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1. Introduction

The cohomology of GLn(Fp) with Z or Fp coefficients has not been calculated
to date except for n ≤ 3. The mod p cohomology of GL3(Fp) has been computed
by Tezuka and Yagita in [TY1].

There are also complete results about GL4(F2) (in [TY2]). I have found out
from Jim Milgram that considerable progress has been done in computing the co-
homology of GL5(F2).

In [Qu] Quillen computed the cohomology of GLn(Fp) with Fq coefficients for
q 6= p and he stated that the case p = q is very difficult.

In general (see [Br], chapter III, Theorem 10.3) the p-part of the cohomology of a
group G can be computed from the cohomology of one of its p-Sylow subgroups H,
by finding the G-invariant elements of H∗(H). The mod p cohomology of GLn(Fp)
can therefore be computed, at least in principle, from the cohomology of one of
its p-Sylow subgroups, namely Un(Fp), the group of upper triangular matrices of
GLn(Fp) with 1 on the diagonal.

Lewis computed the integral cohomology of U3(Fp) in [Le]. Tezuka and Yagita
used Lewis’s result to find the mod p cohomology of GL3(Fp) using exactly the
method described above.

We see therefore that it is useful to compute the cohomology of Un(Fp) with Z
or Fp coefficients.

In this paper we compute all the relations in cohomology satisfied by the elements
of degree two of H∗(Un(Fp),Z) where p ≥ n. That is, we will compute the ring
generated by the elements of degree 2 of H∗(Un,Z). It will be easy to see that this
ring has dimension

[
n
2

]
. The Krull dimension of the ring H∗(Un) is

[
n2

4

]
. This

is because of a result due to Quillen, that the Krull dimension of H∗(G) for some
group G is equal to the maximal rank of an elementary abelian subgroup of G (see
[AM], p. 143). From [MP], prop. 5.2 we find out that the maximal rank of an
elementary abelian subgroup of Un is

[
n2

4

]
. So it is clear that there is always more

than just the cohomology that comes from degree 2.
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2 The ring generated by H2(Un, Z)

In a subsequent paper we will define some more cohomology classes that together
with the classes of degree 2 will generate a ring of the same dimension as the entire
cohomology ring. This has also been done in [TY2] but our classes have smaller
degree. In [Ya] the author computes the cohomology of U4 after inverting some
cohomology classes. We will compute the ideal of relations between the classes
mentioned above modulo nilpotents in the case of U4.

The main theorem we prove in this paper is the following:

Theorem. Let G = Un+1(Fp) and p ≥ n+ 1. The ring generated by the elements
of H2(G,Z) in H∗(G,Z) is isomorphic to:

Z[X1, . . . , Xn]′/(Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1)

where Z[X1, . . . , Xn]′ = Z[X1, . . . , Xn]/(pX1, . . . , pXn).

We will also prove that this ring is reduced and if an element of this ring restricts
to zero in all proper subgroups of G then that element is zero.

The methods used in proving this result are purely algebraic. No spectral se-
quences or topological methods are used, except for those implicit in our use of
Lewis’s results.

2. Notations

Let k = Fp. Denote

Rn = Z[X1, . . . , Xn]′ = Z[X1, . . . , Xn]/(pX1, . . . , pXn)

In = (Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1) ideal in Rn

Jk = InRn+1 + (Xn+1 − kXn)Rn+1, k = 0, 1, . . . , p− 1 ideal in Rn+1

Jp = InRn+1 +XnRn+1 ideal in Rn+1

where the corresponding n will be clear from the context.

3. Some facts about the ring Z[X1, . . . , Xn]′

Observe that Rn = Z[X1, . . . , Xn]′ differs from k[X1, . . . , Xn] only in degree
zero. The canonical morphism Z[X1, . . . , Xn]′ → k[X1, . . . , Xn], f → f establishes
an inclusion maintaining bijection between proper ideals in Z[X1, . . . , Xn]′ that do
not contain constants and proper ideals in k[X1, . . . , Xn]. This map is injective
when restricted to polynomials with no constant term.

