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Abstract—Incremental class learning is the classification prob-
lem of learning a model where instances from new object classes
are added sequentially, and it is desired that the model be
retrained only on the new classes with minimal training on
the old classes. One major problem facing class incremental
learning is catastrophic forgetting, where the updated model
forgets the old classes and focuses only on the new classes. This
paper proposes a simple and novel incremental class learning
method that uses a self-supervised pretrained feature extractor
to obtain meaningful features and trains Probabilistic PCA
models on the extracted features for each class separately. The
Mahalanobis distance is used to obtain the classification result,
and an equivalent equation is derived to make the approach
computationally affordable. Experiments on standard and large
datasets show that the proposed approach outperforms existing
state of the art incremental learning methods by a large margin.
The fact that the model is trained on each class separately makes
it applicable to training on very large datasets such as the whole
ImageNet with more than 10,000 classes.

Index Terms—large scale learning, class incremental learning,
catastrophic forgetting

I. INTRODUCTION

Incremental learning is a learning paradigm that allows a
model to be updated to handle new tasks (e.g. new classes in
classification) by being trained on new data without using the
whole dataset. This paradigm facilitates training models on
large scale datasets with less computational cost and memory
requirement. A conventional approach of incremental learning
is to fine-tune a pretrained model on the new data. The fine-
tuning approach suffers a serious problem called catastrophic
forgetting, which means that the model trained on the new
classes will have a drastic performance drop on the old classes.

Various approaches have been proposed to overcome the
catastrophic forgetting. Learning without forgetting (Lwf) [9]
introduces the distillation loss that encourages the feature ex-
tractor to generate consistent features for the old classes. This
pioneer design became an essential component in subsequent
approaches. The iCarl [12] method keeps exemplars of the old
classes to preserve the knowledge of these classes. Despite
all the efforts to mitigate the effect of catastrophic forgetting,
the overall performance remains significantly inferior to those
obtained by joint training the entire dataset.

In this paper, we explore a new incremental learning strategy
for multi-class image classification, using a standard pretrained

feature extractor and a novel method to classify the extracted
features. Assuming that the feature extractor can obtain mean-
ingful features that don’t need retraining, there is still a major
problem that needs to be addressed for conventional neural
networks. The problem is that the conventional classifier is
based on standard projection based neurons that have high
responses on half of the feature space. For this reason, it is
quite likely that instances from a new class will have high
responses on an old class neuron, and this issue has to be
mitigated by retraining that neuron.

The RBF neuron [1] in principle alleviates this problem
because an RBF neuron f(x) = g(∥bx − µ∥) will only have
a high response for data near the neuron’s center µ. However,
experiments will show that the RBF neuron is too simple to
properly handle the complexities of real data in the feature
space.

For this reason, we introduce a new type of neuron that is
a refinement of the RBF neuron and is based on the Prob-
abilistic PCA model. This neuron will have high responses
close to a low dimensional subspace near a neuron center
µ. Experiments will reveal that this representation is capable
to handle the complexities of real data, obtaining state of
the art incremental learning results on standard datasets. It
even allows us to obtain a reasonable classification result on
ImageNet-10k, the subset of ImageNet [2] containing all the
classes that have at least 450 training observations, for a total
of 10,450 classes and 11 million observations.

Our paper innovates with: (1) uses a pretrained model to
generate consistent feature in the whole training process; (2)
introduces a PPCA based classifier to model the complexity
of classes instead of standard neurons; (3) obtains an efficient
computation equation for the PPCA score to make it applicable
to classification on large datasets.

II. RELATED WORK

There are two main types of approaches to class incremental
learning: regularization based approaches and bias correction
approaches.

A. Regularization Based Approaches

To mitigate catastrophic forgetting, regularization methods
apply the distillation loss as a regularization term along with



the classification loss. This technique aims to encourage the
feature extractor to generate consistent features. The distilla-
tion loss, introduced by Hinton et. al. [6], was originally used
to encourage the outputs of a student network to approximate
the outputs of the teacher network. In class incremental
learning, the distillation loss is used as a penalty for changes
in the features of old classes.

