
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

PARAMETER SENSITIVE FEATURE SELECTION FOR LEARNING ON LARGE

DATASETS

By

GARY GRAMAJO

A Dissertation submitted to the
Department of Statistics

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

2015

Copyright c© 2015 Gary Gramajo. All Rights Reserved.

Gary Gramajo defended this dissertation on June 12 2015.
The members of the supervisory committee were:

Adrian Barbu

Professor Directing Dissertation

Kumar Piyush

University Representative

Fred Huffer

Committee Member

Yiyuan She

Committee Member

Jinfeng Zhang

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii

To my wife, who endured many nights and weekends without me as I finished my PhD

iii

ACKNOWLEDGMENTS

Many thanks are due to many people. My major professor who had to put up with many questions

from me. To friends and family who pulled together to help me finish. And most importantly, to

my Lord Jesus Christ, who heard all of my reasons why I could not finish my PhD but refused to

give up on me.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

List of Symbols . xii

Abstract . xiii

1 Feature Selection with Annealing 1
1.1 Related Works . 1

1.1.1 Feature Selection . 2
1.1.2 Boosting . 6
1.1.3 Penalized Loss Algorithms . 7

1.2 Feature Selection with Annealing . 7
1.2.1 Algorithm Description . 8
1.2.2 Implementation Details . 10

1.3 FSA for Regression . 11
1.4 FSA for Classification . 12

1.4.1 Penalized Logistic Loss . 12
1.4.2 Penalized Huberized Loss . 12
1.4.3 Penalized Lorenz Loss . 13

1.5 Nonlinearity and Feature Selection . 14
1.6 Mining Hard Negatives . 15

1.6.1 Related Works . 16
1.6.2 Hard Data Mining With FSA . 16

1.7 Confidence Weighted FSA . 18
1.7.1 Confidence Weighted Algorithm Description 18
1.7.2 CW-FSA . 18

1.8 Experiments with FSA . 19
1.8.1 Stability of Learning Parameters . 19
1.8.2 Simulations . 19

2 Face Detection Using a 3D Model 23
2.1 Related Work . 23

2.1.1 Face Detection . 23
2.1.2 Face Alignment . 24

2.2 Image Features . 26
2.2.1 Histogram of Oriented Gradients . 26
2.2.2 Haar-Like . 28
2.2.3 Difference Features . 28
2.2.4 Local Binary Features . 30

2.3 Energy Model . 32
2.4 Inference Algorithm . 35

v

2.4.1 Detecting Keypoints . 35
2.4.2 Generating 3D Pose Candidates . 37
2.4.3 The 3D Face Candidate Score S(θ) . 39
2.4.4 Non-Maximal Suppression . 40

2.5 Evaluation of Intermediate Face Detection Steps . 41
2.5.1 Dataset Description . 41
2.5.2 Face Keypoint Evaluation . 42
2.5.3 Evaluating 3D Pose Candidate Generator . 45
2.5.4 Illustration of Keypoints and Difference Features 46

3 Parameter Sensitive Classifiers with Feature Selection with Annealing 48
3.1 Motivation . 48
3.2 Related Works . 49
3.3 Parameter Sensitive Classifiers with FSA . 54
3.4 PFSA for Face Detection . 55

3.4.1 Overview . 55
3.4.2 Training Details for the Scoring Function of Face Candidates 56

4 Experiments 59
4.1 Simulations . 59

4.1.1 Background . 59
4.1.2 Simulation Results . 62

4.2 URL Reputation Dataset . 63
4.2.1 Description of URL Reputation Dataset . 63
4.2.2 Application of PFSA to URL Reputation . 70
4.2.3 Results . 71

4.3 Face Detection Results . 72
4.3.1 FDDB Dataset . 72
4.3.2 AFW Dataset . 73

Appendix

A Support Vector Machines 85
A.1 Constructing the Support Vector Classifier . 85

B Explanation of the Gaussian Pyramid 89
B.1 Background . 89

Bibliography . 91

Biographical Sketch . 101

vi

LIST OF TABLES

1.1 Computation times for selecting k variables using N observations of dimension M ,
when N iter = 500. 11

1.2 Classification experiments on simulated linearly separable data with δ = 0.9, averaged
over 100 runs. 20

1.3 Classification experiments on simulated data with noisy labels, δ = 0.9, averaged over
100 runs. 21

4.1 Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 3 bins, averaged over 100 runs. Sinusoidal weights
were used as illustrated in Figure 4.1 . 64

4.2 Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 3 bins, averaged over 100 runs. Zero sub-domain
weights were used as illustrated in Figure 4.2 . 65

4.3 Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 10 bins, averaged over 100 runs. Sinusoidal weights
were used as illustrated in Figure 4.1 . 66

4.4 Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 10 bins, averaged over 100 runs. Zero sub-domain
weights were used as illustrated in Figure 4.2 . 67

4.5 Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 50 bins, averaged over 100 runs. Sinusoidal weights
were used as illustrated in Figure 4.1 . 68

4.6 Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 50 bins, averaged over 100 runs. Zero sub-domain
weights were used as illustrated in Figure 4.2 . 69

4.7 Example of a β recovered with k∗ = 1000 and 100 days 70

4.8 Example of a β recovered with k∗ = 1000 and 100 days 71

4.9 Experiments results on URL dataset. Our implementations are third and fourth meth-
ods. We use linear FSA algorithms with a Lorenz loss. Note that while we do not
outperform CW (the on-line algorithm), we come close using less than one-fifth the
number of features. We also have a version of FSA that uses the features from the
CW implementation that obtains the same test error. 72

vii

LIST OF FIGURES

1.1 The value of βj , j = 1,M vs iteration number for simulated data with N = 1000,M =
1000, k = 10 with η = 20, µ = 300. 9

1.2 The number of kept features Me vs iteration e for different schedules, with M = 1, 000, k =

10, N iter = 500. 10

1.3 The loss functions from eq. (1.12), (1.15) and (3.4.2). Left: the losses on the interval
[−30, 3]. Right: zoom in the interval [−4, 2]. 13

1.4 Piecewise linear response functions obtained for an eye detector. 14

1.5 Sensitivity analysis for the 3 main FSA parameters (from left to right): η - rate of
learning, µ - controls annealing schedule, and N iter - number of epochs. The area
under the ROC curve is plotted against a range of values for each parameter. 20

2.1 A figure from [104] that demonstrates the keypoint location predictions at different
levels of the convolutional neural network. The first row corresponds to the first layer
and the second row corresponds to sequential layers with improvement accentuated
using blue circles. 25

2.2 From [42] where the HOG features for each person identified view overlapping rect-
angles are demonstrated in the two rightmost images. 27

2.3 Illustration of HOG Features from http://www.cs.cornell.edu/courses/cs4670/2012fa

/projects/p5/index.html . 27

2.4 The rectangles in this figure (taken from http://link.springer.com) are commonly
used to represent how pixel values will be treated as either negative or positive and
then summed. These sums are used in forming Haar features. 28

2.5 Examples of different kinds of adjacent rectangles and locations that can be used to
form Haar features. Taken from https://code.google.com/p/scoialrobot/wiki/
RGBDetector . 29

2.6 Example of summing signed pixel values as part of forming Haar features. Image is
from http://maraya.karo.or.id/haar-like-feature-pada-metode-viola-jones . . 29

2.7 Visualizing the grid over which the pixel differences are computed for keypoint of the
lower right ear. 30

2.8 Visual example of how LBF are computed as presented in [92] 31

2.9 Visual example of pixel differences feature vectors . 31

viii

2.10 Visual example of how binary features are computed 32

2.11 Example of keypoint representation as a column vectors (left table) and rigid model
(right figure) . 33

2.12 Face detection using a 3D model. The face keypoints are detected independently and
used to propose 3D pose candidates θ = (u, s, R) ∈ R6. The 3D pose candidates are
evaluated using the score S(θ) based on the detected keypoints. The detected faces
are obtained by non-max suppression. 34

2.13 Illustration of Window Classifier . 36

2.14 Illustration of Gaussian Pyramids. Left image from http://fourier.eng.hmc.edu/e161

/lectures/canny/node3.html. Right image from https://elementalray.wordpress.com/

2012/04/ . 36

2.15 Examples of training examples for keypoint detection. The positive examples (correct
detections on the faces) and negative examples (e.g. detections in the trees) of keypoints. 37

2.16 Examples of LBF sampling grid patterns obtained using the 3D pose of the face. . . . 40

2.17 Examples of the real-world scenario face images (left) and the 21 face keypoint tem-
plate of AFLW (right). Both images were taken from [60] 42

2.18 Example of image with most of the face keypoints used in LFPW (except the ear
points) taken from [7] . 43

2.19 Example of image from Helen dataset taken from [66] 43

2.20 Precision-recall curves for face keypoint detection on the test set AFLWMF containing
1555 images and 3861 faces. From top to bottom, left to right: left/right eye center,
left/right nose, left/right mouth corner, left/right ear, chin. 44

2.21 Candidate Generator Evaluation. Left: errors of the best fit of the 3D model to the
ground truth (GT). Middle: errors of the best 3D pose candidate predicted from the
true keypoint locations. Right: errors of the best 3D pose candidate. 46

