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Abstract. Long term motion analysis poses many standing challenges
that need to be addressed for advancing this field. One of these challenges
is finding algorithms that correctly handle occlusion and can detect when
a pixel trajectory needs to be stopped. Very few optical algorithms pro-
vide an occlusion map and are appropriate for this task. Another chal-
lenge is finding a framework for the accurate evaluation of the motion
field produced by an algorithm. This work makes two contributions in
these directions. First, it presents a RMSE based error measure for eval-
uating feature tracking algorithms on sequences with rigid motion under
the affine camera model. The proposed measure was observed to be con-
sistent with the relative ranking of a number of optical flow algorithms
on the Middlebury dataset. Second, it introduces a feature tracking al-
gorithm based on RankBoost that automatically prunes bad trajectories
obtained by an optical flow algorithm. The proposed feature tracking al-
gorithm is observed to outperform many feature trackers based on optical
flow using both the proposed measure and an indirect measure based on
motion segmentation.

1 Introduction

Motion segmentation and estimation over tens or hundreds of frames is a difficult
problem that still poses many challenges. Two of these challenges are finding
good algorithms for tracking feature points over long sequences and a framework
for accurately evaluating and comparing these algorithms.

While there exist frameworks and datasets for evaluating optical flow algo-
rithms, such as the Middlebury dataset [1], the optical flow is evaluated only
on two frames in these datasets. When estimating motion over long sequences,
occlusion handling becomes very important because a large percentage of the
image pixels will sooner or later be occluded in the sequence.

Many motion analysis algorithms based on tracking feature points [2] only
track a subset of the image pixels, and these subsets can be different for differ-
ent algorithms. Evaluation of the obtained motion fields would ideally require
dense ground truth correspondences over the entire sequence, which is difficult
to obtain.

There are efforts on evaluating the performance of a tracker [3] [4] objectively
using a manually annotated dataset. For this reason, a number of metrics are
defined in [3] [4]to evaluate motion trackers comprehensively. However, this raises
the question: which metric is the best for ranking? Or should the metrics be
combined in some way, such as by a weighted sum? A similar issue exists in



2 Liangjing Ding, Adrian Barbu, Anke Meyer-Baese

the Middlebury optical flow dataset [1] where a number of error metrics are
evaluated based on the ground truth.

Due to the complexity of reality scenes, no methods usually obtain the best
performance on all sequences being tested. Also, when comparing the perfor-
mance of trackers, people are always talking about the average performance. It
is not strange that the best tracker would generate some bad trajectories, while
a bad tracker would produce some good ones. Thus, in order to control the qual-
ity of the output trajectories, pruning out the bad trajectories seems to be a
reasonable strategy.

In this paper we bring two contributions. First, we introduce an error mea-
sure for evaluating feature tracking algorithms on sequences containing objects
undergoing rigid motion under the affine camera model. The proposed measure
was observed to be consistent with the relative ranking of several selected op-
tical flow algorithms on the Middlebury dataset. Moreover, the proposed error
measure was observed to be more robust than an indirect measure based on
evaluating the segmentation error of the generated trajectories.

Second, we introduce a feature tracking algorithm based on RankBoost that
ranks the feature trajectories obtained by any optical flow algorithm from well
tracked to badly tracked and removes a percentage of the badly tracked ones.

The proposed feature tracking algorithm is evaluated using two different error
measures: the proposed error measure and an indirect measure based on motion
segmentation accuracy. Both evaluations show that the proposed feature tracker
outperforms other feature trackers based on optical flow on a number of publicly
available image sequences.

2 A Method for Evaluating Feature Trackers

As mentioned in the introduction, it is difficult to evaluate feature tracking
algorithms because dense ground truth motion fields over tens or hundreds of
frames have not been obtained so far. There exist indirect error measures such
as the segmentation error [5] returned by a predefined motion segmentation
algorithm on the obtained feature trajectories. However, such a measure depends
on the segmentation algorithm and tends to be quite unstable, as it will be seen
in experiments.

In this section we investigate a direct error measure that can be used for
sequences containing rigid motions under the affine camera model. The proposed
measure is based on the observation that it is unlikely for a badly tracked feature
point to accurately follow the rigid motion model of the object it belongs.