One pioneering work is Learning without Forgetting [9]
(LwF), which proposed to use the distillation loss to generate
stable feature representations. When the model is introduced
with a new task, LwF will add task-specific parameters to
the model for the new task. Despite the fact that LwF was
originally proposed for task incremental learning, the distilla-
tion loss and task specific parameters have become essential
components in many class incremental learning approaches.

Compared to LwF, the Incremental Classifier and Repre-
sentation Learning (iCaRL) [12] method goes a step further
to preserve the knowledge of old classes. iCarl also takes
advantage of the distillation loss and task specific parameters.
Moreover, iCarl proposes to use a limited set of exemplars to
store representative samples. iCaRL also builds a dynamical
mechanism to update exemplars after each training stage.

Learning without memorizing (LwM) [3] utilizes an
attention-based method proposed by [15]. In order to prevent
catastrophic forgetting, the attention used by the network
trained on the previous tasks should not change while training
the new tasks. With this restriction, features of a certain class
are expected to change less when the model is trained with new
classes. Different from the previous approaches, LwM takes
the gradient flow information into account. By combining the
distillation loss (LD) and attention distillation loss (LAD), the
attention map transfers the knowledge without requiring data
from the base classes during training.

To avoid catastrophic forgetting, the proposed Incremental
PPCA method adopts a different approach. Instead of using
the distillation loss, Incremental PPCA uses a self-supervised
feature extractor pretrained on a large dataset, which is frozen
during the whole training process. This simple method makes
sure that the feature extractor can generate consistent features
across all learning tasks.

B. Bias Correction Approaches

Bias-correction methods aim to address the problem of task
recency bias. The bias is caused by the fact that the model will
see more examples from the new classes than the old classes.

Hou et. al. [7] reveal that the imbalance between old classes
and new classes is the main challenge causing catastrophic
forgetting. In their Learning a Unified Classifier Incrementally
via Rebalancing (UCIR) method, they propose to replace the
standard softmax layer with a cosine normalization layer.

Wu et. al. [14] discovered that the last fully connected layer
of a CNN has a strong bias towards the new classes. They
proposed a method called Bias Correction (BiC), which adds
an additional layer to correct the task bias of the model. BiC
divides the training process into two stages. The training data
is split into a training set for the first stage and a validation

set for the second stage. The validation set is used to help
estimate the bias in the FC layer. The earlier mentioned
approach iCarl [12] doesn’t use a neural network based
classifier. Instead iCaRL uses the Nearest Mean Exemplar for
classification. For each class, there will be a mean feature
that is computed by averaging the feature representation of
the exemplar images. The classification result is determined
by the euclidean distance with the mean features of each
class. This approach is therefore similar to the RBF neurons
(which have responses based on learned centers µi) that are
evaluated in our experiments. Our experiments reveal that an
Euclidean distance based approach is too simple to capture the
complexities of real data, and the proposed PPCA approach
based on Mahalanobis distance is better at capturing the
intrinsic data variability and has good generalization.

C. Discussion

To avoid the effect of catastrophic forgetting, the regular-
ization based methods focus on preserving the knowledge of
old classes while bias correction methods focus on improving
the classifier. In these approaches, the memory buffer to
store the representative examples, the distillation loss based
regularization and a learning system to balance old and new
classes have become three essential components for class
incremental learning.

Different from previous approaches, the proposed method
applies a pretrained feature extractor to obtain a consis-
tent feature representation. Probabilistic Principal Component
Analysis (PPCA) [13] models are used to approximate the
complexity of the extracted features for each class. The
classification scores of the extracted feature vector of an image
are related to the log-likelihoods of the PPCA distribution of
the classes. These scores don’t change when more classes are
added, therefore catastrophic forgetting does not occur in this
case.

III. PROPOSED METHOD

In this section, we describe the proposed Incremental PPCA
method and explain how it facilitates Incremental Learning.

Section III-A gives a formal definition of Incremental Learn-
ing. Section III-B delivers a overview of the Incremental PPCA
architecture. Section III-C explains how the representative
features are extracted, Section III-D states the underlying
assumption about the data and obtains the Probabilistic PCA
model. Section III-E details the training and Section III-F
explains how the model can be sped-up for computation
efficiency.