2.22 Illustration of keypoints and difference features (with radius of 4). Top Image: tem-
plate face with 21 keypoints. From top left to bottom right: bottom right ear, middle
right eye, middle left eye, bottom left ear, right nose edge, left nose edge, right mouth
corner, left mouth corner, chin . 47

3.1 The image demonstrates the different angle rotations for a 3D object (image taken
from http://www.hindawi.com/journals/mse/2009/245606/fig7/). 48

3.2 The image demonstrates the variability in face detection that we wish to account for in
our model (image taken from http://imgarcade.com/1/frontal-face-drawing/)
- the motivation for PFSA. 49

ix

3.3 Example of how bins can be used to capture variability in face pose (face-images taken
from http://i.cs.hku.hk/cisc/projects/websiteITS08211/Background.html) . 49

3.4 Example of the β that is learned in PFSA. Note how the bins are represented via rows
and the number of β vectors learned are represented via columns (a total of M) . . . 54

3.5 Example of smooth β obtained with our second order prior 56

3.6 Top 50 LBF coefficients by total variation, out of 28,800. 57

4.1 Illustration of Sinusoidal Weights . 60

4.2 Illustration of Zero Sub-Domain Weights . 61

4.3 Visual description of waves from Wikipedia . 63

4.4 Recovered weights in the case of Sinusoidal Noiseless weights using a parameter sen-
sitive classifier and FSA with a logistic loss (PFSA) 74

4.5 Recovered weights in the case of Sinusoidal Noiseless weights using a parameter sen-
sitive classifier and FSA with a huberised loss (PFSV) 75

4.6 Recovered weights in the case of Sinusoidal Noiseless weights using a parameter sen-
sitive classifier and FSA with a lorenz loss (PFSL) . 76

4.7 Recovered weights in the case of Zero Sub-Domain Noiseless weights using a parameter
sensitive classifier and FSA with a logistic loss (PFSA) 77

4.8 Recovered weights in the case of Zero Sub-Domain Noiseless weights using a parameter
sensitive classifier and FSA with a huberised loss (PFSV) 78

4.9 Recovered weights in the case of Zero Sub-Domain Noiseless weights using a parameter
sensitive classifier and FSA with a lorenz loss (PFSL) 79

4.10 Visual of URL Classification Steps in [72] . 80

4.11 Figure from [72] Comparing CW and Batch Algorithms 80

4.12 Example of an image and annotation used in FDDB dataset 81

4.13 Results and comparisons on the FDDB dataset . 81

4.14 Detection results on the FDDB dataset for different values of the support parameter
N supp. 82

4.15 Example of images used in AFW dataset and presented in [126] 82

4.16 Detected faces on the AFW dataset using the 3D model and FSA-SVM keypoint
detectors. Also shown are the detected keypoints that were closest to the 3D pose of
the detected face. The annotations are shown as thin yellow boxes. 83

x

4.17 Results and comparisons on the AFW dataset (205 images with 486 faces). 84

A.1 Figure taken from [50] . 86

A.2 Figure taken from [50] . 87

B.1 Illustration of Gaussian Pyramids (taken directly off the web) 89

B.2 . 90

xi

LIST OF SYMBOLS

The following short list of symbols are used throughout the document. The symbols represent
quantities that I tried to use consistently.

π 3.1415926 . . .
x ∈ RM vector of length M
D = {(x, y)} training dataset of observation x and its response y
β learned coefficients (in classification or regression)

xii

ABSTRACT

Though there are many feature selection methods for learning, they might not scale well to very

large datasets, such as those generated in computer vision data. Furthermore, it can be beneficial

to capture and model the variability inherent to data such as face detection where a plethora of face

poses (i.e. parameters) are possible. We propose a parameter sensitive learning method that can

learn effectively on datasets that can be prohibitively large. Our contributions are the following.

First, we propose an efficient feature selection algorithm that optimizes a differentiable loss with

sparsity constraints. We note that any differentiable loss can be used and will vary depending on

the application. The iterative algorithm alternates parameter updates with tightening the sparsity

constraints by gradually removing variables based on the coefficient magnitudes and a schedule.

Second, we show how to train a single parameter sensitive classifier that models the wide range of

class variability. The sole classifier is important since this reduces the amount of data necessary

for training compared to methods where multiple classifiers are trained for each parameter value.

Third, we show how to use nonlinear univariate response functions to obtain a nonlinear decision

boundary with feature selection; an important characteristic since the separation of classes in real

world datasets is very challenging. Fourth, we show it is possible to mine hard negatives with

feature selection, though it is more difficult. This is vital in computer vision data where 105

training examples can be generated per image. Fifth, we propose an approach to perform face

detection using a 3D model on a number of face keypoints. We modify binary face features from

the literature (generated using random forests) to fit into our 3D model framework. Experiments on

detecting the face keypoints and on face detection using the proposed 3D models and modified face

features show that the feature selection dramatically improve performance and come close to the

state of the art on two standard datasets for face detection . We also apply our parameter sensitive

learning method with feature selection to detect malicious websites, a dataset with approximately

2.4 million websites and 3.3 million features per website. We outperform other batch algorithms

and obtain results close to a high performing online algorithm but using far fewer features.

xiii

CHAPTER 1

FEATURE SELECTION WITH ANNEALING

In a classification problem set-up, we have n observations, each represented as xi, with p predictors.

Each observation xi ∈ Rp, is labeled as either yi ∈ {−1,+1}, and is drawn i.i.d from a probability

distribution P (X,y). The goal of feature selection would be to select a subset of the original p

predictors while improving the discriminative ability of a classifier. A brute force search of all

possible feature combinations is computationally infeasible [117, 78]. Thus, many feature selection

methods have been developed in order to efficiently select features while preserving or reducing the

misclassification error rate. We start by introducing the myriad of work done in feature selection.

1.1 Related Works

In [111], Weston et al. state that the problem of feature selection generally fall into two types

of categories,

1. For a fixed k << p, find the k features that give the smallest generalization error.

2. Determine the smallest k that gives the maximum allowable generalization error γ.

Weston et al. note that the choices of k in the first category can usually be re-parameterized as

choices for γ in the second category.

The first representation of the problem is very similar to our main approach of Feature Selection

with Annealing (FSA), explained the Section 1.2, and thus, we will continue to develop the problem

of feature selection through the first perspective. Weston et al. represent the approximation of

the generalization error as follows. For a fixed set of functions y = f(x, α), the goal is to find a

preprocessing of the data x 7→ x ∗ σ, σ ∈ {0, 1}p, and the parameters α of the function f that

minimize the value of

τ(σ, α) =

∫
V (y, f((X ∗ σ), α))dP (X,y) (1.1)

subject to ‖σ‖0 = k, where P (X,y) is unknown, x ∗ σ = (x1σ1, . . . , xpσp) denotes element wise

product, V (·, ·) is a loss functional and ‖ · ‖0 is the 0-norm.

1

1.1.1 Feature Selection

FSA shares some similarity to the Recursive Feature Elimination [49] (RFE) procedure, a wrap-

per method, which alternates training an SVM classifier on the current feature set and removing

a percentage of the features based on the magnitude of the variable coefficients. However, our

approach has the following significant differences:

1. It removes numerous junk variables long before the parameters β have converged, thus it is

much faster than the RFE approach where all coefficients are fully trained at each iteration.

2. It can be applied to any loss function, not necessarily the SVM loss and we present applications

in classification and regression. We refer the reader to [4] for applications in ranking as well

as further examples in classification and regression.

3. In [4], we present rigorous theoretical guarantees of variable selection and parameter consis-

tency.

FSA can be viewed as a backward elimination method [48]. But its variable elimination is

built into the optimization process. Although there are numerous ways for variable removal and

model update, our algorithm design by combining the optimization update and progressive killing is

unique to the best of our knowledge. These principles enjoy theoretical guarantees of convergence,

variable selection and parameter consistency.

In [40] a screening procedure analyzed each variable by fitting a model that depends only on

that variable. In contrast, our screening procedure fits a model that depends on all variables and

gradually removes them according to a schedule.

There exist feature selection methods such as MRMR [86] and Parallel FS [124] that only select

features, independent of the model that will be built on those features. In contrast, our method

simultaneously selects features and builds the model on the selected features in a unified approach

aimed at minimizing a loss function with sparsity constraints.

The following description on previous work assumes knowledge of Support Vector Machine

(SVM). For more details, please reference the Appendix where a SVM is explained and derived.

In [111], Weston et al. present a computationally feasible feature selection algorithm for SVM

that is based on minimizing the generalization error bounds using gradient descent. That is, they

propose a method to minimize (1.1) over σ and α. In order to do this, they state two theorems that

2

establish bounds on the expected error probability. Suppose M is the size of the maximal margin

and the images φ(x1), . . . , φ(xN) of the training vectors are within a sphere of radius R. The first

theorem states the bound:

E[Perr] ≤
1

N
E

[
R2

M2

]
=

1

N
E[R2W 2(α0)] (1.2)

where W 2 is the dual problem that is maximized as is explained in the appendix.

