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Abstract The observations used to classify data from real
systems often vary as a result of changing operating condi-
tions (e.g. velocity, load, temperature, etc.). Hence, to create
accurate classification algorithms for these systems, obser-
vations from a large number of operating conditions must be
used in algorithm training. This can be an arduous, expen-
sive, and even dangerous task. Treating an operating condi-
tion as an inherently metric continuous variable (e.g. veloc-
ity, load or temperature) and recognizing that observations
at a single operating condition can be viewed as a data clus-
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ter enables formulation of interpolation techniques. This pa-
per presents a method that uses data clusters at operating
conditions where data has been collected to estimate data
clusters at other operating conditions, enabling classifica-
tion. The mathematical tools that are key to the proposed
data cluster interpolation method are Catmull-Rom splines,
the Schur decomposition, singular value decomposition, and
a special matrix interpolation function. The ability of this
method to accurately estimate distribution, orientation and
location in the feature space is then shown through three
benchmark problems involving 2D feature vectors. The pro-
posed method is applied to empirical data involving vibration-
based terrain classification for an autonomous robot using
a feature vector of dimension 300, to show that these esti-
mated data clusters are more effective for classification pur-
poses than known data clusters that correspond to differ-
ent operating conditions. Ultimately, it is concluded that al-
though collecting real data is ideal, these estimated data clus-
ters can improve classification accuracy when it is inconve-
nient or difficult to collect additional data.

Keywords Interpolation · Singular Value Decomposition ·
Terrain Classification · Data Clusters · Pattern Classification

1 Introduction

Interpolation between data points in a n-dimensional space
is a common mathematical problem for which several tech-
niques have been developed. These techniques include linear
interpolation, polynomial interpolation, spline interpolation
and Gaussian processes (???). However, situations can oc-
cur where it it necessary to interpolate between two or more
data clusters instead of individual data points. These situ-
ations often entail systems where the outputs or measure-
ments vary with the system operating condition α ∈ �q. Be-
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fore potential applications of such a technique are addressed,
the interpolation problem is mathematically defined.

It is assumed that a continuous set of operating condi-
tions is given by α(γ), where α : �+ → �q, �+ is the set of
nonnegative real numbers and γ is scalar. A data cluster of
size m associated with an operating condition α(γ) is given
by {x1(γ), x2(γ), . . . , xm(γ)} or by the columns of the associ-
ated matrix,

Xγ = X(γ) ,
[
x1(γ) x2(γ) · · · xm(γ)

]
. (1)

Below, Xγ is always used to denote a data cluster, where
γ is a means to order the data clusters. However, it is as-
sumed that in general for γi , γ j, the kth column of Xγi is
not correlated with the kth column of Xγ j , i.e., xk(γi) does
not necessarily have any correspondence with xk(γ j). It is
further assumed that the distribution of these data clusters is
uni-modal.

Now, for an ordered set

Γ , {γ1, γ2, · · · , γ`}, γ1 < γ2 < · · · γ` (2)

it is assumed that the corresponding set of data clusters,

X , {Xγ1 , Xγ2 , . . . , Xγ` } (3)

is known and that the data clusters have the same number of
points, i.e.,

dim(Xγi ) = dim(Xγ j ) for all i and j. (4)

The interpolation problem is to find an estimate of Xγ for
γ < Γ.

The assumption that all data clusters have the same num-
ber of points is satisfied by truncating larger data clusters
to the size of the smallest data cluster or by adding extra
samples to the smaller data clusters through additional ex-
periments. Alternatively, extra samples for the smaller data
clusters can be artificially created using the Cholesky De-
composition without changing the covariance of the data
cluster (?). Also note that the operating condition α(γ) can
depend on several variables, but the solution derived here
will require that the set of known operating conditions can
be written in terms of the single scalar variable γ.

1.1 Applications of data cluster Interpolation

Now that the problem of data cluster interpolation is clearly
defined, it is possible to discuss real world systems that fit
this description. The application that directly motivated this
interpolation research involves reaction-based terrain classi-
fication, where the traversed terrain is inferred from propri-
oceptive sensors. This classification problem is burdened by
exhaustive data collection due to the changes in vehicle re-
sponse when the operating conditions of vehicle speed v and
vehicle load w (???) are changed. This leads to α = [v w].
Once multiple observations are collected for a given α, these

observations are organized into a training set, i.e., data clus-
ter X, which is stored and used for classification. In order
to fully describe the possible outcomes of the system, it be-
comes necessary to determine a data cluster X for a large
number of α, corresponding to the speeds v and loads w that
are expected in real-world operation of the vehicle. Typi-
cally, the operating conditions are in the set described by:
v < v < v and w < w < w, where v and w are lower
bounds and v and w are upper bounds determined by the
expected operation of the vehicle. High classification accu-
racy can be achieved as long as data clusters are obtained
for the nodes appearing in a sufficiently fine griding of the
2-D rectangle defined by the above inequalities. However,
generating these data clusters requires running numerous ex-
periments, which is a burdensome process. Although recent
works (??) have shown that two different model-based ap-
proaches can minimize the speed and load dependency, ac-
curate high fidelity vehicle models are difficult to determine.
Instead, it has been suggested that interpolating between a
smaller number of data clusters, corresponding to strategi-
cally chosen (v,w) can substantially decrease the amount of
empirical data collected (?). A classification scheme that ac-
complishes this task is given in Figure 1. This scheme will
be applied to the proposed method and is described in detail
in Section 3.