A. Problem Definition

More formally, an incremental learning problem τ consists
of a sequence of T tasks:

τ = [(C1, D1), (C2, D2), ....(CT , DT )] (1)

where each task t is represented by a set of classes Ct =
{ct1, ct2, ...ctKt

} and training data Dt.



Fig. 1. Diagram of the proposed Incremental PPCA classification method.

We consider the class incremental classification problems
in which the classes Ct are disjoint for each task. Let Dt =
{(I1, y1), (I2, y2), ...(Int

, ynt
)}, where Ik are the input images

and yk ∈ Ct are the corresponding ground truth labels.

B. Incremental PPCA Architecture

The Incremental PPCA can be written as y =
argmink rk(f(I)), consisting of two main components: feature
extractor f and classifier r. We interpret the convolutional part
of a CNN model as a feature extractor f : Ω → Rd, where
Ω is the space of input images. Incremental PPCA takes a
frozen convolutional section of a model pretrained on a large
scale dataset as a feature extractor. The underlying design and
choice of feature extraction are detailed in Section III-C.

Instead of using fully connected layers for classification,
the classifier is designed based on the idea of Probabilistic
Principal Component Analysis (PPCA). In each training stage,
Incremental PPCA encodes the information about each classes
in a separate model with parameters θk for class k. In the
inference stage, the classification results are decided by the
log-likelihood scores of each image to each PPCA class
model. In practice, a more computationally efficient classifi-
cation equation is used to avoid large computational expenses
involved in multiplying with a full covariance matrix. The
underlying assumption and theoretical framework are detailed
in Section III-D.

C. Feature extraction

As a major obstacle for Incremental Learning, catastrophic
forgetting happens because the information about the new
classes overwhelms the information about the old classes
stored in the model. Hou et al [7] reveal that the imbalance
between old classes and new classes is the main challenge
causing catastrophic forgetting. A common underlying solu-
tion is to encourage the feature extractor to generate consistent
features in the process of training with new classes. LwF [9]
use the distillation loss as a regularization term. This pioneer
loss design became a popular approach to avoid catastrophic
forgetting. iCarl [12] goes on step further by introducing ex-
emplars to store the information about the old classes. Yet even
with these efforts, the performance of existing incremental
learning methods falls behind by a large margin compared
to the joint training of old and new classes.

To overcome catastrophic forgetting, the feature extractor
needs to generate consistent features for the old classes when

training with new classes. The choice of feature extraction
follows a simple and intuitive solution: if the feature extractor
is frozen in the training stage, the features of the old classes
will remain consistent.

Incremental PPCA adopts as a feature extractor a CNN
pretrained on a large dataset in a self-supervised manner. This
feature extractor remains frozen at all times during the class
incremental training process. The features are generated as
x = f(I) where x ∈ Rd is the feature extracted as a d
dimensional vector from the image I ∈ Ω using the feature
extractor f : Ω → Rd.

The underlying assumption supporting this design is that
with proper training, the feature extractor is able to generate
features that are invariant enough to different transformations
such as rotation, translation and scaling, yet contain enough in-
formation about objects without training on a specific dataset.

The experimental results indicate that an approach based on
feature extraction can obtain a good test accuracy. Compared
to previous approaches, training the proposed Incremental
PPCA is computationally efficient because the feature ex-
tractor is frozen and the model for each class is trained
separately on the observations from that class and does not
need retraining when more classes are added. In experiments,
we will also explore the influence of other essential factors
such as image preprocessing and the model complexity.

D. Probabilistic PCA Classification

To classify instances x = f(I) ∈ Rd in the feature space,
we will use a Probabilistic Principal Component Analysis
(PPCA) [13] for each class. PPCA has the capability to model
instances for one class using a low dimensional representation
that is localized near a center µ.

