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ABSTRACT

Deep neural networks have drawn much attention due to their success in various vision tasks. Class

Incremental Leaning is a paradigm where instances from new object classes are added sequentially.

Traditional training schemes cause a problem called catastrophic forgetting where the updated

model forgets the old classes and focuses only on the new classes. In this dissertation, we propose

a framework called incremental PPCA for class incremental learning. Incremental PPCA uses a

self-supervised pre-trained feature extractor to obtain meaningful features and trains Probabilistic

PCA models on the extracted features for each class separately. The Mahalanobis distance is used

to obtain the classification result, and an equivalent equation is derived to make the approach

computationally affordable. Experiments on standard and large datasets show that the proposed

approach outperforms existing state-of-the-art incremental learning methods by a large margin.

The fact that the model is trained on each class separately makes it applicable to training on

very large datasets such as the whole ImageNet with more than 10,000 classes. Traditional image

classifiers adopt neural network-based structures that treat all the image classes equally. While

human can exploit semantic information between image classes and learn with much less samples.

Inspired by our understanding of the human hierarchical cognition models, we propose a framework

called Hierarchical PPCA for image classification. The framework uses probabilistic PCA models

as basic classification units and adopts a modified k-means clustering to group the image classes

into a smaller number of super-classes. During classification, Hierarchical PPCA assigns a sample

to a small number of most likely super-classes, and restricts the image classification to the image

classes corresponding to these super-classes. Experiments on three standard datasets ImageNet-

100, ImageNet-1k and ImageNet-10k indicate the hierarchical classifier can achieve the same or

superior accuracy with a 4-16 times speedup compared to a standard classifier.

xi



CHAPTER 1

INTRODUCTION

Class incremental learning is a type of machine learning technique that allows a model to continu-

ously learn and adapt to new classes or categories without having to retrain the entire model. This

approach is useful when new classes are being added to the dataset over time, or when the number

of classes is so large that training on all of them at once is not feasible. Class incremental learning

can be defined as the process of adding new classes to a model without losing the knowledge of

previously learned classes. In other words, the model is able to learn new classes while retaining

the information it has learned about previous classes. Instead of training models from scratch every

time new data becomes available, incremental learning allows the model to learn from new data

while retaining the knowledge it has gained from previous data.

The traditional fine-tuning methods encounter a problem called catastrophic forgetting where

models trained with the new classes have a drastic drop in classification performance on old classes.

Learning without forgetting (LWF) (Li and Hoiem, 2017) proposed to use the distillation loss to

generate consistent features. Classifier and Representation Learning (iCaRL) (Rebuffi et al., 2017)

use task-specific parameters to preserve the knowledge of old classes.

In this dissertation we propose a simple framework called Hierarchical PPCA for incremental

class learning. We adopt the pre-trained feature extractor and classifiers constructed by Probabilis-

tic Principal Components (PPCA) (Tipping and Bishop, 1999) to mitigate catastrophic forgetting

to a large extent. The Incremental PPCA method is introduced in the first part of the dissertation.

The Incremental PPCA surpasses the previous state of art methods on class-incremental learning

tasks.

Hierarchical classification is a type of machine learning approach that involves organizing classes

or categories in a hierarchical tree structure. This allows for more complex relationships between

classes to be modeled and can lead to more accurate and interpretable classification results. For

example, a classification task involving different types of animals could be organized into a tree

structure, with ”mammals” as the parent category and ”cats” and ”dogs” as child categories. This

allows the model to take into account the fact that cats and dogs are more closely related to

1



each other than to other mammals. By organizing classes into a tree structure, hierarchical clas-

sification can model parent-child relationships between classes. Traditional hierarchical clustering

methods such as agglomerative clustering are not applicable to large-scale datasets due to their

time complexity of O(n3).

In the second part of the dissertation, we propose a classification framework called Hierarchical

PPCA. It models the classifier with a 2-level taxonomy. A k-means clustering method is adopted

to exploit the semantic information of image classes. The Hierarchical PPCA obtains equal or

superior classification performance with fewer computation resources on 3 large-scale datasets.
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CHAPTER 2

SCALABLE LEARNING WITH INCREMENTAL

PROBABILISTIC PCA

2.1 Introduction

Incremental learning is a learning paradigm that allows a model to be updated to handle new

tasks (e.g. new classes in classification) by being trained on new data without using the whole

dataset. This paradigm facilitates training models on large-scale datasets with less computational

cost and memory requirements. A conventional approach to incremental learning is to fine-tune

a pre-trained model on the new data. The fine-tuning approach suffers a serious problem called

catastrophic forgetting, which means that the model trained on the new classes will have a drastic

performance drop on the old classes.

Various approaches have been proposed to overcome catastrophic forgetting. Learning without

forgetting (Lwf) (Li and Hoiem, 2017) introduces the distillation loss that encourages the feature

extractor to generate consistent features for the old classes. This pioneering design became an

essential component in subsequent approaches. Rebuffi et al. (2017) keeps exemplars of the old

classes to preserve the knowledge of these classes. Despite all the efforts to mitigate the effect of

catastrophic forgetting, the overall performance remains significantly inferior to those obtained by

joint training on the entire dataset.

In this dissertation, we explore a new incremental learning strategy for multi-class image classi-

fication, using a standard pre-trained feature extractor and a novel method to classify the extracted

features. Assuming that the feature extractor can obtain meaningful features that don’t need re-

training, there is still a major problem that needs to be addressed for conventional neural networks.

The problem is that the conventional classifiers are based on standard projection-based neurons

that have high responses on half of the feature space. For this reason, it is quite likely that instances

from a new class will have high responses on an old class neuron, and this issue has to be mitigated

by retraining that neuron.

The RBF neuron (Broomhead and Lowe, 1988) in principle alleviates this problem because an

RBF neuron f(x) = g(∥x − µ∥) will only have a high response for data near the neuron’s center

3



µ. However, experiments will show that the RBF neuron is too simple to properly handle the

complexities of real data in the feature space.

For this reason, we introduce a new type of neuron that is a refinement of the RBF neuron

and is based on the Probabilistic PCA model. This neuron will have high responses close to a

low dimensional subspace near a neuron center µ. Experiments will reveal that this representation

is capable to handle the complexities of real data, obtaining state-of-the-art incremental learning

results on standard datasets. It even allows us to obtain a reasonable classification result on

ImageNet-10k, the subset of ImageNet (Deng et al., 2009) containing all the classes that have at

least 450 training observations, for a total of 10,450 classes and 11 million observations.

Our Incremental PPCA innovates with:

1. We use a pretrained model to generate consistent features in the whole training process;

2. We introduce a PPCA-based classifier to model the complexity of classes instead of standard

neurons;

3. We obtain an efficient computation equation for the PPCA score to make it applicable to

classification on large datasets.

2.2 Related Work

There are two main types of approaches to class incremental learning: regularization-based

approaches and bias correction approaches.

2.2.1 Regularization Based Approaches

To mitigate catastrophic forgetting, regularization methods apply the distillation loss as a reg-

ularization term along with the classification loss. This technique aims to encourage the feature

extractor to generate consistent features. The distillation loss, introduced by Hinton et al. (2015),

was originally used to encourage the outputs of a student network to approximate the outputs of

the teacher network. In class incremental learning, the distillation loss is used as a penalty for

changes in the features of old classes.

One pioneering work is Learning without Forgetting (Li and Hoiem, 2017) (LwF), which pro-

posed to use the distillation loss to generate stable feature representations. When the model is

introduced with a new task, LwF adds task-specific parameters to the model for the new task. De-

spite the fact that LwF was originally proposed for task incremental learning, the distillation loss
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and task-specific parameters have become essential components in many class incremental learning

approaches.

Compared to LwF, the Incremental Classifier and Representation Learning (iCaRL) (Rebuffi

et al., 2017) method goes a step further to preserve the knowledge of old classes. iCarl also takes

advantage of the distillation loss and task-specific parameters. Moreover, iCarl proposes to use a

limited set of exemplars to store representative samples. iCaRL also builds a dynamic mechanism

to update exemplars after each training stage.

Learning without memorizing (LwM) (Dhar et al., 2019) utilizes an attention-based method

proposed by Zagoruyko and Komodakis (2016). In order to prevent catastrophic forgetting, the

attention used by the network trained on the previous tasks should not change while training the

new tasks. With this restriction, features of a certain class are expected to change less when the

model is trained with new classes. Different from the previous approaches, LwM takes the gradient

flow information into account. By combining the distillation loss (LD) and attention distillation

loss (LAD), the attention map transfers the knowledge without requiring data from the base classes

during training.

To avoid catastrophic forgetting, the proposed Incremental PPCA method adopts a different

approach. Instead of using the distillation loss, Incremental PPCA uses a self-supervised feature

extractor pretrained on a large dataset, which is frozen during the whole training process. This

simple method makes sure that the feature extractor can generate consistent features across all

learning tasks.

2.2.2 Bias Correction Approaches

Bias-correction methods aim to address the problem of task recency bias. The bias is caused

by the fact that the model will see more examples from the new classes than the old classes.

Hou et al. (2019) reveal that the imbalance between old classes and new classes is the main

challenge causing catastrophic forgetting. In their Learning a Unified Classifier Incrementally via

Rebalancing (UCIR) method, they propose to replace the standard softmax layer with a cosine

normalization layer.