This bound demonstrates that the performance of the SVM depends on the ratio E[R2/M2]

and not simply the large margin M where R is controlled by the mapping function φ(·). Using the

span of support vectors, Vapnik and Chapelle derived an estimate for the expected leave-one-out

error probability [25]:

E[PN−1err] ≤ 1

N
E

[
N∑
i=1

Ψ

(
α0
i

(K−1SV)ii

)
− 1

]
(1.3)

where

• Ψ is the step function

• KSV is the matrix of dot products between support vectors

• PN−1err is the probability of test error for the machine trained on a sample of size N − 1

• The expectations are taken over the random choice of the sample

Given that the support vector method attempts to find the function from the set f(x,β, β0) =

β · Φ(x) + β0 (over {β, β0}) that minimizes the generalization error, [111] starts by enlarging the

set of functions considered by the algorithm to f(x,β, β0) = β · Φ(x ∗ σ) + β0. The mapping

Φσ(x) = Φ(x ∗ σ) can be represented via the kernel Kσ (for any K):

Kσ(x, z) = K((x ∗ σ), (z ∗ σ)) = (Φσ(x) · Φσ(z)) (1.4)

Since the bounds in (1.2) and (1.3) hold for these kernels, we can use (1.2) to minimize over σ:

R2W 2(σ) = R2(σ)W 2(α0, σ) (1.5)

Since finding the minimum of R2W 2 over σ requires enumerating all possible n combinations,

the approach of this thesis is to approximate σ via a real-valued vector. Then, the optimum value

of σ can be found via gradient descent using the gradients explained in [25] and an extra constraint

which approximates integer programming.

3

As Bradley and Mangasarian point out in [11], the SVM performs feature selection when an

appropriate norm is used. They compare the performance of the SVM using 3 norms (‖ · ‖1, ‖ · ‖22,

‖ · ‖∞) against their Feature Selection Concave (FSV). Similar to the objective function of the

SVM that minimizes the distance of misclassified points, they introduce a term to the objective

function that performs feature selection. They avoid introducing discontinuity into the objective

via by a concave exponential approximation of this new term which essentially keeps track of the

nonzero features. This approximation provides a smooth objective to optimize and they prove [12]

that this smooth problem generates an exact solution to the non-smooth problem. In practice,

they implement a fast successive linear approximation which terminates in a finite number of steps

(usually less then 7) at a stationary point which they prove satisfies the minimum principle necessary

optimality condition for the smooth problem.

Bradley and Mangasarian make their comparison over 6 public datasets. The SVMs with the

‖ · ‖22 and ‖ · ‖∞ norms had the worst generalization performance and performed little to no feature

selection. The poor generalization ability of these two norms is to be expected given their sensitivity

FSV and the SVM with the ‖ · ‖1 norm had comparable performance both in test error and feature

selection performance. These results are expected given the popularity of the Hinge loss in SVMs.

In [76], Miranda et al. extend FSV to SVM with the added capacity for generalization by

minimizing the norm of the predictors. Similarly to FSV, they approximate the sum of non-zero

predictors by a concave exponential approximation. They refer to this model as a linearly penalized

SVM (LP-SVM). In a similar fashion to FSV, they use Cross Validation to obtain the best model

parameters.

In [53], predictors are ranked, after a single training run, according to their relative impor-

tance for classifying observations. Essentially, Hermes and Buhmann estimate the importance of

individual feature components from the discriminant function f(x) (A.18) provided by the SVM.

The first training iteration provides optimal values for the Lagrange multipliers λi which constitute

the support vectors and the decision boundary. To estimate the influence of the components of

an observation x have on the classification decision, they compute the gradient of ∇f(x). They

point out that since f(x) is a linear combination of kernel products, ∇f(x) can be written as the

weighted sum of kernel derivatives:

∇f(x) =
∑
i∈SV

λiyi∇xK(xi,x) (1.6)

4

The unit vectors ej , where the j = 1, . . . , n, represent the indices of the individual features,

are compared to ∇f(x) (after normalization). They claim that if a feature component xj is not

important at position x, then ∇f(x) should be roughly orthogonal to ej (see their paper for the

equation they use to calculate the angle). That is, xj should not influence the distance to the

decision hyper-plane. Furthermore, they perform a type of data reduction by only computing the

angles for observations that are within a small distance of the decision boundary margins. These

angles are averaged per feature component and only the features with the highest averages are kept.

In [49], Guyon et al. introduce SVM Recursive Feature Elimination (SVM-RFE). It is a wrapper-

based approach that utilizes the objective function
(
1
2‖β‖

2
)

as a feature-ranking criterion to discover

features with strong discriminatory abilities. Extending LeCun’s idea in the Optimal Brain Damage

algorithm of approximating the derivative of the cost function J using a Taylor series to second

order, Guyon points out that at the optimum of J , the first order term can be neglected. This

yields

DJ(i) =
1

2

∂2J

∂w2
i

(Dwi)
2 (1.7)

Guyon points out that the change in weight Dwi = wi corresponds to removing feature i.

Using the criteria of (1.7) to estimate the effect of removing one feature at a time on the objective

function, Guyon states that the essence of the SVM-RFE is

i. The classifier is trained (i.e. the optimal wi are obtained)

ii. Compute the ranking criterion

iii. Remove the feature(s) with the smallest rank

In [88], Rakotomamonjy extends the work in [49] and investigates three ranking criteria Ct

which are based on either the weight vector ‖β‖2 [49], the radius or margin bound R2‖β‖2 [107] or

the “span estimate” which involves the distance between a mapped support vector Φ(x) and the

span of the other support vectors [106]. Rakotomamonjy uses two approaches for each criterion

(inspired from the neural networks community). The “zero-order” is when the criterion is directly

used for variable ranking, R(i) = C
(i)
t where C

(i)
t is the criterion value when the variable i is

removed. The “first-order” method ranks a variable according to its influence on the absolute value

of the derivative of the criterion. In the same nature as SVM-RFE, the optimum k variables are

5

found using backward selection. Overall, the first order method using the gradient of the weight

vector performed the best both in accuracy and in computational complexity.

A convex framework for jointly training a SVM and choosing optimal features is proposed in

[80]. They use a convex function to determine the weights of features which results in a convex

optimization problem that can be solved using standard convex optimization software. They show

both theoretically and through experiments on public datasets that their approach generates sparse

features and require less support vectors compared to competing methods.

Other feature selection methods for SVM impose sparsity constraints on the SVM weights, being

limited to linear SVM [79, 125] or polynomial kernels [110]. The L1-norm SVM [125] optimizes the

hinge loss with a L1 penalty. This work shows that the regularization path is piecewise linear and

offers an algorithm to compute it. The combined SVM method [79] optimizes the hinge loss with

a combination of L0 and L2 penalties using the DC (difference of convex functions) optimization.

Our work optimizes a differentiable approximation of the hinge loss with L2 regularization and

L0 constraints but uses the FSA optimization method, which is very fast and scales well to large

datasets.

1.1.2 Boosting

Boosting algorithms – such as Adaboost [97], Logitboost [43], Floatboost [69], Robust Logit-

boost [68] to cite only a few – optimize a loss function in a greedy manner in k iterations, at each

iteration adding a weak learner that decreases the loss most. There are other modern versions such

as LP-Adaboost [46], arc-gv [14], Adaboost* [90], LP-Boost [34], Optimal Adaboost [94], Coordi-

nate Ascent Boosting and Approximate Coordinate Ascent Boosting [95], which aim at optimizing

a notion of the margin at each iteration. Boosting has been regarded as a coordinate descent

algorithm [93, 95] that optimizes a loss function, which can be margin based.

Boosting algorithms do not explicitly enforce sparsity but can be used for feature selection by

using weak learners that depend on a single variable (feature). What feature will be selected in

the next boosting iteration depends on what features have already been selected and their current

coefficients. This dependence structure makes it difficult to obtain a general theoretical variable

selection guarantee for boosting.

The approach introduced in this thesis is different from boosting because it starts with all the

variables and gradually removes variables, according to an elimination schedule. Indeed, its top-

6

down design is opposite to that of boosting, but seems to be less greedy in feature selection based

on our experiments in Section 1.8.

1.1.3 Penalized Loss Algorithms

Penalized loss algorithms add a sparsity inducing penalty such as the L1[17, 36, 59, 121], SCAD

[41] or MCP [120] and optimize the penalized loss in different ways. The proposed method is

different from the penalized methods because variable selection is not obtained by imposing a

sparsity prior on the variables, but by a direct optimization of the L0 constrained loss function

using a suboptimal algorithm.

By directly minimizing the constrained loss function, the approach proposed in this thesis does

not introduce any undesired bias on the coefficients. Any desired biases (e.g. shrinkage) can be

introduced as priors in the loss function L(β). In contrast, the L1 penalty introduces a bias in the

coefficients that could lead to poor classification performance [16, 38, 41].

The closest related work is the Thresholding based Iterative Selection Procedure (TISP), HardTISP

and QuantileTISP in particular [99, 98] which optimizes a penalized loss function by alternating

coefficient updates and thresholding. However, it does not remove the variables according to a

schedule.

