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ABSTRACT

Convolutional Neural Networks (CNNs) are widely used and have an impressive performance in

detecting and classifying objects. However, the CNN’s performance is sensitive to variations in

rotation, position or scaling of the objects to be detected. Fully Convolutional Neural Networks

were trained for guidewire detection and retinal vessel detection in this dissertation. We highlight

what challenges are encountered during training for the guidewire detection. We present a novel

method for simultaneously detecting the guidewire pixels and predicting the guidewire orientation

using trained oriented filters. We also show how to train, in the same framework, these oriented

filters as steerable filters in a low rank representation. We introduce the Spherical Quadrature

Filters (SQF) for guidewire detection and show how they can be used to improve the training data.

We propose a steerable CNN that can detect an object rotated by an arbitrary angle without being

rotation invariant. The proposed steerable CNN is discriminative like a regular CNN, but it has

a latent parameter representing the object’s 2D orientation. For any value of this parameter, the

steerable CNN will be sensitive to detect only objects having that orientation. We apply the SQF,

CNN and steerable CNN to detect the guidewire in fluoroscopy (real-time X-ray) images and to

detect vessels in retina (fundus) images. The guidewire is a thin wire used in coronary angioplasty

interventions, which are visualized using fluoroscopic images. The fundus images are noisy because

of the similarity between the background and the vessels. Experiments show that the steerable

CNN outperforms the regular CNN and other popular approaches such as the Frangi filter, the

Steerable Quadrature Filter and a state of the art trained classifier based on hand-crafted feature.
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CHAPTER 1

INTRODUCTION

The guidewire is a thin medical equipment used in coronary angioplasty interventions. During

the intervention, a catheter is inserted through the femoral artery all the way to the heart, and a

guidewire is used to guide different tools beyond the catheter, inside the heart. Then the cardiologist

inserts a balloon into the obstructed coronary artery, inflates it to widen the narrowing, and places

a stent there to keep the blood vessel open. All these operations are monitored by the cardiologist

using real-time X-ray (fluoroscopy) images. The fluoroscopy images are usually low-dose to limit

the amount of radiation received by the patient, which makes the images noisy and the guidewire

poorly visible. Guidewire detection is a challenging problem with wide applications in coronary

angioplasty interventions.

Figure 1.1: From left to right: an example of the fluoroscopic images of guidewire, an
example of fluoroscopic images with annotations and an example of guidewire annotated
using B-spline.

Examples of fluoroscopic images of guidewire are shown in Figure 1.1. As the figure reveals,

the guidewire is thin and hardly visible. Thus, robust detection of the guidewire could help the

cardiologist have a better visualization during the intervention. Furthermore, robust detection of

guidewire can possibly further reduce the radiation dose administered to the patient.
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Filter and learning based approaches have been applied to solving this task. In this dissertation,

we proposed various methods for detecting the guidewire in fluoroscopic images. Our proposed

Steerable Convolutional Neural Network can be applied to this task, and it outperforms the existing

popular methods and a state of art trained classifier with Haar features. The details of guidewire

detection will be introduced in Chapter 2.

The retinal blood vessels transport blood to the eye. Blood is essential for the retina to ensure

that the eye gets nutrition and oxygen and removes the waste the retina produces. The retina

consists of several layers and it is the light-sensitive tissue of the eye. There are diseases such as

diabetes, hypertension, glaucoma, etc that affect the retina and its blood vessels. By measuring

the diameter of the retinal arteries and vein, some recent studies [38, 39, 29, 42] show that diseases

such as cardiac, endocrine, ophthalmic and neural, can be tracked at an early stage. More details

about the related work and methods will be discussed in Chapter 3.

Images of the retina, also known as fundus images and shown in Figure 1.2, are used to visualize

the retinal blood vessels. These visualize the bottom of the eye. Applying image processing

techniques in analysing the retinal blood vessels is helpful for diagnosis of these diseases.

Figure 1.2: Examples of the fundus image (left) and the annotations(right).
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1.1 Outline

Below we give a brief description about how the dissertation is organized.

In Chapter 2, we introduce four novel methods for guidewire detection, a Fully Convolutional

Network, the trained steerable filters, the Spherical Quadrature Filters, and a Steerable Convolu-

tional Neural Network. We show our experimental results, and compare them with current methods.

In Chapter 3, we present another application of our methods on retinal vessel detection. We discuss

how to obtain the training annotations specific to our method. Chapter 4 concludes our results.
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CHAPTER 2

GUIDEWIRE DETECTION

2.1 Introduction

Guidewire detection is a challenging problem in image-guided intervention. To detect the

guidewire one needs to first obtain a low level detection layer that tells how likely is the guidewire

to pass through any pixel of the image. As it will be discussed in more detail in the related work

section below, guidewire detection work has two main types of approaches to obtain this first level

of pixelwise guidewire detection. The first approach is filter based, which uses a predefined fil-

ter (Frangi Filter, Steerable Filters, etc.) to obtain a filter response map. The second approach

is learning-based, and uses a learning algorithm (Boosting, Random Forest, etc.) together with

hand-crafted features (e.g. Haar or rotated Haar) to obtain a per-pixel probability map.

The best performing methods are trained on rotation-aligned samples and search for the max-

imum response rotation angle at detection time. This is done by rotating the image by a number

of angles and applying the classifier to the rotated images. A third approach would be to train a

Convolutional Neural Network (CNN) for this purpose, which will learn its own features using the

training data. We could not find any work that trains a CNN for detecting the guidewire pixels,

which is why it will be investigated in this dissertation.

We applied four methods for guidewire detection, such as the Fully Convolutional Neural Net-

works (FCNN), trained steerable filters, Spherical Quadrature Filters, and a Steerable Convolu-

tional Neural Network (SCNN). Because the guidewire is thin and hardly visible, it is difficult to

train the CNN directly. The loss function becomes flat near the random initialization. We will

show how to overcome this issue, through a better initialization obtained from starting the training

on a single sequence.

As mentioned, the best performing methods are trained on rotation-aligned samples. We are

also interested in training a CNN that is tuned to the guidewire orientation. However, instead of

training a CNN on rotation-aligned samples, which would require us to apply it to rotated images

for detection, we introduce a Steerable Convolutional Neural Network (SCNN) that can be used to
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make it sensitive to parts of the guidewire that have orientation θ. This way, the SCNN eliminates

the need to rotate the image by many angles at detection time.

Another guidewire specific issue is that imprecisions in the annotation make the positive ex-

amples misaligned. We will also show how to obtain better aligned training data using Spherical

Quadrature Filters (SQF) [33] and non-maximum suppression. The Spherical Quadrature Filters

(SQF) [33] are a type of steerable filters derived analytically to obtain maximal responses to edge,

line or wedge structures. The steerable filters, first introduced in [18], are oriented filters obtained

from a basis using predefined weights that depend on the rotation angle. Moreover, the oriented

filter response can be computed using the same predefined weights from the response maps obtained

by the basis.

The SQFs have been used in [9] for person identification from grayscale images of the ear and

in [45] for detecting faint streaks (space debris) in astronomical images. The ear images have

edge/ridge structures, and that is why the SQF were a good fit, but the ear images have no noise.

In this dissertation, we introduce another potential application of SQF, guidewire detection in

fluoroscopy images. As mentioned in Chapter 1, guidewire in X-ray images is in low quality. To

our knowledge, we are the first to apply the SQF for this problem.

This dissertation brings the following contributions:

- It shows how to train a Fully Convolutional Neural Network (FCNN) for guidewire detection

and how to escape the flat energy landscape present near a random initialization.

- It presents a framework for training steerable filters by loss minimization, and multiple loss

functions for this purpose.

- It introduces the Spherical Quadrature Filters (SQF) for guidewire detection, which work

better than the popular Frangi filters.

- It introduces a simple model for a Steerable Convolutional Neural Network and shows how to

train it for guidewire detection.

- It shows how to address another challenge in training a CNN, which is due to the imprecision

in the manual annotation of the thin guidewire. For that, it shows how to use the SQF response

map to obtain better aligned examples.

Our experiments reveal that the steerable CNN trained with SQF-aligned examples is the

best, followed by the FCNN, and then the SQF and trained steerable filters. Furthermore, all
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those methods introduced in this dissertation greatly outperform the existing guidewire detection

methods such as the Frangi filters, Steerable filters and a state of the art trained classifier with

hand-crafted features.