To use the proposed measure, the following are needed for each sequence

being evaluated:

1. A set of full length ground truth (GT) feature point trajectories for each
motion of the sequence. These trajectories have been verified to be correct
and manually adjusted if necessary.

2. A dense (manual) segmentation of the first frame of the sequence (optional).
The proposed measure evaluates any given feature point trajectory by ob-

taining the motion label based on the dense segmentation of the first frame and
the rigid motion model from the GT feature trajectories for that object.
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Assume the set of full length GT trajectories for the rigid motion of interest is
ti = (b ytl, ...zl yl) i = 1,..., k. Assume the sequence obeys the affine camera
model [6], which generalizes orthographic, paraperspective and weak perspective
projections. From the trajectories ¢4, ..., tx, we construct the measurement matriz
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The affine camera model [7, 6] factorization allows us to write
W=MS

where M is a 2T x 4 motion matriz and S is a 4 X k matrix representing the 3D
structure of the points. We will also refer to the matrix M as the motion model
for the rigid object containing the trajectories t1, ..., tx.

There is an inherent ambiguity in M and S but we will show that it is
irrelevant for our evaluation purpose.

2.1 RMSE Error for One Trajectory

Given a feature point trajectory ¢t = (a:b, yP,...,x¢ y°¢)" that needs to be evalu-
ated, assumed to belong to this motion, beginning at frame b and ending at frame
e will have a corresponding 3D structure point P obtained by least squares:

P =argmin ||thbeP||2 = argmin(t—Mpe P)' (t—Mp. P) = (MéeMbe)flMéet (1)
P P

where My, is the submatrix of M corresponding to the frames from b to e.

We can estimate P in a least square sense from the entire trajectory ¢ and
generate a most likely rigid motion trajectory as the projection t¢ = M. P of
P to the frames from b to e through the motion matrix M.

Finally define the SSE tracking error of the trajectory ¢ as the sum of the
squared errors between the trajectory points and the corresponding points of t:

SSEw () = min(t — My P) (t — My P) = t't — t' My (M}, Mye) " Mt (2)

Remark 1 The SSEw (t) is invariant to the choice of M and S in the decom-
position W = MS.

Proof. Multiplying M by any 4 x 4 invertible matrix A results in multiplying
My by A. It can be easily verified that SSEy () does not change when My, is
multiplied by an invertible matrix A. B
We can now define the RMSE error for a trajectory t as:
SSEw (1)

RMSEw (t) = b1 (3)
which is measured in pixels and tells how well the trajectory fits the motion
model of W.

The error measures SSEyy (t), RMSEw () can be computed for any trajectory
t of a sequence that has the GT feature trajectories, against any measurement
matrix W from the same sequence.
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The RMSEyy (t) error can be used to evaluate the fitness of the trajectory ¢ to
the motion W, when the GT trajectories are available. If there is more than one
motion in the ground truth, the error RMSE(t) of a trajectory can be obtained
as follows:

1. If a dense motion segmentation is available, it can be used to obtain the
motion label of the trajectory and the corresponding measurement matrix
W can be used, so RMSE(t) = RMSEyw (¢).

2. If a dense segmentation is not available, the most likely motion is chosen
as the motion that leads to the smallest RMSE error. Thus, the RMSE
error is computed against all motions, and the smallest one is selected, so
RMSE(t) = miny RMSEw (¢).

In what follows we will use the second alternative since we don’t have manual
segmentations for the first frame of all 47 Hopkins sequences that will be used
for evaluation.

We can now define the measure for evaluating the quality of the trajectories
obtained by a feature tracking algorithm as the percentage of trajectories with
RMSE larger than a threshold 7.

RMSE, = %Hti,RMSE(ti) >ri=1,N}| (4)

2.2 Comparison with the Middlebury Dataset

The accuracy of the proposed error metric was evaluated on five standard optical
flow algorithms: Kanade-Lucas-Tomasi (KLT) [2], Brox [8], Classic+NL [9],
Black & Anandan (BA) [10] and Horn & Schunck (HS) [11].

