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Abstract. The range of non-vanishing of H∗(GLn(Fp), Fp) is not know in
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1. Introduction

The group GLn(Fp) is a very important group, extensively used in number theory
and automorphic forms. A conjecture of Ash (see [Ash], also [Barbu]) relates Hecke
eigenclasses of H∗(GLn(Z), Fp) and H∗(GLn(Fp), Fp) (or, in general, H∗(Γ, V ) for
some subgroup of finite index Γ of GLn(Z) and some finite dimensional Fp vector
space V) with continuous semisimple representations of the absolute Galois group
GQ into GLn(Fp).

In general, we don’t know what is the range where the Fp cohomology of GLn(Fp)
is non-vanishing. We have some vanishing results, like that of Maazen [MZ], stating
that for p > 2:

Hk(GLn(Fp), Fp) = 0 for k < n.
Quillen [Qu] proved that the cohomology groups stabilize to zero, i.e.

H∗(GL∞(Fp), Fp) = 0

in positive dimensions.
A natural question that arises is the following:
What is the smallest m such that Hm(GLn(Fp), Fp) 6= 0?
In this paper we give a very low upper bound for this m. Namely we will prove

that m ≤ 2p− 2 under the mild assumption p ≥ n (i.e. almost all p). For that, we
will construct a class in H∗(GLn(Fp), Fp) of degree 2p − 2 and we will prove that
it is nonzero if p ≥ n.

Our class proves that if p ≥ n then H2p−2(GLn(Fp), Fp) 6= 0. We suspect that
our class is the Bockstein of a class from H2p−3(GLn(Fp), Fp) and we conjecture
that 2p− 3 is the smallest degree where the cohomology is nonzero.

The only classes defined for general H∗(GLn(Fp), Fp) that we know of have
been found by Milgram and Priddy in [MP]. These classes are detected on certain
maximal p-tori of block form. Our class is not one of those since our class is zero
when restricted to all maximal p-tori of block form. Also, our class is not even in
the ring generated by the Milgram and Priddy classes, since it has smaller degree
than any of them.
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2 On the range of non-vanishing torsion cohomology for GLn(Fp)

In section 3 we will compute the Hecke algebra H(GLn(Fp)//Un), by giving its
generators and finding some relations between them, that we will need later.

In section 4 we will construct the new class as an element of H∗(Un, Fp) and
we will prove that it is GLn(Fp)-invariant using the Hecke algebra we computed in
section 3. Here Un is a p-Sylow subgroup of GLn(Fp) and it consists of all upper
triangular matrices with 1 on the diagonal.

This material was part of a Ph.D. thesis at the Ohio State University under the
supervision of Professor Avner Ash.

2. Notations

Let G = GLn(Fp),
B be the subgroup of GLn(Fp) consisting of upper triangular matrices,
U = Un be the subgroup of GLn(Fp) consisting of upper triangular matrices

with 1 on the diagonal,
T = Tn be the subgroup of GLn(Fp) consisting of diagonal matrices (the torus)

and
W be the subgroup of GLn(Fp) consisting of matrices obtained by permuting

the rows of the identity matrix corresponding to each permutation of Sn.

3. The Hecke algebra H(GLn(Fp)//Un) over Z

In this section, we will compute the Z-Hecke algebra H(G//B) and H(G//U),
where G = GLn(Fp), while B and U = Un(Fp) are as above. We have the Bruhat
decomposition:

B\G/B =
∐

w∈W

BwB,

where W was defined above.

Proposition 3.1. With the above notations, H(G//B) is generated by the double
cosets BsiB = (si) where si ∈ W corresponds to the transposition (i, i + 1). The
relations between the double cosets (si) in H(G//B) are the following:

(si)(sj) = (sj)(si), if |i− j| > 1,

(si)(si+1)(si) = (si+1)(si)(si+1),

(si)(si) = p · (1) + (p− 1)(si).

Proof. See [Ho] p. 3. �

We now turn to H(G//U). As in [Ho], for w ∈ Sn define

l(w) = min{k : w = si1 ...sik
}.

Let d(w) = deg BwB (regarded as a B-double coset). Recall that deg BwB is
defined as the number d of left cosets Bwi such that:

BwB =
∐

1≤i≤d

Bwi.