The proposed method is inspired by TISP and by the Graduated Non-convexity Algorithm [9]

that optimizes a non-convex Markov Random Field by first optimizing a convex surrogate and

gradually changing the objective function towards the desired non-convex formulation, initializing

each optimization step with the result from the previous step.

1.2 Feature Selection with Annealing

Our contribution to feature selection is via a method called Feature Selection with Annealing

(FSA). This method is one that starts the selection process with all the variables or features.

At each iteration, contrary to Boosting algorithms, a certain number of variables are removed

based on coefficient magnitudes. Each iteration sees the optimization algorithm perform a one

gradient update of the model parameters and a selection step that removes variables according to

a predefined schedule (as in Annealing).

7

Let D = {(xi, yi), i = 1, . . . , N}, be training examples with xi ∈ RP . We will use a loss

function LD(β) that is differentiable w.r.t. β over these training examples. We are interested in

the constrained optimization in Equation (1.8)

β = argmin
|{i,βi 6=0}|≤k

LD(β) (1.8)

where k is the number of specified relevant features. We note that this constrained form provides

a more straight forward tuning process compared to penalty parameters such as λ in λ‖β‖1. We

demonstrate empirically in Section 1.8 the there is a large range of values over which k can be

chosen and good results can be obtained.

1.2.1 Algorithm Description

The main ideas in FSA is to use an annealing plan that will lessen the greediness in reducing

the dimension from M to k and to facilitate computation by removing the most irrelevant variables.

The description of the algorithm is as follows: The parameters β are initialized (typically β = 0).

Then, over N iter iterations, our method alternates between an update step and a selection step.

The parameter update step is done with the goal of minimizing the loss L(β) by gradient descent,

as in Equation (1.9).

β ← β − η∂LD(β)

∂β
(1.9)

The selection step only keeps the Me of the variables with the largest coefficient magnitudes |βj |, j =

1,M . The annealing schedule Me allows us to have the sparsity constraint |{i, βi 6= 0}| ≤ Me

after iteration e. After a large number iterations, the constraint is tightened until we obtain

|{i, βi 6= 0}| ≤ k. In this manner, we achieve a suboptimal solution to the constrained problem

(1.8).

The prototype algorithm is summarized in Algorithm 1 which is very easy to implement. The

keep-or-kill rule is based on the magnitude of coefficients and does not involve any information about

the objective function L. This is in contrast to many ad-hoc backward elimination approaches. Step

4 conducts an adaptive screening, which results in a nonlinear operator that increases the difficulty

of the theoretical analysis. However in [4], we demonstrate that our approach has a rigorous

guarantee of computational convergence and statistical consistency. This theoretical work is due

to Dr. Yiyuan She.

8

Figure 1.1 provides an example of keep-or-kill process for a classification problem with N = 1000

observations and M = 1000 variables described in Section 1.8. Notice how some of the βj are zeroed

after each iteration. The algorithm stabilizes quickly, taking 80 iterations in the example presented

in Figure 1.1. The problem size and thus the complexity keeps dropping due to the removal process.

In an effort to save computational cost, “apparent junk” dimensions are eliminated early on while

the features whose relevancy is harder to determine are handled later when the problem complexity

has been lessened.

Figure 1.1: The value of βj , j = 1,M vs iteration number for simulated data with N = 1000,M =
1000, k = 10 with η = 20, µ = 300.

The FSA algorithm is summarized in Algorithm 1.

Algorithm 1 Feature Selection with Annealing (FSA)

Input: Training examples {(xi, yi)}Ni=1 with xi ∈ RM .

Output: Trained classifier parameters β.

1: Initialize β = 0.

2: for e=1 to N iter do

3: Update β ← β − η ∂LD(β)
∂β

4: Keep the Me variables with highest |βj | and renumber them 1, ...,Me.

5: end for

9

1.2.2 Implementation Details

The inverse schedule Me is used so that the algorithm hones in on a small number of important

variables. Any annealing schedule {Me} slow enough works well in terms of estimation and selection

accuracy. But a fast decaying schedule could reduce the computational cost significantly. Our

experience shows that the inverse schedule in Equation (1.10) with a parameter µ provides a good

balance between efficiency and accuracy:

Me = k + (M − k) max

(
0,

N iter − 2e

2eµ+N iter

)
, e = 1, N iter (1.10)

Figure 1.2: The number of kept features Me vs iteration e for different schedules, with M = 1, 000, k =
10, N iter = 500.

Figure 1.2 plots the schedules for six difference choices of µ with M = 1, 000, k = 10 and N iter =

500. Different schedules can be chosen by choosing different values for µ, which is proportional to

the number of variables that will be kept at each iteration. The computation time is proportional

to the area under the graph of the schedule curve. Examples of computation times are given in

Table 1.1. The overall computational complexity of FSA is linear in the problem size, MN .

The performance of the FSA algorithm depends on the following parameters:

• Gradient learning rate η, which can be arbitrarily small provided that the number of iterations

is large enough. If η is too large, the coefficients βi will not converge. In all our experiments

we used η = 0.5.

• Annealing parameter µ for controlling the number of variables left at each iteration. Param-

eter µ should be proportional to the parameter η so that if the learning rate is small, the

variables are removed at a slower pace.

10

Table 1.1: Computation times for selecting k variables using N observations of dimension M , when
N iter = 500.

Annealing param µ Computation Time

µ = 0 125MN + kN iter

µ = 1 97MN + kN iter

µ = 10 41MN + kN iter

µ = 100 10MN + kN iter

µ = 300 5MN + kN iter

µ = 1000 2MN + kN iter

• Number of iterations N iter, large enough to obtain in the end a desired number k of variables

and to ensure the parameters have converged to a desired tolerance. In our experiments we

used N iter = 500.

We also point out the strength of FSA when it comes to tuning the parameters η, µ,N iter. As

shown in Section 1.8, there is a large range of values over which the algorithm is stable.

In practice, the gradient update (1.9) has been replaced by one epoch of stochastic gradient

updates. The optimization approach differs from backward selection in the following ways:

1. Variables are removed based on the magnitude of βj not on p-values

2. Many variables are usually removed at each iteration.

3. Variables are removed long before the parameters β have converged.

The FSA algorithm can be parallelized for large scale problems by subdividing the N × M

data matrix into a grid of sub-blocks that fit into the memory of the processing units. Then the

per-observation response vectors can be obtained from a row-wise reduction of the partial sums

computed by the units. The parameter updates are done similarly, via column-wise reduction. A

GPU based implementation could offer further computation cost reductions.

As will be explained in the next two section, FSA can be used in regression or classification.

FSA has also been used for ranking [4] but this is not the focus of this work.

1.3 FSA for Regression

The set-up to perform regression using FSA is as follows. Given training examples (xi, yi) ∈

RM × R, i = 1, N , we have the penalized squared-error loss

11

L(β) =

N∑
i=1

(yi − xTi β)2 +

M∑
j=1

ρ(βj) (1.11)

with a differentiable prior function ρ such as ρ(β) = s‖β‖2. We refer the reader to [4] in order to

see experiments on regression with FSA.

1.4 FSA for Classification

FSA can be used for classification and feature selection. The following three loss functions

are examples of differentiable losses that can be used and are implemented extensively in our

experiments. As stated before, we have training examples D = {(xi, yi), i = 1, . . . , N} and yi ∈

{0, 1}.

1.4.1 Penalized Logistic Loss

The logistic penalized loss is set-up as

L(β) = −
N∑
n=1

wn ln

[
1 + exp

(
−ỹn(β0 +

M∑
i=1

βixni)

)]
+

M∑
i=1

ρ(βi) (1.12)

where ỹi = 2yi − 1 ∈ {−1, 1}. This loss has partial derivatives

∂L(β)

∂βj
=

N∑
n=1

wn
ỹnxnj exp

(
−ỹn(β0 +

∑M
i=1 βixni)

)
1 + exp

(
−ỹn(β0 +

∑M
i=1 βixni)

) + ρ′(βj)

=
N∑
n=1

wnxnj(yn − p(xn)) + ρ′(βj) (1.13)

1.4.2 Penalized Huberized Loss

We use is a differentiable approximation of the primal SVM objective function from [24]

L(β) =

N∑
i=1

Lh(yix
T
i β) +

M∑
j=1

ρ(βj) (1.14)

where Lh : R→ R is the Huber-style differentiable approximation of the hinge loss [24]:

Lh(x) =


0 if x > 1 + h

(1 + h− x)2

4h
if |1− x| ≤ h

1− x if x < 1− h

(1.15)

12

1.4.3 Penalized Lorenz Loss

We also experiment with the following loss function

L(β) =

N∑
i=1

Lh(yix
T
i β) +

M∑
j=1

ρ(βj) (1.16)

where L : R→ R is the following differentiable function:

Lh(x) =

{
0 if x > 1

ln(1 + (x− 1)2) else
(1.17)

The Lorenz loss is differentiable everywhere, it is zero for x ∈ [1,∞) and grows logarithmically

with respect to |x| as x→ −∞. These properties make the Lorenz loss (1.16) behave like the SVM

loss in the sense that correctly classified examples that are far from the margin don’t contribute to

the loss. Moreover, the Lorenz loss is more robust to label noise than the SVM and logistic losses

because the loss values for the misclassified examples that are far from the margin is not much

higher than for those that are close to the margin. This loss is not convex, but it works well in

practice together with the FSA algorithm, as it will be seen in experiments.

