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Abstract

Feature selection is an important topic in high-dimensional statistics and machine
learning, for prediction and understanding the underlying phenomena. It has many
applications in computer vision, natural language processing, bioinformatics, etc.
However, most feature selection methods in the literature have been proposed for
offline learning, and the existing online feature selection methods have theoretical and
practical limitations in true support recovery. This paper proposes two novel online
feature selection methods by stochastic gradient descent with a hard thresholding
operator. The proposed methods can simultaneously select the relevant features
and build linear regression or classification models based on the selected variables.
The theoretical justification is provided for the consistency of the proposed methods.
Numerical experiments on simulated and real sparse datasets show that the proposed
methods compare favorably with state-of-the-art online methods from the literature.
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1 Introduction

Feature selection is an important research topic in high-dimensional statistics and machine

learning. By removing the irrelevant and redundant features, feature selection methods

improve the prediction accuracy, enhance the model interpretability, and reduce the com-

putational burden. Therefore, variable selection methods have many applications in real

data analysis, such as computer vision, text mining, and bioinformatics.

Most existing feature selection methods in the literature are restricted to the offline

learning setting. In this offline scenario, all the features and observations are collected

in advance for analysis. The ℓ1 based method (Tibshirani, 1996), ℓ1 + ℓ2 based method

(Zou and Hastie, 2005), non-convex penalized methods (Fan and Li, 2001; Zhang, 2010)

and ℓ0 based methods (Barbu et al., 2017; She et al., 2023) are the classical regularized

methods proposed for variable selection in the offline learning. However, in real-world

applications, the offline methods may not work when addressing large-scale streaming data,

where the observations arrive sequentially with the time t. Even considering the data

storage problem, a large dataset may not fit in the computer memory for training. An

example of streaming data is the 120-day URL data for malicious website detection (Ma

et al., 2009). In this dataset, the training instances are collected daily. There are about

two million observations from 120 days and more than three million features. The other

one is the Avazu click-through dataset (Juan et al., 2016), containing more than 12 million

observations collected from 10 days of advertising logs, and 1 million features. In these

cases, conventional offline variable selection methods are computationally expensive and

memory-demanding. Therefore, using conventional offline feature selection techniques for

these datasets is difficult.

In the online learning scenario, some online feature selection methods are proposed to

exploit the sparse structure of the coefficient vector. Two main frameworks based on convex
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optimization are proposed in the literature. One is the Forward-Backward-Splitting method

(Duchi and Singer, 2009), constructing an online feature selection framework by using the

online proximal gradient (OPG) method (Duchi et al., 2010). The other one is Xiao’s

Regularized Dual Averaging (RDA) framework (Xiao, 2010), extending the primal-dual

sub-gradient method (Nesterov, 2009) to the online case. A variant of the RDA method is

developed by Agarwal et al. (2012). Then, an online statistical inference method is proposed

based on the RDA framework (Han et al., 2024). These methods apply convex-relaxation

approaches to use the ℓ1-norm as a sparsity-inducing penalty. Greedy-based online feature

selection methods such as truncated online gradient descent (TOGD) (Langford et al.,

2009; Fan et al., 2018), first/second-order online feature selection methods (FOFS/SOFS)

(Wang et al., 2014; Wu et al., 2017) are also developed in the literature.

Another research direction is the streaming feature selection method (Wu et al., 2010;

Yang et al., 2016). In this scenario, one feature arrives once while all the training examples

are available before the learning process starts. The goal is to select a subset of important

features and then build an appropriate model on them. Unlike conventional online learning,

in this novel online scenario, we cannot select all true features and train a model for pre-

diction until all features are disclosed. This paper assumes observations arrive sequentially

with time. Therefore, we will not consider algorithms such as Wu et al. (2010) and Yang

et al. (2016) for comparison.

However, the existing online feature selection methods have some limitations in true

support recovery. Although these proposed methods can induce sparse solutions and im-

prove the model interpretability by constructing confidence intervals (Han et al., 2024) for

coefficients, it is hard to recover the support of true features even under mild assumptions

on the data matrix X because the sparsity level is difficult to control using penalized meth-

ods such as the ℓ1 penalty in the streaming data case. At each step of the iteration, since

the stochastic gradient has a dramatic change, a fixed tuning parameter λ may not be
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able to address the variable selection problem. Additionally, compared to the offline gra-

dient descent, the stochastic gradient descent (SGD) method has a lower convergence rate

O(1/
√
T ) (Shalev-Shwartz and Ben-David, 2014), which may lead to problems with true

support recovery. To solve these issues, novel online feature selection methods are proposed

in this paper for large-scale or high-dimensional datasets such as the URL dataset and the

Avazu click-through dataset. The main contributions of this paper are:

1. Two novel methods are proposed for online feature selection. Compared to the ex-

isting online variable selection methods, the proposed methods can simultaneously

recover the support of the true features for datasets with strongly correlated features

and learn a linear regression or classification model on the selected features;

2. A theoretical analysis of the coefficient consistency and true feature recovery is pro-

vided for the proposed stochastic gradient descent with truncation (SGDT) methods,

under some standard assumptions;

3. The empirical performance of the proposed methods is verified by conducting nu-

merical experiments on simulated and real data. These experiments reveal that the

proposed methods have a higher true support recovery and prediction accuracy than

many existing online feature selection methods.