It is also equal to [B : B ∩ w−1Bw].
We have d(w) = pl(w) since it is enough to check this on si, because d(·) is

multiplicative on minimal products of si and l(·) is additive on minimal products
of si. Since U is normal in B, we have B =

∐
t∈T Ut where T = Tn is the subgroup
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of GLn(Fp) consisting of diagonal matrices. Also observe that W normalizes T .
We then have

(1)
∐
t∈T

UtwU = BwB = BwU =
∐

i=1..d(w)

Bwui =
∐

i=1..d(w), t∈T

Utwui,

where wui is a system of single B-coset representatives for BwB with ui ∈ U .
Using the Bruhat decomposition, we get from here that

(2) U\G/U =
∐

w∈W,t∈T

UtwU.

Since

UtwU ⊃
d(w)∐
i=1

Utwui for each t ∈ T

and when we take the union for all t ∈ T we get equality (see (1)), we actually have

UtwU =
d(w)∐
i=1

Utwui for each t ∈ T .

Let’s denote the double coset UxU by (x). We obtain therefore that deg(tw) =
d(w) = deg(w), in H(G//U).

Proposition 3.2. With the above notations, H(G//U) is generated by the double
cosets (si) and (t) with t ∈ T . The relations between these generators in H(G//U)
are the following:

(tsi) = (t)(si), (sit) = (si)(t), (tt′) = (t)(t′),

(si)(sj) = (sj)(si), if |i− j| > 1,

(si)(si+1)(si) = (si+1)(si)(si+1),

(si)(si) = p(1) +
∑

kl=−1

(diag(1, .., 1, k, l, 1, ..., 1)si),

where k is at position i in diag(1, .., 1, k, l, 1, ..., 1).

Remark 3.1. We don’t need to prove that these are all the relations between the
generators. We will only use later that the generators satisfy these relations.

Proof. We saw above (in equation (2)) that H(G//U) is generated by the double
cosets (tw) with t ∈ T,w ∈ W . Let now t, t′ ∈ T and w,w′ ∈ W be such that
l(w) + l(w′) = l(ww′).

Since (tw) · (t′w′) as a set contains (twt′w′) and

deg(tw) deg(t′w′) = deg(w) deg(w′) = deg(ww′) = deg(twt′w′)

(because we know that deg(ww′) = deg(t1ww′) and twt′w′ can be written as t1ww′),
we get that

(3) (tw)(t′w′) = (twt′w′).

From here, by giving appropriate values to t, t′, w, w′, we get that

(t)(w) = (tw), (w)(t) = (wt) and (tt′) = (t)(t′).

Also from here, since for |i− j| > 1 we have l(si) + l(sj) = l(sisj), we get

(si)(sj) = (sisj) = (sjsi) = (sj)(si).
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If w ∈W , write w = si1 ...sik
, a minimal decomposition in product of transposi-

tions. Then l(w) = l(si1) + l(si2) + ... + l(sik
) and from (3) we get

(w) = (si1)...(sik
).

The permutations of positions i, i + 1, i + 2 form a group isomorphic to S3. There
are three transpositions there. Two of them are si and si+1. The third is sisi+1si =
si+1sisi+1. Since this is a minimal decomposition of this transposition (because it
cannot be a product of 2 transpositions and it is not an elementary transposition
sj), we get that

(si)(si+1)(si) = (sisi+1si) = (si+1sisi+1) = (si+1)(si)(si+1).

We now want to prove the relation for (si)(si). We will prove that

(4) UsiUsiU = U1U ∪
∐

kl=−1

Udiag(1, ..., 1, k, l, 1, ..., 1)siU,

where k is at position i. Because

si =

Ii−1 0 0
0 s 0
0 0 In−i−1

 with s =
(

0 1
1 0

)
,

we get that

UsiUsiU =

Ui−1 ∗ ∗
0 U2sU2sU2 ∗
0 0 Un−i−1


so we see that without loss of generality we may assume U = U2. In this case an

element of U has the form A =
(

1 a
0 1

)
and thus a nontrivial element of sUs is of

the form(
0 1
1 0

) (
1 a
0 1

) (
0 1
1 0

)
=

(
1 0
a 1

)
=

(
1 1

a
0 1

) (
0 − 1

a
a 0

) (
1 1

a
0 1

)
.

This implies that

UsUsU = U ∪
∐
a6=0

U

(
0 − 1

a
a 0

)
U = U ∪

∐
kl=−1

Udiag(k, l)sU.