Wu et al. (2019) discovered that the last fully connected layer of a CNN has a strong bias towards

the new classes. They proposed a method called Bias Correction (BiC), which adds an additional

layer to correct the task bias of the model. BiC divides the training process into two stages. The

training data is split into a training set for the first stage and a validation set for the second

5



stage. The validation set is used to help estimate the bias in the FC layer. The earlier mentioned

approach iCarl (Rebuffi et al., 2017) doesn’t use a neural network-based classifier. Instead iCaRL

uses the Nearest Mean Exemplar for classification. For each class, there will be a mean feature

that is computed by averaging the feature representation of the exemplar images. The classification

result is determined by the euclidean distance with the mean of the features of each class. This

approach is therefore similar to the RBF neurons (which have responses based on learned centers

µi) that are evaluated in our experiments. Our experiments reveal that a Euclidean distance-based

approach is too simple to capture the complexities of real data, and the proposed PPCA approach

based on Mahalanobis distance is better at capturing the intrinsic data variability and has good

generalization.

To avoid the effect of catastrophic forgetting, the regularization-based methods focus on pre-

serving the knowledge of old classes while bias correction methods focus on improving the classifier.

In these approaches, the memory buffer to store the representative examples, the distillation loss-

based regularization, and a learning system to balance old and new classes have become three

essential components for class incremental learning.

2.2.3 Discussion

Different from previous approaches, the proposed method applies a pretrained feature extractor

to obtain a consistent feature representation. Probabilistic Principal Component Analysis (PPCA)

(Tipping and Bishop, 1999) models are used to approximate the complexity of the extracted features

for each class. The classification scores of the extracted feature vector of an image are related to

the log-likelihoods of the PPCA distribution of the classes. The Gaussian distribution representing

each image class remains the same when new classes are added, therefore catastrophic forgetting

does not occur in this case.

2.3 Proposed Method

In this section, we describe the proposed Incremental PPCA method and explain how it facili-

tates Incremental Learning.

Section 2.3.1 gives a formal definition of Incremental Learning. Section 2.3.2 delivers an overview

of the Incremental PPCA architecture. Section 2.3.3 explains how the representative features

are extracted, Section 2.3.4 states the underlying assumption about the data and obtains the

6



Probabilistic PCA model. Section 2.3.5 details the training and Section 2.3.6 explains how the

model can be sped-up for computation efficiency.

2.3.1 Problem Definition

More formally, an incremental learning problem τ consists of a sequence of T tasks:

τ = [(C1, D1), (C2, D2), ....(CT , DT )] (2.1)

where each task t is represented by a set of classes Ct = {ct1, ct2, ...ctKt
} and training data Dt.

We consider the class incremental classification problems in which the classes Ct are disjoint

for each task. Let Dt = {(I1, y1), (I2, y2), ...(Int , ynt)}, where Ik are the input images and yk ∈ Ct

are the corresponding ground truth labels.

Figure 2.1: Diagram of the proposed Incremental PPCA method.

2.3.2 Incremental PPCA Architecture

As shown in Figure 2.1, the Incremental PPCA method can be written as y = argmink rk(f(I)),

consisting of two main components: a feature extractor f and a classifier r. We interpret the

convolutional part of a CNN model as a feature extractor f : Ω → Rd, where Ω is the space of

input images. Incremental PPCA takes as a feature extractor a frozen convolutional section of a

model pretrained on a large-scale dataset. The underlying design and choice of feature extraction

are detailed in Section 2.3.3.

Instead of using fully connected layers for classification, the classifier is designed based on

the idea of Probabilistic Principal Component Analysis (PPCA) (Tipping and Bishop, 1999). In

each training stage, Incremental PPCA encodes the information about each class in a Gaussian

distribution with parameters θk for class k. In the inference stage, the classification results are

decided by the log-likelihood scores of each image to each PPCA class model. In practice, a

more computationally efficient classification equation is used to avoid large computational expenses
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involved in multiplying with a full covariance matrix. The underlying assumption and theoretical

framework are detailed in Section 2.3.4.

2.3.3 Feature Extraction

As a major obstacle for Incremental Learning, catastrophic forgetting happens because the

information about the new classes overwhelms the information about the old classes stored in the

model. Hou et al. (2019) reveals that the imbalance between old classes and new classes is the

main challenge causing catastrophic forgetting. A common underlying solution is to encourage the

feature extractor to generate consistent features in the process of training with new classes. LwF

(Li and Hoiem, 2017) uses the distillation loss as a regularization term. This pioneer loss design

became a popular approach to avoid catastrophic forgetting. iCarl(Rebuffi et al., 2017) goes one

step further by introducing exemplars to store the information about the old classes. Yet even

with these efforts, the performance of existing incremental learning methods falls behind by a large

margin compared to the joint training of old and new classes. In practice, we choose two different

pre-trained models as feature extractor. The choice and implementation of the feature extractors

are detailed in Section 3.1.3.

To overcome catastrophic forgetting, the feature extractor needs to generate consistent features

for the old classes when training with new classes. The choice of feature extraction follows a simple

and intuitive solution: if the feature extractor is frozen in the training stage, the features of the

old classes will remain consistent.

Incremental PPCA adopts as a feature extractor a CNN pretrained on a large dataset in a self-

supervised manner. This feature extractor remains frozen at all times during the class incremental

training process. The features are generated as x = f(I) where x ∈ Rd is the feature extracted as

a d dimensional vector from the image I ∈ Ω using the feature extractor f : Ω → Rd.

The underlying assumption supporting this design is that with proper training, the feature

extractor is able to generate features that are invariant enough to different transformations such as

rotation, translation, and scaling, yet contain enough information about objects without training

on a specific dataset.

The experimental results indicate that an approach based on feature extraction can obtain a

competitive test accuracy. Compared to previous approaches, training the proposed Incremental

PPCA is computationally efficient because the feature extractor is frozen and the model for each

class is trained separately on the observations from that class and does not need retraining when
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more classes are added. In experiments, we will also explore the influence of other essential factors

such as image preprocessing and model complexity.

2.3.4 Probabilistic PCA Classification

The basic classification unit is constructed by Probabilistic Principal Component Analysis

(PPCA) (Tipping and Bishop, 1999). Each image class is encoded as a Gaussian Distribution

by PPCA. PPCA has the capability to model instances for one class using a low dimensional

representation that is localized near a center µ.

In the framework of PPCA, a latent variable model seeks to relate a d-dimensional observation

vector x to a corresponding q-dimensional vector of latent (or unobserved) variables t.

x = Wt+ µ+ ϵ. (2.2)

The d × q matrix W relates the two sets of variables. µ ∈ Rd represents the nonzero mean of

observations. The latent vector t ∼ N (0, Iq) contains i.i.d. Gaussians with unit variance, while ϵ

represents Gaussian noise, ϵ ∼ N (0, σ2Id), so the probability distribution of x given latent variable

t is

x|t ∼ N (Wt+ µ, σ2Id). (2.3)

By integration of the latent variable t, the marginal distribution of x is

x ∼ N (µ,Σ), Σ = WWT + σ2Id. (2.4)

Using Equation (2.4), we can characterize each class as a Gaussian with mean µk and covariance

matrix Σk. Thus the classifiers of Incremental PPCA use the likelihood

p(x|y=k)=
1

(2π)d/2|Σk|1/2
exp(−1

2
(x− µk)

TΣ−1
k (x− µk)), (2.5)

which in log terms, without the common factor (2π)d/2, is simplified to the class k score:

sk(x)=−2 log p(x|y=k)= log |Σk|+ (x− µk)
TΣ−1

k (x− µk), (2.6)

where a smaller value is better.

In practice, we will use a simpler score (the Mahalanobis distance)

rk(x) = (x− µk)
TΣ−1

k (x− µk) ≥ 0, (2.7)

which differs from sk(x) from Eq. (2.6) by the log determinant term log |Σk|. We observed that

slightly better results are obtained this way.
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2.3.5 Incremental PPCA Training

Training the PPCA model for class k means finding the µk and Σk = WkW
T
k + σ2Id. This is

done by standard PCA using the class k observations x1, ...,xn ∈ Rd. The mean µk is:

µk =
1

n

n∑
i=1

xi,

and the PPCA covariance matrix is

Σk = LDLT + λId, (2.8)

where λ > 0 is a small number (e.g. λ = 0.01 in our experiments) and L consists of the first q < d

columns of V, where

VDVT =
1

n− 1

n∑
i=1

(xi − µk)(xi − µk)
T (2.9)

is the SVD decomposition of the sample covariance matrix.

The parameter q represents the dimension of the linear subspace that models the variability of

the class k observations. We will use the same value of q for all classes and experiments will show

how the choice of q influences the model performance.

2.3.6 Efficient Computation

When d is large (e.g. d = 1000), computing the score for each observation involves multiplication

with a large d× d matrix, which can be expensive.

Fortunately, denoting by d ∈ Rq the vector containing the first q elements of the diagonal

matrix D from Eq. (2.9), the score (2.7) can be computed faster using the following

Theorem 1. The score (2.7) can also be written as:

r(x) = ∥x− µ∥2/λ− ∥u(x)∥2/λ, (2.10)

where u(x) = diag(
√
d√

d+λ1q
)LT (x− µ), and the determinant is:

log |Σ| = (d− q) log λ+

q∑
i=1

log(di + λ). (2.11)

Here diag(v) constructs a square matrix with diagonal elements v, and
√
v for a vector v is

computed element-wise. Observe that computing r(x) using Eq. (2.10) could be 10-100 times faster

than (2.7) since it only involves multiplication with the q × d skinny matrix LT where q is usually

10− 100 times smaller than d.
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Proof. We have

VTΣV = VT (LDLT + λId)V = diag(d, 0, ..., 0) + λId = diag(d+ λ, λ, ..., λ)

because VTV = VVT = Id and LTV = (Iq,0).