In the framework of PPCA, a latent variable model seeks to
relate a d-dimensional observation vector x to a corresponding
q-dimensional vector of latent (or unobserved) variables t.

x = Wt+ µ+ ϵ (2)

The d× q matrix W relates the two sets of variable. µ ∈ Rd

represents the nonzero mean of observations. The latent vector
t ∼ N (0, Iq) contains i.i.d. Gaussians with unit variance,
while ϵ represents Gaussian noise, ϵ ∼ N (0, σ2Id), so the
probability distribution of x given latent variable t is

x|t ∼ N (Wt+ µ, σ2Id) (3)



By integration of the the latent variable t, the marginal
distribution of x is

x ∼ N (µ,Σ),Σ = WWT + σ2Id. (4)

Using Equation (4), we can characterize each class as a
Gaussian with mean µk and covariance matrix Σk. Thus the
classifiers of Incremental PPCA use the likelihood

p(x|y=k)=
1

(2π)d/2|Σk|1/2
exp(−1

2
(x−µk)

TΣ−1
k (x−µk))

(5)
which in log terms, without the common factor (2π)d/2, is
simplified to the class k score:

sk(x)=−2 log p(x|y=k)= log |Σk|+(x−µk)
TΣ−1

k (x−µk),
(6)

where a smaller value is better.
In practice, we will use a simpler score (the Mahalanobis

distance)

rk(x) = (x− µk)
TΣ−1

k (x− µk) ≥ 0, (7)

which differs from sk(x) from Eq. (6) by the log determinant
term log |Σk|. We observed that slightly better results are
obtained this way.

E. Incremental PPCA Training

Training the PPCA model for class k means finding the µk

and Σk = WkW
T
k + σ2Id. This is done by standard PCA

using the class k observations x1, ...,xn ∈ Rd. The mean µk

is:

µk =
1

n

n∑
i=1

xi,

and the PPCA covariance matrix is

Σk = LDLT + λId, (8)

where λ > 0 is a small number (e.g. λ = 0.01 in our
experiments) and L consists of the first q < d columns of
V, where

VDVT =
1

n− 1

n∑
i=1

(xi − µk)(xi − µk)
T (9)

is the SVD decomposition of the sample covariance matrix.
The parameter q represents the dimension of the linear

subspace that models the variability of the class k observa-
tions. We will use the same value of q for all classes and
experiments will show how the choice of q influences the
model performance.

F. Efficient Computation

When d is large (e.g. d = 1000), computing the score for
each observation involves multiplication with a large d × d
matrix, which can be expensive.

Fortunately, denoting by d ∈ Rq the vector containing the
first q elements of the diagonal matrix D from Eq. (9), the
score (7) can be computed faster using the following

Theorem 1. The score (7) can also be written as:

r(x) = ∥x− µ∥2/λ− ∥u(x)∥2/λ, (10)

where u(x) = diag(
√
d√

d+λ1q

)LT (x−µ), and the determinant

is:

log |Σ| = (d− q) log λ+

q∑
i=1

log(di + λ). (11)

Here diag(v) constructs a square matrix with diagonal
elements v, and

√
v for a vector v is computed element-wise.

Observe that computing r(x) using Eq. (10) could be 10-100
times faster than (7) since it only involves multiplication with
the q×d skinny matrix LT where q is usually 10−100 times
smaller than d.

Proof. We have

VTΣV = VT (LDLT + λId)V

= diag(d, 0, ..., 0) + λId

= diag(d+ λ, λ, ..., λ)

because VTV = VVT = Id and LTV = (Iq,0). Thus:

VTΣ−1V =diag(
1

d+ λ
, 1/λ, ..., 1/λ)

= Id/λ+ diag(
1

d+ λ
− 1

λ
, 0, ..., 0)

so
VTΣ−1V = Id/λ− diag(

d

λ(d+ λ)
, 0, ..., 0)

and

Σ−1 =V(Id/λ+ diag(
d

λ(d+ λ)
, 0, ..., 0))VT

= Id/λ− Ldiag(
d

λ(d+ λ)
)LT .

The score is now:

r(x) =(x− µ)TΣ−1(x− µ) =
1

λ
(x− µ)T(x− µ)

− (x− µ)TL diag(
d

λ(d+ λ)
)LT(x− µ)

from which Eq. (10) follows.

G. Computation Complexity

In this section we are interested in the computation com-
plexity of the Incremental PPCA method for training and
testing in terms of the number N of observations, dimension
d of the feature vector, number K of classes, and number q
of principal vectors. Since the computation complexity of the
feature extractor is O(N), it will be ignored.