We thus obtained the relation (4). From here we get that

(si)2 = m(1) +
∑

kl=−1

mi(diag(1, ..., 1, k, l, 1, ..., 1)si)

for some integers m,mi > 0. Now since for any t ∈ T , deg(tsi) = p, deg(1) = 1 and
deg(si)2 = p2, we have no other choice than m = p, mi = 1 so we get the following
relation:

(si)2 = p(1) +
∑

kl=−1

(diag(1, ..., 1, k, l, 1, ..., 1)si).

�
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4. The new class

As we saw in the previous section, the Hecke algebra H(GLn(Fp)//Un) is gen-
erated by the double cosets of the diagonal matrices and the double cosets of the
si, where si is the matrix corresponding to the transposition (i, i + 1).

Given a finite group G and a p-Sylow subgroup H, we know from p. 84 of [Brn]
that resG

H is a monomorphism between H∗(G, Fp) and H∗(H, Fp). We want to
give a necessary and sufficient condition in terms of Hecke operators for a class in
H∗(H, Fp) to be in H∗(G, Fp).

We first recall the definition of the Hecke operators:
From [Ash], recall that a Hecke pair (Γ, S) consists of a subgroup Γ of GLn(Z)

containing Γ(N) for some N , and a semigroup S of GLn(Q) such that Γ ⊂ S. Γ(N)
is the group of matrices in SLn(Z) congruent to the identity mod N .

As in [Ash], given a Hecke pair (Γ, S) and a left S-module M , we define an action
of the Hecke algebra H(S//Γ) on H∗(Γ,M). We first define the action of ΓsΓ for
s ∈ S as the Hecke operator Ts defined below:

Ts(β) = trΓ∩sΓs−1→ΓresΓ∩sΓs−1s∗(β) for any β ∈ H∗(Γ,M).

We extend this action to the entire Hecke algebra H(S//Γ) by linearity. It is proved
in [RW] that H∗(Γ,M) has a structure of a right H(S//Γ)-module via the Hecke
operator action described above.

The following lemma is Ex.2, p. 85 from [Brn].

Lemma 4.1. Let G be a finite group and H be a p-Sylow subgroup. A cohomology
class β ∈ H∗(H, Fp) is in H∗(G, Fp) if and only if the action of all the Hecke
operators on β is punctual, i.e., Tx(β) = deg(x)β for all x ∈ H(G//H).

Proof. If β ∈ H∗(H, Fp) is the restriction of a class in H∗(G, Fp) by Theorem 10.3
p.84 of [Brn], β is G-invariant, i.e., resH

H∩gHg−1β = resgHg−1

H∩gHg−1g
∗β for any g ∈ G.

But then

Tg(β) = trH∩gHg−1→HresgHg−1

H∩gHg−1g
∗β = trH∩gHg−1→HresH

H∩gHg−1β

= (H : H ∩ gHg−1)β = deg Tgβ.

By linearity we get that the action of all the Hecke operators is punctual.
We now prove the other implication. Suppose that all the Hecke operators act

punctually on β. Let w = trH→Gβ. Let S be a system of representatives for the
H −H double cosets of G. Then

resHw = resHtrH→Gβ =
∑
s∈S

trH∩sHs−1→HressHs−1

H∩sHs−1s∗β =
∑
s∈S

Ts(β)

=
∑
s∈S

(deg Ts)β =
∑
s∈S

(H : H ∩ sHs−1)β = (G : H)β.

The last equality holds because (H : H ∩ sHs−1) is exactly the number of simple
right cosets that compose HsH. So by taking the union of all double cosets HsH
and decomposing each into simple cosets, we get all the simple cosets of G/H.

Since (G : H) is prime to p, we have that β = resH
1

(G:H)w. �

Lemma 4.2. A class β ∈ H∗(Un, Fp) is in H∗(GLn(Fp), Fp) if and only if:
Tt(β) = β for any t ∈ Tn and
Tsi

(β) = 0 for 1 ≤ i ≤ n− 1.
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Proof. By applying the previous lemma, β ∈ H∗(Un, Fp) is in H∗(GLn(Fp), Fp) if
and only if all the Hecke operators act punctually on β.

Because the Hecke action is compatible with the multiplication in the Hecke
algebra, it is enough to check that the elements of Tn (the subgroup of diagonal
matrices) and the si act punctually on our class β. This is because these elements
generate the Hecke algebra.

This ends our proof since the degree of the torus elements is 1 (the double coset
is also a single coset since Tn normalizes Un) and the degree of the si is p. �

Definition 4.1. Let βi : Un → Fp be defined by βi((ak,l)) = ai,i+1. Then βi ∈
Hom(Un, Fp) = H1(Un, Fp).

