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Abstract—Cross-modality image registration is a difficult prob-  transform to quickly obtain a similarity map. These methods
lem because the same structures have different intensity pattes gre very efficient and can be very effective for certain types
in the two modalities, making straightforward methods based on of noise patterns; however they are ineffective in the cdse o

SSD or cross-correlation not applicable. This paper presents a - . . .
learning based approach to cross-modality image registration. our cross-modality registration as it can be observed fiioen t

First, it describes a method to map the image registration Phase correlation map from image 2.
problem into a problem of binary classification. Then, it presents
a method to select a number of image registration algorithms
from a larger pool and combine them by AdaBoost into a boosted
algorithm that is more accurate than any of the algorithms in
the pool. Finally, it presents a method named virtual boosting
that allows to directly obtain the result of the boosted algorithm
without performing any parameter search. In our cross-modality
image registration application, the algorithm pool consists of
many feature-based registration algorithms with different con-
figurations. An experimental validation on the registration of
thousands of aerial video frames with satellite images from
Google Maps showed that the boosted algorithm has a 20-30%
smaller error than the best registration algorithm from the pool
(based on SIFT features). More generally, the method presente
can be applied to combine a number of algorithms aimed at
solving the same problem into a boosted algorithm that is more
accurate than any of them.

I. INTRODUCTION

Cross-modality image registration is an intensely stud
ied problem with applications in fields such as surveillancq
and medical imaging. It is a difficult problem because thej®
same structures have different intensity patterns in the tw
modalities, making straightforward methods based on SSngfPt'aﬁ'b
cross-correlation not applicable. Instead, invarianésteually  area.
sought, either as similarity measures that find a mapping
between the two intensity patterns, or as landmarks that ?gtion techniques can be found in [1] and [17]
the same for the two modalities. Many registration metho Sin this paper, we show how the registration. problem can
from the first category are based on the maximization of '

the mutual information [16], sometimes using a learnedrpri e mapped into a problem of binary classification trained
’ 9 Plth a supervised manner, with one positive example for each

[6]. However, these methods are computationally EXPENSIVG, rect registration of an image pair, and negative exasnple

gglgggn;hﬁrtrr:gts:Eg::ga?;etc:)rrezlr'é'Tneetﬂg dnse?r:a:e;;g}%r any incorrect registration. This framework allows us to
) gory Yearn a robust and accurate registration algorithm fronutho

?huen:nbirsi?]f fi?rtrl]ﬂfe p;'n;fitﬁ?ﬁgs' g IF-ll—Jiii?tu;%?aﬁ])thaen%egﬁte% nds of manually registered training images. The regjistra
9 P 9 q y gorithm is learned using a larger pool of feature-based

reglstra_tlon. These feature-ba_sed methods however cae qH'agistration algorithms from which a small number is sadct
often give erroneous results since they do not take theeentjr

) . . . - . nd combined using AdaBoost.
image into consideration when obtaining the desired resudt 9
they have no confidence measure of the result obtained. I[I. CROSSMODALITY IMAGE REGISTRATION
There are other direct image methods such as those basefhe problem that we will study in this paper is the registra-
on phase correlation [10], [4], [3], which use the Fast Feri(on of aerial video sequences obtained by an unmanned plane
978-1-4244-3461-9/09/$25.00) 2009 IEEE to satellite images of the same area. The unmanned plane has a

Example of an two aerial images (up) containing largalfz due
uildings and a satellite image (from Google Maps [6f)the same

Comprehensive surveys of the early and later image regis-
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GPS locater that records its position and altitude evergrsgc  Using these approximations, the desired registration fis co

with an accuracy of about 10 meters. tained in the 2-dimensional space of displacemérts dy)
This is a difficult registration problem because of twaescribed above. The problem that needs to be solved is
reasons: therefore the following: given a paif = (A, S) of an aerial

. It is cross-modality, with the satellite images being obmage A and a satellite image' together with the rotation
tained at a different time, from a different location (dis@nd scale information from the GPS, find the two dimensional
tance and angle), under different illumination conditiondisplacementdz, dy) € [—M, M]* that best registers the two
and with a different type of camera than the aerial vidégnages at the street level.
images. We approach this problem as a supervised learning problem,