Thus:

VTΣ−1V =diag(
1

d+ λ
, 1/λ, ..., 1/λ) = Id/λ+ diag(

1

d+ λ
− 1

λ
, 0, ..., 0)

so

VTΣ−1V = Id/λ− diag(
d

λ(d+ λ)
, 0, ..., 0)

and

Σ−1 = V(Id/λ+ diag(
d

λ(d+ λ)
, 0, ..., 0))VT = Id/λ− Ldiag(

d

λ(d+ λ)
)LT .

The score is now:

r(x) = (x− µ)TΣ−1(x− µ) =
1

λ
(x− µ)T(x− µ)− (x− µ)TLdiag(

d

λ(d+ λ)
)LT(x− µ),

from which Eq. (2.10) follows.

2.3.7 Computation Complexity

In this section, we are interested in the computation complexity of the Incremental PPCA

method for training and testing in terms of the number N of observations, dimension d of the

feature vector, number K of classes, and number q of principal vectors. Since the computation

complexity of the feature extractor is O(N), it will be ignored.

For training, accumulating the K covariances (e.g. using running averages) takes O(Nd2) time.

Computing the PCA for the K classes takes Kd3, thus the total training time is O(Nd2 +Kd3),

so it is linear in the number N of training observations and the number of classes K, and cubic in

the dimension d of the feature representation. In practice, d is on the order d ∼ 1000 − 4000, so

the PCA computation is fast.
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CHAPTER 3

EXPERIMENTAL RESULTS AND ABLATION

STUDY FOR INCREMENTAL PPCA

3.1 Experiments

In this section, we use a standard protocol for evaluating incremental methods and compare

the proposed Incremental PPCA classification accuracy to the state-of-the-art methods. We also

explain how the Incremental PPCA is implemented in detail.

3.1.1 Datasets

We apply Incremental PPCA to four image datasets. Three of the datasets have been extensively

used in the incremental learning literature: CIFAR-100 (Krizhevsky, 2009), ImageNet-100, and

ImageNet-1k (ILSVRC 2016) (Deng et al., 2009). ImageNet-100 is a subset of ImageNet-1k with

only 100 classes, randomly sampled from the original 1000. The choice of these datasets facilitates

the comparison with existing incremental methods from the literature. The fourth dataset is

Imagenet-10k, the subset of the whole ImageNet (Deng et al., 2009) that contains all 10,450 classes

that have at least 450 training observations.

3.1.2 Evaluation Protocol

We evaluate the proposed method using the protocol introduced by Hou et al. (2019). We start

with a model trained on a random subset containing half the classes (ie., 50 for CIFAR-100 and

ImageNet-100, 500 for ImageNet-1k, 5225 for ImageNet-10k). Then the remaining classes (e.g. 50

for CIFAR-100 and ImageNet-100) are incrementally added. They are equally divided among all

steps, for example, we could have 5 steps of adding 10 classes each time for CIFAR-100. In this

case, there are 6 learning tasks in total. The trained model is evaluated after each step on the test

sets of all classes that were trained so far. To facilitate the comparison, the process is repeated 5

times and the final step accuracy is averaged into a unique score called average accuracy (Rebuffi

et al., 2017).
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3.1.3 Incremental PPCA Implementation

As a feature extractor, we choose a model that has been trained in a self-supervised way on a

different dataset than those evaluated. CLIP (Contrastive Language-Image Pre-Training)(Radford

et al., 2021) is a CNN trained on 400 million image-text pairs obtained from the web from 500,000

text queries. The image CNN part of the CLIP model adopts the popular attention mechanism as

the last layer before the classification layer. We used a pre-trained modified ResNet-50 classifier

called RN50x4 from the CLIP GitHub+ package (OpenAI, 2022).

SWSL is a student model whose teacher is trained on 940 million images with 1500 hashtags

matching the 1000 ImageNet synsets. The student is trained on a subset of 64 million images

selected by the teacher. The SWSL model we use is a pre-trained standard ResNet-50, called

resnet50_swsl from the Facebook Research model repository on GitHub (Facebook, 2022).

The input images are resized to 288 × 288 except for CIFAR-100 where they were resized to

144×144. The features were extracted before the classification layer using the classifier’s attention

pooling layer, except for CIFAR-100 where average pooling was used instead. The dimension of

the extracted features was d = 640 except for CIFAR-100 where it was d = 2560.

All experiments were implemented using the PyTorch framework. After all the features were

extracted, a separate PPCA model was trained on the training data from each class, as described

in Section 2.3.5. Observe that these models do not change no matter what or how many other

classes are added. Training the PPCA models takes about 20s per class on a NVIDIA GeForce

RTX3080m GPU laptop, thus about 5.6h for 1000 classes.

3.1.4 Results

We evaluate the Incremental PPCA mainly by its classification performance on the validation

set of the four datasets. The classification performance is compared with four state-of-the-art

models. The models deliver quite remarkable performance, as shown in Table 3.1. Some of their

main components are designed with an underlying philosophy similar to Incremental PPCA. As a

baseline, BIC (Wu et al., 2019) stated that traditional Neural Networks have a strong bias toward

the new classes. BIC adopts a linear model as the classifier. iCarl (Rebuffi et al., 2017) and UCIR

(Hou et al., 2019) both use the Nearest-Mean-Exemplar (NME) for classification. UCIR also uses

a second inference method based on probabilities (UCIR-CNN).
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Table 3.1: Average incremental accuracy for Incremental PPCA vs state-of-the-art. The
Incremental PPCA results are averages of 5 independent runs.

CIFAR-100 ImageNet-100 Imagenet-1K Imagenet-10k

5 steps 10 steps 5 steps 10 steps 5 steps 10 steps 5 steps 10 steps

iCarl(Rebuffi et al., 2017) 57.17 52.57 65.04 59.53 51.36 46.72 - -
BIC(Wu et al., 2019) 56.86 53.21 68.97 65.14 45.72 44.31 - -
UCIR(NME)(Hou et al., 2019) 63.12 60.12 68.43 66.16 61.56 59.92 - -
UCIR(CNN)(Hou et al., 2019) 63.42 60.18 70.47 68.09 64.34 61.28 - -
PODNet(Douillard et al., 2020) 64.83 63.19 75.82 73.14 66.95 64.13 - -

PPCA-CLIP 69.71 69.71 82.02 82.02 71.25 71.25 35.42 35.42
PPCA-SWSL 77.07 77.07 86.78 86.78 76.89 76.89 34.39 34.39

RBF-CLIP 47.60 47.60 77.58 77.58 64.84 64.84 28.83 28.83
RBF-SWSL 68.64 68.64 84.14 84.14 73.414 73.414 25.81 25.81

All the comparable models discard the neuron-based structure and explore new classification

structures. So the comparison with these models can be an opportunity to evaluate the power of

the PPCA-based classifier.

We also compare with a simpler classifier based on the nearest Euclidean distance to the obser-

vation means µk instead of the Mahalanobis distance (2.7):

rk(x) = ∥x− µk∥2. (3.1)

This classifier is shown as RBF-CLIP and RBF-SWSL in Table 3.1.

CIFAR-100. The CIFAR-100 dataset contains images of size 32×32 pixels. The CLIP feature

extractor is trained with images of size 288× 288, so it will not work best with such small images

even when resized to 288×288. To gain the best inference performance, experiments were designed

to find the best input size for CIFAR-100. The experiments, discussed in Section 3.2.1, reveal that

the best input size is 144 × 144 when the feature extractor is from CLIP, the best input size is

128× 128 when the feature extractor is SWSL. From Table 3.1, we can see the Incremental PPCA

with CLIP obtains an average accuracy of 69.71%, outperforming the state of the art by almost 5%.

SWSL obtains an average accuracy of 77.07%, surpassing the previous state-of-the-art PODNet by

12.34%.

The RBF-CLIP experiment shows that when only the class means µk are used, obtaining RBF-

style neurons, the average accuracy drops drastically to 47.6% with CLIP. The average accuracy

drops to 68.64% with SWSL. This result indicates that the PPCA model is capable of capturing

meaningful variation in the data, much better than the Euclidean distance to the class means.
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ImageNet-100. ImageNet-100 contains 100 randomly selected classes from the ILSVRC2016

dataset. The images have a comparable size to the size the CLIP feature extractor has been trained

on. From Table 3.1, when the feature extractor is CLIP, the average accuracy on the ImageNet-100

validation set has reached 82.02%, surpassing the next best method (PODNet) by 6.2%. When the

features extractor is SWSL, the average accuracy is 86.78%, surpassing PODNet by 10.96%.

Considering that the CLIP feature extractor was not trained on ImageNet-1k or ImageNet-

100, the performance of Incremental PPCA indicates that using a pretrained feature extractor can

obtain meaningful features for classification. Again, the RBF-CLIP falls behind PPCA-CLIP by

about 5%.

ImageNet-1k. ImageNet-1k is a more challenging dataset, containing 1000 classes. The

images are also comparable in size with the size the feature extractor has been trained with. From

Table 3.1, Incremental PPCA with CLIP as feature extractor has reached 71.25% average accuracy.