Define αi = δ(βi) where δ : H∗(Un, Fp)→ H∗(Un, Fp) is the Bockstein operator.

Recall that the Bockstein operator δ : Hn(G, Z/pZ) → Hn+1(G, Z/pZ) is the
connecting homomorphism in the long exact sequence arising from the exact se-
quence:

0→ Z/pZ→ Z/p2Z→ Z/pZ→ 0
Let also Hi = ker(βi).

Proposition 4.3. Let t = diag(t1, ..., tn) ∈ Tn. Then

Tt(αi) =
ti+1

ti
αi.

Proof. Since tUnt−1 = Un, we have that

Tt(αi) = trUn→Un
t∗(αi) = t∗(αi) =

ti+1

ti
αi.

�

For U2
∼= Z/p we see that Hev(U2) (even cohomology) is a polynomial ring

in one indeterminate generated by the element α ∈ H2(U2) corresponding to the
canonical morphism U2 → Fp. From the above proposition, we see that αk is
invariant under the action of T2 if and only if (p − 1)|k. It is easy to see that
Ts1 ≡ 0, so αk(p−1) ∈ H∗(GL2(Fp)). Let χ2 = αp−1.

In general, embed Uk into Un for k < n as follows:

Uk → Un, A→
(

A 0
0 In−k

)
We also have a map in the other direction:

Un → Uk,

(
A B
0 C

)
→ A

Because the composition of the above two maps is the identity Uk → Uk, in coho-
mology the second map induces an injection H∗(Uk) ↪→ H∗(Un).

For U3, let χ3 = χ2 + Ts2(χ2). Here we regard χ2 as an element of H∗(U3) via
the embedding H∗(U2) ↪→ H∗(U3) defined above. It is easy to see that

U3 ∩ s2U3s
−1
2 = {A ∈ U3, A =

1 ∗ ∗
0 1 0
0 0 1

}
and let’s denote this subgroup by H. Then we can write

χ3 = αp−1 + trH→U3s
∗
2(α

p−1).
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Observe that s∗2(α) = γ where γ ∈ H2(H, Fp) comes from the morphism

γ : H → Fp,

1 a b
0 1 0
0 0 1

→ b

via the Bockstein, thus we get that

χ3 = αp−1 + trH→U3γ
p−1.

Let us now define χ′3 = βp−1 + Ts1(β
p−1) = βp−1 + trHp→U3γ

p−1
1 , where β ∈

H2(U3) respectively γ1 ∈ H2(Hp) come from the morphisms

β : U3 → Fp,

1 ∗ ∗
0 1 b
0 0 1

→ b, γ1 : Hp → Fp,

1 0 c
0 1 b
0 0 1

→ c.

Proposition 4.4. With the above notations we have:

χ3 = χ′3.

Proof. First we have that χ3 and χ′3 actually come from H2(p−1)(U3, Z) via reduc-
tion mod p. This is easy to see, since we can define similar elements χ3 and χ′3 in
H2(p−1)(U3, Z) and the transfer map trH→U3 commmutes with reduction mod p.

It is enough to prove that χ3 = χ′3 in H∗(U3, Z), since then their images in
H∗(U3, Fp) will be equal. In this proof from now on, we will be working with Z
coefficients.

Now we will prove that the restriction of χ3 and χ′3 to all the subgroups Ai

defined below is the same mod p (i.e., their difference is a multiple of p).
We define the subgroups Ai ≤ GL3(Fp):

Ai = {

1 k ∗
0 1 ik
0 0 1

 , k ∈ Fp}, for i = 0, 1, ..., p− 1 and Ap =

1 0 ∗
0 1 ∗
0 0 1

 .

We first compute the restriction of χ3 to all Ai. Since the subgroup H from the
definition of χ3 is actually A0, we have that HAi = U3 for i = 1, 2, ..., p (since H
is of index p in U3 and HAi is a subgroup strictly larger than H). Thus by the
double coset fromula ([Ev], Thm.4.2.6, p. 41) we have

resAi
trH→U3γ

p−1 = trH∩Ai→Ai
resH∩Ai

γp−1 = 0 mod p, for i=1,2,...,p

since it is known (Cor. 5.9, p 72 in [AM]) that the transfer map from a proper
subgroup to an elementary abelian group is zero when we are working with Fp

coefficients, and the transfer map commutes with reduction mod p. So the image in
H∗(U3, Fp) of resAi

trH→U3γ
p−1 is 0, so resAi

trH→U3γ
p−1 = 0 mod p in H∗(U3, Z).