Observe also that if f ∈ Z[X1, . . . , Xn]′ is a polynomial with no constant term
(in particular if f is nonconstant homogeneous) we can talk about computing
f(a1, . . . , an) for some ai ∈ k just by computing f(a1, . . . , an).

All the results in this section work for both Z[X1, . . . , Xn]′ and k[X1, . . . , Xn].
We will only prove them for Z[X1, . . . , Xn]′ since we only need them for this ring.

Proposition 3.1. Let n ≥ 2. Then the following statements hold:
(an) If a1, . . . , al are distinct numbers from the set {0, . . . , p− 1} then

InRn+1 +Xn

l∏
k=1

(Xn+1 − akXn)Rn+1 = Jp ∩
l
∩

k=1
Jak
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(bn) The natural map

Rn+1/In+1 →
p∏

k=0

Rn+1/Jk

is injective.
(cn) The ring Rn/In is reduced.

Proof. First it is clear that (c2) is true, that is Z[X,Y ]′/(XpY −XY p) is reduced
since XpY −XY p is a product of p+ 1 distinct linear factors in Z[X,Y ]′.

We wil prove that (cn) =⇒ (an) =⇒ (bn). We will also prove (cn) + (cn−1) =⇒
(cn+1) for n ≥ 3 and (c2) =⇒ (c3) . This will imply that (an), (bn), (cn) are true
for all n ≥ 2.

(cn) =⇒ (an):
We prove this by induction on l. For l = 0 it is trivially true. Suppose it is true

for l. We prove it for l + 1. It is clear that

InRn+1 +Xn

l+1∏
k=1

(Xn+1 − akXn)Rn+1 ⊂ Jp ∩
l+1
∩

k=1
Jak

since Xn

l+1∏
k=1

(Xn+1 − akXn) is in all Jak
.

Let now f ∈ Jp ∩
l+1
∩

k=1
Jak

= (Jp ∩
l
∩

k=1
Jak

) ∩ (Jp ∩
l−1
∩

k=1
Jak

∩ Jal+1).

By the induction hypothesis we get that:

f ∈ Jp ∩
l
∩

k=1
Jak

= InRn+1 +Xn

l∏
k=1

(Xn+1 − akXn)R and

f ∈ Jp ∩
l−1
∩

k=1
Jak

∩ Jal+1 = InRn+1 +Xn(Xn+1 − al+1Xn)
l−1∏
k=1

(Xn+1 − akXn)Rn+1

Let Y = Xn+1 − al+1Xn. Let’s work now in

Rn+1/InRn+1 = (Rn/In) [Xn+1]/(pXn+1) = (Rn/In) [Y ]/(pY )

Then, for each 1 ≤ i ≤ l, we have Xn+1 − aiXn = Y − biXn for some bi ∈ k
(it makes sense to multiply Xn with an element of k since pXn = 0). Observe
that for all i, bi 6= 0 since ai 6= al+1 for all i ≤ l and are all less then p. Then in
(Rn/In)[Y ]/(pY ) we have:

f = xn

l∏
k=1

(Y − bkxn) g = xnY
l−1∏
k=1

(Y − bkxn)h for some g, h ∈ (Rn/In)[Y ]

where xn is the image ofXn in Rn/In. Suppose g = u0+u1Y +. . . with ui ∈ Rn/In.
The coefficient of Y 0 in the middle product above is

txl+1
n u0 with t = (−1)l

l∏
k=1

bk ∈ k − {0}

and on the right hand side is 0. Equating these coefficients we get that xl+1
n u0 = 0,

thus (xnu0)l+1 = 0 and since Rn/In is reduced (because we supposed (cn) to be
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true), we get that xnu0 = 0. Therefore:

f =
l∏

k=1

(Y − bkxn) xng =
l∏

k=1

(Y − bkxn)(xnu0 + xnu1Y + . . . )

= xnY
l∏

k=1

(Y − bkxn)(u1 + u2Y + . . . )

= xn

l+1∏
k=1

(Xn+1 − akxn)(u1 + u2Y + . . . )