. The registration is desired to be accurate at the stredt leife Which the training examples consist of pai, u;), with
while the images contain tall buildings producing largé: = (A, Si) being a satellite-aerial pair and = (dx;, dy;)
parallax deformations, as shown in Figure 1. being some registration displacement. The positive exasnpl

contain the correct displacements= (dxz;,dy;),i =1,..., N

for the N image paird; = (4;, S;),i =1, ..., N. The negative

examples will be obtained dsl;,;), Sk(;)), (dz, dy) such that

k(j) € {1,...,N} is random anddz,dy) is any value such

that (dz, dy) # (dxy(jy, dyk))-

Our database consists of two video sequences containing

_ o o ~ 2300 frames and about 230 satellite images obtained from

r';'gb?-Th\é"tjri‘;'r";g%‘;'e{t‘i);‘;‘ﬁsd ;‘t”(dl;y‘g?isgtfdgt‘in'gjag:nggmﬁa;g’g Google [5] from the GPS locations. Therefore, there is one

in both x and y directions. satellite image to every 10 video frames.
We manually annotated the true registration of the frames

Methods that work directly on the images, using image gradiyg divided the dataset into two disjoint sets: a trainirigoge
ents, are not effective in this case because the gradiens magno frames and a test set of 1500 frames.

or the image edges are too different. This can be observed
in Figure 3 where we show that the edge maps of the leftIll. L EARNING IMAGE REGISTRATION BY ADABOOST

video frame from Figure 1 and a rotated, rescaled and croppedy trained classifier that can separate the positives from

satellite image that was aligned with the video image. the negatives described in the previous section would be
v fe T s ) L =y aev] able to answer for each pailr,u whether the displacement

5 Lgﬂ%\ i‘%\\\m “gi@@“ﬂ : @Mﬂ%ﬁ ij =3 u = (dz,dy) is the actual registration between the two

SR G\ N\ AN gg}?a/@/ = . : i .

. V\§\\\f %ﬁﬂﬂ\[ el [ = i [ Lg‘ ) images inI = (A,S). Hence, the classifier behaves like

ka ~ @EBQQ[%%@J ==/ 15 ./ @%UL a similarity function that gives a probability that the aéri

o B Qi ¥ | S S e e Sl image is registered with the satellite given a displacement

b 0 e &, s 7 : istrati

R/ = wy / ey I 7 ] s L vﬁ@ﬁ/ ] u = (dz,dy). In order to find the true registration between

%J]T! wd@ 3 ;%TTM@{; \%iﬁijgﬂ?@%?% {5 the aerial imaged and the satellite imagé, the classifier

1 s EL e | e el e

has to be queried for all possible locationsc [—M, M]?,
Fig. 3. Canny edge detection of the left aerial image in Figurand a as illustrated in Figure 4. Even though this is feasible for
rotated, scaled and cropped version of the satellite imagheosame area. the two dimensional registration, it becomes computatipna
prohibitive for the affine registration, where will be a six-
dimensional vector, and its search space will be very large.
A. Registration as a Binary Classification Problem This approach faces this computational challenge because
In this paper we will study rigid registration, either dethe search task is separated from the learning task, lignitin
scribed as a 6-dimensional affine transformation or as a twee types of features that can be used in the classifier design
dimensional translation. For the sake of clarity, we wiltds to features that can be applied everywhere in the searclespac
on the two dimensional translation first and at the end of tiidowever, there exist many other types of features that do not
paper we will describe the extension to affine registration. satisfy this criterion and are automatically excluded friira
By taking advantage of the given GPS and altitude inform#&eature pool. Examples include edge detection resultsrest
tion, the orientation of each aerial image can be approxlyat points, morphological operations, Hough transforms, etc.
estimated from the GPS trajectory. Also, the scale can beln this paper, we propose to extend the scope of the boosting
approximately obtained from the plane altitude. This way, feamework by integrating the parameter space into the iegrn
4-parameter aerial-satellite registration can be obthfnemn task and we can show how to obtain boosting results without
a two dimensional displacemefdz,dy) of the rotated and any search in the parameter space.
scaled aerial image with respect to the satellite image. Forln this different view that we propose, a feature together
example, a displacement @¢f,0) means the center of thewith its associated search becomes a weak algorithm that
rotated and scaled video image is overlapped with the cenggves a response map in the search space. Then the most
of the satellite map. relevant algorithms to the task will be chosen by AdaBoost
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from the pool of weak algorithms using positive and negativae found. All these parameters lie in a search spéicef
samples. This generalizes the voting or bagging schendimensionality equal to the number of parameters. For egich s
to combine algorithms previously used in the literature byf parameters € S, the classifier is queried given the current
providing a principled way (supervised learning) to chottee image, and the probability for that location is recorded.