We thus have that

resAi
χ3 = resAi

αp−1 mod p for i = 1, 2, ..., p.

Let αi ∈ H2(Ai) be defined by the morphism αi : Ai → Q/Z given by

αi(

1 k ∗
0 1 ik
0 0 1

)→ k/p.



8 On the range of non-vanishing torsion cohomology for GLn(Fp)

Then resAiα = αi if i < p and resApα = 0 so we can rewrite the above equation
as follows

resAi
χ3 = αp−1

i for i = 1, 2, ..., p− 1 and resAp
χ3 = 0,

everything being mod p. Now for H = A0 the matrices Ci =

1 0 0
0 1 i
0 0 1

 with

i = 0, 1, ..., p−1 are a complete system of double (and single) H coset representatives
so we have

resHχ3 = αp−1
0 + resHtrH→U3γ

p−1 = αp−1
0 +

p−1∑
i=0

resHC∗i (γ)p−1

= αp−1
0 +

p−1∑
i=0

(resHγ + iα0)p−1 = αp−1
0 + (p− 1)αp−1

0 = 0,

also mod p. Here we used the binomial formula for each (resHγ + iα0)p−1 and we
kept into account that

∑p−1
i=0 ik = 0 mod p for 1 ≤ k < p − 1 and

∑p−1
i=0 ip−1 =

p − 1 mod p. In conclusion, we have that resA0χ3 = resApχ3 = 0 mod p and
resAi

χ3 = αp−1
i mod p for i = 1, 2, ..., p− 1.

Similarly to what we did above, we check that resAi
trAp→U3γ

p−1
1 = 0 mod p

for i = 0, 1, ..., p − 1 and resAp
trAp→U3γ

p−1
1 = −resAp

βp−1 mod p. We also see
that resAiβ = iαi for i = 0, 1, ..., p − 1 so resA0β

p−1 = 0 and resAiβ
p−1 = αp−1

i

for i = 1, ..., p− 1.
Putting these all together, we get that resA0χ

′
3 = resAp

χ′3 = 0 mod p and
resAi

χ′3 = αp−1
i mod p for i = 1, 2, ..., p− 1. This implies that resAi

χ3 = resAi
χ′3

mod p for i = 0, 1, ..., p i.e. χ3 and χ′3 have the same restriction mod p on all Ai.
We can obtain H2(p−1)(U3, Z) from :

Theorem 4.5. ([Lew], p. 523, Thm. 6.26). The cohomology ring of

G = (A,B : Ap = Bp = [A,B]p = [A, [A,B]] = [B, [A,B]] = 1),

for p odd, is as follows: H∗(G, Z) = Z[α, β, µ, ν, ζ, c1, ..., cp−2], deg α = deg β =
2,deg µ = deg ν = 3, degζ = 2p, deg ci = 2i + 2, with relations (0) pα = pβ = pµ =
pν = pci = p2ζ = 0, (1) αµ = βν, (2) αpµ = βpν, (3) µ2 = ν2 = 0, (4) cicj = αci =
βci = µci = νci = 0, 1 ≤ i, j < p−2, (5) cicp−2 = 0, 1 ≤ i < p−2, c2

p−2 = αp−1βp−1,
(6) αcp−2 = αβp−1, βcp−2 = βαp−1, (7) µαp−1 = µcp−2, νβp−1 = νcp−2, (8) αβp =
βαp.

If p > 3 then c2 = dµν for some d ∈ Z∗p. If p = 3 then pζ = eµν, some e ∈ Z∗p.
a, λ act as follows:

(i) αa = β, µa = −ν, ca
i = εici, εi = ±1, εp−2 = 1, ε2 = −1 if p > 3.

(ii) αλ = α, βλ = β + α, νλ = µ + ν, cλ
i = ci, 1 ≤ i < p − 2, cλ

p−2 = cp−2 + (β +
α)p−1 − βp−1, ζλ = ζ. Here a, λ : G → G are: a : A → B,B → A, λ : B →
B,A → AB. If H =< B, C > (where C = [A,B] = B−1A−1BA, γ ∈ H2(H, Z)
corresponding to C → 1/p,B → 0) we may take ci = Corγi+1, i < i < p−2, cp−2 =
Corγp−1 + βp−1, and ζ = N (γ).