The algorithms were evaluated on 47 image sequences from the Hopkins 155
dataset. The trajectories were obtained using the different algorithms starting
from the same points in the first frame, as described in Section 4.1.

The relative ranking of these algorithms e s
on the Middlebury dataset was compared with e
the ranking obtained from the proposed mea- e —Classicent

sure RMSE, with a range of thresholds 7.
In Figure 1 is shown the average RMSE,
of the five algorithms for a range of values
7. The relative order based on the RMSE e
measure is consistent with the Middlebury
relative ranking for a large range of values B T R R A
T>3. Fig. 1: The average RMSE, mea-
The only exception is the KLT algorithm sure vs the threshold 7 for five
that ranks better than in the Middlebury optical flow algorithms. The rel-
ranking. ative order of the algorithms is
We will see in the experimental section consistent with the Middlebury
that the KLT performance changes with the ranking for 7 > 3.
strength of the feature points, so it would make sense that it ranks better than
in the Middlebury dataset because the Hopkins sequences contain a majority of
checkerboard images with strong feature points.

15%

Average RMSE, erfor
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On the other hand, in Figure 6 are shown two indirect error measures based
on motion segmentation. One can see from the graph that the measures are quite
unstable and are not consistent with the Middlebury ranking.

3 A Trajectory Pruning Algorithm based on RankBoost

In this section we present a method for ordering feature point trajectories by
predicting their relative quality using RankBoost [12]. This ranking is used to
remove a percentage (e.g. 20%) of the trajectories predicted to have the worst
quality.

3.1 The RankBoost Algorithm

We will use RankBoost [12] to learn an ordering of the feature point trajectories
obtained by any feature tracker or optical flow algorithm.

RankBoost is a boosting algorithm that combines a number of ranking func-
tions h; : X — R,i = 1, M into a single ranking function H : X — R for
instances z € X.

Given a set of training instances S = {z; € X,i = 1,n}, we assume that a
ground truth ranking is given on these instances as a function @ : S x § — R,
where &(z9,x1) > 0 means z; should be ranked above zy and vice versa.

RankBoost attempts to find a ranking that is similar to the given function
@. In order to formalize this goal, construct the distribution D by D(zg,z1) =
¢ - max{0,®(xo, x1)}, where c is a constant to make > D(zo,x1) = 1. The
learning algorithm tries to find a final ranking H : X — R that minimizes the
weighted sum of wrong orderings:

rlossp = Z D(xg,z1)[H(z1) < H(x0)]
(zo,z1)ESXS

where the notation [r] is defined to be 1 if predicate 7 holds and 0 otherwise.

Like other boosting algorithms, RankBoost operates in rounds. In each round
t, RankBoost maintains a distribution D; on S x S and selects the best weak
ranker h; along with its corresponding weight «; from a large set of candidate
weak rankers. The weight Dy (zg, 1) will be decreased if hy(x1) > hi(zo), and
increased otherwise. Thus D; will tend to concentrate on the pairs that are hard
to rank. The final ranking H is a weighted sum of the weak rankers selected in
each round. The algorithm is given in more detail in Figure 2.

Given: initial distribution D over X x X.
Initialize: D1 = D.
fort=1,...T do
1. Train weak learner using distribution D; to get weak ranking h;.
2. Choose a; € R.
3. Update: Dyy1(xo, 1) = Dt(xo’“)emp(atz(?t(‘ZO)_}”(“)))) where Z, is a normaliza-
tion factor (chosen so that D11 will be a distribution).
end for
Output the final ranking: H(x) = Ele athi(x).

Fig. 2: The original RankBoost algorithm [12].
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Fig. 3: The features used for ranking are trajectory shape features and intensity
coherence features. By controlling the parameters s, ¢, and [, an over-complete
feature representation of the trajectory can be obtained.

3.2 Features Used by the Weak Learners

The input to a weak learner h : X — R is a trajectory z € X. Based on
the trajectory, shape and appearance features are generated. The process of
obtaining the features is illustrated in figure 3.