For training, accumulating the K covariances (e.g. using
running averages) takes O(Nd2) time. Computing the PCA
for the K classes takes Kd3, thus the total training time is
O(Nd2 + Kd3), so it is linear in the number N of training
observations and the number of classes K, and cubic in the
dimension d of the feature representation. In practice d is on
the order d ∼ 1000− 4000, so computing the PCAs is fast.



TABLE I
AVERAGE INCREMENTAL ACCURACY FOR INCREMENTAL PPCA VS STATE OF THE ART. THE INCREMENTAL PPCA RESULTS ARE AVERAGES OF 5

INDEPENDENT RUNS.

CIFAR-100 ImageNet-100 Imagenet-1K Imagenet-10k
5 steps 10 steps 5 steps 10 steps 5 steps 10 steps 5 steps 10 steps

iCarl [12] 57.17 52.57 65.04 59.53 51.36 46.72 - -
BIC [14] 56.86 53.21 68.97 65.14 45.72 44.31 - -
UCIR(NME) [7] 63.12 60.12 68.43 66.16 61.56 59.92 - -
UCIR(CNN) [7] 63.42 60.18 70.47 68.09 64.34 61.28 - -
PODNet [4] 64.83 63.19 75.82 73.14 66.95 64.13 - -
PPCA-CLIP 69.71 69.71 82.02 82.02 71.25 71.25 35.42 35.42
PPCA-SWSL 77.07 77.07 86.78 86.78 76.89 76.89 34.39 34.39
RBF-CLIP 47.60 47.60 77.58 77.58 64.84 64.84 28.83 28.83
RBF-SWSL 68.64 68.64 84.14 84.14 73.414 73.414 25.81 25.81

For testing, when the models are already trained, the score
computation using Eq. (10) for each observation and each class
is O(dq), thus the computation time is O(NKdq) for all N
observations and K classes. Using Eq. (7), the computation
time is O(NKd2).

IV. EXPERIMENTS

In this section, we use a standard protocol for evaluating
incremental methods and compare the proposed Incremental
PPCA classification accuracy to the state of the art methods.
We also explain how the Incremental PPCA is implemented
in detail.

A. Datasets

We apply Incremental PPCA to four image datasets. Three
of the datasets have been extensively used in the incremen-
tal learning literature: CIFAR-100 [8], ImageNet-100 and
ImageNet-1k (ILSVRC 2016) [2]. ImageNet-100 is a subset
of ImageNet-1k with only 100 classes, randomly sampled
from the original 1000. The choice of these datasets facilitates
the comparison with existing incremental methods from the
literature. The fourth dataset is Imagenet-10k, the subset of
the whole ImageNet [2] that contains all 10,450 classes that
contain at least 450 training observations.

B. Evaluation Protocol

We evaluate the proposed method using the protocol in-
troduced by Hou et. al. [7]. We start with a model trained
on a random subset containing half the classes (ie., 50 for
CIFAR-100 and ImageNet-100, 500 for ImageNet-1k, 5225
for ImageNet-10k). Then the remaining classes (e.g. 50 for
CIFAR-100 and ImageNet-100) are incrementally added. They
are equally divided among all steps, for example we could have
5 steps of adding 10 classes each time for CIFAR-100. In this
case, there are 6 learning tasks in total. The trained model is
evaluated after each step on the test sets of all classes that
were trained so far. To facilitate the comparison, the process
is repeated 5 times and the final step accuracy is averaged into
a unique score called average accuracy [12].

C. Incremental PPCA Implementation

As a feature extractor, we choose a model that has been
trained in a self-supervised way on a different dataset than
those evaluated. CLIP (Contrastive Language-Image Pre-
Training) [11] is a CNN trained on 400 million image-text

pairs obtained from the web from 500,000 text queries. The
image CNN part of the CLIP model adopts the popular
attention mechanism as the last layer before the classification
layer. We used a pretrained modified ResNet-50 classifier
called RN50x4 from the CLIP GitHub+ package [10].

SWSL is a student model whose teacher is trained on 940
million images with 1500 hashtags matching the 1000 Ima-
geNet synsets. The student is trained on a subset of 64 million
images selected by the teacher. The SWSL model we use
is a pretrained standard ResNet-50, called resnet50_swsl
from the Facebook Research model repository on GitHub [5].