This shows that f ∈ InRn+1 +Xn

l+1∏
k=1

(Xn+1 − akXn)Rn+1 and therefore

InRn+1 +Xn

l+1∏
k=1

(Xn+1 − akXn)Rn+1 = Jp ∩
l+1
∩

k=1
Jak

and this proves that (an) holds.
(an) =⇒ (bn):
We have the following embedding:

Rn+1/J0 ∩ · · · ∩ Jp ↪→
p∏

k=0

Rn+1/Jk

Because (an) holds we get that:

In+1 = InRn+1 +Xn

p−1∏
k=0

(Xn+1 − kXn)Rn+1 = J0 ∩ · · · ∩ Jp

and thus (bn) holds.
(cn) + (cn−1) =⇒ (cn+1) and (c2) =⇒ (c3):
Since (cn) holds, we get from above that (an) and (bn) hold. Therefore we have

that

Rn+1/In+1 ↪→
p∏

k=0

Rn+1/Jk.

Now let’s look at the rings on the right.

Rn+1/Jk ' Rn/In[Xn+1]/(pXn+1, Xn+1 − kXn) ' Rn/In for k < p, n ≥ 2, and

Rn+1/Jp ' Rn/In[Xn+1]/(pXn+1, Xn) ' Rn−1/In−1[Xn+1]/(pXn+1) for n ≥ 3.

For n = 2 we have:

Rn+1/Jp ' Rn/In[Xn+1]/(pXn+1, Xn) ' Z[X,Y ]′[Z]/(pZ, Y ) ' Z[X,Z]′.

Thus all Rn+1/Jk, k = 0, . . . , p − 1 are reduced since we supposed (cn) holds,
and because of this Rn/In and Rn−1/In−1 are reduced and if a ring A is reduced,
then A[X]/(pX) is also reduced. We see that in case n = 2, if we suppose only
(cn) true, we still get that all Rn+1/Jk, k = 0, . . . , p are reduced. Since a direct
product of reduced rings is reduced, the direct product of these rings is reduced.
Now Rn+1/In+1 is a subring of this direct product, therefore it is reduced. �

Corollary 3.2.
In+1 = J0 ∩ · · · ∩ Jp
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Proof. This has been proved while proving Prop.3.1. �

Lemma 3.3. Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′ ∩ (In +XlRn) ⊂ In.

Proof. Let f ∈ Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′ ∩ (In +XlRn).
We have f(X1, . . . , Xl−1, Xl+1, . . . , Xn) = a(X1, . . . , Xn)+Xlb(X1, . . . , Xn) with

a ∈ In. But a ∈ In means:

a = (Xp
1X2 −Xp

2X1)a1 + (Xp
2X3 −Xp

3X2)a2 + · · ·+ (Xp
n−1Xn −Xp

nXn−1)an

for some ai ∈ Rn. Write ai = a′i +Xlui where the a′i do not depend on Xl. We get
that:
a = (Xp

1X2 −Xp
2X1)a′1 + (Xp

2X3 −Xp
3X2)a′2 + · · ·+ (Xp

l−2Xl−1 −Xp
l−1Xl−2)a′l−2

+ (Xp
l+1Xl+2 −Xp

l+2Xl+1)a′l+1 + · · ·+ (Xp
n−1Xn −Xp

nXn−1)a′n +Xlu

for some u ∈ Rn. Observe that the terms corresponding to al−1 and al are now
contained in Xlu.

We get in this way that a = a′ +Xlu with a′ ∈ Z[X1, . . . , X̂l, . . . , Xn]′ ∩ In and
u ∈ Rn.

Then f = a′ +Xl(b+ u) thus f − a′ = Xl(b+ u).
Since f −a′ ∈ Z[X1, . . . , X̂l, . . . , Xn]′ does not depend on Xl and Xl(b+u) does,

we get that f − a′ = 0. Remember that a′ ∈ In therefore f = a′ ∈ In. �

Proposition 3.4.
l
∩

i=1
(In +XiRn) = In +X1 . . . XlRn

Proof. Induction on l. The case l = 1 is trivial.