The shape features are based on the position information along the trajec-
tory. The features are parametrized by two attributes: the start time s, and the
time gap t between two adjacent selected points. Based on these parameters we
generate features that are supposed to measure constant velocity along the tra-
jectory. For example, if we denote the positions of the points along a trajectory
as p;, i =1,...,T, the features are

L—1

fst = Z 112 % psyic — Ps+(i—1)t —Ps+(i+1)t||~

i=1
where L is the index of the last point that we could pick. The appearance fea-
tures are intensity coherence features based on square image patches along the
trajectory. The parameters of these features are s,t as in the geometric features
and the side length of the square [. Different features are obtained using dif-
ferent brightness constancy measures such as SSD, normalized cross-correlation,
etc. By changing the s,t,] and brightness constancy measure f, we get an over-
complete feature representation of each trajectory. From the range of parameters
used in our experiments, we obtained about 1200 features.

These features are easy to obtain and fast to compute. Each weak learner is
based on one of these features, and RankBoost will select the ones that are most
useful in obtaining an accurate ranking of the training set.

3.3 Training the Weak Learners

We want the weak rankers have range [0, 1] rather than the actual values of the

ranking features. For this reason, a threshold-based weak ranking h is adopted

i) = {o if fi(x) < 6 ®)

where 6 € R. A weak ranking is derived from a ranking feature f; by comparing
the score of f; to a threshold 6.

A set of candidate thresholds {6, }‘jjzl, 01 > ... > 0  are chosen for each weak

learner. In this paper, we pick the thresholds evenly in the range of a feature
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in the training set. For a feature f;, the maximum and minimum value in the
training set is max(f;) and min(f;). The thresholds for it are set to

0; = max(f;) — %(max(fi) — min(f;)), j=1,...,J. (6)

Based on the discussion in [12], if a weak ranker has the form as equation
(5), it should be trained to maximize |r| where r is defined as

r= Z ()
x: fi(x)>0
where 7(z) =Y, (D(2',xz) — D(z,2")).

At each boosting iteration, we exhaust all weak rankers to find the one that
maximizes |r| along with its associated 6 value. If 7, is the maximal value of
|r], then the corresponding weight « is calculated as

1 1 1+ 7rmax )

“= 2 n(l—rmax

3.4 Training the Ranking Algorithm

Training of the trajectory ranking algorithm requires a pool of weak rankers and
ground truth ranking information in the form of a distribution D over all pairs
of training examples.

Given a set of trajectories obtained by a feature tracking algorithm, the weak
rankers are trained at each boosting iteration as described in Section 3.3, based
on features extracted from the given trajectories and the image sequences.

The ground truth ranking of the trajectories is obtained from the RMSE error
(3) based on the GT labeling of the trajectories into a number of rigid motions.
All trajectories belonging to the same moving object from a video sequences can
be ranked by their RMSE error. Obviously, a trajectory with a smaller error
should be ranked above another one with a larger error. The initial distribution
D is constructed based on the relative rank of the trajectories. Actually, the
exact value of D(i, 7) is not important, so we simply put it 0 or 1 to indicate the
rank between trajectories. Let the label and RMSE error of a trajectory x; be [;,
ei, respectively. The ranking D(i, j) between trajectories x; and x; is calculated

as 1 ifl; ==1; and e; > ¢;

D(i,j) = {O Otherwise (7)
With the initial distribution D, the feature set and candidate weak rankers,
the RankBoost training algorithm can be applied to get the boosted ranking
algorithm. The process is explained in Algorithm 1.

Algorithm 1 Training the Trajectory Ranking Algorithm

Given: A set of trajectories with their labels and RMSE errors (3)

1. Compute features for each trajectory as described in section 3.2.

2. Calculate the candidate thresholds (equation (6)) for each feature.

3. Build the initial distribution D by equation (7), and normalize it.

4. Perform T iterations of RankBoost with weak rankers (5). In each iteration, obtain
a weak ranking h; with threshold 6; and weight o.

Output: The final ranking function: H(z) = 3/, athe ().
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3.5 Pruning Feature Trajectories with the Ranking Algorithm

The trained ranking function can be used to rank a set of trajectories produced
by any feature tracker from a video sequence. Based on the final rank, a per-
centage of the worst trajectories can be discarded. The pruning algorithm is
summarized as Algorithm 2.