Figure 1.3: The loss functions from eq. (1.12), (1.15) and (3.4.2). Left: the losses on the interval
[−30, 3]. Right: zoom in the interval [−4, 2].

Figure 1.3 demonstrates the behavior of the loss functions the further an observation is classified

on the wrong side of the margin. As we move from right to left on the horizontal axis, which

corresponds to an observation being classified further in on the wrong side of the margin, a larger

penalty is assigned to this misclassification (as demonstrated by all three losses). In the case of the

SVM loss, misclassifications pay the highest penalty while the Lorenz loss pay the smallest loss.

13

1.5 Nonlinearity and Feature Selection

In most computer vision problems the data variability is very large and the training examples

cannot be separated by a linear classifier based on a small number of features. We use a type of

nonlinearity that is compatible with feature selection. For that we replace βx with a nonlinear

response function that is a sum of a number of univariate functions

fβ(x) =

M∑
j=1

fβj
(xj), (1.18)

where βj is a parameter vector characterizing the response function on variable j.

Figure 1.4: Piecewise linear response functions obtained for an eye detector.

We will use piecewise linear univariate response functions fβk
(xk) that can be written as

fβk
(xk) = uTk (xk)βk where uk(xk) is the basis response vector and βk ∈ RB+1 is the coefficient

vector of variable k. We obtain

fβ(x) =

M∑
k=1

uTk (xk)βk, (1.19)

We offer the following explanation to provide further insight into how we implement these

nonlinear functions. To simplify notation we will temporarily drop the index k and we will implicitly

assume that we are working with variable xk of the feature vector x = (x1, ..., xM).

A piecewise linear (PL) function f(x) : R → R is defined based on the range [xmin, xmax] of

the variable x and a predefined number B of bins. Let b = (xmax − xmin)/B be the bin length.

14

For each value x, the function finds the bin index j(x) =
[
(x− xmin)/b

]
∈ {0, ..., B − 1} and the

relative position in the bin α(x) = (x− xmin)/b− j(x) ∈ [0, 1) and returns

f(x,β)=βj(x)(1− α(x)) + βj(x)+1α(x).

For b ∈ {0, ..., B} let

ub(x)=


1− α(x) if b = j(x)

α(x) if b = j(x) + 1

0 else.

Then ub(x) are B + 1 piecewise linear basis functions and f(x) can be written as a linear

combination: f(x,β) =
B∑
b=0

βbub(x) = βTu(x where u(x) = (u0(x), ..., uB(x))T is the vector of

responses of the basis functions and β = (β0, ..., βB)T is the parameter vector.

Some recent works [75, 55] use nonlinear additive models that depend on the variables through

one dimensional smooth functions. In [75] it was proved that cubic B-splines optimize a smooth-

ness criterion on these 1D functions. Variable selection was obtained by a group lasso penalty. A

similar model is presented in [91] where a coordinate descent soft thresholding algorithm is used

for optimizing an L1 group-penalized loss function. Our work differs from these works by imposing

constraints on the coefficients instead of biasing them with the L1 penalty. Moreover, our opti-

mization is achieved by a novel gradual variable selection algorithm that works well in practice and

is computationally efficient.

In [40] a screening procedure analyzed each variable by fitting a model that depends only on

that variable. In contrast, our screening procedure fits a model that depends on all variables and

gradually removes them according to a schedule.

1.6 Mining Hard Negatives

As has been pointed out in the computer vision literature, training a model to detect object(s)

can produce on the order of 105 examples (if not more). The training set D = {(xi, yi) ∈ RM ×

{−1, 1}, i = 1, N} contains billions of instances, which cannot be stored in the computer memory

for training. One approach is to train the model on the positive examples and a subset of the

negative examples known as “hard negatives.”

15

1.6.1 Related Works

In [42], Felzenszwalb et al. develop a data-mining algorithm based on the bootstrapping idea

for training a SVM. For a training set D and a classifier parameterized by β, the hard H and easy

E examples are defined as:

H(β, D) = {〈x, y〉 ∈ D|yfβ(x) < 1} (1.20)

E(β, D) = {〈x, y〉 ∈ D|yfβ(x) > 1} (1.21)

That is, H(β, D) are the examples that are either incorrectly classified or inside the margin

defined by β. The examples that form part of the set E(β, D) are both those that are correctly

classified and are outside the margin. Since the dual function LD defined over the training set D

is convex, the solution β∗(D) = argminβ LD(β) is unique. They start training with a subset of

the original set D and remove easy examples and add hard examples at each iteration. The new

subset is used to update β. They prove that under certain conditions, the β found from the subset

of hard examples is the same as β∗(D) and the algorithm stops in a finite number of steps.

1.6.2 Hard Data Mining With FSA

Since the Huberized SVM loss (1.15) is zero when yfβ(x) > 1+h, most of the training examples

will not contribute to the loss function at its minimum, and could in principle be ignored. This

idea has been used in [42] for mining ”hard examples”, which were defined for the hinge loss as

H(β, D) = {(x, y) ∈ D, yfβ(x) < 1} (1.22)

For the hinge loss without feature selection (i.e. no constraints on the number of nonzero

coefficients), the authors give a procedure in [42] that finds all the hard examples in a finite number

of steps and prove that the optimum obtained from minimizing the loss on the hard examples is

the same as the optimum obtained from the entire training set D.

The same conclusions can carried over to the Huberized SVM loss (1.15) where the hard exam-

ples are

Hh(β, D) = {(x, y) ∈ D, yfβ(x) < 1 + h} (1.23)

But after imposing the sparsity constraints for feature selection, the Huberized SVM loss is

no longer strictly convex and no such guarantees can be obtained. However, the feature selection

16

consistency of the FSA with the logistic loss and the simulation experiments (shown in the supple-

mentary material) suggest that FSA-SVM will find the true variables with high probability given

enough training examples. This means that a large number of training examples is needed for FSA

to select the appropriate variables, so it might not be enough to use only the hard examples.

In the case when there is a small number of positives, we use a standard approach that starts

with a number N of negatives obtained randomly, and adds to the training set N false positives

at each iteration until convergence or a maximum number of iterations. Thus at each iteration the

set of negatives increases with harder and harder negatives.

The procedure is described in detail in Algorithm 2 and was found to work very well in practice

as it will be seen in experiments.

Algorithm 2 Mining Hard Negatives

Input: Training images .

Output: Trained classifier parameters β.

1: Initialize set of negatives C1 with |C1| = N

2: for t=1 to T do

3: Train FSA-SVM with negative set Ct obtaining parameters β = β(t).

4: Generate set of false positives Ft of cardinality |Ft| ≤ N using classifier fβ(x)

5: Set Ct+1 = Ct ∪ Ft.
6: if Ct+1 = Ct then

7: Stop

8: end if

9: end for

Observe that when optimizing the loss (1.15) without sparsity constraints for feature selection,

Algorithm 2 is equivalent to the mining procedure from [42] without step 3 (shrinking the cache).

The proofs of Theorems 1 and 2 from [42] can easily be carried over to this case, which means that

the algorithm will terminate in a finite number of steps and the minimum over the whole training

set D is the same as the minimum over CT when T is large enough. Thus without feature selection,

Algorithm 2 will find the optimum from the entire set D after a finite number of steps. However,

these guarantees cannot be offered under the feature selection sparsity constraints.

17

1.7 Confidence Weighted FSA

Inspired by [72] and the dataset the originated from that paper, we combined the Confidence-

Weighted (CW) algorithm [28] with FSA (CW-FSA). We first summarize the online algorithm

developed by Crammer et al. [28] and then explain how we exploited the features generated by this

approach with FSA.

1.7.1 Confidence Weighted Algorithm Description

In [28], Crammer et al. introduce a very simple but powerful linear classifier for on-line learn-

ing. One of the strengths of their approach as well as one of the differences with passive-aggressive

methods [27] is that they calculate the variance for each feature under Gaussian assumptions. Es-

sentially, each feature j is represented as: (µj ,Σj), the sufficient statistics of a Normal distribution.

In their paper, Crammer et al. introduce (very easy to implement) closed form update equations

for µ and Σ using Lagrangian Multipliers. Specifically, CW minimizes the KL divergence between

Gaussians (at time t) which leads to the closed-form update of the mean and covariance:

µ← µt + αtytΣtxt (1.24)

Σ−1t ← Σ−1t + αtφu
−1/2
t diag2(xt) (1.25)

where the other parameters needed for the update can be found in [28]. Once the µ have been

obtained for all features that will be used to predict a response, the predictions are simply calculated

by sign(µj · xj). As will be discussed in Section 4.2.1, under certain assumptions, the cumulative

error computed from learning with this on-line algorithm decreases with the number of training

examples.

1.7.2 CW-FSA

When we combined CW with FSA, the on-line element of CW was lost since FSA discards

variables according to a schedule, that is, in an iterative manner. The CW algorithm portion

replaced the stochastic gradient update of the β, after which, FSA was used to choose variables.