From here we see that H2(p−1)(U3, Z) is generated by αiβp−1−i (i = 0, 1, ..., p−1)
and cp−2 = χ′3 (χ′3 was defined just before Prop.4.4). These are all the generators
for H2(p−1)(U3, Z) because the other potential generators are zero. We can get
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other potential generators by multiplying a ci for i < p− 2 with one of α, β, µ, ν, cj

(j < p− 2), but this product is zero. We could also get other potential generators
for p > 3 by multiplying µν with something, but µν = c2/d, d ∈ F∗p so we have
already taken this potential generator into consideration.

Because of this we can write

χ3 − χ′3 = f(α, β) + aχ′3,

where f(X, Y ) ∈ Fp[X, Y ] (since pα = pβ = 0) is a homogeneous polynomial of
degree p− 1 and a ∈ Fp (since pχ′3 = 0). Restricting to all Ai we get

f(X, 0) = f(0, X) = 0, f(X, iX) + aXp−1 = 0 for i=1,2,...,p-1

because Ai ' F 2
p .

From here, by considering the homogeneous polynomial g(X, Y ) = f(X, Y ) +
aXp−1 we get that g(X, iX) = 0 for i = 1, ..., p−1 and g(0, X) = 0. By making the
change of variable X ← iX for i 6= 0, we get that g(iX,X) = 0 for i = 0, ..., p−1 so
the polynomial h(X) = g(X, 1) has the property h(i) = 0 for i = 0, ..., p−1, but it is
of degree p− 1 so it must be identically 0. So g(X, Y ) ≡ 0 and f(X, Y ) = −aXp−1

and from f(X, 0) = 0 we get that a = 0 so f(X, Y ) ≡ 0. This implies that
χ3 − χ′3 = 0. �

Proposition 4.6. χ3 ∈ H∗(GL3(Fp), Fp).

Proof. Because of Lemma 4.2, we just have to check that Tt(χ3) = χ3 for all t ∈ T3

and Tsi
(χ3) = 0.

We have, for t = diag(t1, t2, t3):

Tt(χ3) = Tt(αp−1) + Tt(Ts2α
p−1) = (t2/t1)p−1αp−1 + Ts2t′(αp−1)

= αp−1 + Ts2Tt′(αp−1) = αp−1 + Ts2(α
p−1) = χ3,

since we saw that (si)(t) = (sit) = (t′si) = (t′)(si) for some t′ ∈ T3.
For Ts1 we have

Ts1(χ3) = Ts1(β
p−1) + T(s1)(s1)(β

p−1) = Ts1(β
p−1) + Tp(1)+

∑p−1
i=1 (tis1)

(βp−1)

= Ts1(β
p−1) +

p−1∑
i=1

T(tis1)(β
p−1) = pTs1(β

p−1) = 0.

The fact that Ts2(χ3) = 0 is done similarly, but using the other definition of χ3,
namely χ3 = αp−1 + Ts2(α

p−1). �

Definition 4.2. Define iteratively χn = χn−1 + Tsn−1(χn−1) ∈ H∗(Un, Fp), where
χ2 and χ3 have already been defined. Here we used the embedding of Un−1 in Un

that has been described earlier.

Definition 4.3. Define Hk ≤ Un, k = 1, ..., n− 1 to be the subgroups

Hk = {A ∈ Un, A = (aij)i,j , ak,k+1 = 0}.

Remark 4.1. It is easy to check that Hi = Un ∩ siUns−1
i .

Before we go to our main theorem we will need the following functoriality prop-
erty:
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Lemma 4.7. Let G be a finite group and H a normal subgroup of G. Let G′ be
another subgroup of G such that there exists a split exact sequence:

1→ K → G
π−→ G′ → 1

for some subgroup K of G. Let H ′ = H ∩ G′. If K ⊂ H then the map G′/H ′ ↪→
G/H induced by the inclusion is an isomorphism and there exists an induced split
exact sequence:

1→ K → H → H ′ → 1.

Also trH→Gx = trH′→G′x for any x ∈ H∗(H ′) ↪→ H∗(H).

Proof. From the split exact sequence we have that G′K = G since any element of
G can be written as a product π(x) ∈ G′ and an element of K, namely (π(x))−1x.
Then G′H = G since K ⊂ H. From one of the isomorphism theorems for groups,
we have that G′/H ∩ G′ ' G′H/H so we get that G′/H ′ ' G/H, the map being
that induced by the inclusion.