The general case: It is clear that
l
∩

i=1
(In +XiRn) ⊃ In +X1 . . . XlRn. To show

the other inclusion let f ∈
l
∩

i=1
(In + XiRn). Then f ∈

l−1
∩

i=1
(In + XiRn) and by

the induction hypothesis we get that f ∈ In + X1 . . . Xl−1Rn. Thus f = a +
X1 . . . Xl−1u = b+Xlv (since f ∈ In +XlRn) with a, b ∈ In and u, v ∈ Rn. Write
u = u1 +Xlu2 with u1 ∈ Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′ and u2 ∈ Rn. Then

f = a+X1 . . . Xl−1u1 +X1 . . . Xlu2 = b+Xlv.

This implies that X1 . . . Xl−1u1 ∈ In+XlRn, since all the other terms in the second
equality above are in In +XlRn.

But X1 . . . Xl−1u1 ∈ Z[X1, . . . , Xl−1, Xl+1, . . . , Xn]′.
By the above Lemma we get that X1 . . . Xl−1u1 ∈ In and thus

f = a+X1 . . . Xl−1u1 +X1 . . . Xlu2 ∈ In +X1 . . . XlRn.

This means that
l
∩

i=1
(In +XiRn) ⊂ In +X1 . . . XlRn and therefore

l
∩

i=1
(In +XiRn) = In +X1 . . . XlRn.

�

Proposition 3.5. If f ∈ In +X1 . . . XnRn is nonconstant and homogeneous, such
that

f(a1, . . . , an) = 0 ∀ a1, . . . , an ∈ k
then f ∈ In.
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Proof. Write f = a +X1 . . . Xnu, with a ∈ In, u ∈ Rn. Then, since a vanishes on
kn (because a ∈ In), it is enough to prove that if X1 . . . Xnu vanishes on all kn,
then X1 . . . Xnu ∈ In. Suppose therefore that

f = X1 . . . Xnu with u ∈ Rn

We will prove by induction on n that f ∈ In.
Case n = 2: Let f ∈ Z[X,Y ]′ be homogeneous, divisible by XY and f(a, b) = 0

for all a, b ∈ k. Since f is homogeneous, then f(X,Y ) = Y dg(X/Y ) for some
g ∈ Z[X]′ and d = deg f . This implies that g(a) = 0 for all a ∈ k. Therefore g is
divisible by X − a for all a ∈ k thus g is divisible by Xp − X. From this we get
that f is divisible by XpY −XY p and case n = 2 is proved.

The general case: Write

u = u1 + (Xn −Xn−1)u2 + (Xn −Xn−1)(Xn − 2Xn−1)u3 + · · ·+
+ (Xn −Xn−1) . . . (Xn − (p− 1)Xn−1)up

(3.1)

with u1, . . . , up−1 ∈ Rn−1 and up ∈ Rn. This is possible since we can write

u = a1 +Xna2 +X2
na3 + · · ·+Xp−1

n ap with a1, . . . , ap−1 ∈ Rn−1, ap ∈ Rn

(we look now in Rn = Rn−1[Xn]/(pXn)) and 1, Xn, X
2
n, . . . , X

p−1
n are combinations

of 1, (Xn−Xn−1), (Xn−Xn−1)(Xn−2Xn−1), . . . , (Xn−Xn−1) . . . (Xn−(p−1)Xn−1)
with coefficients in Rn−1. This is true because the matrix which takes the elements
{1, Xn, X

2
n, . . . , X

p−1
n } to {1, (Xn −Xn−1), (Xn −Xn−1)(Xn − 2Xn−1), . . . , (Xn −

Xn−1) . . . (Xn− (p− 1)Xn−1)} is lower triangular with 1 on the diagonal. This im-
plies that the matrix (which has coefficients in Rn−1) is invertible and the inverse
has also coeficients in Rn−1. The inverse matrix writes 1, Xn, X

2
n, . . . , X

p−1
n as com-

binations of 1, (Xn−Xn−1), (Xn−Xn−1)(Xn−2Xn−1), . . . , (Xn−Xn−1) . . . (Xn−
(p− 1)Xn−1) with coefficients in Rn−1.