right algorithms and their weights to obtain a robust result  Thus the detection process can be written as follows:

AdaBoosting
1. For each parametere S:
2. Compute features’,(s),m =1, ..., N.
3. Compute weak classifiefs,, (s),m =1, ..., N.
4. Obtain detection result
H(s) = sign(3,, amhm(s) > T)

2

Boosted

S This search can also be performed in a coarse to fine
probability map

fashion, for speed.
Fig. 4. For detection using Adaboost, the trained classifiest be queried at
all locations in the parameter space, obtaining a probgloiap (right image).

In this example, the classifier parameters are(the dy) registration location B, Boosting Feature Maps
of the aerial image.

. . . . Assuming that no coarse to fine search takes place (e.g.
In our image registration problem, we can use simplgnsidering only one scale of the coarse to fine pyramid), the
feature-based or phase correlation based registration- algetection process involves the computation of all the festu
rithms as weak algorithms. From these weak algorithms Fa, (s) of the classifier at each poiatin the search spacs.
subset will be chosen by AdaBoost and the result will bENiS is computationally equivalent to obtaining the resyon

a boosted algorithm that is more accurate than any of tﬁétiiggnfep%ugggg c%rr‘1 E:V\\;\mgﬁ Zga;g‘l‘fdw-ghus the whole
algorithms in the pool. '

. . Boosting Algorithms
A. Overview of Adaboost and the detection process 1. For eachm = 1,..., N

In this paper we will concentrate on the Adaboost [7]2. Compute the feature map’.(S) = {Fm(s), s € S}
algorithm, but the same method can be applied to othe?: Compl;:e(tgz)a Wg?k C('?jsssz'ge)f mtap)by él]“feShO'd'ng
i i m = 0|0Om m —tm) >
bc_)ostlng '.“?thOdS* for ex?mp'e ngltBOOSt [J]' Adaboos@sta 4. Obtain the detection result in the whole search space
with a training set of positives(",i = 1,..,nT) and negative H(S) = sign(}_,, amhm(S) > T)
(s;,j = 1,..,n7) samples and a pool of featurds,. The

training samples are aligned (e.g. rotated, scaled anghe L e .
9 P g (e.g perp In this view, aweak classifierapplied to the search space

and assigned a weight™ = 0.5/nt,w; = 0.5/n". The i

training algorithm proceéds in a/greedi manner/as folIows:S' _produces a thresholded feature map, as Seen in Figure .

AdaBoost Training This _thresholded feature map can be considered asak
1. For each feature, a sign, € {—1,1} and threshold, are algorithm Other weak algorithms can be constructed that are
found to minimize the training error not obtained by thresholding feature maps. For example, in
our image registration problem, some of the weak algorithms

ck =Zw¢+5[dk (Fe(s") = tx) > 0] will be interest point-based registration algorithms tbltain

(1)  one or a few sparse locations in the whole search space.

There is little work that combines algorithms in a superdise

2. The featurek; with the smallest training errog, = ey, is Way..ln [11], the authprs use .SUperVised leaming to choose
selected. one image segmentation algorithm from a database of algo-
3. The feature weight is; = —log(e1/(1.0 — e1)) rithms and to find the optimal segmentation parameters. In
4. For each sample, its weight is multiplied By = ¢/(1 —¢€) if  contrast, our work is aimed at using a number of algorithms

it is misclassified, and divided by, if it is well classified.  concurrently and train a more robust algorithm by supedvise
5. Steps 1-4 are repeated until the desired nunmbef features learning

are selected. . . . .
For each chosen featurg,,, a corresponding weak classifier Observe that if the feature outpi,,(S) is not binary, it

has been found, namely must be thresholded with a valdg that is determined during

training.
him(8) = d[om (Fin(s) — tm) > 0] 2

The obtained classifier is

+ Zw{é[dk(Fk(S;) —tx) < 0]

J

him (S) = 8[om (Fin(S) — tm) > 0] 4

This is equivalent to a using a potential function [15] to
H(s) = Sign(z Amhm(s) > T) (3) correctly interpret the feature value. Without the thrégHor
m without the potential function in general), overly confitlen
When the classifier is used for detection, all parameters tlieatures can have an uncontrolled influence on the boosted
were used to align the data (e.g. position, scale, rotatimmt output.
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Bopsting
Y '
'.

