255, 30/255, ..., 250/255}.
Test Sets. For each image in the test set Sclean

test , we use
the above methods to generate four types of noisy images.
A trained FCN was used to generate detection image noise.
We organized all noisy shapes by their IoU with the original
shape. For each IOU level (e.g. 0.5-0.6, 0.6-0.7, ...) we ran-
domly selected at most 1000 shapes for testing.
Training details. We used the clean shapes in Sclean

train to train
the models for ASM, DBM, and Convolutional Deep Boltz-
mann Machines(CDBM). The EBM, U-Net, Deeplabv3+ and
MAE were trained with clean shapes as well as shapes per-
turbed by all types of noise except the detection noise.
Results. The comparison of all methods on the test sets are
displayed in Tables 1 and 2. All results that are not signifi-
cantly worse than the best result in a one-sided paired t-test
with α = 0.05 are bolded. ASM was not evaluated for the
Flycatcher data because there were no manually labeled key-
points available to obtain point correspondences.
Discussion. The experiments reveal that MAE and U-Net
are the best shape denoising methods we evaluated for all six



Table 1. Performance (IoU) of the methods evaluated on test
sets for the Weizmann Horse dataset.

Input IoU ASM DBM CDBM EBM U-Net Deeplabv3+ MAE
Salt and Pepper Noise
0.5-0.6 0.476 0.677 0.833 0.881 0.966 0.926 0.963
0.6-0.7 0.564 0.704 0.873 0.883 0.976 0.934 0.973
0.7-0.8 0.616 0.717 0.893 0.887 0.983 0.940 0.982
0.8-0.9 0.629 0.724 0.896 0.893 0.988 0.944 0.989
0.9-1 0.653 0.720 0.889 0.895 0.992 0.941 0.996
Circle Noise
0.5-0.6 0.558 0.598 0.588 0.637 0.818 0.751 0.848
0.6-0.7 0.600 0.644 0.657 0.705 0.865 0.799 0.888
0.7-0.8 0.645 0.685 0.723 0.767 0.897 0.833 0.914
0.8-0.9 0.667 0.714 0.797 0.824 0.913 0.865 0.930
0.9-1 0.667 0.726 0.882 0.884 0.952 0.915 0.963
Real Image Noise
0.5-0.6 0.492 0.648 0.660 0.805 0.933 0.868 0.942
0.6-0.7 0.565 0.683 0.730 0.843 0.954 0.890 0.963
0.7-0.8 0.625 0.710 0.790 0.869 0.970 0.910 0.978
0.8-0.9 0.644 0.718 0.839 0.886 0.980 0.922 0.987
0.9-1 0.657 0.721 0.881 0.895 0.990 0.934 0.995
Occlusion Noise
0.5-0.6 0.285 0.636 0.630 0.706 0.849 0.793 0.852
0.6-0.7 0.361 0.655 0.670 0.734 0.875 0.815 0.874
0.7-0.8 0.467 0.665 0.715 0.761 0.885 0.829 0.886
0.8-0.9 0.559 0.687 0.775 0.801 0.909 0.853 0.914
0.9-1 0.643 0.715 0.858 0.870 0.961 0.905 0.964
Thresholded Probability Noise
0.5-0.6 0.438 0.623 0.640 0.719 0.839 0.788 0.845
0.6-0.7 0.507 0.664 0.712 0.776 0.865 0.813 0.868
0.7-0.8 0.577 0.701 0.773 0.823 0.888 0.846 0.893
0.8-0.9 0.622 0.714 0.822 0.857 0.915 0.884 0.917
0.9-1 0.674 0.732 0.863 0.884 0.939 0.905 0.941
Detection Image Noise
0.5-0.6 0.288 0.632 0.617 0.728 0.833 0.749 0.812
0.6-0.7 0.486 0.673 0.656 0.743 0.797 0.743 0.803
0.7-0.8 0.621 0.672 0.728 0.778 0.805 0.786 0.822
0.8-0.9 0.639 0.701 0.810 0.843 0.878 0.856 0.878
0.9-1 0.638 0.742 0.869 0.886 0.930 0.911 0.931

types of noise. DeepLabv3+ is the third best shape denois-
ing method for the six noise types in most situations. EBM
outperforms CDBM on all six noise types, especially when
dealing with real image noise. In terms of the difficulty of the
various types of noise, the salt and pepper noise is the easiest
to deal with, followed by real image noise. Circle noise and
occlusion noise are more challenging than the above two, es-
pecially when the noise level is high. The most challenging
noises among these six are the thresholded probability noise
and detection image noise.