The input images are resized to 288×288 except for CIFAR-
100 where they were resized to 144× 144. The features were
extracted before the classification layer using the classifier’s
attention pooling layer, except for CIFAR-100 where average
pooling was used instead. The dimension of the extracted
features was d = 640 except for CIFAR-100 where it was
d = 2560.

All experiments were implemented using the PyTorch
framework. After all the features were extracted, a separate
PPCA model was trained on the training data from each class,
as described in Section III-E. Observe that these models do
not change no matter what or how many other classes are
added. Training the PPCA models takes about 20s per class
on a NVIDIA GeForce RTX3080m GPU laptop, thus about
5.6h for 1000 classes.

D. Results

We evaluate the Incremental PPCA mainly by its classifica-
tion performance on the validation set of the four datasets. The
classification performance is compared with four state of art
models. The models deliver quite remarkable performance, as
shown in Table I. Some of their main components are designed
with a similar underlying philosophy with Incremental PPCA.
As a baseline, BIC [14] stated that traditional Neural Networks
have a strong bias towards the new classes. BIC adopts a
linear model as classifier. iCarl [12] and UCIR [7] both use
the Nearest-Mean-Exemplar (NME) for classification. UCIR
also uses a second inference method based on probabilities
(UCIR-CNN).

All the comparable models discard the neuron-based struc-
ture and explore new classification structures. So the compar-
ison with these models can be an opportunity to evaluate the
power of the PPCA based classifier.



TABLE II
AVERAGE ACCURACY OF PPCA-CLIP ON CIFAR-100 FOR DIFFERENT INPUT SIZES AND NUMBERS OF PRINCIPAL COMPONENTS.

Input size 0PC 5PC 10PC 20PC 50PC 100PC 200PC
32× 32(original) 7.05 21.04 21.04 25.7 27.37 28.60 28.58
36× 36 (avg pooling) 7.47 22.26 24.83 26.66 28.9 29.55 29.51
72× 72 (avg pooling) 40.32 53.43 55.04 55.04 58.89 59.56 60.07
144× 144 (avg pooling) 47.60 61.57 64.34 66.58 68.50 69.56 69.71
288× 288 (avg pooling) 30.97 51.09 56.35 60.48 63.94 65.05 65.71
288× 288 (with attention) 40.88 55.29 58.54 61.44 62.78 62.14 61.26

TABLE III
AVERAGE ACCURACY OF PPCA-SWSL ON CIFAR-100 FOR DIFFERENT INPUT SIZES AND NUMBERS OF PRINCIPAL COMPONENTS.

Input size 5PC 10PC 20PC 50PC 100PC
32× 32(original) 41.62 44.14 45.4 47.17 48.41
64× 64 61.93 63.4 64.72 66.08 66.63
128× 128 73.53 75.02 75.97 76.89 77.07
256× 256 69.32 71.68 73.51 74.98 74.92
224× 224 (default) 69.03 71.17 72.8 73.72 74.43

We also compare a simpler classifier based on the nearest
Euclidean distance to the observation means µk instead of the
Mahalanobis distance (7):

rk(x) = ∥x− µk∥2. (12)

This classifier is shown as RBF-CLIP and RBF-SWSL in Table
I.

1) CIFAR-100.: The CIFAR-100 dataset contains images
of size 32 × 32 pixels. The CLIP feature extractor is trained
with images of size 288× 288, so it will not work best with
such small images even when resized to 288 × 288. To gain
the best inference performance, experiments were designed
to find the best input size for CIFAR-100. The experiments,
discussed in Section V-A, reveal that the best input size is
144 × 144 when the feature extractor is from CLIP, the best
input size is 128×128 when feature extractor is SWSL. From
Table I, we can see the Incremental PPCA with CLIP obtains
an average accuracy of 69.71%, outperforming the state of the
art by almost 5%. SWSL gain the average accuracy of 77.07%
on averaged accuracy. Surpassing the previous state of art of
PODNet by 12.34%.

The RBF-CLIP experiment shows that when only the class
means µk are used, obtaining RBF-style neurons, the average
accuracy drops drastically to 47.6% with CLIP. The average
accuracy drops to 68.64% with SWSL. This result indicates
that the PPCA model is capable of capturing meaningful
variation in the data, much better than using Euclidean distance
to the class means.