The remaining part of the paper is organized as follows. Section 2 introduces the

notation and setup. Section 3 proposes the novel online feature selection methods. Section

4 provides the theoretical guarantees for the proposed methods. Section 5 evaluates the

performance of the proposed methods by numerical experiments and real data analysis.

Section 6 presents a brief conclusion of this paper and a discussion on future work.
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2 Setup and Notation

Suppose that a sequence of independent training instances zi = (xi, yi), i = 1, 2, · · · , where

xi ∈ Rp and yi ∈ R, are generated from a bounded random input-output pair Z = (X, Y ).

In the online setting, these training instances arrive one at a time. The expectation of the

loss function is defined by

L(f) = Eℓ(f(X), Y ), (1)

where f is the link from the input X to the output Y , and ℓ : Rp → R is the loss function.

The loss function L is called the population loss. Since the dimension p may be large in

practical applications, this paper considers the sparse learning problem for linear models.

Hence, the population loss (1) is rewritten to the parametric form

L(β) = Eℓ(Xβ, Y ), (2)

where β is the coefficient vector. To estimate the coefficient β with a sparsity level k, we

may solve the following constrained optimization problem based on the empirical version

of the loss (2) by

argmin
β∈Rp

L(β) =
1

n

n∑
i=1

ℓ(xT
i β, yi), ∥β∥0 ≤ k.

In the online scenario, the coefficient vector β is estimated sequentially, one example at a

time. Using a sequence of observations z1, z2, · · · , zt−1, we can learn the coefficient vector

βt. The empirical loss function of the linear regression is

L(β) =
1

n

n∑
i=1

(yi − xT
i β)

2, (3)

and the empirical loss function of the logistic regression model for classification is

L(β) =
1

n

n∑
i=1

log{1 + exp(−yixT
i β)}, (4)

where each label yi ∈ {−1,+1} is binary. In the following, we use ℓt(β) as the simplified

notation for the loss function ℓ(xT
t β, yt), where t = 1, 2, · · · .
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Then, we establish the notation formally. Vectors are lowercase bold letters, such as

x ∈ Rd, and scalars are lowercase letters, e.g. x ∈ R. A sequence of vectors is denoted by

subscripts, i.e. w1,w2, · · · , and the entries in a vector are denoted by non-bold subscripts,

like wj. Matrices are upper case bold letters, such as M ∈ Rd×d, and random variables are

upper case letters, such as Z. Given a vector γ = (γ1, γ2, · · · , γn)T ∈ Rn, we define vector

norms: ∥γ∥1 =
∑n

i=1 |γi|, ∥γ∥ =
√∑n

i=1 γ
2
i and ∥γ∥0 = #{j : γj ̸= 0}. Finally, ∇xf(x) is

the gradient vector of f(x) with respect to x.

3 Methodology

Two novel online feature selection methods are proposed in this section. One is the Stochas-

tic Feature Selection with Annealing (SFSA), and the other is a simple version without an

annealing procedure, called Stochastic Gradient Descent with Truncation (SGDT).

3.1 Stochastic Feature Selection with Annealing

The new method proposed here is motivated by the proposed feature selection with an-

nealing (FSA) algorithm (Barbu et al., 2017; She et al., 2023). Like the FSA for offline

learning, the proposed SFSA can simultaneously solve the feature selection problem and

learn the linear regression or classification models for prediction.

According to the description in Barbu et al. (2017), the key points in this variable se-

lection algorithm are: (1) using an annealing procedure to lessen the greediness in reducing

the dimensionality from p to k, (2) gradually removing the most irrelevant variables to

facilitate computation.

The proposed method starts with an initialized coefficient vector β1, generally β1 =

0, and then alternates two basic steps: one step updating the parameters based on the
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observation zt = (xt, yt) by the stochastic gradient descent

βt+1 = βt − η
∂ℓt(βt)

∂β
,

where η is the learning rate. The other step is a feature selection step that removes

some unimportant variables based on the ranking of feature importance measure vj =√
(sj − x̄2

j)|βj|, j = 1, 2, · · · , p.

There are two main differences between the proposed stochastic feature selection with

annealing and the offline counterpart from Barbu et al. (2017). First, in our approach,

the gradient is approximated using one observation or a mini-batch of observations, while

Barbu et al. (2017) uses all data to construct the gradient. More importantly, the data

is normalized beforehand in Barbu et al. (2017). At the same time, in our approach, we

work directly with the non-normalized data and then use the estimated standard error of

the variables to measure their importance, as described in Remark 4.1. The algorithm is

summarized in Algorithm 1.

In general, we will input a mini-batch of observations rather than one at a time, but the

one-at-a-time situation can always be recovered by setting the mini-batch size to 1. Also,

an annealing schedule Mt is used, representing the number of features kept at time t by

Mt = k + (p− k)max{0, T − t

tµ+ T
}, t = 1, 2, · · · , T,

in which k is the desired sparsity level, µ is the annealing parameter in this model and T

is the maturity time for this schedule, when exactly k features are selected.