Registration output maps

Boosted
probability map

Fig. 5. Equivalently, each weak classifier can be appliechan whole search space obtaining a number of weak classifier. rDabsction map can be
obtained from the weak maps by boosting (i.e. as a weightedafutiresholded maps). Other fast algorithms can be used tadereuch weak maps, for
example feature-based registration algorithms in the casmage registration.

Also observe that the boosted algorithm outputs a discrimur problem, as shown in Figure 2 and they were never
inative probability map [7]: selected in the boosting process.
h(S) The feature-based registration algorithms are composed of
P(5) = pIE Jh(S) =Y amhn(S) (5) 1) A feature part that finds a sparse set (300-1000) of
m interest points in each of the two images.
Assume now that we are given a number of weak algorithms2) A matchingpart that is based on a set of local descriptors
Ai’“, represented by their binary output in the space S and (e.g. SIFT) assigned to each interest point, a similarity

controlled by a set of parametef's. measure to compare the local descriptors (e.g. SSD)
Training an Adaboost classification algorithm in this case  and an algorithm to match the interest points of the
is performed as follows: two images, based on the descriptors and the similarity
o ) measure.
Training a Boosted Algorithm 3) A method to generateegistration hypothesebased on
1. for each algorithnvlik, find parameterg, to minimize the the obtained matches (e.g. RANSAC).

training error . ) i i )
In our case, the interest points are picked using either the

e =Y wiO[A(s]) =11+ w;6[A7*(s;) =0] (6) method described by Lowe [2] or Sojka [12], using different
@ J parameter values.
2 Select the aIgorithmAZ‘l with the smallest training erran — The local descriptors are based on gra@ent and intensity, a
€k, in [2]. As a consequence, the SIFT descriptors are among the
3. lts weight isax = —log(e1 /(1.0 — €1)) ~ descriptors used in the algorithm pool. The similarity meas
4. For 'laachf_szmg!e,dmliglply its r\:\:et;ght_f@f =e/ (”1—|6) '_ff_'tés is either based on SSD or VOD (variance of difference).
misclassitea, diviae the weig 1 IT 1T IS well classified. H H H H H H
5. Repeat steps 1-4 until the desired numbeof classifiers are The alg_orlthm for matchlng |nteres_t points is the exhaestiv
selected. comparison of all the interest points, but each mafgh
of the video is restricted to have the displacement in the

In what follows, we will use a number of feature-basefi—100,100)* range. .
and phase correlation based registration algorithms to &ra 1N our boosting framework, each algorithm should generate
robust registration algorithm that has a registrationreatout & binary output in the search space. Each two-dimensional

20-30% smaller than the best algorithm in the pool. registration hypothesié(P, Q) generated by a weak algorithm
has a degree of support from the interest point matches, i.e.
C. The Algorithm Pool for Registration Boosting the numbemn (P, Q) of matchesP; — @; whose displacement

From the precision of the GPS data and the grid of tHéFi,@:) is close tod(P,Q), i.e. [d(P;, Qi) — d(P,Q)| <
satellite maps, we observed that the search for the retjistra - The hypotheses are sorted in the.decreasmg order of the
displacementdz, dy) can be restricted to 200 x 200 pixel support. Then, each weak algorlthm is based on a subset of
window centered at the map image center. Thus each wdiR best hypotheses = (u;,v;) obtained from the matches.
algorithm will give a200 x 200 pixel response. Here are some examples of combinations of hypotheses that

The pool of weak registration algorithms from which th&/€ USe€:
boosted algorithm will be trained contains phase-cori@iat 1) The hypothesis with the largest support.
based algorithms and feature-based registration algasith 2) The hypothesis with the:-th largest supportc =
However, because of the cross-modality of the problem, the 2;...,10.
phase correlation algorithms provide a very weak output for 3) Then best hypotheses, = 2, ..., 10.

4



2009 Urban Remote Sensing Joint Event

Each of the combinations of hypotheses described above
results in a weak algorithm (i.e. a binary map in the search
space), having a number of control parametets..r;,, where
h is the number of hypotheses. The weak algorithm is a binary

distance at least 30). This training will be easy. The
false alarms obtained from this first stage whose distance
to the corresponding positive is slightly smaller (e.g.
at least 20) are used as negatives for another boosted

output obtained by placing disks

algorithm. This procedure can be repeated several times
until no improvement is observed.