In this way, one could obtain a more refined set of trajectories. It is worth
noting that in this process no a priori information — such as segmentation, or
RMSE error — is needed to obtain the rank. Thus, the algorithm could be widely
used for videos with or without ground truth.

Algorithm 2 Feature Pruning using RankBoost
Given: a video sequence.
1. Detect interest points in the first frame.
2. Track interest points in all frames using a feature tracker,
3. Apply the trained ranker to sort the trajectories.
4. Discard the worst p% of the trajectories.

4 Experiments

In this section we present an evaluation of the proposed pruning-based ranking
algorithm on the 47 video sequence of the Hopkins 155 Dataset [6] that contain
ground truth trajectories for all motions that are present.

4.1 Trajectory Generation

For the comparison purpose, five optical flow algorithms were employed to gen-
erate trajectories. They are, the Kanade-Lucas-Tomasi (KLT) algorithm [2], the
Brox algorithm [8], the Classic+NL algorithm [9], the Black & Anandan (BA)
algorithm [10] and the Horn & Schunck (HS) algorithm [11]. When generating
trajectories, Shi-Tomasi features [13] were detected on the first frame of the
video, and then the corresponding feature points in the following frames were
extracted by the five optical flow algorithms. Because many motion segmenta-
tion algorithms [14,15] require the input trajectories to have the same length,
the incomplete trajectories that were stopped before the last frame were dis-
carded. Moreover, in the spirit of fairness, if any of the five algorithms stopped
the trajectory from a feature point early, the trajectories of all five algorithms
starting at that point were discarded. So in the end, the trajectories produced by
all algorithms for one video sequence will share the same set of starting points.

4.2 Dataset and Evaluation Methods

We evaluated the proposed algorithm and error measure on the Hopkins 155
Dataset. The Hopkins 155 Dataset [6] has been created with the goal of pro-
viding an extensive benchmark for testing feature-based motion segmentation
algorithms. It contains video sequences along with some feature points extracted
and tracked in all the frames. The ground-truth segmentation is also provided
for evaluation purposes. The 155 sequences are actually based on a dataset of
50 video sequences. Among them, there are three sequences missing the ground
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truth for the background motion: articulated, three-cars and arm. Since we need
ground truth trajectories for all motions in the video, these three sequences were
not included in the evaluation, remaining with 47 video sequences.

RMSE Error Measure. The ground truth trajectories provided by the
Hopkins dataset enable us to calculate the RMSE, error (4) for each algorithm
averaged over the 47 sequences. It should be mentioned that the number of
motions in the ground truth may be smaller than that in the video, but most of
the motions that are not in the ground truth are not present in all frames, and
they always cover small regions in the frame, so it is reasonable to ignore their
impact and simply set the number of motions as given in the ground truth.

Fig.4: Sample frames and their corresponding dense ground truth motion seg-
mentation from the 12 sequences annotated by Brox et. al [5] in the Hopkins 155
dataset.

Segmentation Error Measure. Of the 50 video sequences of the Hopkins
155 dataset, Brox et.al. [5] annotated 10 car and 2 people sequences. Their
annotation is dense in space and sparse in time, as shown in Figure 4. The
first frame is always annotated to allow the evaluation of segmentation methods
which could not deal with long trajectories. Based on this ground truth, any
segmentation result obtained on any set of trajectories can be evaluated. This
facilitates us to use the segmentation as an indirect measure of the performance
of different trackers. There are five measure about segmentation proposed in [5]:

density The density of the tracked points.

overall clustering error The number of bad trajectory labels divided by the
total number of labeled trajectories.

average clustering error Similar to the overall clustering error, the average
clustering error is the average of the clustering error for each region sepa-
rately. It gives more weight to small objects.
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over-segmentation error The number of clusters that need to be merged to
obtain the ground truth segmentation. This error is used to prevent obtaining
a small error by producing a severe over-segmentation.
number of extracted objects The number of regions covered with a small
erTor.
Among the five measures, the density is important for dense motion segmen-
tation. In our experiments, the density is fixed at the very beginning since we
use the Shi-Tomasi features as the starting points and we use the same starting
points for all algorithms being compared. Moreover, the sparse motion segmenta-
tion methods [14] [15] that will be used for indirect evaluation ask for the number
of motions in advance, so it has no meaning to measure the number of extracted
objects here. In this case, the over-segmentation is hard to happen, so we do not
measure the over-segmentation error either. As a result, two significant measures
are adopted, the overall clustering error and the average clustering error. These
two error measures will be evaluated on the 12 sequences that have a dense GT
motion segmentation of the first frame.