Then from (3.1) we get

f = X1 . . . Xnu1 +X1 . . . Xn(Xn −Xn−1)u2 + · · ·+
+X1 . . . Xn(Xn −Xn−1) . . . (Xn − (p− 2)Xn−1)up−1+

+X1 . . . Xn−1(Xp
nXn−1 −XnX

p
n−1)up.

(3.2)

Observe that the last term in the above expression belongs to In and therefore
is zero for all values of the Xi in k. Let now X1, . . . , Xn−1 take any non-zero
values in k and fix them. Let a be the value of Xn−1. Let Xn take the values
a, 2a, . . . , (p − 1)a. Because X1, . . . , Xn−1 take some fixed values in k, it follows
that u1, . . . , up−1 also take some fixed values in k. From (3.2) we get the following
system of p− 1 equations:

au1 = 0

2au1 + 2a2u2 = 0
. . .

(p− 1)au1 + (p− 1)(p− 2)a2u2 + · · ·+ (p− 1)(p− 2) . . . (1)ap−1up−1 = 0



A. BARBU, 231 W. 18-th Ave, Columbus, OH 43210 7

with the p − 1 unknowns au1, a
2u2, . . . , a

p−1up−1. Since the determinant of this
system is clearly non-zero, and a 6= 0, we get that

u1(x1, . . . , xn−1) = 0

u2(x1, . . . , xn−1) = 0
. . .

up−1(x1, . . . , xn−1) = 0

for all x1, . . . , xn−1 ∈ k − {0}.
Considering now x1, . . . , xn−1 ∈ k, we still get that

x1 . . . xn−1u1(x1, . . . , xn−1) = 0

x1 . . . xn−1u2(x1, . . . , xn−1) = 0
. . .

x1 . . . xn−1up−1(x1, . . . , xn−1) = 0.

By the induction hypothesis, we get

X1 . . . Xn−1u1, . . . , X1 . . . Xn−1up−1 ∈ In−1 ⊂ In.

By formula (3.2) we get that f ∈ In. �

4. The Main Theorem

Let G = Un+1(Fp), be the group of upper triangular matrices with 1 on the
diagonal, with n ≥ 3. Let’s suppose that p ≥ n+ 1 so that any matrix A ∈ G has
order p, since a matrix A from G satisfies (A− I)n+1 = 0 therefore (A− I)p = 0 so
Ap − I = 0 since we are in characteristic p. Thus Ap = I for all A ∈ G.

We want to determine the part of the cohomology ring H∗(G,Z) generated by
the elements of degree 2. This part is a subring, let’s denote it by R or R(G).
Therefore we work only in the even cohomology.

We know that H2(G,Z) ' Hom(G,Q/Z). Therefore any α ∈ H2(G,Z) corre-
sponds to a map α′ : G → Q/Z, which clearly factors through [G,G], since Q/Z
is abelian. Also, since any element of G has order p, any α′ : G → Q/Z factors
through Z/p in the sense that there is α′′ : G → Z/p such that α′ = u ◦ α′′ with
u : Z/p→ Q/Z, u(x̂) = x/p. Therefore H2(G,Z) ' Hom(G/[G,G],Z/p).

We also have the following group homomorphism:

(4.1) G
φ−→ (Z/p)n

which takes a matrix to the vector consisting of the elements imediately above the
main diagonal. The kernel of this map is exactly [G,G]. Thus

H2(G,Z) ' Hom(G,Q/Z) ' Hom(G,Z/p) ' Hom((Z/p)n,Z/p).

We see now that H2(G,Z) is a Z/p vector space of dimension n, generated by
α1, . . . , αn, where αi corresponds to the i-th projection from (Z/p)n to Z/p, thus
αl(A) = âl,l+1, where A = (âij) ∈ G. This implies that R(G) = Z[α1, . . . , αn], the
ring generated by α1, . . . , αn.
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Looking at the even cohomology and taking into account that H∗((Z/p)n,Z)
contains a subgroup Z[X1, . . . , Xn]′ where the Xi correspond to the projections, we
get from (4.1) the following ring homomorphism:

Z[X1, ..., Xn]′
φ∗

−−−→ R(G)

and φ∗(Xi) = αi. Therefore φ∗ is surjective. Let J = ker(φ∗). This is an ideal in
Rn = Z[X1, ..., Xn]′.