As data collection is exhaustive task in many machine
learning applications, it is expected that additional machine
learning applications may benefit from the presented method-
ology. These tasks are expected to include pattern classifi-
cation problems and potentially regression tasks. However,
it should be noted that the method presented here assumes
a uni-modal distribution, which may or may not be true for
classification and regression problems. As the researchers do
not have access to data for other tasks, the presented meth-
ods are only applied to terrain classification and generated
datasets.

Data cluster interpolation is not directly addressed in
the pattern classification literature. The problem can be ad-
dressed by parameter estimation when instead of discrete
classes the features are shared among samples of continu-
ous parameters, such as object detection (?). It is possible
learn a regressor for the conditional probability P(X|α) (?),
but this would innately prevent the use of terrain classifica-
tion approaches that do not explicitly use distributions for
identification such as K-nearest neighbor and singular value
decomposition.

The rest of this paper, which is an extension of the re-
search presented in (?), is organized as follows. Section 2,
which presents the main results, first describes an approach
that can be used to interpolate the data cluster mean x̄γ, fol-
lowed by a method for interpolating the covariance matrix
Cγ and an approach for estimating the orthogonal matrix Vγ

that appears in the singular value decomposition (SVD) of
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(a) Flow Chart

(b) Training Data Block

Fig. 1: Flow Chart for Vibration-based Terrain Classification
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(a) Gaussian distributions (b) Small singular values

(c) Distributions of various shapes

Fig. 2: Benchmark interpolation problems (distributions moving from left to right)

a shifted data cluster; together they enable data cluster in-
terpolation. As problems exists for which this covariance
interpolation method yields unsatisfactory results, Section
2.3 then describes how to utilize the earlier mean interpo-
lation along with a method of interpolating all of the matri-
ces comprising the SVD of the covariance matrix to perform
data cluster interpolation. This methodology is termed here
as singular value decomposition interpolation (SVDI). Sub-
section 2.5.2 evaluates the interpolation algorithms using the
three benchmark problems shown in Figure 2, correspond-
ing to the following: (a) data clusters with Gaussian distribu-
tions, (b) data clusters whose covariance matrices have one
nearly zero singular value, and (c) data clusters of different
shapes. Section 3 then evaluates the proposed method on the
application that motivated this work using empirical vibra-
tion data from a mobile robotic system involving a feature
vector in �300. Finally, Section 4 gives concluding remarks.

2 Main Result

Gaussian data clusters are completely characterized by the
distribution mean x̄, covariance matrix C and orthogonal
scatter matrix V which is part of the SVD of data cluster

X = UΣVT . Therefore, if the distribution of a data cluster
at operating condition α(γ), denoted Xγ, can be reasonably
approximated with a Gaussian distribution, it is possible to
determine an estimate of Xγ, called X̂γ, simply by estimating
x̄γ, Cγ, and VT

γ , which are respectively the mean vector, co-
variance matrix and orthogonal scatter matrix of Xγ. In more
general terms, this idea is analogous to describing a data
cluster’s distribution using two characteristics, the cloud lo-
cation in n-dimensional space and the dispersion of points,
while the orthogonal scatter matrix VT

γ describes a specific
set of samples from this distribution. Using this thesis, for
γ < Γ Subsection 2.1 presents a methodology for mean inter-
polation and Subsection 2.2 presents a methodology for in-
terpolating covariance matrices. Since this approach is seen
to have limitations, Subsection 2.3 develops an interpolation
method that independently interpolates matrices U, Σ, and V
which appear in the SVD of the data cluster shifted so that
its mean is zero.
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2.1 Mean Interpolation Using Spline Techniques

The mean of the data cluster Xγ given by (1) is defined by

x̄γ ,
1
m

m∑
i=1

xi(γ). (5)

If γ ∈ Γ, then x̄γ is known. Hence, for γ < Γ finding an
estimate ˆ̄xγ of x̄γ is a vector interpolation problem based
on a set of control points

{
x̄γ1 , x̄γ2 , . . . , x̄γ`

}
. If it is assumed

that γk < γ < γk+1, then for linear interpolation only two
control points are needed, x̄γk and x̄γk+1 . However, it is de-
sired to enforce C1 continuity, or more generally, smooth
the curve connecting the control points, which requires the
use of x̄γk−1 , x̄γk , x̄γk+1 and x̄γk+2 . Note that γk−1 is undefined
when k = 1, such that γ1 < γ < γ2. In this case, it is assumed
γk−1 = γk. Similarly, when k+1 = `, such that γ`−1 < γ < γ`,
it is assumed that γk+2 = γ`.

Using the four control points x̄γk−1 , x̄γk , x̄γk+1 and x̄γk+2 ,
the cubic Hermite spline (?) provides the estimate,
ˆ̄xγ = (2t3 − 3t2 + 1)x̄γk + (t3 − 2t2 + t)ρk +

(−2t3 + 3t2)x̄γk+1 + (t3 − t2)ρk+1, (6)

where t ∈ (0, 1) describes the location of ˆ̄xγ along the path
between the control points x̄γk and x̄γk+1 and is given by

t =
γ − γk

γk+1 − γk
, (7)

and ρk is the tangent vector used to determine the spline
direction of departure from the control point x̄γk . Although
there are several definitions of ρk, one of the more common
definitions is that of the Cardinal spline (?), which defines
ρk as

ρk = (1 − c)
x̄γk+1 − x̄γk−1

γk+1 − γk−1
, (8)

where c is known as the tension parameter that controls the
length of the tangent vector. If c = 0, then ρk reduces to that
of the Catmull-Rom spline,

ρk =
x̄γk+1 − x̄γk−1

γk+1 − γk−1
, (9)

which is one of the more popular choices of the tangent
vector used in cubic Hermite splines. The reason for this
is that the tangents are continuous over the entire curve (i.e.
the curve is C1 continuous), the curve is guaranteed to pass
through the control points, and it is considered computa-
tionally efficient. For these same reasons, the Catmull-Rom
spline is considered an appropriate choice of interpolation
method for estimating ˆ̄xγ.