We provide the structure for CW-FSA in Algorithm 3. Note that in the Update step of Algorithm

3, we intentionally use σ instead of Σ since one of the computational simplifications made in [72]

is that the features are independent, thus, giving rise to a diagonal Σ. The α in the update step is

18

the Lagrangian multiplier, y is the true label of the training example x. We keep the Me features

with the smallest uncertainty (σ). The CW-FSA approach generated very good results on the data

set URL Reputation [72] which will be discussed in Section 4.2.1.

Algorithm 3 Confidence-Weighted Feature Selection with Annealing (CW-FSA)

Input: Training examples {(xi, yi)}Ni=1 with xi ∈ RM .

Output: Trained classifier parameters β.

1: Initialize β = 0.

2: for e=1 to N iter do

3: Update µ← µ+ αyσx

4: Keep the Me variables with lowest σ and renumber them 1, ...,Me.

5: Set M = Me

6: end for

1.8 Experiments with FSA

1.8.1 Stability of Learning Parameters

In this experiment, we evaluate the stability of the FSA Algorithm 1 with respect to its tuning

parameters: the learning rate η, the annealing rate µ and the number of iterations N iter. The

experiment was conducted on the linearly separable data with M=N=1000, k=k∗=10.

In Figure 1.5 are shown the dependence of the average area under the ROC curve (AUC) with

respect to η (left), µ (middle) and N iter (right). For the left plot, we had µ = 300, N iter = 500, for

the middle plot η = µ/10, N iter = 500 and for the right plot µ = 300, η = 20. The obtained curves

are the averages of 10 runs.

One can see that all three parameters have a large range of values that yield optimal prediction

performance. This robustness property is in contrast to the sensitivity issue of penalty parameters

in L1 or L0 like methods. It greatly facilitates parameter tuning and reduces ad-hocness.

1.8.2 Simulations

In this experiment, we compare the variable selection and the prediction performance of the

FSA algorithm with the Logitboost algorithm and various sparsity-inducing penalties that are

popular in the literature. In calling Logitboost for feature selection, we require each weak learner

19

Figure 1.5: Sensitivity analysis for the 3 main FSA parameters (from left to right): η - rate of
learning, µ - controls annealing schedule, and N iter - number of epochs. The area under the ROC
curve is plotted against a range of values for each parameter.

depends on only one variable. The data for simulations has correlated predictors sampled from a

multivariate normal x ∼ N (0,Σ) where Σij = δ|i−j| and δ = 0.9.

The label y for a data point x ∈ RM is

y =

{
1 if

∑k∗

i=1 x10i > 0

0 otherwise
(1.26)

Thus only the variables with index 10i, i = 1, k are relevant. We will also use a version of the data

with noisy labels, where 10% of the examples had random labels, thus about 5% of the examples

have incorrect labels.

Table 1.2: Classification experiments on simulated linearly separable data with δ = 0.9, averaged
over 100 runs.

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1 FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1

300 1000 10 29 30 34 0 0 0 0 3 1 0 0 86.1 84.7 86.0 37.9 42.4 40.4 - 64.0 55.6 61.3 23.1
1000 1000 10 100 100 100 1 2 0 0 39 25 44 0 100 100 100 67.8 72.4 49.0 - 88.5 85.7 92.3 26.3
3000 1000 10 100 100 100 30 33 0 0 65 63 97 0 100 100 100 91.1 91.5 60.4 - 95.9 95.4 99.6 29.1
10000 1000 10 100 100 100 88 100 3 0 97 97 100 0 100 100 100 98.8 100 68.4 - 99.6 99.6 100 31.8

1000 1000 30 24 22 21 0 0 0 0 0 0 0 0 93.8 92.4 92.6 47.4 41.5 36.2 - 66.8 61.2 62.4 29.0
3000 1000 30 100 100 100 0 0 0 0 8 14 4 0 100 100 100 78.7 68.6 43.0 - 91.1 91.7 90.4 37.8
10000 1000 30 100 100 100 33 8 0 0 73 56 82 0 100 100 100 97.2 93.9 51.8 - 98.3 97.3 99.3 43.8

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1 FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1

300 1000 10 .992 .990 .990 .899 .915 .937 .922 .955 .934 .950 .923 0.03 0.03 0.04 0.02 17 35 .41 87 68 0.13 0.01
1000 1000 10 1.00 1.00 1.00 .947 .951 .950 .962 .965 .953 .967 .936 0.06 0.07 0.15 0.05 434 109 2.5 352 282 0.44 0.09
3000 1000 10 1.00 1.00 1.00 .987 .982 .962 .983 .973 .976 .971 .939 0.23 0.15 0.49 0.21 705 315 6 1122 1103 1.3 0.18
10000 1000 10 1.00 1.00 1.00 .998 .997 .972 .995 .979 .979 .971 .942 1.8 1.8 1.8 1.4 2151 962 20 3789 3725 4.9 0.49

1000 1000 30 .996 .995 .995 .919 .923 .943 .964 .954 .937 .956 .936 0.13 0.08 0.29 0.05 240 150 2.3 358 293 1.2 0.16
3000 1000 30 1.00 1.00 1.00 .969 .954 .955 .984 .979 .976 .975 .948 0.26 0.2 1.10 0.29 565 395 6 1840 1139 4.1 0.48
10000 1000 30 1.00 1.00 1.00 .997 .985 .965 .996 .987 .984 .980 .956 3.5 3.3 3.5 2.0 3914 1265 20 3860 3710 14 1.5

20

Table 1.3: Classification experiments on simulated data with noisy labels, δ = 0.9, averaged over
100 runs.

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1 FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1

300 1000 10 0 0 1 0 0 0 0 0 0 0 0 44.5 38.9 43.7 30.7 41.2 35.2 - 46.7 45.8 47.8 21.8
1000 1000 10 45 45 86 0 0 0 0 17 8 21 0 92.5 91.4 98.5 58.8 65.3 44.8 - 81.2 78.9 84.4 25.4
3000 1000 10 100 100 100 20 22 0 0 66 58 91 0 100 100 100 88.2 87.8 53.9 - 95.5 94.2 99.1 29.1
10000 1000 10 100 100 100 100 92 2 0 95 95 100 0 100 100 100 100 99.2 65 - 99.5 99.5 100 31.4

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 49.5 45.0 53.7 34.9 40.0 35.1 - 47.5 47.3 48.8 26.7
3000 1000 30 12 14 68 0 0 0 0 2 5 1 0 92.4 92.3 98.7 67.5 63.7 40.5 - 84.0 83.9 82.8 32.9
10000 1000 30 99 99 100 7 0 0 0 60 49 60 0 100 100 100 93.7 90.3 47.5 - 97.5 96.8 98.3 40.7

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1 FSA FSV FSL QTP L1 EL L2 MCP SCD LB LB1

300 1000 10 .890 .868 .885 .834 .880 .889 .834 .877 .865 .885 .863 0.04 0.04 0.04 0.04 22 67 .44 37 65 0.17 0.02
1000 1000 10 .943 .940 .946 .890 .907 .902 .892 .914 .906 .915 .888 0.14 0.13 0.14 0.12 412 120 2 218 211 0.53 0.06
3000 1000 10 .950 .950 .950 .935 .934 .913 .928 .927 .923 .924 .895 0.49 0.46 0.48 0.36 1094 321 8 385 367 1.6 0.17
10000 1000 10 .950 .950 .950 .950 .949 .923 .939 .933 .932 .924 .897 2.0 2.0 2.1 1.6 13921 940 20 653 599 5.3 0.5

1000 1000 30 .905 .889 .904 .845 .885 .895 .895 .876 .873 .898 .887 0.30 0.29 0.30 0.17 791 142 1.9 246 239 1.6 0.17
3000 1000 30 .945 .943 .949 .906 .911 .907 .929 .926 .919 .925 .902 1.0 1.0 1.0 0.55 1862 404 7.9 522 504 4.7 0.48
10000 1000 30 .950 .950 .950 .942 .938 .916 .940 .937 .933 .932 .908 3.8 3.8 3.8 2.1 15949 1213 21 763 719 16 1.6

The experiments are performed on the linearly separable data and its noisy version described

above. The algorithms being compared are:

• FSA - The FSA Algorithm 1 for the logistic loss (1.12) with the µ = 300 annealing schedule,

η = 20.

• FSV, FSL - The FSA Algorithm 1 for the SVM loss (1.14) and Lorenz loss (1.16) respectively,

with the µ = 300 annealing schedule, η = 1.

• L1 - The interior point method [61] for L1-penalized Logistic Regression using the imple-

mentation from http://www.stanford.edu/∼boyd/l1 logreg/. To obtain a given number k of

variables, the value of the L1 penalty coefficient λ is found using the bisection method [18].

The bisection procedure calls the interior point training routine about 9 times until a λ is

found that gives exactly k nonzero coefficients. Then an unpenalized model was fitted on the

selected variables..