4. CONCLUSION
This paper introduced the problem of shape denoising, where
the shapes are represented as binary images and the goal is to
recover a shape that was deteriorated by a noise process. The
paper introduced six types of noise that could be used to per-
turb the shapes. Four of the noise types – real image noise,
occlusion noise, thresholded probability noise and detection

Table 2. Performance (IoU) of the methods evaluated on test
sets(Flycatcher in Caltech-UCSD Birds 200 dataset).

Input IoU DBM CDBM EBM U-Net Deeplabv3+ MAE
Salt and Pepper Noise
0.5-0.6 0.627 0.814 0.891 0.977 0.942 0.975
0.6-0.7 0.635 0.811 0.893 0.983 0.946 0.982
0.7-0.8 0.643 0.816 0.901 0.988 0.952 0.988
0.8-0.9 0.645 0.812 0.898 0.987 0.953 0.992
0.9-1 0.656 0.819 0.909 0.988 0.955 0.996
Circle Noise
0.5-0.6 0.434 0.570 0.542 0.685 0.684 0.821
0.6-0.7 0.556 0.662 0.662 0.799 0.778 0.869
0.7-0.8 0.626 0.730 0.769 0.871 0.842 0.906
0.8-0.9 0.645 0.778 0.830 0.906 0.881 0.926
0.9-1 0.649 0.819 0.884 0.938 0.919 0.942
Real Image Noise
0.5-0.6 0.636 0.770 0.852 0.954 0.915 0.958
0.6-0.7 0.635 0.785 0.873 0.963 0.925 0.968
0.7-0.8 0.638 0.792 0.881 0.971 0.932 0.971
0.8-0.9 0.650 0.807 0.895 0.976 0.939 0.974
0.9-1 0.651 0.811 0.901 0.985 0.944 0.983
Occlusion Noise
0.5-0.6 0.493 0.408 0.607 0.863 0.809 0.845
0.6-0.7 0.540 0.509 0.661 0.860 0.815 0.852
0.7-0.8 0.578 0.608 0.717 0.872 0.827 0.863
0.8-0.9 0.606 0.705 0.781 0.886 0.844 0.885
0.9-1 0.630 0.788 0.867 0.951 0.908 0.943
Thresholded Probability Noise
0.5-0.6 0.573 0.610 0.731 0.849 0.796 0.859
0.6-0.7 0.587 0.673 0.790 0.870 0.833 0.878
0.7-0.8 0.604 0.716 0.828 0.890 0.860 0.887
0.8-0.9 0.627 0.759 0.855 0.910 0.874 0.897
0.9-1 0.609 0.806 0.836 0.929 0.878 0.824
Detection Image Noise
0.5-0.6 0.518 0.528 0.648 0.723 0.703 0.700
0.6-0.7 0.590 0.631 0.751 0.807 0.782 0.740
0.7-0.8 0.590 0.697 0.782 0.815 0.789 0.772
0.8-0.9 0.653 0.759 0.855 0.877 0.865 0.852
0.9-1 0.671 0.800 0.895 0.925 0.912 0.897

noise – are related to real challenges encountered during ob-
ject segmentation.

The goal of this paper is to provide an objective evaluation
of shape modeling methods for object segmentation, indepen-
dent of the image modality they will be used in applications.

The paper evaluated seven methods from different areas
that could be used for shape denoising: Active Shape Model
(ASM) as a classical segmentation method, two generative
models based on Boltzmann Machines (Deep Boltzmann Ma-
chine (DBM) and Convolutional DBM), another generative
model named Energy Based Model (EBM), and three deep-
learning based models used for object segmentation: U-Net,
DeepLabv3+ and Masked Autoencoder (MAE).

In the future we plan to apply the trained shape models to
object segmentation from color images.
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