2.2 Interpolation Based on the Covariance Matrix

The covariance matrix Cγ corresponding to the data cluster
Xγ ∈ �

n×m is given by

Cγ =
1

n − 1
X̃γX̃T

γ , (10)

where

X̃γ = Xγ − βγ, (11)

and each column of βγ ∈ �n×m is equal to the mean x̄γ de-
fined by (5). Note that X̃γ may be viewed as the data cluster
Xγ shifted so that it is centered at the origin.

The singular value decomposition (SVD) of X̃γ is given
by

X̃γ = UγΣγVT
γ , (12)

where Uγ ∈ �
n×n and Vγ ∈ �

m×m are orthogonal, and Σγ ∈
�n×m is a diagonal matrix. The singular values of Vγ ∈ �

m×m

are (Cγ,1,Cγ,2, . . . ,Cγ,p), where p = min(m, n). Since the
rank r ≤ p of X̃γ is equal to the rank of Σγ, it can be shown
that

Cγ,1 ≥ Cγ,2 ≥ · · ·Cγ,r > 0 and

Cγ,r+1 = Cγ,r+2 = · · · = Cγp = 0. (13)

Also, realize that Uγ may be viewed as a left rotation matrix
that rotates Σγ, and VT

γ can be viewed as a right rotation
matrix that rotates UγΣγ. Substituting (12) into (10) yields
the SVD of Cγ,

Cγ = Uγ

(
1

n − 1
Σ̄2
γ

)
Uγ

T , (14)

where Σ̄γ ∈ �n×n is the square diagonal matrix satisfying,

Σ̄2
γ = ΣγΣ

T
γ . (15)

It follows from (14), (12), and (11) that an estimate X̂γ of
the data cluster Xγ can be reconstructed if the following es-
timates are obtained: an estimate Ĉγ of the covariance matrix
Cγ, an estimate V̂γ of the right singular vector Vγ, and an es-
timate ˆ̄xγ of the mean x̄γ (which determines an estimate β̂γ
of βγ). In particular, X̂γ is given by

X̂γ = ÛγΣ̂γV̂T
γ + β̂γ, (16)

where Ûγ ∈ �
n×n and Σ̂γ ∈ �n×m are obtained by the SVD,

Ĉγ = Ûγ

(
1

n − 1
ˆ̄Σ

2
γ

)
ÛT
γ ,

ˆ̄Σγ ∈ �n×n (17)

and
ˆ̄Σ

2
γ = Σ̂γΣ̂

T
γ . (18)

2.2.1 Estimation of Cγ

For γ < Γ the problem of estimating Cγ ∈ �
n×n is a ma-

trix interpolation problem based on a set of control points{
Cγ1 ,Cγ2 , . . . ,Cγ`

}
. Assuming that γk < γ < γk+1, an esti-

mate Ĉγ can be obtained by the linear interpolation,

Ĉγ = tCγk + (1 − t)Cγk+1 , (19)

where t ∈ (0, 1) is given by (7). Note that since Cγk and
Cγk+1 are nonnegative definite it follows from (19) that Ĉγ is
nonnegative definite, a necessity for a covariance matrix.
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data cluster estimation using the covariance estimation
(19) can actually lead to nonsensical results for the case
m < n (i.e., there are fewer points in the data clusters than
the dimension of the feature space). To see this, first note
that, based on the assuming as defined in (4), it follows that
it is desirable to seek an estimate X̂γ ∈ �

n×m, such that
dim(X̂γ) = dim(Xγk ) = dim(Xγk+1 ). It then follows from
(16) that X̂γ ∈ �

n×m requires Σ̂γ ∈ �n×m and that Σ̂γ has
p = min(m, n) singular values. Using Ĉγ from (19), the sin-
gular values of Σ̂γ are obtained from (17) and are in fact the
n diagonal elements of ˆ̄Σγ ∈ �n×n. If m < n, then p = m and
hence n > p, i.e., there are more singular values of Σ̂γ than
required. Therefore, unless at least n − p singular values of
ˆ̄Σγ are zero, which will not generally be the case, Σ̂γ can-
not be defined by (19) rendering the covariance estimation
methodology invalid.

2.2.2 Estimation of Vγ

The problem of estimating the orthogonal matrix Vγ ∈ �
m×m

for γ < Γ is a matrix interpolation problem based on a set
of control matrices

{
Vγ1 ,Vγ2 , . . . ,Vγ`

}
. The key to this esti-

mation is given a special orthogonal matrix V , determine a
matrix function V(t) on [0, 1] such that V(0) = I, V(1) = V ,
and V(t) is an orthogonal matrix for each t ∈ [0, 1]. A key
result in accomplishing this goal is the below canonical form
for a real, orthogonal matrix which was developed with the
aid of (?).

Theorem 1 Let V be a real n × n orthogonal matrix. Then
the eigenvalues of V are of the form 1, −1, or e jθ, where θ ∈
�. If the eigenvalues of V are 1 (p times), −1 (r times), and
e jθk for k = 1, . . . , s, then V can be written as V = QDQT

where

D =



Ip

−Ir [
cos θ1 − sin θ1

sin θ1 cos θ1

]
. . . [

cos θs − sin θs

sin θs cos θs

]


, (20)

Q is a real n × n orthogonal matrix and Ik is a k × k identity
matrix.