A longer maturity time uses more observations, therefore it usually has better feature

selection capabilities. In practice, as the number of true features k and the total number of

observations are unknown, one can use multiple maturity times in parallel, as illustrated in

Figure 1, for many values of k. Therefore, we will always have a ”current” set of selected

features of a desired sparsity while building a better one as more data becomes available.

Finally, we emphasize that Algorithm 1 is just based on simple SGD. We also combine

7



Algorithm 1 Stochastic Feature Selection with Annealing

Input: Training data zt = (xt, yt) arriving one at a time, learning rate η, sparsity level

k, annealing parameter µ, maturity time T , and the loss function ℓt(β), t = 1, 2, · · · .

Output: Trained coefficient vector βt with ∥βt∥0 ≤ k.

Initialize β1 = 0, sample mean vector x̄ = 0, and sample variance vector s = 0.

for t = 1 to ∞ do

Receive an observation zt.

Update x̄← t−1
t
x̄+ 1

t
xt, s← t−1

t
s+ 1

t
diag(xtx

T
t ).

Update βt+1 ← βt − η ∂ℓt(βt)
∂β

.

if t ≤ T then

Keep only the Mt features with the highest values of

vj =
√

(sj − x̄2
j)|βj|, j = 1, 2, · · · , p,

and renumber them 1, ...,Mt.

end if

end for
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Figure 1: Annealing schedules with multiple maturity times T for SFSA with k = 10.

the SFSA algorithm with momentum, Nesterov accelerated gradient (Sutskever et al., 2013)

or Adam (Kingma and Ba, 2015) optimization methods. These techniques will be evaluated

in the experimental section 5.

3.2 Stochastic Gradient Descent with Truncation

From the SFSA method, we can see that using online gradient descent, one can select fea-

tures by keeping the k coefficients with the largest importance measure vj =
√

(sj − x̄2
j)|βj|.

We consider a special case for online feature selection where we do not use an annealing

procedure with online gradient descent but select the coefficients with k largest importances

at time T . The prototype algorithm is described in Algorithm 2.

In the literature, some similar TOGD methods were proposed in Langford et al. (2009),

Fan et al. (2018), and Wang et al. (2014), based on different loss functions. However, these

methods truncate the coefficients vector at each time t, which may mislead the algorithms

in selecting irrelevant features, especially when the features have strong correlations. The
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Algorithm 2 Stochastic Gradient Descent with Truncation (SGDT)

Input: Training data zt = (xt, yt) arriving one at a time, learning rate η, sparsity level

k, maturity time T , and the loss function ℓt(β), t = 1, 2, · · · .

Output: Trained coefficient vector βt with ∥βt∥0 ≤ k.

Initialize β1 = 0, sample mean x̄ = 0, and s = 0.

for t = 1 to ∞ do

Receive an observation zt.

Update x̄← t−1
t
x̄+ 1

t
xt, s← t−1

t
s+ 1

t
diag(xtx

T
t )

Update βt+1 ← βt − η ∂ℓ(βt)
∂βt

if t ≥ T + 1 then

Keep only the k features with highest values of

vj =
√

(sj − x̄2
j)|βj|, j = 1, 2, · · · , p.

end if

end for

proposed Algorithm 2 can select the subset of features according to the largest values of

the variable importance vj =
√
(sj − x̄2

j)|βj| after T time steps, which will improve the

accuracy for feature selection.

4 Theoretical Analysis

This section provides the theoretical justification for the SGDTmethod. When the iteration

time T is large enough, and the true signal values for β∗ are strong enough, the index of

largest k∗ values of |βT | is the true support of the β∗. All the features are assumed to be

normalized in the dataset. Therefore, the absolute value of the coefficient vector β replaces

the variable importance v in the feature selection step. As presented in Algorithm 1 and
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2, the updated procedure by SGD method is

βt+1 = βt − η
∂ℓt(βt)

∂β
.

Let the β∗ be the minimizer for the population loss (2), where supp(β∗) = Sβ∗ and ∥β∗∥0 =

k∗. It is not hard to verify that β∗ is the true coefficient vector for the linear regression

model or the Logistic regression model. Before providing the main theorems, we present

some assumptions as follows.

Assumption 1 (Constrained Conditions for Coefficients Vector). There exist con-

stants R1 and R2 satisfied ∥β∗∥ ≤ R1 and ∥β∥ ≤ R2. We define the closed convex

set W := {β : ∥β∥ ≤ R2}. For any β ∈ W , it is not hard to verify that ∥β − β∗∥ is

bounded by the constant R = R1 +R2.

Assumption 2 (Strongly Convexity for Population Loss Function). For any β ∈

W , where W is a closed convex set, the expectation of the loss function L(β) is

strongly convex. The definition is that there is existing a constant λ > 0 satisfied

that L(β)− (λ/2)∥β∥2 is a convex function.