4.3 Results

The RankBoost algorithm was trained on trajectories generated by the Clas-
sic+NL method from four image sequences and tested on all 47 sequences. From
the pool of more than 1200 features, 150 were selected by RankBoost during
training. The number of candidate thresholds J was set to 65. The ground truth
ranking was obtained using the RMSE errors and trajectory labels based on the
GT trajectories, as described in Section 3.4.

We evaluate the performance of the proposed algorithm using the two er-
ror measures described above. The first error measure is the proposed RMSE,
error (4) that measures directly the quality of the trajectories based on rigid
motion models. The second error measure is an indirect measure in which the
obtained trajectories are segmented using a motion segmentation algorithm and
the segmentation error is evaluated on the dense GT motion segmentation of
the first frame. The performance using these two error measures is discussed in
more details below.

RMSE Error. First, we evaluate the average RMSE, error (4) of all the trajec-
tories. Starting with a large pool of trajectories, the pruning rate p% is changed
for the RankBoost algorithm, to obtain different numbers of trajectories. For the
other algorithms, the trajectory pruning can be controlled based on the strength
of the Shi-Tomasi feature points. For different values of the pruning rate, the
corresponding average RMSE error can be computed for the sets of trajectories
obtained by the different algorithms. The average RMSEs error measure vs. the
pruning rate from 0% to 80% is shown in figure 5, left.

From figure 5, left, one could find that the RMSE5 error of BA, HS, Clas-
sic+NL and Brox algorithm is almost unchanged with respect to the pruning
rate. This is understandable because these methods are independent of the se-
lection of feature points (up to a point). However, the RMSE error of the KLT
algorithm decreases moderately as the pruning rate is increased. This is indica-
tion that the Shi-Tomasi features have an impact on the performance of the KLT
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Fig.5: Left: the RMSE5 error (4) of the trajectories sets generated by different
algorithms for different pruning rates. Right: the RMSE.. error vs. the threshold
7 when the pruning rate is set to 20%. The relative rank of the algorithms is
consistent with the Middlebury ranking for a large range of thresholds.
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tracker. Better Shi-Tomasi features will lead to better performance of the KLT
algorithm. There is no wonder that the two are always used together. Among
all the algorithms, the RankBoost algorithm performs the best according to the
RMSE5 measure. When the pruning rate is 80%, its average RMSEs error is less
than 1%, while that of the second best (the Classic+NL algorithm) is more than
9%. Also, as the pruning rate increases, the error decreases much faster than
the KLT algorithm. In particular, one could see the large difference in RMSE
error between the RankBoost and Classic+NL algorithm, and keep in mind that
the trajectories evaluated in the RankBoost algorithm and the Classic+NL al-
gorithm were actually the same before pruning. The reason that the RankBoost
algorithm could get better results is that the trained algorithm can predict very
well which trajectories might not have been tracked properly.

In figure 5, right, is shown the RMSE; error vs the threshold 7 for the pruning
rate of 20%. From the figure, one could find that the RankBoost method with
20% pruning outperforms the other algorithms according to the RMSE, measure
for any value of 7 € [2,10]. Moreover, we find that the relative performance of
the tracking algorithms could be measured by the order of the curves for a given
threshold 7. In figure 5, right, the performance order is Classic+NL > Brox >
KLT > BA > HS for all values of the threshold 7 € [2,10]. This order is very
similar to the order of the average endpoint error and average angle error in
the Middlebury dataset, which is Classic+NL > Brox > BA > HS > KLT. As
mentioned above, the Shi-Tomasi corner features could boost the performance
of the KLT algorithms, it is better to take the KLT out of the list, then the
orders are exactly the same. This study validates the power of the proposed
RMSE error. We could pick other pruning rates than 20%, but the results will
be almost the same.