Proof See Appendix A.

Since V is a special orthogonal matrix, there must be an
even (possibly zero) number of eigenvalues equal to −1. A
suitable V(t) is then given by

V(t) = QD(t)QT , (21)

where the block diagonal matrix D(t) is given by

D(t) = diag(Ip,R(πt), . . . ,R(πt)︸             ︷︷             ︸
r times

,R(θ1t), . . . ,R(θst)), (22)

and

R(θ) =

[ cos θ − sin θ
sin θ cos θ

]
. (23)

The identity matrix Ip in D(t) corresponds to the p eigenval-
ues of U that equal 1, the r/2 rotation matrices R(πt) corre-
spond to the r eigenvalues equal to −1, and the remaining ro-
tation matrices R(θkt) correspond to the s complex conjugate
pairs of complex eigenvalues. Note that the decomposition
matrices Q and D can be computed using the Schur method
or block diagonalization techniques which derive from the
Schur decomposition of Q (?).

It follows that for γk < γ < γk+1 an estimate V̂γ can be
obtained by the interpolation,

V̂γ = QVk+1 DVk+1 (t)QT
Vk+1

Vγk , (24)

for t ∈ (0, 1) given by (7), where DVk+1 (t) and QVk+1 result
from the Schur method or block diagonalization method for
matrix computations (?) applied to Vγk+1 , yielding the canon-
ical form of (20) presented in Theorem 1.

The interpolation (24) has the desired properties,

V̂γ = Vγk for t = 0,
V̂γ = Vγk+1 for t = 1,

(25)

and V̂γ is orthogonal.
The interpolation (24) is an extension of the interpola-

tion method for 3D rotation matrices given in (?), which uses
matrix logarithms for interpolating these rotation matrices.
Another established method for interpolating between 3D
rotation matrices is Spherical Linear Interpolation (SLERP),
which is often used to animate rotating objects (?). However,
extending SLERP to higher dimension orthogonal matrices
is not as straightforward as the method of (?).

2.2.3 Summary of Interpolation Based on the Covariance

Given
{
Xγ1 , Xγ2 , . . . , Xγ`

}
and γ satisfying γk < γ < γk+1,

the described interpolation methods result in the estimated
data cluster X̂γ given by (16), where for t given by (7) each
of the matrices appearing in the right hand side of (16) are
computed as follows:

1. Each column of β̂γ ∈ �n×n is equal to the mean estimate
ˆ̄x given by (6) and (9).

2. Ûγ and Σ̂γ result from the SVD of Ĉγ using (17) and
(18), where Ĉγ is obtained from (19).

3. Using the Schur method or block diagonalization tech-
niques, determine QVk+1 and DVk+1 (t). V̂T

γ is then obtained
from (24).

The remainder of the paper will refer to this method
of data cluster interpolation as Covariance Interpolation or
CovI. CovI is applied to the benchmark problems of (2) be-
low.
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2.2.4 Application of Covariance Interpolation to the
Benchmark Problems

CovI is specifically designed to interpolate the changes in
data cluster shape and feature space location that occur as
a result of changing operating conditions α(γ), as discussed
in the beginning of Section 2. When applying this interpo-
lation technique to the three benchmark problems of Figure
2, it can be seen that CovI is effective when the data cluster
shape and/or location changes significantly. However, it also
becomes apparent that not all data cluster interpolation prob-
lems as defined in Section 1, are strictly based on changes
in data cluster shape and/or location. Consider Figures 3, 4
and 5, which display interpolated data clusters for the bench-
mark problems of Figure 2 at several values of γ.

Figures 3 and 4 respectively show reasonable estimates
of the data clusters for the interpolation of the Gaussian dis-
tributions and distributions of different shapes. That is, in
general an estimated data cluster lies between the known
data clusters and the shape of the estimated data cluster be-
comes that of the known data cluster corresponding to γk as
γ → γk. This means that when γ ∈ {γ1, γ2, . . . , γ`} the es-
timated data clusters lie directly on top of the known data
clusters. The red and magenta data clusters of Figure 4 also
indicate the algorithm’s ability to handle overlapping data
clusters.

Figure 5 shows that when the distribution shape remains
constant and only the data cluster orientation changes, CovI
can result in interpolated data clusters of a different shape,
which is undesirable. As previously mentioned, Gaussian
distributions are fully defined by the mean x̄, covariance ma-
trix C and orthogonal scatter matrix VT . Figure 5 shows an
example of data clusters that can be closely approximated
using a Gaussian distribution, but cannot be intuitively in-
terpolated by estimating these properties through CovI. To
understand this phenomena recognize that using arguments
similar to those in Subsection 2.2.1 it follows that for m ≥ n
the covariance estimate (17) results in the estimation of n
singular values as desired. Suppose rank(Xγk ) = rk < n and
rank(Xγk+1 ) = rk+1 < n. Then it is desired that rank(X̂γ) is in
the set of integers lying between rk and rk+1, denoted here
by Ik, such that minIk ≤ rank(X̂γ) ≤ maxIk < n. How-
ever, it is possible that the covariance estimate (17) yields
r nonzero singular value estimates, where r > maxIk. As
an example, if Cγk = diag(1, 0) and Cγk+1 = diag(0, 1) such
that rk = rk+1 = 1, then (17) yields r = 2. This increase in
rank occurs in Figure 5, where for i = 1, . . . 4 rank(Xγi ) = 1,
but for γ < {γ1, γ2, γ3, γ4} the interpolation always yields
rank(X̂γ) = 2.