Assumption 3 (Bounded Gradients for the Loss Function). Given a bounded ran-

dom input-output pair Z = (X, Y ), for any β ∈ W , the gradient of the loss function

ℓ(Xβ, Y ) is bounded by a constant G such as ∥∇βℓ(Xβ, Y )∥ ≤ G.

Since the random variables X and Y are bounded, Assumption 3 holds for typical loss

functions, e.g., in the linear regression (3) and the logistic regression (4).

Proposition 4.1. Suppose that the assumptions 1-3 hold. Let β∗ be the minimizer for the

loss function L(β) and β∗ be the k∗-sparse vector, thus ∥β∗∥0 = k∗. Let βt be the SGD

coefficient vector at iteration t, and ℓ(βt) be a differentiable convex function on a closed

convex set W. Then for the learning rate η > 0, we have

∥βt+1 − β∗∥2 ≤ (1− 2λη)∥βt − β∗∥2 + η2G2 + 2η⟨β∗ − βt,∇ℓ(βt)−∇L(βt)⟩.
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Proof. The updated procedure for the gradient descent method is

βt+1 = βt − η∇ℓt(βt).

Then we have

∥βt+1 − β∗∥2 = ∥βt − η∇ℓ(βt)− β∗∥2

≤ ∥βt − β∗∥2 + η2∥∇ℓ(βt)∥2 − 2η⟨βt − β∗,∇ℓ(βt)⟩

≤ ∥βt − β∗∥2 + η2∥∇ℓ(βt)∥2 − 2η⟨βt − β∗,∇L(βt)⟩+ 2η⟨βt − β∗,∇L(βt)−∇ℓt(βt)⟩

≤ ∥βt − β∗∥2 + η2G2 − 2η⟨βt − β∗,∇L(βt)−∇L(β∗)⟩

+ 2η⟨βt − β∗,∇L(βt)−∇ℓt(βt)⟩.

Since ∇L(β∗) = 0 and the L(β) is strongly convex function, then we have

⟨βt − β∗,∇L(βt)−∇L(β∗)⟩ ≥ λ∥βt − β∗∥2.

As a result, we have

∥βt+1 − β∗∥2 ≤ (1− 2λη)∥βt − β∗∥2 + η2G2 + 2η⟨β∗ − βt,∇ℓt(βt)−∇L(βt)⟩.

Denote the error term by ϵ(βt) = ∇ℓt(βt) − ∇L(βt), t = 1, 2, · · · , T . According the

the assumption 3, the the error term ϵ(βt) is a martingale difference sequence bounded by

∥ϵ(βt)∥ ≤ 2G. Then, Theorem 4.1 is described in the following.

Theorem 4.1. Let β1 = 0 be the initial values for t = 1. With the same notations as

Proposition 4.1 and suppose that assumptions 1 to 3 hold, the SFSA coefficient vector βT+1

satisfies

∥βT+1 − β∗∥2 ≤ (1− 2λ/Tα)T∥β∗∥2 + G2

2λTα
+

2

Tα

T∑
t=1

⟨β∗ − βt, ϵ(βt)⟩, (5)

if the learning rate η = 1/Tα is fixed, where 1/2 < α < 1. And the convergence rate for

E∥βT+1 − β∗∥2 is O(1/Tα).
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Proof. By using the conclusion of the proposition 4.1 T times, let η be a fixed learning

rate, then the following inequality holds by

∥βT+1 − β∗∥2

≤ (1− 2λη)T∥β∗∥2 +
T−1∑
t=0

(1− 2λη)tη2G2 + 2η
T−1∑
t=0

(1− 2λη)t⟨β∗ − βt,∇ℓ(βt)−∇L(βt)⟩

≤ (1− 2λη)T∥β∗∥2 +
+∞∑
t=0

(1− 2λη)tη2G2 + 2η
T−1∑
t=0

(1− 2λη)t⟨β∗ − βT−t, ϵ(βT−t)⟩

≤ (1− 2λη)T∥β∗∥2 + ηG2

2λ
+ 2η

T∑
t=1

⟨β∗ − βt, ϵ(βt)⟩.

Let η = 1/Tα and 1/2 < α < 1, then we have

∥βT+1 − β∗∥2 ≤ (1− 2λ/Tα)T∥β∗∥2 + G2

2λTα
+

2

Tα

T∑
t=1

⟨β∗ − βt, ϵ(βt)⟩.

Taking the expectation on both sides, the following inequality holds by

E∥βT+1 − β∗∥2 ≤ (1− 2λ/Tα)T∥β∗∥2 + G2

2λTα
.

When T → +∞, the first term converges with the convergence rate O(1/ exp(T 1−α)), and

the second term converges with the rate O(1/Tα). Therefore, the conclusion holds.

Remark 4.1. The above proposition and theorem assume that the data is normalized.

If that is not the case, we can maintain the running averages x̄ = 1
n

∑n
i=1 xi ∈ Rp and

s = diag{ 1
n

∑n
i=1 xix

T
i } ∈ Rp by updating them one example at a time. Then, we can use

the standard error: σ̂x = sx− µ̂2
x ∈ Rp to perform SFSA or SGDT on non-normalized data

using the thresholding Θk(σ̂xβ) instead of Θk(β).