2.2 Related Work

All guidewire localization methods rely on a first level of pixelwise guidewire detection that

applies either a predefined filter or a trained classifier to all locations of the image to obtain a

pixelwise guidewire response map.

Filter-based approaches include the Frangi Filter [17], which is based on the sorted eigenval-

ues (λ1, λ2) of the Hessian matrix. It is widely applied to vascular image analysis. The sorted

eigenvalues of the Hessian matrix were used to extract and track the guidewire through a spline

optimization in [2]. [10] used the Frangi Filter as the data term and fitted the guidewire with a

B-spline model in clinical X-ray videos. The beauty of the filter-based approaches consists in their

simplicity and interpretability. [5] proposed a method that votes on many candidate curves through

all pixels, and the method was compared with the Frangi Filter. Results showed that the Frangi

Filter was inferior to the path voting approach.

Steerable Filters have been introduced in [18] for detecting edges and ridges in images. A more

recent and powerful type of steerable filters are the Spherical Quadrature Filters (SQF) [33] that

were used by [27] for guidewire detection. The SQFs will be introduced in 2.3 in detail.

Learning-based approaches include [7, 3, 35, 50, 24, 41, 11]. In [3], the pixel detection step was

trained with examples that were rotated for alignment, using a Probabilistic Boosting Tree (PBT)

[47] and Haar features. The trained classifier was applied to rotated images by many angles to

obtain the guidewire detection result. A user-constrained algorithm with PBT was proposed in

[35] to localize the guidewire. The PBT and hand-crafted features were also employed to track the

guidewire in [50] and to detect vessels in [11]. [7] introduced a framework using Boosting and Haar

features for catheter detection, and the method was compared with the Frangi Filter. The tracking

error results obtained by the learning-based approach were smaller than the results of the filter-

based approach. A boosted classifier was used to obtain the low-level detection of the guidewire in

[24]. It was trained on ridge and edge features. [12] detected the catheter and vascular structures

using a Random Forest classifier of curvilinear structures trained on hand-crafted features. A
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method that used the Region Proposal Network to detect the guidewire was presented in [49].

Different from our method which is aimed at obtaining a pixel-wise detection map using CNNs,

their work aimed to place bounding boxes around the guidewires.

A Fully Convolutional Neural Network was trained in [27] for guidewire detection. The CNN

was invariant to the guidewire orientation, and difficulties in training were reported. In contrast, the

steerable CNN is sensitive to the guidewire orientation, alleviating some of the training difficulties

and obtaining better detection results.

A steerable CNN theory was presented in [15]. The theory is very generic and only discusses

rotations by multiples of 90◦, lacking any specific details on how to apply it for steering by arbitrary

angles. Moreover, the theory is directed towards invariant models, whereas our steerable CNN

obtains models tuned to any orientation, in the spirit of the steerable filters [18]. Furthermore, the

rotation angle can be estimated in our method as the angle of maximal response, together with its

uncertainty.

Steerable Filter CNNs were developed in [51]. The SFCNNs are both translational and ro-

tational equivariant. The SFCNNs learn the weights of a set of predefined basis of equivariant

steerable filters, while our formulation learns a basis that is not necessarily equivariant, but which

is made close to equivariant by using a special loss function. Furthermore, the rotation and steering

occurs only on the first layer for the SFCNN and is followed by several group-convolutional layers

[14]. In our method, each layer is steerable by the same angle θ, making the entire CNN steerable.

Capsules were introduced in [23] and improved in [44]. The capsules represent object detectors

together with precise values of the deformations and viewing parameters specific to each object

instance. Each capsule is sensitive to a small range of rotation angles and many capsules are

needed to cover the entire rotation range. In contrast, our steerable CNN is a single detector that

can be rotated to an arbitrary angle, thus it achieves the rotation goal of multiple capsules.

2.3 Overview of the Spherical Quadrature Filters (SQFs)

When training the steerable filters for guidewire detection, we observed that the trained filters

resemble the Spherical Quadrature Filters as shown in 2.1. We apply the Spherical Quadrature

Filters (SQF) to guidewire detection and compare them with the other methods.
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Figure 2.1: Top: Basis B of trained steerable filters of rank 9 with Focal loss[30]. Bottom:
Cauchy Spherical Quadrature Filters [33] of order 0,2,4,6,8. Notice the similarity between
the trained steerable filters and the analytically derived SQF.

The Spherical Quadrature Filters (SQF) [33] are obtained by the convolution of a generalized

Hilbert transform kernel with an isometric filter. The n-th order SQF has the following form in

the spatial domain:

SQF (n)(x, y) = G(x, y) ∗
(
n

2π

(−(x+ iy))n

‖x+ iy‖2+n

)
(2.1)

where “∗” denotes convolution, and in the Fourier domain

ˆSQF
(n)

(u) = Ĝ(u) ·
(
i
u

‖u‖

)n
(2.2)

where x, y ∈ R,u ∈ R2, n ∈ N∗ and G(x, y) is a bandpass isometric filter. In this dissertation we

will generate the SQFs using bandpass filters such as the log-Gabor filters [6]

Gl(ω) = nc exp

(
− log2(ω/ω0)

2 log2(σ)

)
, (2.3)

Gaussian derivative filters [6]

Gd(ω) =

{
ncω

(ω0σ)2 exp(−(σω)2), if ω ≥ 0

0, otherwise
(2.4)

and Cauchy filters [6]

GCauchy(ω) =

{
ncω

ω0σ exp(−σω), if ω ≥ 0

0, otherwise
(2.5)

where ω0 ∈ R is the peak tuning frequency, and σ ∈ R such that ω0σ ≥ 1. Eq. (2.3), (2.4) and

(2.5) are defined in the frequency domain. For more details see [33].

Observe that except for the order 0 SQF, the higher order SQFs come in pairs as the real and

imaginary part of eq. (2.1) or (2.2). For ridge detection, we only need the even order (symmetric)
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SQFs, and we will use all the even SQFs of order n < r where r is an odd number. Observe that

for any odd number r > 0 there are exactly r SQFs of even order n < r, and we will call them the

SQF of rank r.

The SQF bank of rank r can be steered to an angle θ by dot product multiplication with the

following weight vector:

w(θ) = [−1,− cos(2θk), sin(2θk), ...,− cos(2rθk), sin(2rθk)]. (2.6)

Figure 2.2: Steered Cauchy Spherical Quadrature Filters of rank 11

An example of steered Cauchy SQFs of rank 11 is shown in Figure 2.2.

Examples of filter response maps obtained using the SQFs and non-maximal suppression are

shown in Figure 2.6.

2.4 Fully Convolutional Networks (FCN)

Fully Convolutional Networks are convolutional neural networks that are composed of convolu-

tional layers without any fully-connected layers. In [32], the author showed how to train an FCNN

end-to-end for pixel-wise prediction. Fully Convolutional Networks can be applied on an input of

any size.

Assume we are given n training patches (xi, yi), i = 1, ..., n where xi ∈ Rp2 is the image of a

patch of size p×p either centered on the guidewire (a positive example) or away from the guidewire

(a negative example), and yi is the label. The labels are yi = −1 for negative patches and yi = 1

for patches centered on the guidewire.

2.4.1 CNN Architecture

We implemented a Fully Convolutional Neural Network for guidewire detection. The network

(Figure 2.3) is composed of 5 convolutional layers, the first three layers are followed by 2× 2 max-

pooling with stride 1, while the fourth layer is followed by ReLU (Rectified Linear Unit). The last

convolutional layer obtains the binary guidewire/non-guidewire response.
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Figure 2.3: The Fully Convolutional Neural Network (FCNN) used in this dissertation
with input patches of size 25× 25.

We first trained a FCNN based on patches of size 15 × 15. The first convolutional layer has

16 filters of size 3 × 3, and the next three layers have 32 filters of size 3 × 3 each. The last layer

is 4 × 4. The experiment shows that the FCNN trained on 25 × 25 patches performs better than

the one trained on 15 × 15. For a receptive field of size 25 × 25, the first convolutional layer has

16 filters of size 5× 5, and the next three layers have 32 filters of size 5× 5 each. The last layer is

6× 6.