• EL - Elastic net on the Logistic loss with L1+L2 penalty using the stochastic gradient descent

algorithm. We used the Python implementation sklearn.linear_model.SGDClassifier of

[105], 1000 epochs for convergence, and the bisection method for finding the appropriate L1

penalty coefficient. After feature selection, the model was refit on the selected variables with

only the L2 penalty α = 0.001.

• L2 - SVM using the Python implementation sklearn.linear_model.SGDClassifier with

1000 epochs, and choosing the L2 penalty coefficient α ∈ {10−5, 10−4, 10−3, 10−2, 10−1} that

gave the best result.

21

• QTP - The quantile TISP algorithm with 10 thresholding iterations and 500 more iterations

on the selected variables for convergence.

• MCP, SCD - Logistic regression using MCP (Minimax Concave Penalty)[120] and SCAD

penalty respectively. Two implementations were evaluated: the ncvreg R package based

on the coordinate descent algorithm [13] and the cvplogistic R package based on the the

Majorization-Minimization by Coordinate Descent (MMCD) algorithm [57]. The cvplogistic

package obtained better results, which are reported in this thesis.

• LB - Logitboost using univariate linear regressors as weak learners. In this version, all M

linear regressors (one for each variable) are trained at each boosting iteration and the best

one is added to the classifier.

• LB1 - Similar to LB, but only 10% of the learners were selected at random and trained at

each boosting iteration and the best one was added to the classifier.

In Tables 1.2 and 1.3 are shown the all-variable detection rate (DR) and the average percent of

correctly detected variables, (PCD) obtained from 100 independent runs. The PCD is the average

value of |{j, βj 6= 0} ∩ {j, β∗j 6= 0}|/k∗ · 100. A more stringent criterion is the DR which is the

percentage of times when all k∗ variables were correctly found i.e. {j, βj 6= 0} = {j, β∗j 6= 0}. The

average area under the ROC curve on unseen data of same size as the training data, and the average

training times for the methods being evaluated are also shown in Tables 1.2 and 1.3.

22

CHAPTER 2

FACE DETECTION USING A 3D MODEL

2.1 Related Work

One of the areas we apply our FSA framework is to object detection. This is still an area of

active research due to the complexity of detecting objects in noisy or occluded settings, dealing

with images of varying sizes, attempting to infer the 3D shape from 2D information, and the

tremendous amount of data that can be generated from negative examples. Specifically, we have

made contributions in detecting faces and their pose. In the related work to follow, we divide the

literature review into two sections: Face Detection (where the methodology must detect the face

with no prior information) and Face Alignment (where the location of a face is roughly known

before the methodology is applied).

2.1.1 Face Detection

Felzenszwalb et al. develop a method for object detection using mixtures of multi-scale de-

formable parts [42]. In particular, from this paper, we extend the idea of mining the data for hard

examples using the SVM. However, since we perform feature selection, we end up with a non-convex

loss function. Thus, their theorems guaranteeing

1. that the solution obtained over the subset of hard examples is exactly the same as the solution

obtained over the entire training set

2. the number of mining iterations is finite

do not necessarily extend to our methodology. However, the experimental results on large

real-world datasets will demonstrate the effectiveness of our approach.

Zhu and Ramanan present a computationally tractable tree-based method [126] that uses a

unified model approach for face detection, pose estimation, and landmark estimation in real-world

data. Their model is based on a mixture of trees with a shared pool of parts V . These parts

represent facial landmarks. They use the mixture of trees to capture changes in face topology due

to a change in viewpoint. Furthermore, the use of tree mixtures allow them to find the globally

23

best configuration of parts via an inner maximization achieved via dynamic programming. They

achieve comparable results with commercial state-of-the-art systems while training on hundreds of

examples compared to the billions used in commercial software. We compare our approach against

this paper on the same dataset they used and obtain better results.

In summary, many works [42, 52, 126] use computationally tractable tree-based models to rep-

resent the interactions between the locations of the object parts. In this thesis, we explore a model

where the unknown face part locations are fully connected with each other into a simplex param-

eterized by the projected similarity parameters θ = (u, s, R), as illustrated in Figure 2.12. Even

though the proposed inference algorithm is not globally optimal, the model more than compensates

this disadvantage, as shown in experiments.

In [52] a 2D part configuration is detected using a version of the deformable part model [42] and

then a 3D pose and shape is inferred from the 2D configuration. In contrast, our work directly uses

the 3D pose to represent the relative positions of the parts without going through an intermediate

2D model.

There have been 3D approaches to object detection [70, 85, 102] that use different types of

features that are extracted at certain positions depending on the object pose. Our approach uses a

different 3D representation on the object parts (keypoints) and probability model than these works,

it does not need any synthetic 3D models, and uses a different inference algorithm. Moreover, none

of these works was used for face detection.

2.1.2 Face Alignment

In [104], Sun et al. cascade three levels of convolutional networks in order to make refined pre-

dictions, at each level, of 5 face kepypoints. The first layer makes initial predictions of the keypoints

using high-level (texture based) features. This first layer has a deep structure (4 convolutional lay-

ers) since it is making predictions over the entire face. The two remaining layers refine the initial

predictions by using different convolutional networks which are fused for improved accuracy and

reliability. Sun et al. point out that, unlike prior methods, they do not use the same regressor

at different cascade levels. These two levels are shallow relative to the first since they receive as

input small patches (thus a low-level task) centered around the initial keypoint predictions. These

patches shrink as they pass through the cascades. The final prediction of a keypoint is computed

by averaging the predictions made throughout the cascades. Figure 2.1 illustrates their algorithm

24

where the first row represents the keypoint predictions (as green dots) at the first level and the

second row shows the refined predictions at the second and third level. The keypoints circled in a

blue circle are examples of the improvement in predictions obtained through the multiple levels.

Figure 2.1: A figure from [104] that demonstrates the keypoint location predictions at different
levels of the convolutional neural network. The first row corresponds to the first layer and the
second row corresponds to sequential layers with improvement accentuated using blue circles.

Pose candidates have been previously proposed by image based regression in the shape regression

machine [123] and for face alignment [20, 19]. However, they are not based on a 3D model, are

not geared for face detection and don’t predict the candidates from the keypoint locations and

use other regression methods than this work. The face alignment by cascaded regression [20, 19]

contain interesting ideas that could be adapted for refining the 3D pose candidates and further

improve the performance of our algorithm.

Most face keypoint detection approaches such as [19, 20, 104] assume that the face has already

been detected and detect the keypoints relative to the face bounding box. In order for such an

approach to work it is necessary that the face detector be very good because if the face is missed, so

are the keypoints. In this thesis, as in [126], we argue for an approach where the parts are detected

together with the face, in a joint inference algorithm. Such a joint approach is more expensive than

the cascade approach where the face is detected first, but it can be easily parallelized since the face

part responses can be computed independently.

25

Image-based regression is used in face alignment approaches and we build off the work by Zhou

and Comaniciu [123] where they present a method called Shape Regression Machine (SRM). They

segment the left ventricle (LV) endocardium from an echocardiogram (medical image) in real-time.

They dealt with the challenge posed by LV which can manifest arbitrary scale and orientation by

developing a regression-based approach which took advantage of the computational efficiency of

Haar features. In particular, they claim that their method only requires on scan (of the image), at

least in theory. The basic idea is that they randomly sample image patches and then try to regress

the location and shape of the LV using regression stumps (similar to [109]). We use image-based

regression in order to generate potential 3D poses.

2.2 Image Features

The literature is rich with different kinds of image features that can be extracted to perform face

detection. We focus on implementing four kinds of image features: Haar, Hogs, Difference Features

(DF) and Local Binary Features (LBF). We describe these features in detail since they will be

referenced in later sections. While there exist many kinds of image features that we did not use,

and we might in the future, the purpose of this work is not to evaluate the performance of image

features for object detection. Instead, we provide a framework where robust object detection can

be performed. Indeed, our performance can be improved with more discriminating image features.

2.2.1 Histogram of Oriented Gradients

As Dalal and Triggs explain in [30], the main idea behind Histogram of Oriented Gradients

(HOG) is that the contours of an object can be summarized robustly by the edge directions without

knowing where these edges are located. The process by which these HOG descriptors are computed

can be outlined as:

1. The image is divided into rectangle cells (8× 8 in [30]).

2. For each cell, a histogram of gradient/edge directions is computed.

• These gradients are computed by applying a derivative mask at each pixel in the cell.

3. Several adjacent cells are considered a block (16 × 16 in [30]). Robustness to changes in

illumination, contrast, etc., can be achieved by concatenating the histograms from all the

cells within one block and normalizing them.

26

• For detecting humans, the authors noted that they achieved better detection perfor-

mances by restricting the angles between [0◦, 180◦]

These normalized descriptor blocks are referred to as HOG descriptors. As visualization of

HOG features for a person, see Figure 2.2

Figure 2.2: From [42] where the HOG features for each person identified view overlapping rectangles
are demonstrated in the two rightmost images.