In the conclusion of Theorem 4.1, the first term (1 − 2λ/Tα)T∥β∗∥2 on the right side

of (5) will vanish when T → +∞ because of limT→+∞(1− 2λ/Tα)T = exp{−T 1−α}. Here,

T is the iteration times for the stochastic gradient algorithms. Since in these theorems, we

assume that the training instances arrive one at a time, T also represents the total sample

size. For the second term on the right side, since we assume the learning rate is η = 1/Tα,

13



the term G2/2λTα also can vanish. Finally, the variable selection problem depends on the

random error term. We will give the assumptions and conclusion for variable selection in

the following Corollary 4.1.

Corollary 4.1. With the same notations as Proposition 4.1 and Theorem 4.1 and suppose

that the assumptions 1 to 3 hold, given a constant ω > 0 and the iterative time T , when

the fixed learning rate is η = 1/Tα, where 1/2 < α < 1 if the minimum absolute value of

true β∗ satisfies that

|β∗
min| > (1− 2λ/Tα)T∥β∗∥2 + G2

2λTα
+ 4GR

√
2ω

Tα−1/2
,

then, with at least a probability 1 − exp(−ω), the index of all the true variables can be

selected.

Proof. Since we have

E[∇ℓ(βt)] = ∇L(βt),

the ⟨β∗ − βt, ϵ(βt)⟩, t = 1, 2, · · · , T , is a martingale difference sequence. This martingale

difference can be bounded by

|⟨β∗ − βt, ϵ(βt)⟩| ≤ ∥β∗ − βt∥∥ϵ(βt)∥ ≤ 2GR.

According to the Azuma inequality, with the probability 1−exp(−ω), we have the following

inequality:
T∑
t=1

⟨β∗ − βt, ϵ(βt)⟩ ≤ 2GR
√
2Tω.

Therefore, with the probability 1− exp(−ω), the following inequality holds by

∥βT+1 − β∗∥2 ≤ (1− 2λ/Tα)T∥β∗∥2 + G2

2λTα
+ 4GR

√
2ω

Tα−1/2
.
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Compared to β∗
min = O(

√
log p
n

) in the true support recovery theorem for the offline

high-dimensional setting (Loh and Wainwright, 2017), we assume the number of predictors

p is fixed, even though p may be very large, and the iterative time T → +∞. Since only one

observation or a mini-batch of observations is used at one time, the iterative time T → +∞

means that the sample size n→ +∞. Our theoretical justification shows that with a high

probability, if the iterative time T is large enough, while the signal strength β∗
min can be

arbitrarily small, we can select the support of the true variables by using the index of

largest k∗ values of |βT+1|, introduced by the (T + 1)-th iteration of the SGD algorithm.

In this case, the sparsity level k∗ does not change the variable selection accuracy.

5 Experiments and Real Data Analysis

Numerical experiments and real data analysis are presented to evaluate the performance

of the proposed methods in this section. First, the experimental results on large sparse

simulated datasets are presented to compare the performance of the proposed methods with

the other state-of-the-art methods in linear regression and classification cases for prediction

and variable selection. Then, the results on large real datasets are presented, and the

performance of various online feature selection methods is compared. All experiments are

run on a desktop computer with Core i7 - 8700k CPU and 32Gb memory.

5.1 Experiments with Simulated Data

In this experiment, we use uniformly correlated data generated as follows: given a scalar

α, we generate zi ∼ N (0, 1), then we generate an observation xi:

xi = αzi1p×1 + ui, with ui ∼ N (0, Ip).
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We generate i.i.d. observations by this way to obtain the n×p data matrixX = [xT
1 , · · · ,xT

n ]
T ,

where xi ∈ Rp for i = 1, 2, · · · , n. It is easy to verify that the correlation between any pair

of predictors is α2/(1 + α2). We set α = 1 in our simulation thus the correlation between

any two features is 0.5. Then, the dependent response y is generated from the following

linear regression model:

y = Xβ∗ + η, with η ∼ N (0, In), (6)

and for classification:

y = sign(Xβ∗ + η), with η ∼ N (0, In), (7)

where β∗ is a p-dimensional sparse parameter vector. The true coefficients are β∗
j = 0 except

β∗
10j∗ ̸= 0, j∗ = 1, 2, · · · , k∗. A linear model cannot perfectly separate the classification

data because of the random noise term. The simulation is based on the following setting:

p = 10000 and k∗ = 100. We considered the signal strength β∗
10j∗ = 1 for strong signal and

β∗
10j∗ ∈ [0.05, 1] increasing linearly with j from 0.05 to 1 for weak signal. The sample size

n varies from 5× 103 to 3× 105, and the learning rates are η = 0.0001 for linear regression

and η = 0.01 for classification. The annealing parameters are µ = 10 in the regression case

and µ = 5 in the classification case for the proposed SFSA and related methods.