We also implemented a FCNN composed of 4 convolutional layers for patches of size 25 × 25

and 33× 33. During the experiment, we noticed that the inclusion or exclusion of the max-pooling

layers did not affect the performance of the network. An FCNN architecture without Maxpooling

Layers is shown in 2.4. For a receptive field of size 25 × 25, only the third convolutional layer is

followed by a ReLU layer. The first convolutional layer has 16 filters of size 7 × 7, the following

layers have 32 filters of size 7× 7. The last one contains 1 filter of size 7× 7. For a receptive field

of size 33× 33, it has the same framework as the 25× 25, except the sizes of the filters are 8× 8.

All the convolutional layers have no padding and a stride S = 1.
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Figure 2.4: The FCNN used in this dissertation without Maxpooling Layers of input patch
of size 25× 25.

Loss Function. Denoting all the parameters of the CNN as W , the loss for training the CNN

fW (x) is

L(W ) =
n∑
i=1

`(yifW (xi)) (2.7)

where n denotes the number of examples and ` denotes a per example loss function. In terms of

per example loss function, one can use the Lorenz loss [4]

`(u) = log(1 + max(1− u, 0)2) (2.8)

due to its ease of training and robustness to outliers, the Logistic loss

`(u) = log(1 + exp(−u)), (2.9)

or the Focal loss [30] as a comparison. The Focal loss can deal with the class imbalance and can

adjust the weight for both easy and hard examples.

It has the form

`(u) = −αt(1− pt(u))γ log(pt(u)). (2.10)

where

pt(u) =

{
p(u), if y = 1

1− p(u), y = −1
, (2.11)
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Figure 2.5: The plot of Lorenz loss function(Eq 2.8) for 100 epochs of a patch size 25×25.
Top left: training loss with all training examples. Top right: training loss with our
approach.

αt = 0.25 for class 1, γ = 2 and p is obtained by using sigmoid function

p(u) =
1

1 + exp(−u)
. (2.12)

2.4.2 Training Examples

The guidewire annotations are obtained using B-spline. As positive examples we used image

patches at distance at most 1 pixel from the annotation, while negative examples were at distance

at least 8 pixels from annotation.

2.4.3 Training Initialization

All weights were initialized with random Gaussian values with std 0.01. The training was

performed using the Adam optimizer[25] with the initial learning rate 0.00001 and an initial mini-

batch size 32. The learning rate was multiplied by 0.8 and the minibatch was doubled every 50

epochs, for a total of 300 epochs.

Training the FCNN directly from a random initialization does not work because the guidewire

is very thin and the energy landscape becomes flat near the random initialization. Indeed, as shown

on the left side of Figure 2.5, the loss becomes flat at around 0.285 after epoch 26. In this case,

results show that every pixel of the response map is considered detected. To overcome this problem
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we started by training the first 40-60 epochs using the training examples from only one sequence

as shown on the right side of Figure 2.5. After that, training was done on all training examples.

2.5 NMS-based Alignment

Figure 2.6: SQF NMS map of two frames: input images(first column), SQF NMS im-
ages(second column).

There are two main issues during training the Convolutional Neural Network. First, the training

doesn’t work directly from a random initialization because the guidewire is very thin with only one

to two pixels wide. We proposed how to overcome this difficulty in Section 2.4.

Another issue we observed was that the annotation was not precise enough to obtain a good

alignment of the positive examples. As a result, the false positive rate, while quite good, was still

rather high. To obtain a better alignment we used the Cauchy rank 11 SQF maximum response map

on which we performed non-maximal suppression (NMS) in the direction of the image gradients.

An example of the SQF NMS map is shown in Figure 2.6. Then we used as training examples only

the patches centered on the NMS response map.

In Figure 2.7 are shown the training loss functions for the FCNN illustrated in Section 2.4

without max-pooling layers, trained on regular examples (left) and NMS-aligned examples (right).
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Figure 2.7: The Soft Margin loss function (Eq 2.9) of the FCNN. Left: training loss
without NMS-aligned examples. Right: training with NMS-aligned examples.

2.6 Trained Steerable Filters(TSF)

The training patches are similar to the Fully Convolutional Neural Network except the labels

are yi = k ∈ {1, ...,K} for patches centered on the guidewire (positive examples) where the tangent

angle is in the interval [(k − 1)π/K, kπ/K). The labels for the negative patches are yi = −1. In

our experiments, K is set to 30.

2.6.1 Trainable Filters

We are interested in training filters fi ∈ Rp2 , i = 1, ...,K that achieve both a good detection of

the guidewire points and estimation of the guidewire direction. These filters can be organized as

columns in a filter bank of size p2 ×K matrix F = (f1, ..., fK).

Given an image patch x ∈ Rp2 we compute the K filter responses (r1, ..., rK) = xTF and obtain

the classifier fF (x) = max(xTF ) and the angle prediction aF (x) = argmax(xTF ). For example in

Figure 2.8, the classifier response is about 13 with an angle prediction 60◦.

The training loss function aims to find filters that achieve good separation between positive and

negative examples and a small error in predicting the correct angle.

One of the simplest loss functions that we will study is the foreground-background (FB) loss,

which encourages the correct class responses of the positives to be high and all responses for the

negatives to be low. It also equalizes the total weight for the positives corresponding to each angle

14



Figure 2.8: Example of classifier response and angle prediction of one patch.

and has the form

LFB(F ) =
1

n−1

∑
i,yi=−1

K∑
k=1

`(−xTi fk) +
K∑
k=1

1

nk

∑
i,yi=k

`(xTi fk) (2.13)

where nk = |{i, yi = k}| and `(u) is a per example loss function such as the logistic loss `(u) =

log(1 + exp(−u)), hinge loss `(u) = max(1 − u, 0), the Lorenz loss [4] in Eq. 2.8 or the Focal loss

[30] (that assumes only labels 1 and -1) as described in Eq. 2.10.

The FB loss function is very well behaved and it is convex when `(u) is convex (such as the

logistic or the hinge loss).

To discourage high responses for other angle filters than the true angle for positive examples

we can add to the FB loss above the following Vapnik loss [48]:

LV (F ) =
1

n+

∑
i,yi>0

∑
k 6=yi

`(xTi fyi − xTi fk) (2.14)

where n+ = |{i, yi > 0}|.

The Max loss aims to directly maximize the margin of the classifier fF (x) = max(xTF ):

LM (F ) =
1

n−1

∑
i,yi=−1

`(−fF (xi)) +
1

n+

∑
i,yi>0

`(fF (xi)) (2.15)

The max loss has many local optima which are not equivalent. We observed that we can obtain

better results by initializing the optimization with the results obtained by the FB loss as opposed

to a random initialization.

15



Figure 2.9: Filters, from top to bottom, one row each: steerable filters, trained FB fil-
ters, trained FB filters with NMS patches, trained FB+Vapnik filters, trained Max filters
(initialized with zero, randomly, with FB result respectively), trained steerable rank 11
filters(Lorenz loss, Lorenz loss with NMS patches, Focal loss, and Focal loss with NMS
patches respectively).

One could directly train a filter bank F using these losses or one could obtain a low rank

representation of the filter bank using steerable filters as described below. Examples of trained

filters are shown in Figure 2.9.

2.6.2 Trainable Steerable Filters

We are interested in deriving a steerable representation for the filter bank F = (f1, ..., fK). For

that, we start with the steerable filter [18] of order 2, which for an angle θ is defined by

Gθ2 = B ·wθ (2.16)

where wθ = (cos2 θ,−2 cos θ sin θ, sin2 θ)T ,

B =
G

σ4
· (x2 − σ2,−xy, y2 − σ2). (2.17)

and G is the 2-D Gaussian with variance σ2.
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Figure 2.10: Trained basis B of steerable filters for d = 2 to 5 (ranks 5 to 11) with per
example loss Lorenz loss(row 1, 2, 3, 5, 7) and Focal loss(row 4, 6, 8), trained with SQF
+ NMS patches(last 2 rows).