We will prove

Theorem 4.1. In the above situation, J = In, thus R(G) = Rn/In. This means
that the ring generated by the elements from H2(G,Z) in H∗(G,Z) is isomorphic
to:

Z[X1, . . . , Xn]′/(Xp
1X2 −Xp

2X1, X
p
2X3 −Xp

3X2, . . . , X
p
n−1Xn −Xp

nXn−1)

To prove this we need the following proposition:

Proposition 4.2. a) In ⊂ J .
b) J is a homogeneous ideal.
c) If f ∈ J is a non-constant homogeneous polynomial, then f(a1, ..., an) = 0 for

all a1, ..., an ∈ k.

Proof of the Proposition. a) Let 1 ≤ l ≤ n − 1 be fixed. We need to prove that
Xp

l Xl+1 −XlX
p
l+1 ∈ J . There exists the following group homomorphism:

G
π−→ U3

(aij) →

1 al,l+1 al,l+2

0 1 al+1,l+2

0 0 1


In cohomology, this homomorphism becomes the following ring homomorphism:

H∗(U3)
π∗

−→ H∗(G)

On H2(·) π∗ is just:

Hom(U3,Q/Z) π∗

−→ Hom(G,Q/Z)
ξ → π ◦ ξ

We get that:

π∗(α) = αl,

π∗(β) = αl+1,

where

α : U3 → Q/Z, β : U3 → Q/Z,1 a c
0 1 b
0 0 1

 → a/p,

1 a c
0 1 b
0 0 1

 → b/p.

Restricting now to the ring generated by the elements from H2 we get:

R(U3)
π∗

−→ R(G).
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Now from [Le], we know that R(U3) = Z[α, β] = Z[X,Y ]′/(XpY −XY p). Thus
the map π∗ is in fact:

Z[α, β] π∗

−→ Z[α1, . . . , αn],
α→ αl, β → αl+1.

Since in Z[α, β] there is the relation αpβ−αβp = 0, through π∗ we get the relation
αp

l αl+1 − αlα
p
l+1 = 0 in Z[α1, . . . , αn]. This means that Xp

l Xl+1 − XlX
p
l+1 ∈ J ,

therefore In ⊂ J .
b) We have the map:

Z[X1, . . . , Xn]′
φ∗

−→ R(G)
Xi → αi

This map is a graded ring homomorphism, therefore the kernel J is a homogeneous
ideal.

c) Let f ∈ J ⊂ Z[X1, . . . , Xn]′ be a non-constant homogeneous polynomial.
Clearly f(0, . . . , 0) = 0.

Let (a1, . . . , an) ∈ kn − (0, . . . , 0). We have to prove f(a1, . . . , an) = 0.
Let H be the subgroup generated by the matrix

A =


1 a1 0 . . . 0 0
0 1 a2 . . . 0 0

. . .
0 0 . . . 0 1 an

0 0 . . . 0 0 1


Since A has order p (A 6= I), we get that H ' Z/p. Let i : H ↪→ G be the inclusion
of H into G. In cohomology we get i∗ : H∗(G) → H∗(H) and on H2(·) it is:

i∗ : Hom(G,Z/p) → Hom(H,Z/p)
φ→ φ|H

since we see that any homomorphism from H to Q/Z factors through Z/p. Observe
that Hom(H,Z/p) ' Z/p and is generated by α : H → Z/p, Ai → î. Then

i∗(αj)(A) = αj |H(A) = αj(A) = âj

therefore i∗(αj) = ajα.
Now restricting i∗ to the ring generated by the αi we get the ring morphism i∗

from the following diagram:

Z[X1, . . . , Xn]′
φ∗

−→ Z[α1, . . . , αn] i∗−→ Z[α] ' Z[X]′

Let’s call the composition map ψ. We have that ψ(Xi) = aiX, therefore

ψ(f(X1, . . . , Xn)) = f(a1X, . . . , anX) = Xdf(a1, . . . , an)

since f is homogeneous of some degree d > 0. Now if f ∈ J then φ∗(f) = 0,
therefore ψ(f) = 0 so Xdf(a1, . . . , an) = 0 which can only happen when

f(a1, . . . , an) = 0 (remember f(a1, . . . , an) ∈ k)

�
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Proof of the Theorem. We will prove this by induction on n. The case n = 2 has
been done by Lewis in [Le]. Let’s suppose the theorem is true for all l ≤ n− 1 and
let’s prove it for n.