We evaluate two classical online feature selection methods for comparison for regression

and classification: the OPG (Duchi and Singer, 2009) and RDA (Xiao, 2010) methods. In

both frameworks, we consider ℓ1 regularization for regression and ℓ1 + ℓ2 regularization for

classification. In the regression setting, we also compare with the Regularization Annealed

epoch Dual Averaging (RADAR) method proposed by Agarwal et al. (2012). For classifi-

cation, besides the OPG and RDA methods, the simulation includes the first-order online

feature selection (FOFS) and the second-order online feature selection (SOFS) methods

(Wang et al., 2014; Wu et al., 2017).

The sparsity controlling parameters in the simulation are tuned to obtain k∗ variables.
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This can be done directly for SFSA, FOFS, and SOFS methods, and indirectly through the

regularization parameter for the OPG, RDA, and RADAR methods. In OPG and RDA,

we used 200 values of λ on an exponential grid and chose the λ that induces the k̂ non-zero

features, where k̂ is the largest number of non-zeros features smaller than or equal to k∗,

the number of true features. Since RADAR only induces approximately sparse coefficients,

we set the small values to zero to select variables. All the experiments are replicated 20

times in the simulations.

The following criteria are used in the numerical experiments: the true variable detection

rate (DR), the root mean square error (RMSE) on the test data for regression, the area

under the ROC curve (AUC) on the test data for classification, and the running time

(Time) of the various algorithms. The variable detection rate DR is defined as the average

number of true variables correctly detected by an algorithm divided by the number of true

variables. So when Sβ is the set of selected variables and Sβ∗ are the true variables, then

we have

DR =
E(|Sβ ∩ Sβ∗|)
|Sβ∗|

.

5.1.1 Experimental results for regression

We evaluate the empirical performance of SFSA for the regression task. The performance of

various algorithms is presented in Table 1. Considering the detection rate (DR), the SFSA,

SFSA-AG, and SGDT algorithms are much better than the OPG, RDA, and RADAR

methods. When the sample size n increases, our proposed methods find all true features

and nothing else, 100% of the time. Also, the proposed algorithms have less computational

time because they can directly control the desired sparsity level. In contrast, the OPG

and RDA methods cannot recover the support of the true features. Because of the need

to vary the regularization parameter to control the sparsity level, these algorithms are

computationally expensive. The RADAR method performs better than the OPG and RDA
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Table 1: Simulation experiments for online regression averaged over 20 runs.

Variable Detection Rate DR (%) RMSE Time(s)

n SFSA SFSA-AG SGDT OPG RDA RADAR SFSA SFSA-AG SGDT OPG RDA RADAR SFSA SFSA-AG SGDT OPG RDA RADAR

p = 10000, k = 100, strong signal β = 1, learning rate = 0.0001, mini-batch = 25

5× 103 56.75 43.80 98.05 1.30 0.80 3.75 60.07 62.61 97.14 100.0 100.1 87.55 0.048 0.052 0.021 165.1 464.1 321.6

104 84.30 73.10 100 1.20 1.25 6.45 48.74 50.90 96.05 100.9 100.9 88.92 0.096 0.103 0.041 331.8 917.2 647.0

2× 104 100 100 100 1.30 1.10 11.45 39.93 41.54 91.80 100.3 100.4 90.92 0.164 0.179 0.082 495.7 1822 1253

p = 10000, k = 100, weak signal β increase from 0.05 to 1, learning rate = 0.0001, mini-batch = 25

104 67.95 59.80 84.55 1.05 0.95 5.05 25.68 26.81 50.44 53.06 53.07 51.61 0.095 0.102 0.041 339.8 375.4 680.1

3× 104 91.35 90.60 93.40 1.05 1.40 23.75 16.37 16.95 46.54 52.99 53.00 49.75 0.259 0.275 0.122 837.8 909.9 2109

105 98.30 98.20 98.25 0.95 1.30 71.60 7.89 8.10 34.84 52.44 52.46 32.24 0.738 0.804 0.409 2013 2117 6913

3× 105 100 100 100 0.85 1.35 - 2.06 2.08 2.47 52.83 52.86 - 2.187 2.404 1.093 4853 4167 -

Table 2: Comparison between SFSA, SFSA-AG (AG), SFSA-Adam (Adam), SGDT, and

other online algorithms for classification averaged 20 runs.

Variable Detection Rate DR(%) AUC Time(s)

n SFSA AG Adam SGDT FOFS SOFS OPG RDA SFSA AG Adam SGDT FOFS SOFS OPG RDA SFSA AG Adam SGDT FOFS SOFS OPG RDA

p = 10000, k = 100, strong signal β = 1, learning rate = 0.01, mini-batch = 25

3× 103 66.60 62.40 54.55 88.55 8.70 1.25 1.15 1.70 0.841 0.822 0.781 0.934 0.578 0.507 0.502 0.506 0.037 0.040 0.044 0.014 0.268 0.005 103.5 150.0

104 86.35 82.60 74.35 100 15.75 0.6 1.90 3.95 0.945 0.931 0.901 0.992 0.654 0.499 0.504 0.513 0.124 0.132 0.148 0.046 0.876 0.016 342.1 451.3