Now if x ∈ H then (π(x))−1x ∈ K ⊂ H, so π(x) ∈ H. But π(x) ∈ G′ so
π(x) ∈ H ′. Reciprocally, any element y ∈ H ′ is in G′ so π(y) = y; therefore
π|H : H → H ′ is surjective. Restricting now the given exact sequence to H, we get
a split exact sequence:

1→ K → H → H ′ → 1.

To prove now the equality of the transfer maps, we can suppose, by dimension
shifting, that x ∈ H0(H ′). Then we can find a system S of representatives for
G′/H ′ ' G/H. Thus S will also be a system of representatives for G/H. Then

trH′→G′x =
∑

s∈G′/H′

s∗x =
∑
s∈S

s∗x ∈ H∗(G′) ⊂ H∗(G)

so trH′→G′x =
∑

s∈S s∗x =
∑

s∈G/H s∗x = trH→Gx ∈ H∗(G). �

Theorem 4.8. χn ∈ H∗(GLn(Fp), Fp).

Proof. We first prove that

Tt(χn) = χn for all t ∈ Tn.

We do that by proving that Tt(χk) = χk in Un, for k = 2, ..., , n. We proceed by
induction on k.

Case k = 2 is trivial: Tt(χ2) = Tt(αp−1) = (t2/t1)p−1αp−1 = αp−1.
Suppose case k is proved; let’s prove it for k + 1:

Tt(χk+1) = Tt(χk + Tsk
(χk)) = χk + Tsk

Tt′(χk) = χk + Tsk
(χk) = χk+1,

where t′ ∈ T is such that skt = t′sk.
We are left to prove that:

Tsi(χn) = 0 for i = 1, 2, ..., n− 1.

We proceed by induction on n. We already saw that for n = 2 and n = 3 the
theorem is true, so the above relation is verified.

Suppose now that the above relation is true for n and n − 1 and let’s prove it
for n + 1, n ≥ 3. We have

Tsi(χn+1) = Tsi(χn) + TsiTsn(χn).

If i < n− 1 we have (sn)(si) = (si)(sn) so

Tsi
(χn+1) = Tsi

(χn) + Tsn
Tsi

(χn) = 0 + 0 = 0,
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because lemma 4.7 says that Tsix, x ∈ H∗(Un−1) is the same when regarded in
Un−1 and in Un. The induction hypothesis implies that Tsi(χn) = 0.

For i = n− 1 we have
Tsn−1(χn+1) = Tsn−1(χn) + Tsn−1Tsn

(χn) = 0 + Tsn−1Tsn
(χn−1 + Tsn−1(χn−1))

= Tsn−1Tsn
(χn−1) + Tsn−1Tsn

Tsn−1(χn−1) = Tsn−1Tsn
(χn−1)+

+ Tsn
Tsn−1Tsn

(χn−1) = 0 + 0 = 0.

We used here

Tsn(χn−1) = trHn→GresHn(s∗nχn−1) = trHn→G(resHnχn−1) = pχn−1 = 0

and the relation (sn−1)(sn)(sn−1) = (sn)(sn−1)(sn).
For i = n we have

Tsn(χn+1) = Tsn(χn) + Tsnsn(χn) = Tsn(χn) +
p−1∑
i=1

Ttisn(χn)

= Tsn
(χn) +

p−1∑
i=1

Tsn
(χn) = pTsn

(χn) = 0,

since we saw that (si)2 = p(1) +
∑p−1

j=1(tj)(si) where tj are some elements of the
torus Tn+1 and we already saw that the elements of Tn+1 act trivially on χn. �

Now that we proved that this class is invariant to the whole Hecke algebra, we
ask ourselves: Is this class non-zero? This class is of degree 2(p−1) and it is known
that Hk(GLn(Fp), Fp) = 0 for k < n by a theorem of Maazen (see [MP]).

So if 2(p− 1) < n our class will be zero. But we can prove

Theorem 4.9. If p ≥ n then χn 6= 0.

Proof. Let

U =


0 1 0 ... 0
0 0 1 ... 0
. . . . .
0 0 0 ... 1
0 0 0 ... 0

 ∈Mn(Fp).