This inspires us to represent the filters as fk = B · wk which is a linear combination of some

unknown p2 × (d+ 1) matrix B that needs to be learned and a weight vector

wk = (cosd θk, sin
d−1 θk cos θk, ..., sin

d θk)
T . (2.18)

However, higher powers d result in numerical instability, and since the even powers of the sin

and cos are related to the sin and cos of the angle multiples, we propose an alternate steerable

representation fk = B · ak with

ak = [1,− cos(2θk), sin(2θk), ...,− cos(2dθk), sin(2dθk)]
T . (2.19)

Denoting by A = (a1, ...,aK), we obtain F = BA with A being a fixed and known matrix. This

is a rank 2d+ 1 steerable representation of F . Examples of trained B for d = 1 to 5 are shown in

Figure 2.10.

This representation can be used in Eq (2.13) to obtain the loss for training the steerable filters:

LS(B) =
1

n−1

∑
i,yi=−1

K∑
k=1

`(−xTi Bak) +

K∑
k=1

1

nk

∑
i,yi=k

`(xTi Bak). (2.20)
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When training with SQF NMS-aligned examples, we are given training examples (xi, yi, ki),

where yi ∈ {−1, 1} and ki is the angle index for each observation, given as the angle of maximum

SQF response. In this case the FB loss has the following form:

LSNMS(B) =
1

n−1

∑
i,yi=−1

`(−xTi Baki) +
K∑
k=1

1

nk

∑
i,yi=1,ki=k

`(xTi Bak). (2.21)

Figure 2.11: Diagram of the steerable convolution filters.

2.7 Steerable Convolutional Neural Network

As we saw, the steerable filters are oriented filters that are obtained as a linear combination

from a basis B, and can be rotated by a simple re-weighting of the basis as illustrated in Figure

2.11.

2.7.1 The Steerable CNN

The steerable CNN, illustrated in Figure 2.12, consists of a number of layers with multiple

steerable filters.

If the basis of each steerable filter contains r filters, then a layer with k steerable filters will

contain r · k filters in total, grouped in k groups of r filters. The response maps of that layer for

any angle θ can be obtained by convolution with all the rk filters, followed by linearly combining

the k responses corresponding to each group using the weight vector w(θ) from Eq. (2.6).
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Figure 2.12: Diagram of the steerable CNN, steered (tuned) to an angle θ.

2.7.2 Training the Steerable CNN

Assume we are given n training patches (xi, yi, αi), i = 1, ..., n where xi ∈ Rp2 is the image of a

patch of size p×p either centered on the guidewire (a positive example) or away from the guidewire

(a negative), yi ∈ {−1, 1} is the label, and αi ∈ [0, π) is the orientation. The orientation at the

center location of each patch is obtained by a Steerable Quadrature Filter (SQF) [33]. The SQF is

Figure 2.13: Examples of one frame Steerable CNN detection results: input image, re-
sponse map for angle index j = 5, 10, 15, and final detection result.

also used as a preprocessing step for detection, so the training examples are extracted only from

locations with high SQF responses (NMS-based examples). This way the angle information αi for

each training patch has a reliable value. Alternatively, the steerable CNN can be applied for a

number of discrete angles and the maximum response can be used as detection map, as illustrated

in Figure 2.13.

Similar to Section 2.6.2, the range [0, π) is discretized (modulo π) into a number of equally

spaced angle bins bj = [θj − π
2K , θj + π

2K ), j ∈ {1, ...,K} , where θj = jπ
K (in this dissertation we
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used K = 30 angle bins). Then the orientation angles αi of the training examples are converted to

angle bin indices ai ∈ {1, ...,K} and the examples with the same angle index j are collected into

the set Sj = {(xi, yi, ai), ai = j}. For simplicity, we assume that all angles are equally represented,

so |Sj | = |Sk|, ∀j, k ∈ {1, ...,K}.

Training is done using the Adam optimizer [25]. For each minibatch, an angle index j ∈

{1, ...,K} is chosen and only examples with ai = j are selected, so they have approximately the

same angle θj , the center of the bin bj . In this case, the examples share the same weight vector

wj = w(θj) from Eq. (2.19) and the network is equivalent to a CNN where each convolution layer

is followed by a linear layer that takes each group of k responses and combines them linearly with

weights wj . One epoch of the training is described in Algorithm 1 below. An example of the

trained basis B of the first layer in the rank 11 steerable CNN is show in Figure 2.14. The filters

appear like a set of random filters in a 4-layer SCNN. As a comparison, steerable filter of basis in

a 1-layer SCNN and the steerable filters in the first layer of a 2-layer SCNN are shown in Figure

2.15 and Figure 2.16. The steered filters are shown in Figure 2.17.

Algorithm 1 One epoch of Steerable CNN Training

Input: Training patches {(xi, yi, ai)}Ni=1, minibatch size m

Output: Trained steerable CNN.

1: Set N batch = b|Sj |/mc.
2: for j = 1 to K do

3: Shuffle the set Sj .

4: end for

5: for b = 1 to N batch do

6: for j = 1 to K do

7: Set the steerable CNN angle θ = αj , so w(θ) = wj

8: Use the b-th minibatch from Sj to update the weights by backpropagation.

9: end for

10: end for

2.7.3 Implementation Details

CNN Architecture. A 1-layer Steerable CNN contains only one steerable convolutional

layer, it returns the guidewire/non-guidewire response directly. A 2-layer Steerable CNN are also

trained which consists of 2 steerable convolutional layers. The first convolutional layer is followed
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Figure 2.14: Trained basis B for the first layer of the rank 11 4-layer SCNN.

Figure 2.15: Trained basis B for 1-layer SCNN.
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Figure 2.16: Trained basis B for the first layer of 2-layer SCNN.

Figure 2.17: Steered filters for the first layer of 2-layer SCNN
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by a ReLU layer, and the second one gives the response. A 4-layer Steerable CNN for this task

consists of 4 steerable convolutional layers. The third steerable convolutional layers is followed by

ReLU activation, and the last one returns the response.

For the 1-layer SCNN, the filters are of size 25 × 25. The layer has 1 steerable filter. With a

basis of rank r = 11, there are 11 filters in the layer. The steerable filters of a 2-layer SCNN are

of size 13× 13. For a basis of rank r = 11, there are 5 steerable filters in the first layer (55 filters

in total) and 1 steerable filter in the second layer. The 4-layer SCNN steerable filters are of size

7 × 7, with their basis containing r = 7 filters or r = 11 filters. The first layer has 10 steerable

filters (thus the layer has 70 or 110 total filters), the second and the third one have 20 steerable

filters and the last one has 1 steerable filter. It has a receptive field of size 25× 25.

For both the FCNN and the steerable CNN we used the Pytorch[40] Soft Margin Loss in Eq

2.9 to guide the training.

Training Initialization. All weights were initialized with either 0 or random normal values

with std 0.01. For the Steerable CNN, the training was performed using the Adam optimizer[25]

with the initial learning rate 3×10−7, with mini-batch size 32, and with L2 regularization λ = 0.001.

The learning rate was multiplied by 0.8 and the minibatch was doubled every 50 epochs, for a total

of 300 epochs.

For training the Steerable CNN, we start training the first 40 epochs using all positive patches,

and the negative patches are subsampled 40%. After that, training was done on all negative

examples.

In Figure 2.18 are shown the training loss functions for the steerable CNNs of rank 7 and 11

with Soft Margin loss(Eq. 2.9) and Focal loss [30].

2.8 Experiments

2.8.1 Dataset

Experiments are conducted on a dataset of 75 fluoroscopic sequences with a total of 826 frames

of different sizes in the range [512, 960] × [512, 1024]. The sequences were divided into a training

set containing 39 sequences with 424 frames and a test set containing 36 sequences with 402 frames.

The guidewire was manually annotated in all the frames using B-splines. One example of the spline

result, positive mask and negative mask are shown in Figure 2.19.
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Figure 2.18: The different loss functions of the Steerable CNN during training. Top left:
Rank 11 steerable CNN training started with Soft Margin loss function(Eq 2.9). Top right:
Rank 11 steerable CNN training started with Focal loss function(Eq 2.10). Bottom: Rank
7 steerable CNN training started with Soft Margin loss function(Eq 2.9).

2.8.2 Training Details for FCNN and SCNN

For training the FCNN in Section 2.4, we used positive and negative patches of size 15 × 15

or 25 × 25. We extracted positive patches centered on the guidewire, and also extracted negative

patches that are at a distance between 8 and 30 pixels from the guidewire, subsampled to 5%. In

both cases the training set contains about 213,000 positives and about twice as many negatives.