We want first to prove that J ⊂ In + XlRn for all 1 ≤ l ≤ n. Let Hl be the
subgroup of G consisting of the matrices of the form(

A 0
0 B

)
with A ∈ Ul and B ∈ Un+1−l. It’s easy to check now that Hl is a subgroup of G.
Let H ′

l be the subgroup of Hl consisting of matrices of the form(
A 0
0 I

)
with A ∈ Ul. Let also H ′′

l be the subgroup of Hl consisting of matrices of the form(
I 0
0 B

)
with B ∈ Un+1−l. We see that:

Hl ' H ′
l ×H ′′

l ' Ul × Un+1−l

Now looking at the inclusion map i : Hl ↪→ G in cohomology we get:

(4.2) H∗(G) i∗−→ H∗(Hl) ' H∗(H ′
l ×H ′′

l )

which on H2 is

Hom(G,Q/Z) i∗−→ Hom(Hl,Q/Z) ' Hom(H ′
l ,Q/Z)×Hom(H ′′

l ,Q/Z)

φ −−−−−−−−−−−−−−−−→ (φ|H′
l
, φ|H′′

l
).

Now we have that

i∗(αj) =

{
0 if j = l

αj if j 6= l.

Restricting now (4.2) to the ring generated by α1, . . . , αn we get, since R(H ′
l) =

Z[α1, . . . , αl−1] and R(H ′′
l ) = Z[αl+1, . . . , αn], that

Z[X1, . . . , Xn]′/J ' R(G) i∗−→ R(Hl) ' R(H ′
l)⊗R(H ′′

l ) '
' Z[X1, . . . , Xl−1]′/Il−1 ⊗ Z[Xl+1, . . . Xn]′/(Xp

l+1Xl+2 −Xl+1X
p
l+2, . . . ) '

' Z[X1, . . . , X̂l, . . . , Xn]′/(Il−1 + (Xp
l+1Xl+2 −Xl+1X

p
l+2, . . . )) =

= Z[X1, . . . , Xn]′/(In +XlRn)

and we see that this composition takes the image of Xj in Z[X1, . . . , Xn]′/J to the
image of Xj in Z[X1, . . . , Xn]′/(In + XlRn) for all j = 1, . . . , n. This shows that
J ⊂ In +XlRn. By prop. 3.4 we get

J ⊂
n
∩

i=1
(In +XiRn) = In +X1 . . . XnRn

By prop. 4.2 , J is generated by homogeneous elements. Take any f ∈ J , homoge-
neous. Then, by what we proved above, f ∈ In +X1 . . . XnRn and from prop. 4.2,
f(a1, ..., an) = 0 for all a1, ..., an ∈ k. Now from Prop.3.5 we get that f ∈ In. This
means that J ⊂ In. But we saw that In ⊂ J therefore J = In. �

Corollary 4.3. R(G) is reduced.
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Proof. It is clear from the above theorem and what was proved in section 3. �

Corollary 4.4. If f(α1, . . . , αn) ∈ H2d(G) is such that its restriction to any proper
subgroup H of G is zero, then f(α1, . . . , αn) = 0.

Proof. First we restrict f(α1, . . . , αn) to all Hl’s from the proof of the theorem.
From here we get that f(X1, . . . , Xn) ∈ In +XlRn for all l ≤ n therefore

f(X1, . . . , Xn) ∈ ∩n
l=1(In +XlRn) = In +X1 . . . XnRn.

But now restricting to the subgroups H that appeared in the proof of c) of prop.
4.2, we get that f(a1, . . . , an) = 0 for all a1, . . . , an ∈ k. These two facts imply that
f ∈ In which means f(α1, . . . , αn) = 0. �
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