Despite the above limitations, if the change in orienta-
tion is small, i.e. the distance between the space generated
by the eigenvectors of Uγk and the space generated by the
eigenvectors of Uγk+1 is small, which can be assumed as

γk → γk+1, then CovI may be an appropriate method of data
cluster interpolation. This is evidenced by the data cluster
estimate for γ = 0.2 shown in Figure 5b, which interpolates
between the data clusters at γ1 = 0 and γ2 = 1/3, which
have similar orientations.

Recall that subsection 2.2.1 revealed that CovI will fail
for m < n. When combined with the discussion of Figure 5,
which revealed that CovI may not preserve the data cluster
shape when m ≥ n and significant orientation changes occur,
it is evident that CovI has two important deficiencies. These
deficiencies led to the development of an alternative method,
based on interpolating all of the matrices appearing in the
SVDs of the normalized data cluster X̃γ.

2.3 Interpolation Based on Singular Value Decomposition

CovI is based on estimating the covariance matrix Ĉγ and
using (17) and (18) to extract the singular value matrix Σ̂γ
along with Ûγ. The problems with this method ultimately
result from its lack of control over the singular values con-
tained in Σ̂γ. Hence, this subsection develops an interpola-
tion approach that achieves the desired control by indepen-
dently estimating the SVD matrices Ûγ, Σ̂γ, and V̂γ, appear-
ing in (16) (i.e., X̂γ = ÛγΣ̂γV̂T

γ + β̂γ). An estimate of V̂γ

has already been presented in Subsection 2.2.2. It remains
to present methodologies for computing Ûγ and Σγ.

2.4 Estimation of Ûγ

Since both Uγ and Vγ are orthogonal matrices, the methodol-
ogy for computing the estimate Ûγ is essentially identical to
that for V̂γ. Hence, based on the results of Subsection 2.2.2,

Ûγ = QUk+1 DUk+1 (t)QT
Uk+1

Uγk , (26)

for t ∈ (0, 1) given by (7), where DUk+1 (t) and QUk+1 result
from writing Uγk+1 in the canonical form presented in Theo-
rem 1. The properties of (26) are identical to those of (24),
which are discussed in Subsection 2.2.2.

It should be noted however that matrices Uγ and VT
γ

of a SVD X̃γ = UγΣγVT
γ are not unique due to the non-

uniqueness of the signs of the columns of Uγ and Vγ. For
example, X̃γ = (−Uγ)Σγ(−VT

γ ) is also a valid SVD. This
means, that when individually estimating Uγ and Vγ, it is im-
portant to intelligently choose which SVD of Xγk and Xγk+1

will be used in estimating Uγ and Vγ, respectively using (26)
and (24). Consider that if, γk and γk+1 are close together,
the angle between the ith column of Uγk and the ith col-
umn of Uγk+1 will be small. Therefore, it is assumed that
the best choice of Uγk and Uγk+1 will minimize this angle.
For this reason Algorithm 1, which reduces the angle be-
tween the ith column of Uγk and the ith column of Uγk+1

for i = [1,min(m, n)], is presented. Once this algorithm has
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(a) (b)

(c) (d)

(e) (f)

Fig. 3: Covariance Interpolation Method Results for the Benchmark Problem Involving Gaussian Distributions

concluded, Ûγ and V̂T
γ can then be estimated using (26) and

(24).
2.5 Estimation of Σ̂γ

Recall from (12) that for γ ∈ Γ Σγ ∈ �n×m is a diagonal
matrix with p singular values. Hence, for γ ∈ (γk, γk+1) the
estimate Ŝ γ can be achieved by using either linear interpo-
lation of the p diagonal elements of Σγk and Σγk+1 or cubic
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(a) (b)

(c) (d)

(e) (f)

Fig. 4: Covariance Interpolation Method Results for the Benchmark Problem Involving Distributions of Different Shapes

spline interpolation using the p diagonal elements of Σγk−1 ,
Σγk , Σγk+1 , and Σγk+2 .

For γ ∈ Γ define σγ ∈ �p such that the ith element corre-
sponds to the ith singular value of Σγ. An estimate σ̂γ deter-
mines the singular values of Σ̂γ, the estimate of the singular
value matrix . For t defined by (7) linear interpolation yields

σ̂γ = (1 − t)σγk + tσγk+1 , (27)

and Cardinal spline interpolation yields

σ̂γ = (2t3 − 3t2 + 1)σγk + (t3 − 2t2 + t)λk +

(−2t3 + 3t2)σγk+1 + (t3 − t2)λk+1, (28)

where

λk = (1 − c)
σγk+1 − σγk−1

γk+1 − γk−1
, (29)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5: Covariance Interpolation Method Results for the Benchmark Problem Involving Distributions with Small Singular
Values
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Algorithm 1 Finding singular value decompositions of Xγk

and Xγk+1 that reduces the angular change between Uγk (:, i),
the ith column of Uγk and Uγk+1 (:, i), the ith column of Uγk+1

svd(X̃γk ) = UγkΣγk VT
γk

svd(X̃γk+1 ) = Uγk+1Σγk+1 VT
γk+1

while i ≤ min(m, n) do
α = cos−1

(
Uγk (:,i)T Uγk+1 (:,i)
|Uγk (:,i)||Uγk+1 (:,i)|

)
if α > π

2 then
Uγk (:, i) = −Uγk (:, i)
Vγk (:, i) = −Vγk (:, i)

end if
end while
return Uγk , Uγk+1 ,Σγk , Σγk+1 ,VT

γk
, VT

γk+1

and c is the tension parameter. It is imperative that each el-
ement of σ̂γ is nonnegative. Also, if the number of nonzero
elements of σγk and σγk+1 are respectively rk and rk+1 then
r, the number of nonzero elements of σ̂γ, should be in the
range that spans [rk, rk+1]. These two properties are ensured
by (27) but can only be ensured by (29) as c→ 1. Hence, in
this research (27) is used to estimate Σ̂γ.