The training set using NMS alignment contains about 91,000 positives and as about twice as many

negatives.

For training the FCNN and SCNN in Section 2.7, we used positive and negative patches of size
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Figure 2.19: From left to right: original frame, annotated using B-splines, positive mask
and negative mask.

25× 25. For the training set without SQF NMS alignment we extracted positive patches centered

on the guidewire, and negative patches at a distance between 8 and 30 pixels from the guidewire,

subsampled to 5%. The SQF NMS aligned training examples were extracted from locations that

were detected by the SQF with NMS described 2.5. The positives patches were centered at distance

at most 2 from the guidewire annotation and the negatives at distance at least 5, subsampled to

5%. The training set without SQF NMS alignment contains about 279,000 positives and 578,000

negatives. The training set with SQF NMS alignment contains about 193,000 positives and 535,000

negatives.

2.8.3 Training Details for Trained Steerable Filters

We used the positive and negative patches of size 25 × 25 for training and evaluation of the

detection performance in terms of area under the ROC curve and angle estimation error. We

extract the positive patches centered on the guidewire with a label corresponding to the angle of

the tangent to the guidewire, discretized in 30 possible values. We trained the loss functions and the

trainable steerable filters by using the same examples as mentioned in 2.8.2 (both non-NMS-aligned

examples and NMS-aligned examples).

The filters were trained using the BFGS optimization algorithm [8], with maximum 2, 000

iterations, initialized with all filters having value 0 unless otherwise specified. Since the loss gradient

could be computed analytically, training of each filter bank took between 20 and 40 minutes on a

Matlab implementation using the built-in fminunc optimization procedure. Examples of trained

filters are shown in Figure 2.9. The basis B of the trained steerable filters of ranks 5 to 11 are

shown in Figure 2.10.
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Table 2.1: Evaluation of the different filters on 25× 25 patches.

AUC Angle Error
Method Train Test Train Test

Frangi Filter [17] 0.7366 0.7296 13.16 13.69
Steerable Filter [18] 0.6348 0.6418 22.25 24.55
SQF [33] log-Gabor, f0 = 1/6, rk. 11 0.8340 0.8251 9.04 9.90
Lorenz FB (Eq. 2.13) 0.8951 0.8730 6.14 7.23
Lorenz FB (Eq. 2.13)(w/ NMS) 0.8618 0.8295 2.71 3.24
Lorenz FB (Eq. 2.13) + Vapnik 2.14 0.7530 0.7286 18.83 20.55
Lorenz Max (Eq. 2.15), zero init. 0.7773 0.7566 44.34 45.40
Lorenz Max (Eq. 2.15), random init. 0.8654 0.8362 46.54 49.68
Lorenz Max (Eq. 2.15), FB init. 0.8652 0.8364 19.53 21.47
Steerable (Eq. 2.20), rk. 5 0.8925 0.8719 8.89 9.72
Steerable (Eq. 2.20), rk. 7 0.8956 0.8755 4.49 5.20
Steerable (Eq. 2.20), rk. 9 0.8966 0.8764 4.85 5.69
Steerable (Eq. 2.20), rk. 11 0.8971 0.8766 5.12 6.02
Steerable (Eq. 2.20)(w/ NMS), rk. 11 0.8622 0.8305 2.14 2.42
Steerable (Eq. 2.20)(Focal[30]) rk. 11 0.8991 0.8776 6.62 7.51
Steerable (Eq. 2.20)(Focal[30] w/ NMS) rk. 11 0.8682 0.8353 2.63 2.78
Steerable (Eq. 2.20), rank 13 0.8972 0.8764 12.45 14.42

2.8.4 Patch Based Evaluation

On the training and test datasets and using the optimization described in Section 2.8.3, we

evaluated the FB loss (2.13), the FB+Vapnik loss (2.14), the Max loss (2.15), all using the Lorenz

loss (2.8). The Max loss was trained using different initializations: a zero initialization, a random

initialization, and initialization with the filters obtained by the FB loss. The steerable filter loss

(2.20) was trained with B of ranks 5 to 13. We also evaluated the Frangi filter [17], Steerable filter

[18] and the Spherical Quadrature filters [33].

The training and test AUCs for these methods are shown in Table 2.1. We see that indeed

the Max loss result does depend on initialization and FB init. performs better than the zero and

randomly initialization. We also see that the trained loss and trained steerable filters with Focal

loss [30] have better train and test AUC than the other methods.

We also show in Table 2.1 the angle estimation error as the average difference between the true

angle (from 0 to 180◦) and the estimated angle modulo 180◦. We see that the methods with NMS

examples have smaller angle error of all filters. The trained steerable filters with rank 11 have the

lowest angle error on both training and test set.
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Figure 2.20: Average responses for test patches with angle 60◦.

In Figure 2.20 are shown the average responses for test (unseen) patches from class k = 10,

corresponding to angles around 60◦. On the right plot are shown the average responses of the filters

trained with the FB loss, FB loss w/ NMS patches, FB + Vapnik loss, steerable FB loss of rank

7 and rank 11 with Lorenz loss and rank 11(Focal loss[30]) with NMS patches. All these averages

have a strong maximum at the true angle, with the average response of the steerable filters of rank

11 with Focal loss being the smoothest of all.

2.8.5 Comparison with Other Methods

We also present an evaluation of the pixelwise guidewire detection results on the entire images

instead of patches for filter based methods, learning based methods and Convolutional Neural

Networks. As filter based methods we evaluated the popular Frangi Filter [17], Steerable Filters

[18], and the steerable Spherical Quadrature Filters (SQF) [33] with different types of isometric

filters and ranks (dimension of the basis). As learning based approach, we implemented the trained

steerable filters and also the approach from [11] based on about 100,000 oriented Haar features and

a Probabilistic Boosting Tree (PBT) [47] and trained it on the same data. As CNN approaches,

we evaluated the SFCNNs [51] filters on the NMS patches. We compare the steerable CNN, the

FCNN, and we also trained a 25 × 25 steerable filter, which can be considered as using only the

last layer of the steerable CNN, with a larger filter size.
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Table 2.2: Per-image evaluation of different filter based and training based guidewire
detection methods

Det. rate FP rate # of trained
Method Train Test Train Test parameters

Frangi Filter [17] 90.44 90.44 26.99 24.19 -
Steerable Filters [18] 90.06 89.93 67.07 76.48 -
SQF [33] Gauss deriv, f0=1/2, rk. 7 90.00 90.08 6.92 7.04 -
SQF [33] Gauss deriv, f0=1/2, rk. 9 89.97 90.09 6.86 6.98 -
SQF [33] Cauchy, f0 = 1/6, rank 7 89.98 90.00 5.98 6.35 -
SQF [33] Cauchy, f0 = 1/6, rank 9 90.13 90.05 5.91 6.06 -
SQF [33] Cauchy, f0 = 1/6, rank 11 90.13 90.02 5.12 5.87 -
SQF [33] Cauchy, f0 = 1/6, rank 11 w/ NMS 90.03 90.00 4.19 3.93 -
SQF [33] log-Gabor, f0 = 1/6, rank 7 90.13 90.10 5.82 5.95 -
SQF [33] log-Gabor, f0 = 1/6, rank 9 90.11 90.14 5.63 5.57 -
SQF [33] log-Gabor, f0 = 1/6, rank 11 90.04 90.03 5.32 5.21 -

Lorenz FB 90.04 90.12 8.54 11.97 18.7k
Lorenz FB + Vapnik 90.29 90.21 60.49 79.81 18.7k
Lorenz Max (Random init.) 89.95 89.91 11.92 19.38 18.7k
Lorenz Max (FB init.) 89.85 89.98 12.14 19.66 18.7k
Trained steerable filter(Lorenz loss[4]) rank 11 90.03 90.04 8.43 11.70 6.9k
Trained steerable filter(Focal loss[30]) rank 11 90.18 90.06 8.15 11.53 6.9k
PBT and Haar features[3, 35, 50, 11] 90.07 90.19 3.87 3.98 8.4k

Trained equivariant SFCNN Filters [51] w/ SQF NMS 89.99 90.00 6.31 6.46 0.12k
FCNN with NMS-aligned training examples 90.07 90.08 1.43 2.65 78k
1-layer SCNN rank 11, FB loss (2.20) + Lorenz loss[4] w/ NMS 90.09 89.98 2.48 2.94 6.9k
2-layer SCNN rank 11, FB loss (2.20) + Lorenz loss[4] w/ NMS 89.78 89.96 2.17 2.89 18.7k
4-layer SCNN rank 7 w/ SQF NMS (Soft Margin loss (2.9)) 90.08 90.02 0.94 2.01 217k
4-layer SCNN rank 11 w/ SQF NMS (Soft Margin loss (2.9)) 90.05 90.05 0.78 1.90 341k
4-layer SCNN rank 11 w/ SQF NMS (Focal loss [30]) 90.18 90.10 0.76 1.82 341k

The response map obtained by any method was thresholded to obtain a binary detection image

as shown in Figure 2.22 (one frame in the training set) and Figure 2.23 (one frame in the test set),

with the threshold chosen so that the average detection rate was about 90%. The frame shown in

Figure 2.23 is noisier than the one in Figure 2.22 .