The performance has surpassed the state of art PODNet by 4.3% and RBF-CLIP by more than

6%. Incremental PPCA with SWSL as feature extractor has reached 76.89% average accuracy.

The performance has surpassed the state of art PODNet by 12.76% and RBF-CLIP by more than

3.45%.

ImageNet-10k. ImageNet-10k is the most challenging dataset, containing 10,450 classes and

11 million training images. None of the other methods report results on it, probably because it

is very large. From Table 3.1, Incremental PPCA with CLIP as feature extractor obtains 35.42%

average accuracy with 20 principal components. This is much better than random guessing, which

would have an accuracy of 0.01% in this case. At the same time, the RBF-CLIP that just uses the

class means µk and the Euclidean distance obtains a 28.83% accuracy, a 6.59% difference.

3.1.5 Discussion

The results from Table 3.1 indicate that the proposed PPCA-CLIP method can outperform the

state-of-the-art incremental class learning methods by at least 4% on all three datasets where a

comparison can be obtained. Moreover, it can obtain reasonable classification results on ImageNet-

10k, a dataset with 10,450 classes and more than 11 million images.

Furthermore, the RBF-CLIP classifier that just uses the class means and Euclidean distance for

classification falls behind by about 5% in accuracy. This shows that the PPCA model is capable

of capturing a meaningful representation of the data that goes beyond just radial basis functions

and Euclidean distance.
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Table 3.2: Average accuracy of PPCA-CLIP on CIFAR-100 for different input sizes and
numbers of principal components.

Input size 0PC 5PC 10PC 20PC 50PC 100PC 200PC

32× 32(original) 7.05 21.04 21.04 25.7 27.37 28.60 28.58
36× 36 (avg pooling) 7.47 22.26 24.83 26.66 28.9 29.55 29.51
72× 72 (avg pooling) 40.32 53.43 55.04 55.04 58.89 59.56 60.07
144× 144 (avg pooling) 47.60 61.57 64.34 66.58 68.50 69.56 69.71
288× 288 (avg pooling) 30.97 51.09 56.35 60.48 63.94 65.05 65.71

288× 288 (with attention) 40.88 55.29 58.54 61.44 62.78 62.14 61.26

Table 3.3: Average accuracy of PPCA-SWSL on CIFAR-100 for different input sizes and
numbers of principal components.

Input size 5PC 10PC 20PC 50PC 100PC

32× 32(original) 41.62 44.14 45.4 47.17 48.41
64× 64 61.93 63.4 64.72 66.08 66.63
128× 128 73.53 75.02 75.97 76.89 77.07
256× 256 69.32 71.68 73.51 74.98 74.92

224× 224 (default) 69.03 71.17 72.8 73.72 74.43

3.2 Ablation Study

In this section, we evaluate the contribution of different hyper-parameters to the proposed

Incremental PPCAmethod’s accuracy. There are two essential components of the proposed method:

feature extraction and the PPCA classifier. The size of the feature extractor’s input influences the

quality of the extracted features. In Section 3.2.1, we will see how the input size changes the

accuracy of the Incremental PPCA method for CIFAR-100. The number of principal components

(PCs) decides how much complexity is encoded for each class. Its effect will be analyzed in Section

3.2.2.

3.2.1 The Input Image Size

As shown in Table 3.2 and Table 3.3, the PPCA accuracy varies with the size of the feature

extractor input. The CLIP feature extractor is trained with high resolution (288×288) images,

while the images of the CIFAR-100 dataset are 32 × 32. If these images are resized to 288 × 288,

they will look very blurred. The experiment aims to explore how the input size improves the

performance on low-resolution images. It might as well be possible that the 288× 288 input might

not be the best setting for low-resolution images for the high-resolution feature extractor.
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CLIP SWSL

Figure 3.1: Incremental PPCA with different input sizes on CIFAR-100.

Table 3.4: Average accuracy of PPCA-CLIP on ImageNet-100, ImageNet-1k and
ImageNet-10k for different numbers of principal components.

Input size 0PC 5PC 10PC 20PC 50PC 100PC 200PC

ImageNet-100 with CLIP 77.58 80.92 81.26 82.02 81.24 79.92 78.12
ImageNet-100 with SWSL 84.14 86.22 86.78 86.58 86.72 86.76 86.78

ImageNet-1k CLIP 64.84 69.16 70.73 71.25 69.93 68.11 65.79
ImageNet-1k with SWSL 73.41 76.46 76.81 76.89 76.76 76.57 76.04

ImageNet-10k CLIP 28.83 33.49 34.85 35.42 34.80 33.28 31.01
ImageNet-10k SWSL 25.81 31.75 33.39 34.39 34.75 34.40 33.56

The evaluation of input size is based on the experiment with 5 steps of 10 classes on CIFAR-100.

Table 3.2 and Table 3.3 shows the contribution of the input size to the method’s accuracy. If the

image is input without resizing, the method’s accuracy is very poor. When the feature extractor

is SWSL, the original preprocessing that resizes the images to 224× 224 doesn’t produce the best

performance. When the 32 × 32 images are resized to 128 × 128, the average accuracy reaches a

maximum of 77.07%.

When the feature extractor is CLIP, the original preprocessing that resizes the images to 288×

288 doesn’t produce the best performance either. When the 32×32 images are resized to 144×144,

the average accuracy reaches a maximum of 69.71%. The results are also shown as a graph in Figure

3.1.
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3.2.2 The Number of Principal Components

The number of principal components q is an essential hyperparameter that influences the

method’s accuracy. Theoretically, q represents the dimension of the (linear) manifold fitting the

observations in each class.

We design an experiment to explore the relationship between the number of principal compo-

nents and classification accuracy. Again, the evaluation is based on the experiment with 5 steps

of 10 classes on CIFAR-100, ImageNet-100, ImageNet-1k, and ImageNet-10k. We use 0 principal

components as a baseline in which case no variations are encoded. Even though the SWSL is

fine-tuned on ImageNet-1k, the results with SWSL can also be representative for the ResNet-based

models. Figure 3.1 reveals that the average accuracy saturates as the number of PCs is increased

CLIP SWSL

Figure 3.2: Incremental PPCA with different number of principal components on the
ImageNet datasets evaluated.

for CIFAR-100, the same phenomenon for all input sizes evaluated.

Table 3.4 and Figure 3.2 show that the average accuracy for the ImageNet datasets increases

with the number of principal components until the number of PCs reaches 20, after which the

average accuracy drops gradually.

These experiments reveal that an appropriate number of principal components can retain a

balance between overfitting and lack of variation to reach an optimal classification accuracy.
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3.3 Conclusion

We presented a novel and simple method for large-scale class incremental learning with pre-

trained feature extractors and a classifier based on probabilistic PCA models. The pretrained

feature extractor guarantees that the generated features are consistent during the whole training

process. The PPCA-based classifier is able to encode the complexity of each image class using

a low dimensional representation and small computational expenses. This approach can prevent

catastrophic forgetting to a large extent.

The proposed method outperforms existing state-of-the-art methods in incremental class learn-

ing on three standard datasets used in the literature. Furthermore, it obtains reasonable classi-

fication results on ImageNet-10k, the subset of ImageNet containing all classes with at least 450

training images, for a total of more than 11 million images.

The performance of Incremental PPCA reveals that generic pretrained models have the ability

to extract meaningful features from images and gain promising performance without being trained

on labeled data.

Humans are capable of classifying millions of classes of objects and of learning a new object class

from only 1-2 examples. However, humans are the subjects of millions of years of evolution, which

can be seen as a kind of supervised learning since the fittest specimens (e.g. fit for understanding

images) are better at reproduction and evolution. Thus the human brain is pre-wired by evolution

to be able to accomplish these large scale classification tasks. The pretrained feature extractor that

we use in the Incremental PPCA can be seen as the analog of the pre-wired brain in humans and

other mammals.
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CHAPTER 4

HIERARCHICAL CLASSIFICATION FOR LARGE

SCALE LEARNING

4.1 Introduction

Deep learning models emerged to surpass human performance on multiple vision tasks (He et al.,

2015; Zhang et al., 2021). Artificial neural networks have layers of biologically inspired neurons

that are learned by gradient descent (Bishop, 1994; Werbos, 1990). Despite their success, the deep

learning models are regarded as a black box because the process in which the individual neurons

generate outputs is not interpretable (Samek et al., 2017; Ribeiro et al., 2016). The deep learning

methods do not construct a hierarchy of concepts explicitly and therefore require training on large

labeled datasets from the same distribution as the desired task (LeCun et al., 2015).

Jeon (2014) stated that human cognitive architecture is composed of substructures as in hierar-

chical processing. Bergman et al. (2003) has proposed that rule-based hierarchical classification is

biologically inherited by humans or other non-human mammals like baboons. Humans can estab-

lish hierarchical semantic relations between categories, which are learned by much fewer samples

than deep learning models. Models like symbolic systems attempted to simulate the high-level rea-

soning processes of humans (classification logic and temporal logic). Garcez et al. (2008) proposed

a framework known as a neural symbolic system artificial neural networks (ANNs). It provides the

framework for parallel computation and robust learning while logic units provide interpretability.

However, most symbolic systems often require problem-specific manual tuning features (Gardenfors,

2004) and are not able to learn features from raw input data (Minsky, 1991).