2.5.1 Summary of Interpolation Based on SVD

Ultimately, given
{
Xγ1 , Xγ2 , . . . , Xγ`

}
and γ satisfying γk <

γ < γk+1, the described interpolation methods for Ûγ, Σ̂γ, V̂γ

and β̂γ result in the estimated data cluster X̂γ given by (16),
where for t given by (7) each of the matrices appearing in
the right had side of (16) are computed as follows:

1. Each column of β̂γ ∈ �n×n is equal to the mean estimate
ˆ̄x given by (6) and (9).

2. An SVD Xγk = UγkΣγk V
T
γk

and Xγk+1 = Uγk+1Σγk+1 VT
γk+1

are
computed using Algorithm 1.

3. Using the Schur method or block diagonalization tech-
niques, determine QUk+1 and DUk+1 (t). Ûγ is then obtained
from (26).

4. Σ̂γ, which along with Ûγ describes the covariance matrix
of X̂γ (see (17)), results from (27).

5. Using the Schur method or block diagonalization tech-
niques, determine QVk+1 and DVk+1 (t). V̂T

γ is then obtained
from (24).

The interpolation technique described above is termed
Singular Value Decomposition Interpolation (SVDI). SVDI
is similar to the previously described Covariance Interpola-
tion method (CovI), but it is shown below that SVDI suc-
ceeds in overcoming the issues associated with CovI.

2.5.2 Application of SVD Interpolation to the Benchmark
Problems

To evaluate SVDI, consider again the benchmark problems
originally presented in Figure 2. As SVDI was formulated to

solve the problem associated with distributions that change
orientation instead of distribution, consider first the bench-
mark problem of Figure 2b where the data clusters have a
near zero singular value. Applying SVDI to this benchmark
problem results in Figure 6.

Figure 6 clearly shows an improvement over the esti-
mated data clusters given by CovI (see Figure 5), by allow-
ing for changes in orientation. At all γ, SVDI yields an esti-
mated data cluster with a near zero singular value, which is
the same characteristic displayed in the known data clusters
for this system. Additionally, the estimated data clusters al-
ways approach the known data clusters when γ → γk and lie
directly on top of known data clusters when γ ∈ Γ. Although
Figure 6 shows that SVDI is effective in cases where the
data cluster orientation changes, SVDI should also be able
to determine reasonable data cluster estimates when the data
cluster shape changes instead of orientation as in the bench-
marks of Figures 2a and 2c, corresponding respectively to
data clusters with Gaussian distributions and data clusters
of different shapes.

Consider Figures 7 and 8, which are respectively the re-
sult of applying SVDI to the Figure 2a and Figure 2c bench-
marks. Upon inspection, it can be seen that Figure 7 and 8
are highly similar to the corresponding result for the CovI
method shown in Figures 3 and 4, with barely any visu-
ally recognizable differences. However, there are sometimes
small differences in orientation or shape when comparing
estimated data clusters from CovI and SVDI. This small
change in orientation can be seen by comparing Figure 8b
and Figure 4b while a small change in shape can be seen by
comparing Figure 7b and Figure 3b. It is believed that these
subtle differences occur as a result of SVDI independently
interpolating values that describe the data cluster orientation
and shape, while CovI couples orientation and shape estima-
tion into an estimate of the covariance matrix.

3 Interpolation of data clusters in Vibration-Based
Terrain Classification

Although SVDI has proven effective on all of the benchmark
problems, the true test of its effectiveness will be seen in
estimates of data clusters for physical systems. Recall from
the discussion of reaction-based terrain classification in Sub-
section 1.1 that the problem motivating this work has speed
dependency. Here, SVDI will be tested on this problem us-
ing vibration data from the ATRV-Jr mobile robot, shown in
Figure 10.

In vibration-based terrain classification the frequency re-
sponse magnitudes of the vertical acceleration z̈(t), roll rate
ωroll(t) and pitch rate ωpitch(t), which are the vibration sig-
nals, during a time interval [t0, t0 + ∆t] compose the feature
vector x. This is computed using a Fast Fourier Transform
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: Singular Value Decomposition Interpolation Method Results for the Benchmark Problem Involving Distributions with
Small Singular Values
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: Singular Value Decomposition Interpolation Method Results for the Benchmark Problem Involving Gaussian Distri-
butions
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: Singular Value Decomposition Interpolation Method Results for the Benchmark Problem Involving Distributions of
Different Shapes
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Fig. 9: Examples of the Vertical Acceleration Frequency Re-
sponse Magnitudes for Sand, Grass, Gravel and Asphalt

(a) ATRVJr (b) DMU

Fig. 10: The ATRV-Jr mobile robot and Dynamic Measur-
ment Unit (DMU)

(FFT) and results in a feature vector x defined by

x =
[
|z̈( jω)|, |ωroll( jω)|, |ωpitch( jω)|

]
and examples of the differences of each terrain’s vertical ac-
celeration |z̈( jω)| are shown in Figure 9.