We evaluated the detection performance on the training and test images. A guidewire pixel

was considered detected if there is a detection (response above the threshold) at distance at most 2

pixels from it. A detection was considered a false positive if it is at distance at least 3 pixels from

the guidewire or any catheter.

The results are shown in Table 2.2. The SFCNN filters[51] are also evaluated for comparison,

obtaining a 6.46 test FP rate. The trained filters are shown in Figure 2.21. The 4-layer SCNN of
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Figure 2.21: Trained SFCNN filters [51] basis.

rank 11 (Focal loss[30]) has the lowest false positive rate on the training and test set. It outperforms

all the other methods including the FCNN and the PBT with Haar features. Among the filter based

methods, the SQF with Cauchy filter of rank 11 with NMS performs the best on the training and

test set, but it is outperformed by the training based methods.

2.8.6 Ablation Study

Table 2.3: Patch based evaluation: w/o NMS-aligned vs w/ NMS-aligned

AUC Angle Error
Method Train Test Train Test

Lorenz FB (2.13) 0.8951 0.8730 6.14 7.23
Lorenz FB (2.13)(w/ NMS) 0.8618 0.8295 2.71 3.24

Steerable (2.20), rk. 11 0.8971 0.8766 5.12 6.02
Steerable (2.20)(w/ NMS), rk. 11 0.8622 0.8305 2.14 2.42

Steerable (2.20)(Focal[30]) rk. 11 0.8991 0.8776 6.62 7.51
Steerable (2.20)(Focal[30] w/ NMS) rk. 11 0.8682 0.8353 2.63 2.78

We show in Table 2.3 the influence of training the loss function and steerable filters with Lorenz

loss [4] and Focal loss [30] based on NMS-aligned examples vs the examples obtained directly

based on the annotation (w/o NMS-aligned examples). We see that the angle error on training

and test sets has better performance using the NMS-aligned examples. However, the AUC on

training and test set has better performance not using the NMS-aligned examples, since the NMS-

aligned examples have more hard negative patches than the examples obtained directly based on

the annotation.

We also show in Table 2.4 the evaluation of different methods on the entire images based on

NMS-aligned examples and examples based on annotation. We see that both training and test

FP rate are lower using the NMS-aligned examples. From the trained steerable filter results,

the Focal loss [30] performs better than the Lorenz loss [4]. On training the FCNN with NMS-

based positive examples vs positives extracted directly based on the annotation (w/o NMS-aligned
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Table 2.4: Evaluate on the entire image: w/o NMS-aligned vs w/ NMS-aligned

Det. rate FP rate
Method Train Test Train Test

SQF [33] Cauchy, f0 = 1/6, rank 11 90.13 90.02 5.12 5.87
SQF [33] Cauchy, f0 = 1/6, rank 11 w/ NMS 90.03 90.00 4.19 3.93

Lorenz FB 90.04 90.12 8.54 11.97
Lorenz FB(w/ NMS) 90.08 90.00 3.13 3.75

Trained steerable filter(Lorenz loss[4]) rk. 11 90.03 90.04 8.43 11.70
Trained steerable filter(Lorenz loss[4] w/ NMS) rk. 11 90.02 90.05 3.02 3.62

Trained steerable filter(Focal loss[30]) rk. 11 90.18 90.06 8.15 11.53
Trained steerable filter(Focal loss[30] w/ NMS) rk. 11 90.01 90.11 2.91 3.44

FCNN w/o NMS-aligned training examples 90.09 90.01 3.72 8.28
FCNN with NMS-aligned training examples 90.18 90.07 1.43 2.65

Steerable CNN rank 11 w/o SQF (Focal loss [30]) 90.07 90.01 2.92 6.08
Steerable CNN rank 11 with SQF (Focal loss [30]) 90.18 90.10 0.76 1.82

training examples), we see that both training and test FP rates are lower using the NMS-aligned

examples.

To see whether the SQF are useful in screening the image and proposing good angle prediction

for the steerable CNN, we also evaluated in Table 2.4 the trained steerable CNN by directly applying

it to the whole image and obtaining the maximum response from 30 discrete angles in the range

[0, π] (Steerable CNN w/o SQF). Again we see that the SQF-based screening is useful, reducing

the test FP rate from 6.08 to 1.82.

30



input image Frangi filter [17] Cauchy SQF [33] rk 7 Lorenz FB

TSF(Lorenz) rk 11 TSF(Focal) rk 11 TSF(Focal w/ NMS) rk 11 PBT & Haar features[3]

FCNN w/o NMS FCNN w/ NMS SCNN rk 7 w/ SQF SCNN rk 11 w/ SQF

Figure 2.22: Guidewire detection examples of different methods for one training frame.
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input image Frangi filter [17] Cauchy SQF [33] rk 7 Lorenz FB

TSF(Lorenz) rk 11 TSF(Focal) rk 11 TSF(Focal w/ NMS) rk 11 PBT & Haar features[3]

FCNN w/o NMS FCNN w/ NMS SCNN rk 7 w/ SQF SCNN rk 11 w/ SQF

Figure 2.23: Guidewire detection examples of different methods for one test frame.
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CHAPTER 3

RETINAL VESSEL DETECTION

3.1 Introduction

A fundus camera is used to photograph the rear of the eye that includes retina, optic cup,

optic disc, macula, fovea, arteries and veins. The fundus is the only microcirculation system

that is visible throughout the human body. By analyzing the fundus images, ophthalmologists can

provide diagnosis and treatment of different eye diseases as well as diabetes, hypertension, leukemia,

arteriosclerosis and anemia. The ophthalmologists will check the cup-to-disc ratio as a measurement

to diagnose the glaucoma. Meanwhile, the arteries which provide enough blood supply to the eye

and veins which carry the blood back to the heart are examined by the ophthalmologists. The

veins are thicker than the arteries. The normal ratio of the diameter between arteries and veins

in fundus images would be approximately 2 : 3. Based on the vascular elasticity and hardness,

ophthalmologists can make a diagnosis whether there’s an arteriosclerosis or some other diseases.

The diagnosis of some retinal diseases can be made by analyzing the arteries and veins in fundus

images, as the structure of the retinal vessels has different thicknesses and orientations depending

on the disease. Due to those reasons, retinal vessel detection is important to recognize the disease

automatically or to help the ophthalmologists diagnose and treat the diseases. Robust retinal vessel

segmentation is necessary. Some diseases might be identified in an early stage so that the patient

can receive better treatment. Automatic retinal vessel detection is a challenging problem due to

the noisy background in the fundus images.

There are two main approaches to detect the vessels. First one consists of morphology-based

approaches. One can use a predefined filter to obtain a filtered response map, and then with some

vessel tracking methods to get the detection map. The second approach contains learning-based

approaches, either supervised or unsupervised. For supervised learning one can use k-nearest neigh-

bors, support vector machines (SVM) and neural networks. For unsupervised learning methods,

K-means is used to identify whether a pixel is a vessel or not.
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In this dissertation, a novel filter based method is presented that uses Spherical Quadrature

Filters with morphological approaches. Fully Convolutional Networks that have the same archi-

tecture as in Section 2.4 are trained on solving this task and a Steerable CNN with equivariant

steerable filters is also trained to solve the retinal vessel detection.

3.2 Related Work

Various approaches have been applied to blood vessel segmentation in fundus image, and can

be grouped into filter based methods, morphological processing, vessel tracking and model based

algorithms.