Figure 7 shows the generated trajectories from different algorithms on a
sample sequence in the Hopkins 155 dataset. The number of trajectories is kept
the same and the pruning rate is 20%. It is clear the Rankboost algorithm prunes
the trajectories in the path of the car and obtains better trajectories.
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Segmentation Error. Another way to compare the performance of different
feature tracking algorithms is by an indirect measure such as the segmentation
error. The trajectories obtained by different tracking algorithms are segmented
using a motion segmentation method and a measure of segmentation error is re-
ported. Observe that this is an indirect measure since it depends on an additional
step, that could introduce additional noise in the evaluation.

ssc Ssc
20% T T

16%

—e— Brox a0 || —*—Brox
—o— Classic+NL —eo— Classic+NL

H
IS
g

Overall clustering error
o
3

Average clustering error

—e— BA —&— BA

10% H HS 4 HS

——KLT —— KLT
Rankboost Rankboost

. . . . 4% . . . .
0% 5% 10% 15% 20% 25% 6% 5% 10% 15% 20% 25%
Pruning rate Pruning rate

Fig. 6: The overall clustering error (left) and average clustering error (right) from
12 annotated sequences for different pruning rates.

In this paper we use the state-of-the-art motion segmentation algorithm
sparse subspace clustering (SSC) [15]. As explained before, there may be some
moving objects in the first frame that are not present in all frames. In order to
evaluate the segmentation error accurately, we only consider the 'major’ motions
in the video, so the number of motions for the motion segmentation is set to the
value given by the ground truth in the Hopkins 155 dataset. We omit other
motions when calculating the segmentation error.

The segmentation error is averaged over the 12 video sequences that have
the dense ground truth motion segmentation of the first frame. Because of using
fewer image sequences for this evaluation than for the RMSE measure (12 instead
of 47), this measure is expected to be less accurate.

Furthermore, the motion segmentation imposes limitations on the maximum
pruning rate that can be used. Since the rank of the measurement matrix from
one rigid motion is at most four, many segmentation methods require that the
number of trajectories in one motion is at least four. Because of this requirement,
the maximum pruning rate that can be handled by the motion segmentation is
25%. The RMSE, error described above does not suffer from this limitation,
allowing a pruning rate of 80% or more.

In figure 6 are shown the overall clustering error and the average clustering
error for different pruning rates, averaged over the 12 sequences with dense GT
motion segmentation. These measures were explained in Section 4.2.

One could find that the RankBoost algorithm enables to reduce the overall
clustering error effectively, constantly decreasing as the pruning rate is increased.
Moreover, the RankBoost algorithm also constantly reduces the average cluster-
ing error when the pruning rate is at least 10%. These segmentation experiments
also show that the RankBoost algorithm improves the quality of the feature tra-
jectories.
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5 Conclusions

In this paper, we presented a RMSE error measure based on factorization of the
affine camera model. By comparing the percentage of trajectories whose RMSE
error is above a threshold for a number of tracking algorithms, we find the rel-
ative order of the algorithms is consistent with that in the Middlebury dataset.
Based on this RMSE trajectory error measure and RankBoost, we introduce an
algorithm for ranking the quality of feature point trajectories. One feature of
the algorithm is that it does not require any priori information to rank trajec-
tories, and it can be used to rank the trajectories obtained with any feature
tracker. The comparative study has demonstrated that the proposed algorithm
obtains smaller RMSE errors than other selected feature tracking algorithms
after pruning. An indirect measure based on motion segmentation was also em-
ployed to evaluate the performance of different trackers. The segmentation eval-
uation shows again that the RankBoost algorithm can effectively improve the
quality of the obtained feature point trajectories.
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Fig. 7: Trajectories from different tracking algorithms on the cars7 sequence
from the Hopkins 155 dataset. Row 1 to row 6: Brox, Classic+NL, BA, HS, KLT,
Rankboost. The number of trajectories is kept the same and the truncation rate
is 20%. From left to right: frame 1, 13, 25. The images were cropped for clarity.