Inspired by our understanding of human hierarchical cognition, we propose a hierarchical frame-

work for object classification called Hierarchical PPCA. We use a 2-level taxonomy to model the

semantic hierarchy of image classes. Image classes are conceptualized as Gaussian distributions

with Probabilistic Principal Component Analysis (PPCA) models. Instead of standard neurons,

the classifier is constructed using PPCA neurons. We assume image classes with similar semantic

information will cluster together, each semantic cluster is characterized by its centroid which we

called a super-class. With this assumption, we modified the k-means clustering algorithm to ex-
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plore underlying semantic relations and build the class hierarchy. In the classification, an image

of a cat will first be assigned to a super-class like ’animals’ and then classified among the image

classes associated with the ’animal’ super-class. This hierarchical scheme facilitates sparse neuron

firing and takes much fewer computation resources than the traditional structure. If the dataset

contains K classes, the hierarchical model can classify images in O(
√
K) time instead of O(K) as in

standard classification. Experiments have shown that Hierarchical PPCA can applied to large-scale

datasets with superior accuracy and efficiency.

The main contributions of Hierarchical PPCA are:

1. It introduces a hierarchical classification model for learning from datasets with a large num-

ber of classes, without hierarchical annotation. The image classes are modeled as Gaussian

distributions based on Probabilistic PCA (PPCA). The model reduces the classification time

for observation from O(K) to O(
√
K), and potentially to O(logK) when using more hierarchy

levels, where K is the number of classes.

2. It presents an efficient training procedure based on a generalization of k-means clustering that

clusters image classes instead of features. This design can handle unbalanced data where the

number of observations in each class can differ widely.

3. It conducts experiments on large-scale datasets that show that indeed the hierarchical ap-

proach can speed-up classification without any loss in accuracy.

4.2 Related Work

4.2.1 Hierarchical Clustering

Hierarchical clustering (HCA) is an unsupervised method of cluster analysis that seeks to build

a hierarchy of clusters (Day and Edelsbrunner, 1984). Much early work on hierarchical clustering

was in the field of biological taxonomy.

Agglomerative clustering (Gowda and Krishna, 1978) is a dominant HCA method that works

in a bottom-up manner. The main idea behind agglomerative clustering is to find the closest pair

of clusters and merge them together. This process is repeated until all the data points are merged

into a single cluster. The distance between two clusters is usually measured using a distance metric,

such as the Euclidean distance or cosine similarity. The most common method for merging two

clusters is the single linkage method, which merges the two clusters that are closest to each other.

One of the main advantages of agglomerative clustering is its simplicity and ease of implementation.

It is also useful for identifying hierarchical structures within the data, as it produces a dendrogram
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that shows how the clusters are nested within each other. This can be useful for visualizing the

relationships between different groups of data. However, agglomerative clustering can be compu-

tationally expensive and may not scale well to large datasets. Agglomerative clustering for n data

points has a time complexity of O(n3) and requires O(n2) memory, which makes it unpractical for

even medium datasets.

Another variant of HCA is divisive clustering (Samek et al., 2017), which works in a top-down

manner. The algorithm starts at the top with all observations in one cluster. The cluster is split

using a flat clustering algorithm. This procedure is applied recursively until each observation is

in its own singleton cluster. Top-down clustering is conceptually more complex than bottom-up

clustering. Divisive clustering with exhaustive search is O(2n), but it is common to use faster

heuristics to choose the splits, such as k-means. However, divisive clustering is more efficient if it

does not generate a complete hierarchy all the way down to individual observations. Hierarchical

clustering has the distinct advantage that any valid measure of distance can be used. However, due

to its limitations on time complexity, it might not applicable to large-scale datasets.

4.2.2 Hierarchical Models for Vision Tasks

Some efforts aim to explore the hierarchical semantic nature for vision tasks (Tousch et al.,

2012). Kumar and Zheng (2017) propose a model that learns the visual similarities between various

clothing categories and predicts a tree of categories. They propose a novel object detection method

that can handle newer categories without the need of obtaining new labeled data and retraining the

network. Jia et al. (2013) propose a hierarchical framework capable of learning visual abstraction

from a small number of images. Zweig and Weinshall (2007) utilize the hierarchical nature for class

recognition. It combines image classifiers from different hierarchical levels into a single classifier

to improve classification accuracy. Marszalek and Schmid (2007) utilize the semantics of image

labels to integrate prior information about inter-class relationships into visual concept learning.

They built a semantic hierarchy of discriminative classifiers for object detection. Srivastava and

Salakhutdinov (2013) propose a method that benefits from CNN and a hierarchical prior knowledge

when the training set is small. They have shown that the label tree prior can be used to transfer

knowledge between classes and boost performance with insufficiently many training examples are

available.

This dissertation proposes a new framework applicable to the classification of large-scale datasets

with thousands or even millions of classes. By utilizing PPCA to construct classification units,
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Figure 4.1: Diagram of the hierarchical classification with Gaussian superclasses and
Probabilistic PCA classes.

Hierarchical PPCA is capable of controlling and localizing the information encoded for each image

class. A special k-means clustering algorithm is introduced to build a hierarchy between image

classes and a small number of super-classes to speed up classification. Experiments show that

Hierarchical PPCA can obtain superior accuracy with less computational expense.

4.3 Proposed Approach

Inspired by the human hierarchical representation of objects, this dissertation proposes a hier-

archical classification framework that exploits the semantic information of image classes.

As shown in Figure 4.2.2, the classification of an input image I is represented as y = argmink rk(f(I)),

based on a feature extractor f and a number of class models rk(x).

4.3.1 Feature Extraction

The feature extractor f : Ω → Rd aims to generate informative features from the input images,

where Ω is the space of input images. In practice, Hierarchical PPCA adopts a CNN pretrained on

a large dataset as a feature extractor. The intuition of this choice is that with proper training, the

feature extractor is able to generate features that are invariant enough to different transformations

such as rotation, translation, and scaling, yet contain enough information about objects without

23



training on a specific dataset. The implementation of the feature extractor is detailed in Section

5.1.2.

4.3.2 Hierarchical Classifier

Newman et al. (2010) stated that human cognitive architecture is built up of a hierarchy of

multiple system levels. Humans, even babies, use the hierarchical cognition system to conduct

categorization without training with huge numbers of images. Inspired by this finding about human

hierarchical cognition, the classifier is modeled as a 2-level taxonomy. It aims to organize the

information with two levels of abstraction.

In the proposed Hierarchical PPCA model, each image class is conceptualized as a Gaussian

distribution by Probabilistic Principal Component Analysis (PPCA) (Tipping and Bishop, 1999).

As the basic classification unit, each PPCA neuron represents a class. The theoretical assumptions

of PPCA are detailed in Section2.3.4 and Section2.3.5. The first level of the classifier consists

of PPCA neurons representing super-classes. The second level of the classifier consists of PPCA

neurons encoding information about image classes. The essential assumption is that image classes

with similar semantic information cluster together. A cluster is characterized by its centroid which

we call a super-class. A super-class maintains the least distance to the image classes belonging to

the same cluster. If there are K image classes to be classified (e.g. K = 1000 for ImageNet), they

are divided into S disjoint sets K1, ...,KS such that:

∪S
s=1Ks = {1, ...,K}

In the framework of Hierarchical PPCA, the first level models (the super-classes) are represented

as (µ(k),Σ(k)), with k ∈ {1, ..., S}, where S is the number of super-classes. For a super-class

s ∈ {1, ..., S}, the corresponding image classes are represented as (µk,Σk) with k ∈ Ks.

4.3.3 Hierarchical classification

Given an observation x ∈ Rd, the first level classifier aims to find the most likely super-class

s for the observation, a process called super-classification. After the sample x is assigned to a

super-class s, the second level of the classifier will find the most likely image class among image

classes k ∈ Ks associated with super-class s. This process is called image classification. Since both

level models are Gaussians, we will use the Mahalanobis distance

r(x;µ,Σ) = (x− µ)TΣ−1(x− µ) ≥ 0, (4.1)
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to measure how well an observation x ∈ Rd fits the Gaussian model (µ,Σ), where a smaller score

is better. In practice, classification involving high dimensional features, we derived a computation

efficient method which is detailed at Section 2.3.6.

However, any super-classification failure would result in the failure of the whole classifier. To

avoid the impact of such failures, instead of considering a single most likely super-class, the hierar-

chical classifier will consider a number T of the most likely superclasses, as described in Algorithm

1. In experiments, T was taken in the range of T ∈ {1, 2, 3, 4}.

Algorithm 1 Hierarchical Classification

Input: Observation x ∈ Rd, super-class models (µ(s),Σ(s)), s ∈ {1, ..., S},image class models

(µk,Σk), k ∈ {1, ...,K}.

Output: Predicted class label k̂ ∈ {1, ...,K}.
1: Compute the super-class scores vs = r(x;µ(s),Σ(s)), s ∈ {1, ..., S}
2: Find the indices J ⊂ {1, ..., S}, |J | = T of the T lowest scores vj , j ∈ J

3: Compute the index set U = ∪j∈JKj

4: Obtain the predicted class label

k̂ = argmin
k∈U

r(x;µk,Σk)

4.3.4 Computation Complexity

The computation demand of a model can be measured by the average number of neurons used

in the classification. For an incoming sample feature, a flat classifier requires the computation of

the scores for all K image classes to generate the classification output. In contrast, Hierarchical

PPCA requires the score computation for all S super-classes and the score computation of the

image classes corresponding to the top T the super-classes. Let A to denote the average number

of image classes associated with one super-class. The computation cost for one classification in

Hierarchical PPCA is therefore S + TA neurons (score computations).