2) ImageNet-100.: ImageNet-100 contains 100 randomly
selected classes from the ILSVRC2016 dataset. The images
have the comparable size with the size the CLIP feature
extractor has been trained on. From Table I, when the feature
extractor is CLIP, the average accuracy on the ImageNet-100
validation set has reached 82.02%, surpassing the next best
method (PODNet) by 6.2%. When the features extractor is
SWSL, the average accuracy is 86.78%, surpassing PODNet
by 10.96%

Considering that the CLIP feature extractor was not trained
on ImageNet-1k or ImageNet-100, the performance of Incre-

mental PPCA indicates that using a pretrained feature extractor
can obtain meaningful features for classification. Again, the
RBF-CLIP falls behind PPCA-CLIP by about 5%.

3) ImageNet-1k.: ImageNet-1k is a more challenging
dataset, containing 1000 classes. The images are also com-
parable in size with the size the feature extractor has been
trained with. From Table I, Incremental PPCA with CLIP
as feature extractor has reached 71.25% average accuracy.
The performance has surpassed the state of art PODNet by
4.3% and RBF-CLIP by more than 6%. Incremental PPCA
with SWSL as feature extractor has reached 76.89% average
accuracy. The performance has surpassed the state of art
PODNet by 12.76% and RBF-CLIP by more than 3.45%.

4) ImageNet-10k.: ImageNet-10k is the most challenging
dataset, containing 10,450 classes and 11 million training
images. None of the other methods report results on it,
probably because it is very large. From Table I, Incremental
PPCA with CLIP as feature extractor obtains 35.42% average
accuracy with 20 principal components. This is much better
than random guessing, which would be 0.01% in this case. At
the same time, the RBF-CLIP that just uses the class means
µk and the Euclidean distance obtains a 28.83% accuracy, a
6.59% difference.

E. Discussion

The results from Table I indicate that the proposed PPCA-
CLIP method can outperform the state of the art incremental
class learning methods by at least 4% on all three datasets
where a comparison can be obtained. Moreover, it can obtain
reasonable classification results on ImageNet-10k, a dataset
with 10,450 classes and more than 11 million images.

Furthermore, the RBF-CLIP classifier that just uses the class
means and Euclidean distance for classification falls behind
by about 5% in accuracy. This shows that the PPCA model is
capable of capturing a meaningful representation of the data
that goes beyond just radial basis functions and Euclidean
distance.



TABLE IV
AVERAGE ACCURACY OF PPCA-CLIP ON IMAGENET-1K AND IMAGENET-100 FOR DIFFERENT NUMBERS OF PRINCIPAL COMPONENTS.

Input size 0PC 5PC 10PC 20PC 50PC 100PC 200PC
ImageNet-100 with CLIP 77.58 80.92 81.26 82.02 81.24 79.92 78.12
ImageNet 100 with SWSL 84.14 86.22 86.78 86.58 86.72 86.76 86.78
ImageNet-1k CLIP 64.84 69.16 70.73 71.25 69.93 68.11 65.79
ImageNet with SWSL 73.41 76.46 76.81 76.89 76.76 76.57 76.04
ImageNet-10k CLIP 28.83 33.49 34.85 35.42 34.80 33.28 31.01
ImageNet-10k SWSL 25.81 31.75 33.39 34.39 34.75 34.40 33.56

V. ABLATION STUDY

In this section, we evaluate the contribution of different
hyper-parameters to the proposed Incremental PPCA method’s
accuracy. There are two essential components of the proposed
method: feature extraction and the PPCA classifier. The size
of the feature extractor’s input influences the quality of the
extracted features. In Section V-A, we will see how the input
size changes the accuracy of the Incremental PPCA method
for CIFAR-100. The number of principal components (PCs)
decides how much complexity is encoded for each class. Its
effect will be analyzed in Section V-B.

A. The Input Image Size

As show in Table II and Table III, the PPCA accuracy varies
with the size of the feature extractor input. The CLIP feature
extractor is trained with high resolution (288×288) images,
while the images of the CIFAR-100 dataset are 32 × 32. If
these images are resized to 288 × 288, they will look very
blurred. The experiment aims to explore how the input size
improves the performance on low resolution images. It might
as well be possible that the 288× 288 input might not be the
best setting for low resolution images for the high resolution
feature extractor.