Filter based methods, such as Steerable Filters [18] were used for vessel segmentation. In [54],

a matched filter with First-Order Derivative of Gaussian (MF-FDOG) was used to extract the

retinal vessels. The thick blood vessels are detected by using large-scale MF-FDOG and small-

scale MF-FDOG is used to detect the thin vessels. The detection maps are the combinations of

the large-scale and small-scale results. A Second-Order Gaussian filter was proposed in [19] for

detecting the retinal vessels in fundus images, but fails on most thin vessels.

For morphological processing, a method that combined the filters with morphological recon-

struction to detect the centerlines of the retinal blood vessels and to preform vessel segmentation

was presented in [36]. In [37], a discrete curvelet transform was used to enhance the retinal images

for a better detection. By using morphological operators the falsely detected ridges were filtered

out.

Kalman Filter and a Second-Order derivative Gaussian filter were employed in [13] for retinal

vessel detection and tracking. The center and width were obtained by the Second-Order derivative

Gaussian filter. Based on the center, an extended Kalman Filter was used to estimate the next

position of the vessel.

Deep learning approaches can achieve state of the art results in learning patterns of the fea-

tures directly from the images. Various Convolutional Neural Networks have been developed in

image processing, such as Alex Net[26], VGG Net[46], R-CNN[20], U-Net[43], Fully Convolutional

Networks[32], ResNet[22] and CapsNet[23, 44] etc. CNNs are employed to segment the vessels in

fundus images.
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In [31], a Convolution Neural Network with three convolutional layers, one pooling layer and

two fully connected layers was trained for detecting the blood vessels under fundus images. The

results outperformed the previous methods on accuracy and AUC. A similar conventional CNN

with two convolutional layers, two pooling layers, a dropout layer and one fully connected layer has

been employed to solve the retinal vessel detection in [21]. A reinforcement learning strategy is also

applied to train the CNN more efficiently. In [1], another deep learning based approach based on

the combination of U-Net, Recurrent Convolutional Neural Network and Residual Networks was

proposed on retina vessel segmentation and other medical image segmentation. [16] proposed a

method to apply neural architecture search and U-Net to segment the retinal vessels.

3.3 Annotation

The vessel annotation for the fundus images consists of pixelwise masks for the vessels in

the image. This is a simple type of annotation that does not have the concept of vessel, vessel

orientation, etc. The vessel orientation is important for our Steerable CNN as the Steerable CNN

is trained to be sensitive to specific orientations.

For this reason, we are first investigating an automatic approach of extracting a higher level

annotation that contains the vessel centerlines, vessel width and vessel orientation from the pixelwise

annotation. The approach consists of the medial axis transform, distance transform and B-spline

interpolation. The medial axis(skeleton) is the loci of the centers of maximal circles that can fit

in the foreground region in 2-D. First, skeletonization is performed on the pixelwise annotation to

obtain a set of points that are centered along the retinal vessel tree. Then, a distance transform

is used to measure the thickness(the width) of each point of the pixelwise annotation. Then, short

segments are fitted using B-spline on the set of center points. Finally, the set of points and the

vessel thickness are used to reconstruct the retinal vessel.

In Figure 3.1 are shown the manual pixelwise annotation, the skeletonization result, the B-

spline interpolation result and a reconstructed map from the B-spline vessel tree and thickness

information. The Dice Similarity Coefficient is used for evaluating the reconstructed map. The

Dice Similarity Coefficient is in the range [0, 1], it is a popular performance measure for image

segmentation methods. It can be written as

DSC =
2TP

2TP + FP + FN
. (3.1)
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True positive (TP) is the number of vessel pixels that are correctly classified as vessel pixels.

True negative (TN) is the number of non-vessel pixels that are correctly classified as non-vessel

pixels. False positive (FP) is the number of non-vessel pixels that are misclassified as vessel pixels.

False negative (FN) is the number of vessel pixels that are misclassified as non-vessel pixels.

The average Dice Similarity Coefficient of the reconstruction of the vessel tree using the auto-

matic method from the pixelwise annotation is 93.91% on the training and test datasets in DRIVE.

Figure 3.1: Top row: Examples of manual annotation and skeletonization result. Bottom
row: Examples of B-spline of short segments and a reconstructed map
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3.4 Methods

3.4.1 Region of Interest(ROI)

Figure 3.2: From Left to right: the fundus image, the grayscale image and region of
interest mask.

The fundus images of the DRIVE dataset are of size 584× 565. However, the retinal region is

circular, as shown in Figure 3.2, left. First, the region of interest should be generated as a mask

automatically to analyze the segmentation results. A threshold is chosen directly to separate the

ROI and the non retinal part. This will make some pixels in the region of interest as the non retinal

part. To overcome this, [53] proposed a method of generating the ROI by calculating the sum of

difference among the RGB values. In our study, we used a similar method that obtains the mask

ROI according to

ROI(R,G,B) =

{
0, if |R−G|+ |R−B|+ |G−B| < t,

1, otherwise
, (3.2)

where t is the threshold and is set to 41. An example of the ROI is shown in Figure 3.2,right. The

average accuracy is 99.80%.

3.4.2 Vessel Light Reflex Removal

Before removing the vessel central light reflection, the RGB image is converted to a grayscale

image, using the following equation

I(R,G,B) = crR+ cgG+ cbB (3.3)
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where R,G and B are the intensities of three channels and cr, cg and cb are the coefficients. An

averaging-based method will average the RGB values, using cr = 1
3 , cg = 1

3 , cb = 1
3 . The luminosity

method sets the coefficients to cr = 0.3, cg = 0.59, cb = 0.11. In retinal vessel detection methods,

the green channel is used as grayscale image because the green channel has the highest contrast[52].

The green channel is used as the gray level intensity map in this dissertation. An example is shown

in Figure 3.2, middle.

Figure 3.3: Left: vessel with central light reflection. Right: after light reflection removal
by morphological opening.

The retinal vessels have lower brightness than the retinal surface. However, some blood vessels

may include a light reflection along the vessel centerline, as shown in Figure 3.3, left. To remove

the vessel light reflection, a morphological opening operation is used with a three-pixel diameter

disc and a square grid by using eight-connectivity [34]. An example of removal result are shown in

Figure 3.3, right.

3.4.3 Spherical Quadrature Filters

The Cauchy Spherical Quadrature Filters [33] of rank 9 are employed to obtain the filtered

response, the SQFs equation is described in Eq. (2.1) with a Cauchy isometric filter in Eq. (2.5).

The peak tuning frequency ω0 is set to 1
3 . In guidewire detection, the SQFs are shown to detect

the thinner wire-like structures accurately. However, there is a problem in vessel detection that the

center of some thicker vessels is considered as background pixels, as shown in Figure 3.4, left. To

improve classification, the fundus images are downscaled to half size and the SQFs are applied on

the downscaled images.
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Figure 3.4: Left: SQF detection results of full-scale fundus images. Right: SQF detection
results of downscaled fundus images.

Then, top-hat transform is applied after the filtered responses. The white top-hat transform is

defined as the difference between the input image and the morphologically open image

ITop−Hat = I − I ◦ rn (3.4)

where ”◦” denotes the opening operation, r is the radius and n is the number of line structuring

elements. In this dissertation, the best performance is obtained by a combination of a disk-shaped

structuring element with radius of 3 and 8 line structuring elements.

Finally, the filtered downscaled images are resized back to the original size of 584 × 565. An

example of obtained SQF detection result is shown in Figure 3.4, right.

3.4.4 Fully Convolutional Neural Network

Assume we are given n training patches (xi, yi), i = 1, ..., n where xi ∈ Rp2 is the image of a

patch of size p × p either centered on the retinal vessels (a positive example) or away from the

retinal vessels (a negative example), and yi is the label. The labels are yi = −1 for negative patches

and yi = 1 for patches centered on the retinal vessel.

FCN Architecture. A Fully Convolutional Neural Network is employed on detecting the

retinal vessels. The network architecture is the same as the one in Figure 2.4. For a receptive field

of 25× 25, there are 4 convolutional layers, and the third one followed by a ReLU layer (Rectified

Linear Unit). The last convolutional layer obtains the binary response whether the patch is a

retinal vessel or not. The first convolutional layer has 16 filters of size 7 × 7, the following layers
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have 32 filters of size 7× 7. The last one contains 1 filter of size 7× 7. We used the Focal loss [30]

from Eq. (2.10) to guide the training.