Assign non-homogeneous weights to the negative sam-
in the 200 x 200 search space at the locations given by the ples. Samples that are at higher distance from the ground
hypotheses, obtaining binary outputs as shown in Figure 6. truth have higher weights.

) : The boosted registration algorithm was trained to cont&in 1
* weak algorithms, in order to obtain a balance between speed
and accuracy. An interesting observation is that the algori
with the smallest error is Lowe’s registration algorithrre{d
fined as using SIFT features, 128 bit SIFT descriptors, SSD
similarity measure and choosing the best match) only when
training on areas with low parallax distortions. When tragni
on the entire sequence containing large parallax distwstithe
first algorithm that was selected is similar to Lowe’s algion,
> but it outputs a map containing the 10 best hypotheses.
Some examples of probability maps obtained using the
boosted algorithm are shown in Figure 7.

I

Interest Point Extraction
Feature Matching
Voting for

Transformation

1 Hypothesis 2 Hypotheses 5 Hypotheses

Fig. 6. The weak algorithms are obtained by matching differtypes
of features (SIFT, Sojka) using different criteria (SSD, ™COand different
matching algorithms (exhaustive, RANSAC). The output carehawve up to
ten hypotheses.

® .

Probability maps obtained by boosting the weak atigors.

This is only one way to construct a feature map from a
sparse set of hypotheses, but there could exist other ajigtep
ways, depending on the problem at hand. The best controfFig. 7.
parameters, ...,r, are obtained online during training, in a
greedy manner in order to minimize the training error. To select the final registration result, we find the regions

As one could see, there are many parameters and choieédighest value in the probability map and we choose the
used to construct the weak algorithms. By choosing differelocation furthest away from the region boundary as the final
combinations of parameters, and together with phase eerrggistration output.
tion algorithms with different filtering kernel types andes, Time complexity. If the pool contains algorithms with a
we obtain about 60 weak algorithms that will be the pool froarge range of computational complexities (e.g. phase cor-
which the boosted registration algorithm will be trained.  relation based and mutual information based algorithms),

Other registration algorithms [8], [9], [13] could also bt is recommended to take a cascaded approach where in
included in the algorithm pool if desired. the first cascade level only the fast algorithms are boosted
for an initial registration. Only on the locations where the
maximum probability is over a threshold, a more powerful yet

To train the boosted algorithm, positive and negative exarmnore expensive boosted algorithm is used to obtain the final
ples must be generated. registration output.

There is one positive example for each aerial-satellitegigna TABLE |
pair (A, 5)1 with the displacement = (dz, dy) corresponding REGISTRATION ERROR OF THE REFERENCE OWE'S) ALGORITHM AND
to the true registration between the two images, obtained by ©UYR BOOSTED ALGORITHM ON TRAINING AND TESTING DATA
manually registering the images.

D. Training the Boosted Registration Algorithm

X o i i Algorithm Median 80% Max
For each aerial-satellite image p4id, S), 1000 negative Cowe, Dataset T 50T 745 2370
samplesu; = (dz;,dy;) were randomly selected in the Lowe, Dataset 2 5.62 7.73  16.70
2002200 pixel search space, away from the positive example Training, Dataset 1~ 4.6  7.10 21.64
Testing, Dataset 2 4.57 6.93 13.59

for that pair. To avoid large registration errors, a combora
of the following two techniques can be used when generating
the negative samples:
1) Implement a cascade of increasingly complex alg
rithms. A first boosted registration algorithm is trained To test the robustness of our algorithm, we performed cross-
with negatives that are far from the positives (e.g. aflidation by training on one sequence (Dataset 1) anchtgsti

& Experimental Validation
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on the other sequence (Dataset 2). The results are sumnoharize directly applied to any higher dimensional rigid/nogidi

in Table I. parametric registration.
As one could see, the error of the boosted algorithi8{% We represent a 6-parameter affine transformation by the
smaller than the error of the Lowe’s algorithm. displacements(dx;, dy;),i € {1,2,3} of three predefined
points from the image (e.g. the image center and two corners)
as shown in Figure 11. This way, the affine space can be
- - viewed as isotropic, with all dimensions having the same uni
of measure.