The evaluation of input size is based on the experiment
with 5 steps of 10 classes on CIFAR-100. Table II and Table
III shows the contribution of the input size to the method’s
accuracy. If the image are input without resizing, the method’s
accuracy is very poor. When is feature extractor is SWSL,
the original preprocessing that resizes the images to 224 ×
224 doesn’t produce the best performance. When the 32× 32
images are resized to 128×128, the average accuracy reaches
a maximum of 77.07%.

When is feature extractor is CLIP, the original preprocessing
that resizes the images to 288× 288 doesn’t produce the best
performance either. When the 32 × 32 images are resized
to 144 × 144, the average accuracy reaches a maximum of
69.71%. The results are also shown as a graph in Figure 2.

In Table II, the performance is also compared between the
application and absence of attention pooling in the feature
generation process. Attention pooling can only be used for
288 × 288 images. The average accuracy without attention
pooling reaches the 69.71% maximum, surpassing the perfor-
mance with attention pooling. The comparison indicates that
attention pooling may use high resolution information in the
feature extraction process, which is not present in the low
resolution images.

Fig. 2. Incremental PPCA with CLIP and different input sizes on CIFAR-100.

These experiments indicate that when the feature extractor
trained with high resolution images is applied to low resolution
images, a medium input size between high and low resolution
can help classification reach optimal performance.

B. The Number of Principal Components

The number of principal components q is a essential hyper-
parameter that influences the method’s accuracy. Theoretically,
q represents the dimension of the (linear) manifold the obser-
vations in each class belong to.

We design an experiment to explore the relation between the
number of principal components and classification accuracy.
Again, the evaluation is based on the experiment with 5 steps
of 10 classes on CIFAR-100, ImageNet-100, ImageNet-1k and
ImageNet-10k. We use 0 principal components as a baseline in
which case no variation are encoded. Even though the SWSL
is finetuned on ImageNet-1k, the results with SWSL can also
be representative for the ResNet based model.

Figure 2 reveals that the average accuracy saturates as
the number of PCs is increased for CIFAR-100, the same
phenomenon for all input sizes evaluated.

Table IV and Figure 3 show that the average accuracy
increases with the number of principal components until the
number of PCs reaches 20, after which the average accuracy
drops gradually.

These experiments reveal that an appropriate number of
principal components can retain balance between overfitting
and lack of variation to reach an optimal classification accu-
racy.



Fig. 3. Incremental PPCA with different number of principal components on
ImageNet-100 and ImageNet-1k.

VI. CONCLUSION

This paper presented a novel and simple method for large
scale incremental class learning with pretrained feature ex-
tractors and a classifier based on probabilistic PCA models.
The pretrained feature extractor guarantees that the generated
features are consistent during the whole training process. The
PPCA based classification is able to encode the complexity
of each image class using a low dimensional representation
and small computational expenses. This approach can prevent
catastrophic forgetting to a large extent.

The proposed method outperforms existing state of the
art methods in incremental class learning on three standard
datasets used in the literature. Furthermore, it obtains rea-
sonable classification results on ImageNet-10k, the subset of
ImageNet containing all classes with at least 450 training
images, for a total of more than 11 million images.

The performance of Incremental PPCA reveals that generic
pretrained models have the ability to extract meaningful fea-
tures from images and gain promising performance without
being trained on labeled data.

Humans are capable of classifying millions of classes of
objects and of learning a new object class from only 1-2
examples. However, humans are the subjects of millions of
years of evolution, which can be seen as a kind of supervised
learning since the most fit specimens (e.g. fit for understanding
images) are better at reproduction and evolution. Thus the
human brain is pre-wired by evolution to be able to accomplish
these large scale classification tasks. The pretrained feature
extractor that we use in the Incremental PPCA can be seen
as the analogue of the pre-wired brain in humans and other
mammals.

In the future we plan to further extend our method for
classification with hundreds of thousands of classes using
hierarchical techniques, to get one step closer to the scale of
human classification capabilities.
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