We use two measures to evaluate the computational cost of Hierarchical PPCA compared with

the flat classification. The density is defined as

density =
S + TA

K
. (4.2)

The inverse of the density measures the speed-up of Hierarchical PPCA compared to flat classifi-

cation
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speed-up = K/(S + TA). (4.3)

Assuming the image classes are uniformly distributed for clusters then the density is

density ∼ S +KT/S

K
=

S

K
+

T

S
. (4.4)

From an efficiency perspective, the density reaches a minimum when S =
√
KT , where the speed-

up reaches the maximum of O(
√
K/T ). The experimental results in Section 5.2 match with our

theoretical derivation.

4.4 Training the Hierarchical Classifier

One important assumption is that image classes with similar semantic information form clusters

in the feature space. With this assumption, we adopt a variant of the k-means algorithm to explore

the semantic structure of image classes and train the hierarchical classifier. The difference from the

standard k-means is that instead of clustering observations, the proposed algorithm clusters image

classes encoded as Gaussian distributions. The advantage of this approach is that it only needs

to cluster a small number of elements (e.g. 1000 Gaussian distributions for ImageNet) instead of

millions of observations. Moreover, this kind of clustering is robust to data imbalance in the classes.

The training algorithm is summarized in Algorithm 2.

Algorithm 2 Hierarchical PPCA Training

Input: Training observations (xi, yi) ∈ Rd × Z, number S of super-classes, number q of PCs for

the image class models, number r of PCs for the super-class models.

Output: Super-class models (µ(s),L(s),d(s)), s ∈ {1, ..., S}, image class models (µk,Lk,dk), k ∈

{1, ...,K}.
Train the image class PPCA models (µk,Lk,dk), k ∈ {1, ...,K} (Section 4.4.1).

Initialize S super-class models using k- means++ (Section 4.4.2).

while not converged do

Assign the image classes to the super-classes using Eq. (4.11)

Update the super-class models based on the image classes in the same clusters (Section 4.4.4).

end while

The training procedure is a generalization of k-means clustering. The clustering subjects are

image classes encoded as Gaussian distributions instead of vectors. We innovate with the following

modification for the new clustering subjects:

26



• The distance measure between the image classes, which is used for the k-means++ initial-

ization (Arthur and Vassilvitskii, 2006b), is replaced from a Mahalanobis distance to the

Bhattacharyya distance between Gaussians (Section 4.4.2).

• The distance measure between an image class and a Gaussian super-class model is the KL

divergence, described in Section 4.4.3.

• The Gaussian super-class models are parameterized to minimize the sum of the KL-divergences

of the image class models, as described in Section 4.4.4.

These steps will be presented in the next sections, together with the training of the image class

PPCA models.

4.4.1 Training the Image Classifiers

The second level of the Hierarchical PPCA model contains PPCA models representing infor-

mation for the image classes. The PPCA neurons are trained with SVD decomposition separately

for each class as follows. If the feature vectors of all training observations of class k are gathered

as Xk, the mean µk is:

µk =
1

|Xk|
∑
x∈Xk

x

and the full covariance matrix is

Ck =
1

|Xk| − 1

∑
x∈Xk

(x− µk)(x− µk)
T . (4.5)

Then the PPCA covariance matrix is obtained from the sample covariance matrix Ck, via the SVD

decomposition

VSVT = Ck, (4.6)

as

Σk = LDLT + λId, (4.7)

where λ > 0 is a small number (e.g. λ = 0.01 in our experiments) and L consists of the first q < d

columns of V and D is the q × q diagonal matrix containing the first q rows and columns of S.

The same approach is used to obtain super-class PPCA models from the super-class covariance

matrices.
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4.4.2 Initialization by k-Means++

The performance of k-means relies significantly on its initialization. Arthur and Vassilvitskii

(2006a) showed that the worst-case running time of the k-means algorithm is super-polynomial in

the input size. We adopt the k-means++ (Arthur and Vassilvitskii, 2006b) initialization method to

accelerate the convergence speed and improve clustering performance. The process of k-means++

is detailed in Algorithm 3.

Algorithm 3 k-means++ centroid initialization

Input: Image classes represented as (µk,Σk) k ∈ {1, ...,K}, number S of clusters

Output. Initialized super-class models Cs = (µ(s),Σ(s)), s ∈ {1, ..., S}
Compute the matrix of distances between all pairs of image classes.

Randomly pick the first centroid C1

for i = 2 to S do

Update the distance between all image classes and the newly selected centroid Ci−1 in the

pairwise distance matrix

Generate the discrete distribution based on the distance of the image classes to their closest

centroids

Sample the image class xj from the discrete distribution generated

Initialize the super-class model Ci = (xj , Id)

end for

The elements that are clustered are the image classes represented by Gaussian distributions.

We adopt the Bhattacharyya distance to measure the pairwise distance between two distributions.

For two distributions P,Q, the Bhattacharyya distance is defined as

DB(P,Q) = − lnBC(P,Q), BC(P,Q) =

∫ √
P (x)Q(x)dx (4.8)

For Gaussian distributions, (µi,Σi) and (µj ,Σj), the Bhattacharyya distance is

Dij =
1

8
(µi − µj)

TΣ−1(µi − µj) +
1

2
ln

|Σ|√
|Σi||Σj |

, (4.9)

where Σ =
Σi+Σj

2 .

4.4.3 Assignment of Image Classes

In the training process, the image classes are assigned to the nearest cluster. A distance measure

is needed to measure the distance from image classes to the clusters, which are characterized by
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super-class Gaussian distributions. We adopt the Kullback–Leibler (KL) divergence (Kullback

and Leibler, 1951), denoted by DKL(P ∥ Q) to measure the distance between image classes and

super-classes. The KL divergence is a type of statistical distance: it measures how one probability

distribution P is different from a second, reference probability distribution Q.

DKL(P ∥ Q) =

∫
x
P (x) log

P (x)

Q(x)
dx. (4.10)

For our application, the image classes are chosen as P and the super-classes as reference distri-

butions Q. In this dissertation, all classes are encoded as Gaussian distributions, the KL divergence

between a super-class Q = (µ,Σ) and an image class P = (µi,Σi) is (Duchi, 2007)

DKL(P ∥ Q) =
1

2
{log |Σ|

|Σi|
− d+Tr[Σ−1Σi]}+ (µi − µ)TΣ−1(µi − µ)/2 (4.11)

4.4.4 Super-class Model Update

By our assumption of image classes, the super-class model is the centroid of the corresponding

cluster, i.e. the Gaussian distribution that has the smallest sum of the distances to the image

classes within the same cluster.

The image classes within a cluster C are normal distributions N(µi,Σi), i ∈ C. The corre-

sponding super-class model is a normal distribution N(µ,Σ) so that the sum of the distances from

the image classes to the super-class

D(µ,Σ) =
∑
i∈C

DKL(N(µi,Σi) ∥ N(µ,Σ)) (4.12)

is minimized, where DKL(P ∥ Q) is defined in Eq. (4.11).

The following theorem gives a closed-form solution of the minimization.

Theorem 2. The Gaussian distribution N(µ,Σ) that minimizes D(µ,Σ) from Eq. (4.12) has

parameters:

µ =
1

|C|
∑
i∈C

µi, (4.13)

and

Σ =
1

|C|
∑
i∈C

[(µi − µ)(µi − µ)T +Σi]. (4.14)

Proof. From (Duchi, 2007), the KL divergence between normal distributions P = N(µi,Σi) and

Q = N(µ,Σ) is

DKL(P ||Q) =
1

2
[log

|Σ|
|Σi|

− d+ (µi − µ)TΣ−1(µi − µ) + Tr{Σ−1Σi}], (4.15)
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so the sum is

D(µ,Σ) =
1

2

∑
i∈C

{log |Σ|
|Σi|

− d+ (µi − µ)TΣ−1(µi − µ) + Tr(Σ−1Σi)}. (4.16)

Setting the partial derivative of D(µ,Σ) with respect to µ

∂

∂µ
D(µ,Σ) =

∑
i∈C

Σ−1(µi − µ) (4.17)

to zero we obtain µ = 1
|C|

∑
i∈C µi.

Because (x−µ)TΣ−1(x−µ) can be written as Tr[(x−µ)TΣ−1(x−µ)], the third term of the

distance can be written as

∑
i∈C

Tr[(µi − µ)TΣ−1(µi − µ)] =
∑
i∈C

Tr[(µi − µ)(µi − µ)TΣ−1] (4.18)

So the distance can be written as

D(µ,Σ) =
1

2

∑
i∈C

(
log

|Σ|
|Σi|

+ Tr[(µi − µ)(µi − µ)TΣ−1] + Tr{Σ−1Σi}
)

=
1

2

∑
i∈C

log
|Σ|
|Σi|

+
1

2
Tr{

∑
i∈C

[(µi − µ)(µi − µ)T +Σi]Σ
−1}

(4.19)

Therefore the partial derivative of D(µ,Σ) with respect to Σ is

2
∂

∂Σ
D(µ,Σ) = |C|Σ−1 −Σ−1

∑
i∈C

[(µi − µ)(µi − µ)T +Σi]Σ
−1 (4.20)

Setting ∂
∂ΣD(µ,Σ) = 0 and multiplying to the left and to the right by Σ, we obtain

Σ =
1

|C|
∑
i∈C

[(µi − µ)(µi − µ)T +Σi]. (4.21)

After the covariance matrix is obtained by Eq. (4.14), the super-class PPCA model (µ,L,d)

is obtained by writing VSVT = Σ by SVD, and obtaining L as the first q columns of V and d as

the first q diagonal elements of S.
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CHAPTER 5

EXPERIMENTAL RESULTS AND ABLATION

STUDY FOR HIERARCHICAL PPCA

5.1 Experiments

Experiments are conducted to compare the accuracy and computation efficiency of Hierarchical

PPCA with flat classification: the 1-level classifier containing the same PPCA image models but

where the classification y = argmink rk(f(I)) finds the minimum score for an image I ∈ Ω among all

classes. Experiments are designed to explore how some of the main parameters such as the number

of super-classes, the number of principal components, and the parameter T from Algorithm 1

influence accuracy and computation efficiency.