3× 104 100 100 100 100 35.20 1.0 1.75 11.0 0.996 0.996 0.996 0.996 0.756 0.497 0.500 0.560 0.293 0.318 0.381 0.138 2.412 0.050 1029 1198

p = 10000, k = 100, weak signal β increase from 0.05 to 1, learning rate = 0.01, mini-batch = 25

3× 103 48.35 45.95 40.60 63.50 9.05 1.25 1.05 1.50 0.842 0.825 0.780 0.912 0.610 0.505 0.503 0.505 0.037 0.040 0.045 0.014 0.272 0.005 101.8 161.3

104 69.25 67.25 62.10 81.05 16.40 0.7 1.30 4.65 0.944 0.933 0.912 0.974 0.713 0.500 0.499 0.522 0.123 0.131 0.149 0.046 0.855 0.017 340.3 474.7

3× 104 92.60 92.50 92.20 91.85 33.90 1.0 1.60 12.90 0.989 0.989 0.989 0.989 0.835 0.496 0.498 0.594 0.296 0.319 0.381 0.138 2.294 0.049 1029 1246

105 98.60 98.55 98.05 96.95 60.65 0.9 1.70 27.85 0.991 0.991 0.990 0.990 0.947 0.506 0.506 0.762 0.925 1.012 1.228 0.460 6.258 0.164 3412 3858

methods but not as good as the proposed methods. Considering the test RMSE for the

proposed methods, the RMSE values based on the test data are smaller when the sample

size n is larger. However, for the existing OPG and RDA methods, the RMSE values for

the test data do not converge when the sample size n is large.

5.1.2 Experimental results for classification

Similarly, the empirical performance of SFSA and its variants AG and Adam for classifica-

tion is evaluated in this subsection. The experimental results are shown in Table 2. First,
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we analyze the variable detection rate. In binary classification, it is more challenging to

select the true features than in regression. First, we observe that we need more training

instances in classification than in regression to recover all true features. Then, for weaker

signal strength, given the largest sample size n = 3 × 105, our SFSA algorithms and the

variants cannot select all true features, even though their performance is much better than

the regularized based methods and standard online feature selection methods, FOFS and

SOFS. Similar to the regression problem, the regularized-based methods OPG and RDA

cannot recover the support of true features for the dataset with strongly correlated fea-

tures. As for the latest algorithms in the literature, FOFS and SFOS (Wang et al., 2014;

Wu et al., 2017) from the literature cannot detect the true features either.

Then we consider the test AUC (Area under the ROC curve for the test data) as a

criterion. Because the proposed SFSA methods and SGDT can recover most of the true

features, it is clear why the test AUC values for SFSA methods and SGDT are larger than

the existing methods, i.e., the proposed methods perform better than the current methods

on classification accuracy. In other words, since the existing methods may not select most

of the true features, the models learned by the current methods cannot predict the test

data as accurately as the proposed method.

The analysis of time complexity is the same as in regression. Because of the parameter

tuning problem, regularized-based methods are computationally expensive. By contrast,

greedy-based methods that directly control the sparsity level have a huge advantage in

computational time.

5.2 Simulations on Large Sparse Datasets

To run simulations of the size of real large-scale datasets and to further verify the classifi-

cation performance of the current methods in the literature, such as FOFS, SOFS, OPG,

and RDA algorithms, we also performed numerical experiments on large, sparse simulated
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Table 3: Comparison between SFSA, SFSA-AG, SGDT, and other online methods for the

simulated sparse classification dataset.

Variable Detection Rate DR (%) AUC

Dataset n p k non-zero SFSA SFSA-AG SGDT FOFS SOFS OPG RDA SFSA SFSA-AG SGDT FOFS SOFS OPG RDA

X1 105 104 100 200 100 100 100 99.95 97 70.45 83.30 0.923 0.923 0.918 0.917 0.768 0.712 0.814

X2 105 2× 104 200 400 100 100 100 99.70 97.15 67.75 86.88 0.919 0.919 0.913 0.910 0.758 0.671 0.818

X3 105 105 500 500 100 100 100 99.87 98.47 71.74 - 0.918 0.918 0.917 0.899 0.749 0.642 -

data similar to the ones described in Wu et al. (2017).

First, we generate three large sparse datasets X1, X2, and X3, where each observation is

a sparse vector with 200, 400, and 500 nonzero entries at random locations. Each nonzero

entry is generated from the i.i.d Gaussian distribution N (0, 1). The label y ∈ {−1,+1} is

generated from the following noiseless linear model:

y = sign(Xβ∗),

where the true parameter vector β∗ is sparse with 100, 200, and 500 nonzero entries,

respectively. The nonzero entries are sampled from the uniform distribution U(0, 1). These

three datasets are large-scale but less challenging since all the predictors are independent

and the classes are separable.

In this large sparse data simulation, we evaluate the algorithms regarding the true

variable detection rate (DR) and the area under the ROC curve (AUC) on test data.

Based on the previous experiment, we removed the SFSA-Adam algorithm from the large

sparse data simulation because its performance is similar to SFSA-AG. The simulation

results are shown in Table 3.