Training Initialization. All weights were initialized with random Gaussian values with std

0.01. The training was performed using the Adam optimizer[25] with the weight decay 0.0001, the

initial learning rate 0.00001 and an initial mini-batch size 32. The learning rate was multiplied by

0.8 and the minibatch was doubled every 50 epochs, for a total of 300 epochs.

3.4.5 Steerable CNN

The Steerable CNN is similar to the one in Section 2.7. The difference is that the steerable filters

of the SCNN in retinal vessel detection is tuned to be equivariant as illustrated in [51]. Assume we

are given n training patches (xi, yi, αi), i = 1, ..., n where xi ∈ Rp2 is the image of a patch of size

p × p either centered on the retinal vessel (a positive example) or away from the retinal vessel (a

negative), yi ∈ {−1, 1} is the label, and αi ∈ [0, π) is the orientation. The orientation at the center

location of each patch is obtained by Steerable Quadrature Filters (SQF) [33].

SCNN Architecture. A 2-layer Steerable CNN and a 4-layer Steerable CNN are trained.

The steerable filters in each layer has been forced to be equivariant based on [51]. The basis of each

steerable filters is set to rank 11. The learned steerable filters are defined as a linear combination

of some weight w and the basis B. All basis B’s of steerable filters were initialized with

B = Re (exp(−(r − µj)2/2)eikφ), (3.5)

where Re denotes the real part of the equation, µj = j is the radius with j = 1, 2..., J and k is the

angular frequency k = 0, 1, ...,K.

A neuron of the first layer of the SCNN with a equivariant steerable filters for any angle θk has

the following form:

f(x, θi) =< (x ∗B) ·Ak,w > (3.6)

where x is an input patch, B is the equivariant basis from Eq. 3.5, ”∗” denotes the convolution,”·”

denotes elementwise multiplication, w denotes a learned weight vector of size JK + 1, ”<,>”

denotes the dot product, and A(i) is a vector of size JK + 1:

Ak = [1, ..., 1︸ ︷︷ ︸
J+1

, cos(2θk), sin(2θk), ..., cos(2θk), sin(2θk)︸ ︷︷ ︸
2J

, ..., cos(2dθk), sin(2dθk), ..., cos(2dθk), sin(2dθk)︸ ︷︷ ︸
2J

]
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where d = K−1
2 .

Training Initialization. The initial learning rate was 0.00003 and the initial mini-batch size

was 32. The mini-batches size was doubled every 50 epochs. We set the maximum mini-batch size

to 4096. After the mini-batch size became 4096, the learning rate was multiplied by 0.5 every 50

epochs, for a total of 500 epochs. The training was performed using Adam optimizer [25].

3.4.6 Post-processing

A post-processing step is applied after obtaining the binary response map of the retinal vessels.

Due to the detection result having gaps, a filling step is performed. If the pixel is considered not

detected and at least 6 neighbors are classified as vessels, the pixel is also classified as a vessel pixel.

3.5 Experiments

The experiments are performed on a single GPU machine with NVIDIA GeForce GTX 1070

with 6GB memory and 64GB of RAM. The Pytorch [40] framework is used for training the FCN,

SCNN and for vessel detection.

3.5.1 Dataset

The DRIVE (Digital Retinal Images for Vessel Extraction) database is used for evaluation. The

photographs for the DRIVE database were obtained from a diabetic retinopathy screening program

in the Netherlands. The images are of size 584× 565.

For the learning based approaches that require a training set, 20 images are used for training

and the other 20 are used for testing. The training patches are extracted from the images of size

25× 25. The annotations are manually obtained by two experts, and we used the results obtained

by the first expert as the ground truth.

The training set of FCN contains 362,320 positives and 4,580,866 negatives. The training set

of SCNN contains 510,041 positives and 1,034,628 negatives.

3.5.2 Performance Metrics

In this dissertation, we evaluated the performance of the methods in terms of sensitivity, speci-

ficity and accuracy. They are defined as:

Sensitivity =
TP

TP + FN
, (3.7)
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Specificity =
TN

TN + FP
, (3.8)

Accuracy =
TP + TN

TP + FN + TN + FP
. (3.9)

where TP, TN,FP, FN have been defined in Section 3.3. The area under curve (AUC) is also used

as an evaluation measure.

Figure 3.5: Detection examples of fundus images, top row: input image, Cauchy SQF
rank 9. Bottom row: FCN detection result, SCNN 4-layer detection result.
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3.5.3 Results

In Table 3.1 are shown the results of different methods and our proposed methods on the DRIVE

dataset. The first part contains the filter based and morphological approaches. The proposed SQF

rank 9 outperformed the other methods on both Sensitivity and Accuracy. The second part contains

the learning based approaches. Our proposed FCN method outperformed other existing methods

on Sensitivity and Accuracy. The SCNN with 4 layers outperformed all the other methods on

Sensitivity and Accuracy. The Specificity of 4-layer SCNN is slightly lower than the Li et al. [28]

and AUC is lower than the other methods. The detection examples of different methods are shown

in Figure 3.5. The ROC curves of FCN, 2-layer SCNN and 4-layer SCNN are shown in Figure 3.6.

Table 3.1: Comparison with different methods on 25× 25 patches.

Sensitivity Specificity Accuracy AUC

Mendonca et al. [36] 0.7344 0.9764 0.9452 -
Zhang et al. [54] 0.7120 0.9724 0.9382 -
Miri et al. [37] 0.7352 0.9795 0.9458 -
Yavuz et al. [53] 0.6779 0.9786 0.9400 -
SQF [33] rank 9 0.7353 0.9706 0.9498 0.8108

Liskowski et al. [31] 0.7811 0.9807 0.9535 0.9790
Alom et al. [1] 0.7792 0.9813 0.9556 0.9784
Li et al. [28] 0.7791 0.9831 0.9574 0.9813
Proposed FCN 0.7856 0.9806 0.9633 0.9743
Proposed FCN w/ sqf 0.7847 0.9719 0.9554 0.9526
SCNN 2L 0.7846 0.9803 0.9629 0.9044
SCNN 4L 0.7873 0.9820 0.9646 0.9050

43



Figure 3.6: ROC for FCN and SCNN.
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CHAPTER 4

CONCLUSION

In this dissertation, we introduced a simple steerable CNN that can be tuned using an orientation

parameter θ to be sensitive to objects aligned to that orientation, instead of being rotation invariant.

Another contribution was to apply the Spherical Quadrature Filters to the X-ray images and fundus

images to obtain a detection map. We also proposed a learning-based method for training a class

of oriented filters and training Fully Convolutional Networks for guidewire detection in fluoroscopic

images.

We presented the mathematical formulation of the steerable CNN, and how to train it using

examples at any orientation, without rotating them for alignment. As application, we used the

steerable CNN to detect guidewire pixels in fluoroscopic images, where a regular CNN overfits

because the wire is very thin and covers only a small percentage of the input.

We reported the difficulties we encountered while training the regular CNN due to the fact that

the guidewire is thin and noisy, and imprecision in annotation makes the training even more difficult.

To address these issues, we presented two training-related measures specific to this problem. First,

we showed how to get a better initialization using training examples from one image or one sequence

only. Then, we explained how to obtain better aligned training examples using the Spherical

Quadrature Filters [33] and non-maximal suppression.

The experiments of guidewire detection show that the Steerable Convolutional Neural Network

trained with our SQF-aligned data outperformed all other methods evaluated. In terms of filter-

based methods, we evaluated the Frangi filter [17] and the Spherical Quadrature Filters [33] and

we observed that the learning based methods outperform the filter based methods.

SQFs were also used as a new filter based approach to segment the retinal vessels, and can

obtain a higher Sensitivity and Accuracy than the existing filter based methods. Also our trained

Fully Convolutional Network and Steerable Convolutional Neural Network can obtain better retinal

vessel segmentation Sensitivity and Accuracy, with a sightly lower Specificity and AUC.
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In the future, we plan to apply the steerable CNN to automatic guidewire localization. The

guidewire localization is a higher level process that uses the pixelwise detection as a data term to

find the most likely position of the guidewire by searching the high dimensional space of all possible

curves.
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