Data from the DMU mounted on the ATRV-Jr was col-
lected at a rate of 200 Hz while driving over four terrains
(sand, grass, gravel and asphalt) and at speeds of 0.4, 0.5,
0.6, 0.8, 1.0, 1.2, and 1.4 m/s. The data was then cut into 1
second intervals, which resulted in a 300 dimensional fea-
ture vector corresponding to the 1 second interval (|z̈( jω)|,
|ωpitch( jω)| and |ωroll( jω)| each have 100 elements below
the 100 Hz Nyquist frequency). In total, 100 feature vec-
tors were collected at each of the considered combinations
of speed and terrain. The classification scheme that was used
for evaluating SVDI is presented in Figure 1 and described
below.

Speed is the only operating condition that varied during
these experiments, meaning α(γ) = v, where v is the vehi-
cle speed. This leads to the classification scheme of Figure
1 where an observation x is classified using either “Known

data clusters” from each terrain, or “Interpolated data clus-
ters” from each terrain. The set of known data clusters are
given the label

{
Xterrain,γ1 , Xterrain,γ2 , . . . , Xterrain,γ`

}
and cor-

respond to γ ∈ Γ, while the interpolated data clusters are
labeled

{
X̂terrain,γa , X̂terrain,γb , . . .

}
and correspond to γ < Γ.

The tuning parameters are determined using a leave one out
training routine at each γ considered in the “Known data
clusters” or “Interpolated data clusters” block, yielding a
different set of tuning parameters for each possible speed
α(γ). These training parameters are the average feature vec-
tor x̄(α), the transformation matrix A(α) that transforms each
Xterrain(α) or X̂terrain(α) into the reduced dimension data clus-
ter XR,terrain(α) or X̂R,terrain(α), and the width of the Parzen
window C(α). An observation x is then classified using the
tuning parameters and data clusters that correspond to the
same α as x. All classification results presented in this sec-
tion correspond to 10-fold cross-validation for determining
these training parameters to avoid over-fitting.

When testing SVDI on the ATRV-Jr data, the “Known
data clusters” correspond to α(0) = 0.4 m/s, α(0.2) = 0.6
m/s, α(0.6) = 1.0 m/s and α(1.0) = 1.4 m/s and the set of
known data clusters for a given terrain are denoted Xterrain ={
Xterrain,0, Xterrain,0.2, Xterrain,0.6, Xterrain,1.0

}
. Using SVDI and

known data clusters Xterrain, the “Interpolated data clusters”
are then computed at γa = 0.1, γb = 0.4 and γc = 0.8 corre-
sponding to α(γa) = 0.5 m/s, α(γb) = 0.8 m/s and α(γc) =

1.2 m/s for each terrain. The empirical data at α = 0.5 m/s,
α = 0.8 m/s and α = 1.2 m/s is then classified using the
classification scheme of Figure 1 in order to show the ef-
fectiveness of SVDI (this is labeled as benchmark results in
Figure 11). The same empirical data is also classified using
this algorithm, when the “Interpolated data clusters” block
corresponds to an empty set, forcing the x to be classified
using “Known data clusters”, that do not correspond to the
same α as x (the known data clusters at a speed closest to
α are used). This second classification result represents the
best classification accuracy that can be achieved without in-
terpolation or collecting additional samples. As a means of
comparison, benchmark classification results are also pre-
sented for the case where additional experiments are con-
ducted. This corresponds to “Known data clusters” Xterrain ={
Xterrain,0.1, Xterrain,0.4, Xterrain,0.8

}
and where the “Interpolated

data cluster” block is an empty set. All three sets of classi-
fication results are given in Figure 11. Note that CovI could
not be applied to this problem since there are more features
in a single observation than there are samples in the known
data clusters (m = 100 < n = 300).

As seen in Figure 11, SVDI outperforms what can be
achieved without interpolation, in terms of classification ac-
curacy, at all of the considered speeds. The difference ranges
from a 2% improvement at 0.5 m/s to an 8% improvement
at 1.2 m/s. Overall, SVDI is shown to be 5% more effective
than what can be achieved without interpolation. However,
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Fig. 11: Accuracy Results for Vibration-Based Terrain Classification on the ATRV-Jr Mobile Robot

from Figure 11 it is obvious that for the best possible results,
the vibration-based terrain classification algorithm needs to
be tested and trained with empirical data at the same speeds.
Ultimately, this means that if training data does not exist at
the same speed where testing occurs, it is better to use SVDI
to estimate data clusters used for algorithm training, than to
simply classify the test samples using algorithms based on
neighboring data clusters.

4 Conclusion

This paper presents a method for estimating data clusters
termed Singular Value Decomposition Interpolation (SVDI)
that uses splines, singular value decomposition, Schur de-
composition and a special matrix interpolation function. The
method is designed to determine data cluster estimates that
can be used in machine learning algorithms when real data
cannot be collected. Using three benchmark problems, the
SVDI method is shown to yield intuitive data cluster esti-
mates with acceptable distribution, orientation and location
in the feature space. Furthermore, SVDI is shown to be ben-
eficial when applied to a real machine learning application
using empirical data and compares favorably to known tech-
niques. Although the evidence in this paper shows that inter-
polated data clusters are not as effective as real data, interpo-
lated data clusters are shown here to be more effective than
known data clusters at neighboring operating conditions.