5.1.1 Datasets

Experiments are conducted on three standard datasets: ImageNet-100, ImageNet-1k (ILSVRC

2016) Deng et al. (2009) and ImageNet-10k. ImageNet-100 is a subset of ImageNet-1k with only

100 classes, randomly sampled from the original 1000 classes. Imagenet-10k is the subset of the

whole ImageNet (Deng et al., 2009) that contains all 10,450 classes with at least 450 training obser-

vations. They are standard image datasets that are adopted to prove the robustness and facilitate

comparison. All results are reported as averages of 4 independent runs for better reproducibility.

5.1.2 Feature Extractor

The feature extractor f : Ω → Rd used in this work is the ResNet50x4 from CLIP (Contrastive

Language-Image Pre-Training)(Radford et al., 2021). CLIP models are pairs of image embedding

and language embedding models, trained on 400 million pairs of images and their corresponding

captions. It is trained on a wide variety of images with a wide variety of natural language supervision

that’s abundantly available on the internet. By design, the network can be instructed in natural

language to perform a great variety of classification benchmarks, without directly optimizing for

the benchmark’s performance. As such, it was not trained or fine-tuned on the three evaluation

datasets.
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The choice of the feature extractor is important for the validity of the assumption made for

hierarchical PPCA, which is that semantically similar classes cluster together.

5.1.3 Evaluation Measures

Efficiency Measure. There are two efficiency measures: density and speed-up. The density eval-

uates how much less computation is required for classification using Hierarchical PPCA compared

to flat classification. The theoretical definition and analysis were presented in Section 4.3.4. In

practice, density is defined as

density =
S +A

K
(5.1)

where A is the average number of image classes used, S is the number of super-classes and K is the

total number of classes. The speed-up is the inverse of density and measures the computational

efficiency of Hierarchical PPCA. The theoretical analysis indicates the density reaches a minimum

and the speed-up a maximum when S =
√
KT ,

Super-class accuracy. The super-classes are constructed without human annotation using k-

means clustering by exploring the semantic relations between the image classes. Classifying an

observation to the wrong super-class would result in a failure in the overall classification of this

observation. The super-class accuracy measures the top-T classification accuracy of the level 1

(super-class) classifier.

5.1.4 Raw Data Clustering

In Hierarchical PPCA, the superclasses are learned by clustering the image classes, which are

parameterized as Gaussian distributions. Another hierarchical method that will be evaluated is raw

data clustering, which is similar to Hierarchical PPCA, but the super-class models are obtained from

clustering a subsample of observations from the image classes instead of clustering the Gaussian

models of image classes.

In this experiment, 20 images are randomly sampled from each image class, obtaining a sample

of 20K images, where K is the number of image classes. The images are clustered with standard

k-means clustering.

5.1.5 Main Results

The main comparison of the Hierarchical PPCA, Hierarchical PPCA with raw data clustering,

and flat PPCA in terms of test accuracy and computational efficiency are shown in Table 5.1.
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Table 5.1: Evaluation in terms of test accuracy and speedup vs. flat classification of the
proposed Hierarchical PPCA Algorithm 1 with T = 1 and T = 4. Also shown are the raw
data clustering test accuracy and speedup results.

ImageNet-100 Imagenet-1k Imagenet-10k

Accuracy Speed up Accuracy Speed up Accuracy Speed up

Flat Classification 0.820 1.0 0.713 1.0 0.354 1.0

Hierarchical PPCA T = 1 0.802 4.4 0.602 10.5 0.298 43.5

Hierarchical PPCA T = 4 0.836 1.9 0.719 4.1 0.360 16.8

Raw data clustering T = 1 0.723 4.4 0.593 13.4 0.305 22.0

Raw data clustering T = 4 0.835 1.8 0.704 5.9 0.365 13.9

Table 5.2: Comparison between the accuracy of Hierarchical PPCA when clustering Gaus-
sians vs clustering raw data.

ImageNet-100 Imagenet-1k Imagenet-10k

T Flat Raw data Gaussians Flat Raw data Gaussians Flat Raw data Gaussians

1 0.820 0.723 0.802 0.713 0.593 0.602 0.354 0.305 0.298

2 - 0.811 0.832 - 0.667 0.684 - 0.346 0.338

3 - 0.823 0.836 - 0.693 0.709 - 0.359 0.353

4 - 0.835 0.836 - 0.704 0.719 - 0.365 0.360

For all three datasets, when T = 4, the Hierarchical PPCA surpasses the flat classifier both in

terms of accuracy and computational efficiency.

Table 5.2 indicates that clustering Gaussians is better than clustering raw data. On ImageNet-

100, the learning from raw data starts to surpass the flat accuracy when T = 3. On Imagenet-1k,

the performance of clustering from raw data is slightly inferior to Hierarchical PPCA and the flat

classifier.

5.2 Ablation Study

5.2.1 Number of Super-Classes

The super-classes represent the general concepts in the Hierarchical PPCA approach, which

are used to speed up classification. The number of super-classes S is an important factor for

computation efficiency and overall accuracy.

Table 5.3 shows an evaluation of the test accuracy and speed-up for different numbers of super-

classes for the three datasets.

ImageNet-100 contains 100 image classes. The experiment adopts three values for S, namely

5, 10, 15. The density does not decrease monotonically with increasing S. The speed-up reaches a
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Table 5.3: Evaluation of speed-up and accuracy for different numbers S of super-classes,
when T = 1, q = r = 20.

S Density Speed-up Accuracy Super Accuracy

ImageNet-100

Flat 1.0 1.0 0.820 -

5 0.316 3.2 0.811 0.946

10 0.229 4.4 0.802 0.921

20 0.269 3.7 0.809 0.920

ImageNet-1k

Flat 1.0 1.0 0.713 -

10 0.179 5.6 0.636 0.833

20 0.108 9.3 0.620 0.789

33 0.095 10.5 0.602 0.753

40 0.096 10.5 0.604 0.756

50 0.091 11.0 0.597 0.736

66 0.096 10.4 0.586 0.710

100 0.122 8.2 0.577 0.687

ImageNet-10k

Flat 1 1 0.354 -

50 0.030 33.9 0.307 0.710

100 0.023 43.5 0.298 0.665

200 0.026 39.1 0.295 0.615

300 0.033 30.2 0.296 0.596

maximum of 4.36 when S = 10. The super-class test accuracy for the three values of S is larger than

the flat accuracy, indicating unsupervised generated superclasses are interpretable for classification.

The super accuracy decreases monotonically with the increase in S. The result indicates that the

overall accuracy has a negative correlation with the speed-up coefficient.

For ImageNet-1k we adopt 7 values for S, from 10 to 100, since K = 1000. From the perspective

of efficiency, the speed-up coefficient reaches a maximum when S = 50 which is a little higher than

the square root of K. The efficiency approximately conforms to the theoretical derivation. The

accuracy and super accuracy reach their maximum when S = 10 and are negatively correlated with

S. The result follows a similar pattern to the result of ImageNet-100. Even though hierarchical

PPCA for T = 1 can be computationally efficient, its accuracy doesn’t surpass the flat classification.

For ImageNet-10k, considering that K = 10450, we consider the following S values: 50, 100,

200, 300. From the perspective of efficiency, the speed-up coefficient reaches the optimum of 43.5

when S = 100. The hierarchical PPCA reaches the best super accuracy of 0.306 when S = 50.
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Table 5.4: Evaluation of speed-up and accuracy for different values of the parameter T
from Algorithm 1.

T Density Speed-up Accuracy Super Accuracy

ImageNet-100, S = 10, q = r = 20

Flat 1.0 1.0 0.820 -

1 0.229 4.4 0.802 0.921

2 0.339 2.9 0.832 0.975

3 0.440 2.3 0.835 0.988

4 0.540 1.9 0.836 0.993

ImageNet-1k, S = 33, q = r = 20

Flat 1.0 1.0 0.713 -

1 0.095 10.5 0.602 0.753

2 0.148 6.8 0.687 0.897

3 0.197 5.1 0.711 0.946

4 0.247 4.0 0.721 0.969

ImageNet-10k, S = 100, q = r = 20

Flat 1.0 1.0 0.354 -

1 0.023 43.5 0.298 0.665

2 0.035 28.4 0.338 0.800

3 0.047 21.1 0.353 0.858

4 0.060 16.8 0.360 0.891

In summary, the S experiments indicate the efficiency of the Hierarchical PPCA for T = 1

reaches an optimum when the S =
√
K. Overall, the accuracy and super accuracy have a negative

correlation with S. The overall accuracy of Hierarchical PPCA is slightly inferior to flat classifica-

tion. The super accuracy results indicate that super-classes are interpretable for classification.