These experimental results verify that all the proposed methods can detect the true

features quite well if the features are independent. However, compared to the proposed

greedy-based algorithms, the regularized-based methods such as OPG and RDA still suffer

lower variable detection rates and prediction accuracy. Considering the proposed greedy-
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based methods, the proposed SFSA-based methods outperform the SGDT method in true

feature recovery and prediction. The experimental results for the large sparse datasets prove

our proposed SFSA methods can address various datasets and that our implementation of

the competing algorithms performs similarly to that reported in Wu et al. (2017).

5.3 Real Data Experiments

We use the proposed SFSA and SGDT methods for high-dimensional and large-scale real

datasets. The FOFS and SOFS methods are also considered for comparison. The OPG,

RDA, and RADAR methods are not included in these real datasets analyses since the

numerical results in Table 3 show that the OPG, RDA, and RADAR methods are time-

consuming when addressing large-scale datasets. Additionally, they may not perform very

well in the classification. The first dataset is the URL dataset (Ma et al., 2009), also

analyzed using the SOFS method in Wu et al. (2017). The URL dataset is a large-scale

and high-dimensional dataset. This dataset has more than 3 million features and 2 million

observations. The observations are collected to predict whether a website is malicious or

not based on a large number of features. Since the URL instances are obtained day-by-day

from a large Web server, it makes sense to apply online learning methods to this dataset.

Following Ma et al. (2009), we used the streaming data from day 0 to day 99 as the training

data and used the data on day 100 to evaluate the performance of the models we trained.

The AUC values are reported for the data on day 100. There are 16,000 variables selected

in this dataset, about 0.5% of the total features. The Avazu click-through dataset (Juan

et al., 2016) is a large-scale dataset as well. It has 1 million features and more than 12

million observations. We selected 1,000 variables in this dataset, about 0.1% of the total

features. There are 10 million observations used for training and more than 2 million

observations used for testing the model.

Then, the proposed methods are applied to two ultra-high dimensional datasets. The
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Table 4: Comparison between SFSA, SFSA-AG, SGDT, FOFS, and SOFS for the real

datasets. The AUC values for test data are presented for these methods.

Dataset n p SFSA SFSA-AG SGDT FOFS SOFS

URL 2,396,130 3,231,961 0.998 0.998 0.995 0.995 0.986

Avazu 1,000,000 12,642,186 0.630 0.602 0.627 0.623 0.623

News 19,996 1,355,191 0.883 0.882 0.881 0.875 0.736

Rcv1 20,242 47,236 0.972 0.972 0.973 0.938 0.782

Gisette 6,000 5,000 0.983 0.983 0.971 0.961 0.636

first one is the News dataset (Keerthi and DeCoste, 2005), which has 19,996 observations

and 1,355,191 features. The second one is the Rcv1 dataset (Lewis et al., 2004), which

has 20,242 observations and 47,236 features. In this paper, we used 18,000 observations

to train the models and the rest to evaluate the model. There are 1% of total variables

selected in these datasets.

The last dataset is the Gisette dataset (Guyon et al., 2004). It is not a very large

dataset or not a high-dimensional dataset, but the number of features p and the number

of samples n are very close. This is a good dataset to test whether the proposed methods

not only can handle the high-dimensional data but can address the conventional settings

in which n and p are very close or n is larger than p.

The results for the real data analysis are shown in Table 4. The evaluation criterion

is the AUC values for the test data. A larger AUC value means a better classification

performance. We can observe that the models trained by the proposed methods perform

better than those learned by the existing methods. On all five datasets, the proposed SFSA

method is better than the conventional methods from the literature. The performance

of the proposed SGDT is also great, being the best method for the Rcv1 dataset and

outperforming the existing techniques on four out of five datasets.
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6 Conclusion

In this paper, we propose two online feature selection methods: stochastic feature selection

with annealing (SFSA) and stochastic gradient descent with truncation (SGDT). Compared

to the existing online feature selection methods, the proposed methods can recover the sup-

port of the true features for the high-dimensional and large-scale datasets, even when there

is a strong correlation between features. Moreover, they can select features and estimate

the parameters simultaneously. The theoretical justification provides the convergence and

consistency of the estimated coefficients and theoretical guarantees of true feature support

recovery. Then, the empirical performance of the proposed methods is evaluated and com-

pared with other state-of-the-art online methods. Based on the results of experiments and

real data analysis, the proposed methods have excellent performance on real and simulated

datasets.

However, further study is necessary for the proposed stochastic feature selection with

the annealing method. First, we do not consider the model drift problem, a common

issue in streaming data learning. Second, the stochastic feature selection with annealing

can also be used for offline learning. One can subsample the data and approximate the

gradient using a mini-batch, then select the Mt features by the higher |βj| at each epoch t.

The related theoretical analysis needs to be investigated. Finally, the proposed stochastic

feature selection method can be used in a sparse deep neural network model. Generally,

neural networks are trained by stochastic gradient descent (SGD) and its variants. Thus,

it would be interesting to study if SFSA can replace SGD for training a neural network

model, especially for non-vision data with irrelevant features.
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