Then the subgroup E =< In +U >≤ Un is elementary abelian, because In +U has
order p. Actually (In + U)p = Ip

n + Up = In since Up = 0 (Un = 0 and p ≥ n).
We have EHi = Un for all i = 1, ..., n − 1 since Hi is a subgroup of index p in

Un and E 6⊂ Hi. Because of this, the E−Hi double coset decomposition of Un has
only one coset and we have

resEχn = resEχn−1 + resEtrHn−1→Un
resHn−1(s

∗
n−1(χn−1))

= resEχn−1 + tr0→Eres0(s∗n−1(χn−1)) = resEχn−1 + 0 = resEχn−1.

We can repeat the computation and we successively get that

resEχn = resEχn−1 = ... = resEχ3 = resEχ2 = resEαp−1 = αp−1
E 6= 0,

where αE ∈ H2(E) is the generator of the polynomial part of H∗(E). �

Remark 4.2. Observe that for n = 2, 3, the class we defined is an important gener-
ator of H∗(GLn(Fp), Fp):
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The class χ2 is αp−1, a generator of H∗(GL2(Fp), Fp). Note that the cohomol-
ogy H∗(GL2(Fp), Fp) has only two generators, one being αp−1 while the other is
nilpotent of degree 2p− 3 (see [Agu]).

The class χ3 is the image of the generator

bp−2 ∈ H∗(GL3(Fp), Z)(p).

of H∗(GL3(Fp), Z)(p)( from [TY1]) via the reduction mod p map.

Remark 4.3. The only classes defined for general H∗(GLn(Fp), Fp) that we know
of have been found by Milgram and Priddy in [MP]. These classes are detected on
certain maximal p-tori of block form. Our class is not one of those since our class
is zero when restricted to all maximal p-tori of block form:

Proposition 4.10. If E is an elementary abelian subgroup (p-torus) of GLn(Fp)
of block form:

E =
(

Ik ∗
0 In−k

)
for some k

and n > 2, then resEχn = 0.

Proof. We do this by induction on n.
For n = 3 this has been done already in the proof of Proposition 4.4, since there

are only two maximal p-tori of block form in U3, namely H0 and Hp so E must be
one of them.

Supose now that we proved that resEχn = 0 for all p tori E of block form of
Un, and let’s prove that resEχn+1 = 0. We have

resEχn+1 = resEχn + resEtrHn→Un+1s
∗
nχn.

But actually χn ∈ H∗(Un) where the embedding of Un in Un+1 has been defined
earlier in this chapter. We have the commutative diagram

E → E ∩ Un

↓ ↓
Un+1 → Un,

where the horizontal maps are obtained by truncating a (n+1)× (n+1) matrix to
the n×n matrix from the upper left-hand corner. From here we get a commutative
diagram in cohomology

H∗(Un) ↪→ H∗(Un+1)
↓ res ↓ res

H∗(E ∩ Un) ↪→ H∗(E),

so we get that resEχn = resE∩Un
χn. Since E ∩ Un is a p-torus of block form in

Un, we get by the induction hypothesis that resE∩Unχn = 0 so resEχn = 0.
To compute resEtrHn→Un+1s

∗
nχn we have two cases.

The first case is E 6⊂ Hn. Then EHn = Un+1, so by the double coset formula

resEtrHn→Un+1s
∗
nχn = trE∩Hn→EresE∩Hn

s∗nχn = 0,

since the transfer map trE′→E is identically zero if E′ is a proper subgroup of the
elementary abelian subgroup E. From here we get resEχn+1 = 0 + 0 = 0.
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The second case is E ⊂ Hn. Then the matrices

ti =

In−1 0 0
0 1 i
0 0 1

 i = 0, ..., p− 1

form a system of representatives for the E − Hn double cosets of Un+1. By the
double coset formula

resEtrHn→Un+1s
∗
nχn =

p−1∑
i=0

resEt∗i s
∗
nχn =

p−1∑
i=0

t∗i s
∗
nresEχn = 0,

since ti and sn normalize E. Thus resEχn+1 = 0 + 0 = 0. �

Looking again at the classes defined by Milgram and Priddy, we see that the
only classes that they defined explicitly for p > 2 and n > 2 are of degree bigger
than 2p− 2. So our class is not even in the ring generated by these classes.

It is likely that our class is the Bockstein of a class in H2p−3(GLn(Fp), Fp).
The question is now: Can there be non-zero classes in H∗(GLn(Fp), Fp) of degree

less than 2p− 3?
For n = 2 from [Agu] we get that the smallest degree of a nonzero class is 2p−3.

From this only known example, we make the following

Conjecture 4.11. If n ≥ 2 and p ≥ 3 then

Hk(GLn(Fp), Fp) = 0 for k < 2p− 3.
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