- - @xay)f|
(dx,,dys)
Fig. 8. Registration trajectories obtained using Lowegisgation (left) and N\ ) N
the boosted algorithm (right). The large error at the botisndue to large A
parallax of tall buildings that occupy the entire image. . )
For a qualitative assessment of the registration, we ptesen .\. aerial image
in Figure 8, trajectories obtained using the Lowe’s aldnit (0, dy,) & satellite image

(left) and using our boosted algorithm. We see that except fIgg. 11.  An affine transformation is represented by the despizents
one large error, the other errors have been greatly redd®@d. (dz;,dy,) of three predefined points such as the image center and two
large error is due to the very tall buildings shown in Figure Bdjacent corners.

The GPS trajectory and the manual annotation of the
displacementslz, dy are shown in Figure 9. Searching the six-dimensional registration space for the
correct registration is too computationally expensive ® b
handled directly. In what follows, we present a new method
to obtain the boosted registration map without discregjztme
search space.

-118.254)

A. Virtual Boosting: Boosting Without Search

-118.256]

, When the search space is high dimensional, memory and

o i e e e i i mes ™ e B s w0 computation restrictions prohibit handling discrete i@rs of

the outputs of the weak algorithms or the boosted probwgbilit

maps. In some cases, the weak algorithm output can be

represented compactly as a humber of parametric objeats. Fo
Since the plane is in motion, it makes sense to use a Kalm@thmple, the feature-based registration algorithms dupu

filter to obtain the final registration result. The resultsasibed nymper of overlapping hyperspheres, which can be repregent

by running a Kalman filter on Lowe’s registration and omarametrically using their centers and radii.

our boosted registration are shown in Figure 10, where theTne poosted log-probability map is a weighted sum of the

superiority of the boosted registration is even more ewiden yeak algorithm outputs, so it can be again expressed para-

1

Fig. 9. GPS trajectory of the plane (left) and manually anectaegistration
trajectory relative to the first frame (right).

metrically as a number of weighted weak algorithm outputs,
- - where in our case each such output is a number of overlapping
hyperspheres.
To obtain the final registration location, we need to find the
intersection of hyperspheres where sum of weights is maxi-
= :z mum. Then we need to find the location inside this intersactio
that is furthest away from the boundaries, for robustneass. |

B e T TR T T some cases one could perform an exhaustive search on a
Fig. 10. Registration trajectories obtained using Lowegistration (left) dlscrgte_ grid a_nd at each location find the hypersph_eres that
and the boosted registration algorithm (right), after sthimgt with a Kalman cONtain it and finally compute the boosted log-probabikityt
filter. this is computationally intensive and it can become impecatt
if the parameter space is too large.
Instead, we propose another solution that avoids any search
IV. EXTENSION TOHIGHER DIMENSIONAL SPACES in the high dimensional space.
If the GPS information is not available, the entire boosted The intersection of hyperspheres whose sum of weights is

registration framework can be extended to 6-parametereaffimaximum can be mapped to tiMdaximum Weighted Clique
registration. Moreover, the concepts presented in thispegn problem from combinatorial optimization:
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1) Construct a graph whose nodes are the hyperspheres, V. CONCLUSIONS

having edges between hyperspheres that have non-zerg, this paper we proposed a supervised learning framework
Intersection for training a robust registration algorithm using a pool of

2) The area of maximum probability is the intersectiofhexpensive feature-based registration algorithms, esighed
corresponding to the maximum weight clique if thgy, the same task.

intersection is non-empty. The same method can be used to train a robust tracking
In practice, we use the maximum weight clique algorithm fromigorithm, in which case the phase correlation algorithms
[14]. might be very effective. Moreover, registration to a set of

To find the final registration location inside the area of maxjepresentative views can also be incorporated in orderdizlav
mum probability, we rely on the convexity of the hypersplseredrift.
Define the following cost function as the sum of distances In general, many problems have solutions that can be
to the hyperspherefl; = (C4, R1), ..., H, = (Cx, Ri) with  represented using a fixed number of parameters. The boosting

centersC; and radii R;: framework presented in this paper can be used to combine
multiple algorithms or variants designed to solve the same
_ - Ol — R > .
Cl@) Zmax(”l Gill - Ri,0) 2 0 ®) task to obtain a more robust result.
(]
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