5.2.2 Improving the Super Accuracy.

Hierarchical PPCA assigns the samples to the T most likely super-classes. The failure of super-

classification significantly damages the overall classification accuracy. The S experiment indicates

that Hierarchical PPCA is inferior to flat classification on overall accuracy when T = 1. The

overall error is composed of errors from the image classification and errors from the super-class

classification. The Hierarchical PPCA can increase its super-class accuracy by assigning samples to

multiple most likely clusters. Experiments aim to explore whether increasing T benefits the overall

accuracy and what is the impact on the classification speed.

Table 5.4 shows the effectiveness of this strategy. The overall accuracy increases monotonically

with T . For ImageNet-100 , Hierarchical PPCA starts to surpass flat classification on overall

accuracy when T = 2. Meanwhile, the super-class accuracy increases significantly, from 0.92 to
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ImageNet-100 ImageNet-1k ImageNet-10k

Figure 5.1: Classification accuracy vs speed-up for different hierarchical classifiers.

0.975. Compared to flat classification, Hierarchical PPCA can reach better accuracy while only

using 22% of the PPCA neurons. Table 5.4 also indicates that the density increases linearly with

T .

The results on ImageNet-1k with S = 33 follow a similar pattern. The accuracy and super ac-

curacy follow a positive correlation with T . The overall accuracy increased from 0.601 to 0.721 as T

increased to 2. The Hierarchical PPCA starts to surpass the performance of flat classification when

T reaches 3 while the density is 0.247. The Hierarchical PPCA can achieve superior performance

with less than 25% of neurons.

The experiment on ImageNet-10k is conducted with S = 100. The overall accuracy increased

from 0.298 to 0.36 as T increased to 4. The hierarchical accuracy starts to surpass the flat accuracy

when T increases to 3 while the density is 0.047. The density increases linearly with T .

In summary, the strategy of increasing T elevates the super-class accuracy and overall accuracy

by sacrificing some computation efficiency. The experimental results indicate that for medium

datasets like ImageNet-100 and ImageNet-1k, Hierarchical PPCA can achieve equivalent results

with not more than 20% of the neurons used. The computational cost increases approximately

linearly with increasing T .

Figure 5.1 reveals the relationship between accuracy and speed-up for different numbers S

of super-classes. The relationship between accuracy and speed up coefficient follows a negative

logarithmic trend. Compared to flat classification, the hierarchical classification can obtain a better

accuracy with between 2 times and 15 times speed up, depending on the dataset.
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Table 5.5: Accuracy vs. number q of principal components.

q

Method S T 0 5 10 20 50 100

ImageNet-100

flat classification - - 0.776 0.809 0.813 0.820 0.812 0.799

Hierarchical PPCA, r = q 10 1 0.711 0.723 0.791 0.805 0.810 0.808

Hierarchical PPCA, r = q 10 4 0.775 0.816 0.829 0.836· 0.840 0.840

ImageNet-1k

flat classification - - 0.648 0.692 0.707 0.713 0.699 0.681

Hierarchical PPCA, r = q 33 1 0.449 0.536 0.572 0.603 0.617 0.605

Hierarchical PPCA, r = q 33 4 0.625 0.685 0.706 0.722 0.726 0.719

ImageNet-10k

flat classification - - 0.288 0.335 0.349 0.354 0.348 0.333

Hierarchical PPCA, r = q 100 1 0.221 0.271 0.293 0.311 0.323 0.322

Hierarchical PPCA, r = q 100 4 0.277 0.334 0.354 0.368 0.376 0.375

ImageNet-100 ImageNet-1k ImageNet-10k

Figure 5.2: Classification accuracy vs speed-up for different numbers of principal compo-
nents q = r.

5.2.3 Number of Principal Components.

The number of principal components (PC) is an essential hyperparameter. Theoretically, q

represents the dimension of the (linear) manifold to the observations of each class belonging to.

Also considered is the case q = 0, in which the PPCA neurons will degenerate into RBF neurons

rk(x) = ∥x− µk∥2, (5.2)

where classification is based on the nearest Euclidean distance to the mean µk instead of the Ma-

halanobis distance (2.7). The experiment aims to explore how the number of principal components

influences accuracy.

Actually, there are two PC parameters: the number q of PCs in the PPCA image models and

the number r of PCs in the super-class PPCA models.
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Table 5.6: Accuracy vs. number r of principal components for super classification.

r

Method S T 0 5 10 20 50 100

ImageNet-100

flat classification - - 0.776 0.809 0.813 0.820 0.812 0.799

Hierarchical PPCA, q = 20 10 4 0.833 0.836 0.836 0.836 0.836 0.836

Hierarchical PPCA, q = r 10 4 0.775 0.816 0.829 0.836· 0.840 0.840

ImageNet-1k

flat classification q = r - - 0.648 0.692 0.707 0.713 0.699 0.681

Hierarchical PPCA, q = 20 33 4 0.701 0.716 0.721 0.724 0.726 0.726

Hierarchical PPCA, q = r 33 4 0.625 0.685 0.706 0.722 0.726 0.719

ImageNet-10k

flat classification q = r - - 0.288 0.335 0.349 0.354 0.348 0.333

Hierarchical PPCA, q = 20 100 4 0.351 0.363 0.365 0.367 0.369 0.369

Hierarchical PPCA, q = r 100 4 0.277 0.334 0.354 0.368 0.376 0.375

Experiment 1, r = q. In a first experiment, we set r = q and vary q. Table 5.5 and Figure 5.2

present the accuracy for different numbers q of PC used in both the image class and the super-

class models (r = q). The overall accuracy of Hierarchical PPCA and flat classification doesn’t

increase with q monotonically. There is an optimum number of principal components where overall

accuracy reaches a maximum. This optimum point indicates the classifier’s capacity of utilizing

variation to improve the classification. The optimum point for flat classification is q = 20 while

for Hierarchical PPCA, the optimum point is q = r = 50. The results of the optimum point

indicate that Hierarchical PPCA has a larger capacity to utilize variation. Figure 5.2 indicates

that Hierarchical PPCA with T = 4 starts to surpass the flat classification on accuracy where q

reaches 10. With more variation encoded, the Hierarchical PPCA performs better than the flat

classifier. When q = 0, the PPCA neurons degrade to RBF neurons. Table 5.5 shows that PPCA

neurons are superior to RBF neurons for both flat and hierarchical classifiers.

Experiment 2, changing r when q = 20. Super-classes represent more general concepts in

hierarchical PPCA. They are generated by the minimization of the sum of the distance to the

image classes. In Experiment 1 above, we explored the relationship between the number of principal

components for all PPCA neurons (q = r) and the overall accuracy. However, the super-classes

may have different semantic properties than image classes. This experiment is designed to explore

how the amount of variation encoded for super-classes influences the overall accuracy. We restrict

the number of PCs q for the image classes to q = 20, which is the optimum point for flat classifiers

while changing the number r of PCs for the super-classes.
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Table 5.7: Hierarchical PPCA accuracy vs. number r of principal components for super
classification, when T = 4.

Number of PCs r for super classification 0PC 1PC 2PC 3PC

ImageNet-100 Overall Accuracy 0.833 0.836 0.836 0.836
ImageNet-100 Super Accuracy 0.993 0.997 0.998 0.997

ImageNet-1k Overall Accuracy 0.701 0.708 0.710 0.712
ImageNet-1k Super Accuracy 0.936 0.945 0.947 0.950

ImageNet-10k Overall Accuracy 0.351 0.359 0.361 0.362
ImageNet-10k Super Accuracy 0.902 0.916 0.921 0.924

Table 5.6 indicates that the overall accuracy doesn’t change significantly with the number r of

PCs for the super-classes. By comparison with the other experiment and with flat classification,

we can conclude that changing the variation encoded for super-classes doesn’t influence the classi-

fication much. Super-classes have a different semantic property from image classes and the super

classification is not sensitive to changing the number of principal components like image classes.

To reveal the semantic characteristics of PPCA neurons, we explore the overall accuracy when a

small amount of variation is encoded for super-classes, i.e. r ≤ 3, keeping q = 20 and T = 4. Table

5.7 reveals the performance of PPCA neurons is better than RBF neurons for super classification.

For medium datasets like ImageNet-100, the performance reaches the optimum when r = 1. For

large-scale datasets like ImageNet-1k and ImageNet-10k, more encoded information facilitates the

super classification thus improving the overall accuracy.

5.3 Conclusion

This chapter introduced a framework for image classification called Hierarchical PPCA, aimed

at classifying data with a large number of classes. The framework adopts probabilistic PCA as

class models for the classifier and clusters the image classes using a modified k-means approach

into a small number of super-classes. During classification, the hierarchical model first classifies the

data into a small number of super-classes, then only activates the corresponding image class models

after super-classification. For large-scale datasets without hierarchical annotation, the hierarchical

PPCA can achieve superior accuracy with a fraction of the computational cost.

Compared with RBF neurons, PPCA neurons are capable of modeling the complexity of se-

mantic variation to gain superior classification accuracy. The Hierarchical PPCA has a stronger

capacity to utilize variation to aid in classification and computation efficiency. We have noticed
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that with fewer training samples, the Hierarchical PPCA can achieve considerable performance for

large-scale datasets.
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