Future work on SVDI, should eliminate the requirement
that the data cluster estimate and known data clusters all

have an equal number of samples, as this can cause some
data to be ignored. Additionally, it is desired to implement
this technique on several real systems other than the vibration-
based terrain classification system presented here. Although,
the current form of SVDI smooths the path of the data clus-
ter mean, the path of individual points can be discontinuous,
since only Xγk and Xγk+1 are used to estimate Uγ, Σγ, and VT

γ .
However, it is believed that SVDI may be extended to con-
sider four control matrices {Xγk−1 , Xγk , Xγk+1 , Xγk+2 } instead of
only Xγk and Xγk+1 . That is, it may be possible to estimate
the Uγ, Σγ, and VT

γ matrices using Xγk−1 , Xγk , Xγk+1 and Xγk+2 .
This should allow for smoothing of the data cluster orienta-
tion and shape by smoothing the path of individual points,
which is expected to improve the accuracy of the data cluster
estimate.
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A Proof of Theorem 1

Referring to Theorem 1 of Section 2.2.2, which presented the canonical
form of (20), it is well known that the eigenvalues of a real, orthogonal
matrix have unit magnitude so the first part of the theorem concerning
the form of the eigenvalues is clear. Before proving the remainder of
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the theorem, two simple lemmas on complex vectors are presented.
The first lemma concerns an effect that scalar multiplication can have
on the dot product of the real and imaginary parts of a complex vector.

Lemma 1 Given a vector w ∈ Cn, there exists a scalar z ∈ C such that
the real and imaginary parts of zw are perpendicular to each other.

Proof For notational convenience, z = a + jb will be used and w =

u + jv where a, b ∈ R and u, v ∈ Rn. Then zw = au − bv + j(bu + av),
and the dot product of the real and imaginary parts of zw is

(au − bv) · (bu + av) = a2u · v + ab(‖u‖2 − ‖v‖2) − b2u · v. (30)

The goal is to find a and b so that this dot product is zero. If u · v = 0,
then z = 1 will suffice; otherwise set the real part a = 1 and choose
b ∈ R so that u·vb2+(‖v‖2−‖u‖2)b−u·v = 0. This can be done precisely
when the discriminant is nonnegative, i.e., when (‖v‖2 − ‖u‖2)2 + 4(u ·
v)2 ≥ 0, which is clearly true. This yields a suitable complex scalar
z = a + jb.

The next lemma concerns the nature of the complex eigenvectors
of an orthogonal matrix when the real and imaginary parts are perpen-
dicular to each other.

Lemma 2 Suppose that λ is a non-real eigenvalue of an orthogonal
matrix U and that w = u+ jv is a corresponding eigenvector, where the
real vectors u and v are perpendicular to each other. Then ‖u‖ = ‖v‖.

Proof The scalar λ has the form λ = e jθ = cos θ+ j sin θ where sin θ ,
0. By equating the real parts of the expressions Uw = Uu + jUv and

Uw = (cos θ+ j sin θ)(u + jv) = cos θu− sin θv + j(sin θu + cos θv)(31)

and using the facts that ‖Uu‖ = ‖u‖ and u · v = 0, the result ‖u‖2 =

‖Uu‖2 = cos2 θ‖u‖2 + sin2 θ‖u‖2 is obtained, which further simplifies
to sin2 θ(‖u‖2−‖v‖2) = 0. Equating the imaginary parts yields the same
expression. Since sin θ , 0, it follows that ‖u‖2 = ‖v‖2, which proves
the result.

Theorem 1 can now be proven.

Proof Once again, it is well known that the eigenvalues of a real, or-
thogonal matrix have unit magnitude, i.e., the eigenvalues have the
form 1, −1, or e jθ. Suppose that q is a unit length eigenvector of U
corresponding to 1 or −1. Letting Q1 be an orthogonal matrix with q
as its first column, then QT

1 UQ1 is an orthogonal matrix whose first col-
umn equals [±1 0 · · · 0 ]T . As an orthogonal matrix with a value
of ±1 in its (1, 1) element, it follows that the remaining elements in the
first row of QT

1 UQ1 must all be zero. Consequently, U can be written
in the following block diagonal representation:

U = Q1

[
±1

U2

]
QT

1 . (32)

The situation is somewhat more involved for complex eigenvalues.
Since U is a real matrix, its complex eigenvalues appear as complex
conjugate pairs, and the corresponding eigenvectors can also be chosen
to be complex conjugates of each other. Let λ = e jθ = cos θ + j sin θ
be a non-real eigenvalue, where sin θ is necessarily nonzero. Next, note
that by Lemmas 1 and 2 the corresponding eigenvector w = u + jv can
be chosen so that its real and imaginary parts have unit norm and are
perpendicular to each other. It can then be shown that

[ u −v ]T U [ u −v ] =

[ cos θ − sin θ
sin θ cos θ

]
. (33)

Letting Q1 be an orthogonal matrix whose first two columns are u and
−v, yields

U = Q1


[ cos θ − sin θ

sin θ cos θ

]
U2

 QT
1 . (34)

It is then possible to iteratively apply (32) and (34) to obtain the
form given in (20). For example, the orthogonal matrix U2 in (20) has
the same eigenvalues as U except that the first eigenvalue of U is re-
moved. So, if there is another real eigenvalue, then one can choose
an (n − 1) × (n − 1) orthogonal matrix Q2 such that QT

2 U2Q2 also
has the same form as (32). Hence, for the orthogonal matrix Q =

Q1diag(1,Q2),

U = Q

±1
±1

U3

 QT . (35)

Thus, iteratively applying the above procedures results in the desired
form.
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