Figure 2.3: Illustration of HOG Features from http://www.cs.cornell.edu/courses/cs4670/2012fa
/projects/p5/index.html

27

2.2.2 Haar-Like

We use Haar-like features as described by Viola-Jones [109]. The basic idea is that adjacent

rectangles are applied to an image patch. It is common in the literature to visualize these adjacent

rectangles as black and white rectangles, as in Figure 2.4. Keeping this figure in mind, the Haar

feature will be the sum of the pixel values that fall into the black rectangle minus the sum of the

pixel values that fall into the white rectangles.

Figure 2.4: The rectangles in this figure (taken from http://link.springer.com) are commonly
used to represent how pixel values will be treated as either negative or positive and then summed.
These sums are used in forming Haar features.

The window that is comprised of these black and white rectangles slides across the image and

the signed pixel values are summed. These summations can be used to determine how likely an

image patch represents part of a face. In fact, these features proved to be a significant step towards

detecting faces in real-time. One of the reasons Haar features turned out to be so effective was do

to the observation that the eyes tend to be darker compared to other parts of the face. Thus, Haar

features that exploit this property can be used to successfully detect a face. Examples of Haar

features used for detecting faces are provided in Figure 2.5 taken from https://code.google.

com/p/scoialrobot/wiki/RGBDetector.

2.2.3 Difference Features

The LBF are based on image pixel-differences [35, 82, 101, 21]; that is, the intensity difference

of two pixels in the image. These features provide enough data to discriminate between keypoints

28

Figure 2.5: Examples of different kinds of adjacent rectangles and locations that can be used to form
Haar features. Taken from https://code.google.com/p/scoialrobot/wiki/ RGBDetector

Figure 2.6: Example of summing signed pixel values as part of forming Haar features. Image is
from http://maraya.karo.or.id/haar-like-feature-pada-metode-viola-jones

and are computationally efficient. The latter characteristic is very important to our work since we

aim to compete against both the academic and industry standard. Figure 2.7 provides a visual

example of how these pixel differences are computed on a grid centered at a keypoint. Depending

on the radius set by the user, the grid will grow or decrease in size; thus, dictating how much data

is generated. In Figure 2.7, the 21 face keypoints (elaborated in Section 2.3) are color coded on

faces. The pixel difference grid for the right ear, with a radius of 4, is represented with a green

grid. We provide further illustrations of the difference features over the 9 keypoints we use in our

face detection process in Section 2.5.

29

Figure 2.7: Visualizing the grid over which the pixel differences are computed for keypoint of the
lower right ear.

2.2.4 Local Binary Features

In [92], Ren et al. argue that under certain conditions, the “signal-to-noise ratio” can be

increased if the task of learning keypoints is kept local instead of global. Each local region is

represented via a feature mapping function, Φt
` - where ` represents a specific keypoint and t is

the refinement iteration of their face detector, which they implement as regression random forest

[15]. The pixel-differences are used to train the split nodes. Ren et al. explain that they select

the features that provide the greatest reduction in model variance. To understand how we end up

with binary features, suppose that after training a random forest, we sample pixel differences from

a test image. This sample will traverse the tree until it reaches a leaf. Depending on which leaf it

reaches, this leaf will be associated the value 1 and the rest with 0. Thus, the leaves in each tree

of the random forest will be associated with a vector zeros and one 1. The vectors induced by each

tree are concatenated in order to predict the location of the keypoints at a global level (i.e. global

30

shape estimation) via linear regression. Figure 2.8 is taken directly from the paper by Ren et al.

which they use to visually explain how the LBF are computed.

Figure 2.8: Visual example of how LBF are computed as presented in [92]

To further explain how LBF are computed and used, we provide more examples and expound

on them. For every color channel, a grid of pixel differences are computed around an estimated

keypoint location. A feature vector of length N × (N − 1)/2 is generated and it is this feature

vector that traverses a tree. For each keypoint, a total of N × (N − 1)/2 × 3 of pixel difference

features are generated, as can be seen in Figure 2.9. To see this, we use the coordinate system

(x, y, Channel,Keypoint) where x and y represent the x and y coordinates of the pixel to which

intensity differences are computed relative to, Channel represents the RGB channel being used

(represented as 0 = R, 1 = G, 2 = B), and the last coordinate representing the keypoint in question.

Each tree in the random forest is used to predict the location of a single keypoint.

Figure 2.9: Visual example of pixel differences feature vectors

31

We note that each tree is associated with a single keypoint. Once the feature vector reaches the

leaves, a binary vector whose length is the same size as the number of leaves is generated. Since

we use trees of depth 5, there are 16 leaves. Thus, we end up with a binary vector of length 16

where only one of the values is 1, which corresponds to the destination of the feature vector. Each

leaf is associated with a predicted keypoint location (dx, dy). The location predictions are averaged

per keypoint for the final prediction. Since 100 trees are used with a depth of 5, this means that

100×16×9 = 14, 400 LBF are generated. Thus, approximately 160 LBF are generated per keypoint

and about 9 trees are used to predict the location of a keypoint.

Figure 2.10 demonstrates an example for a single decision tree for the keypoint 12. The co-

ordinates next to the nodes represent pixel-difference features that are used to “ask a question”.

That is, when a intensity difference vector from a test image traverses the tree, it is those training

feature vectors that are used to determine the route of the test feature vector.

Figure 2.10: Visual example of how binary features are computed

2.3 Energy Model

Given an image, the goal is to find the faces and their 3D poses. The face 3D pose is represented

as a projected rigid transformation T . Recall that a rigid transformation is a transformation that

when applied to a vector x, a transformed vector T (x) of the form T (x) = Rx + u is generated.

32

The matrix R is an orthogonal transformation and u is a translation from the origin. A proper rigid

transformation is one where the determinant of R is 1 which indicates that R does not produce a

reflection (and hence is an orientation-preserving orthogonal transformation).

This projected rigid transformation Tθ : R3 → R2 is defined as

Tθ(x) = u+ sπ(Rx) (2.1)

with parameters θ = (u, s, R) consisting of a 2D translation u ∈ R2, a scale s and a 3D rotation

matrix R. The projection onto the (x, y) plane is represented by π : R3 → R2, π(x, y, z) = (x, y).

The face has L keypoints that form a rigid 3D configuration that can be written as a 3 × L

matrix F = (F1, . . . , FL) where Fi ∈ R3. We obtain the 2D configuration of the face keypoints in

an image as

{Tθ(Fi) + εi, i = 1, L} (2.2)

where Tθ is the 3D face pose (as previously defined) and εi ∈ R2 are independent deformations for

each keypoint. An example is depicted in the image below. The neon green dots that are connected

in a simplex represent hypothetical keypoints. Each keypoint has a dot of a different color connected

to it which represents a deformation of each keypoint’s position. In this hypothetical case, there

are 6 neon-green points which means there are 6 keypoints. This means that the 3D configuration

matrix is a 3× 6 matrix where each column of this matrix represents the 3D pose for each point.

F =

F1 F2 · · · F6

x x1,1 x1,2 · · · x1,6
y y2,1 y2,2 · · · x2,6
z z3,1 z3,2 · · · x3,6

Figure 2.11: Example of keypoint representation as a column vectors (left table) and rigid model
(right figure)

Thus, the 2D configuration for one of these points is found as:

Tθ(Fi) = u+ sπ(R · Fi)

= [µx, µy]
T + sπ(R · [x1,i, y2,i, z3,i]T)

= [µx, µy]
T + s[x′, y′]T

33

For any θ = (u, s, R) let Bθ be the bounding box of the set of transformed keypoints {Tθ(Fi), i =

1, L}. In other words, once we know the 3D pose Tθ, we can obtain a bounding box on that face

using its 2D configuration (i.e. face detection). As will be explained in a later subsection, many

2D configurations will be generated for each face. We choose the best configuration via an energy

minimization in a Bayesian framework as described in Equation 2.3.

(θ1, . . . , θn) = argmin
n,θ1,...,θn

E(n, θ1, . . . , θn) (2.3)

E(n, θ1, ..., θn) = Edata(θ1, ..., θn) + Eprior(n, θ1, ..., θn) (2.4)

The data term depends directly on the detections of the L face keypoints in the image. A face scoring

function S(θj) is used to determine how many keypoints are correctly detected. A parameter τ set

a priori determines the minimum score needed for a valid detection. This data term is represented

formally as:

Edata(θ1, ..., θn) =

n∑
j=1

(τ − S(θj)) (2.5)

where n represents the number of 3D poses generated. Even though we optimize over n, we use the

maximum value of n to determine the number of candidates. The prior Eprior(n, θ1, ..., θn) enforces

the constraint that the bounding boxes Bθj , j = 1, L generated for each 3D pose have small overlap

with each other.

Figure 2.12: Face detection using a 3D model. The face keypoints are detected independently and
used to propose 3D pose candidates θ = (u, s, R) ∈ R6. The 3D pose candidates are evaluated
using the score S(θ) based on the detected keypoints. The detected faces are obtained by non-max
suppression.

34

2.4 Inference Algorithm

The inference algorithm, a bottom-up face detection process which is illustrated in Fig. 2.12,

contains the following steps:

1. Face keypoints are detected independent of each other.

2. Face 3D pose candidates are generated from the keypoints, obtaining 3D pose candidates

θ1, ..., θn.

3. For each 3D pose candidate θj , the face keypoints Pj are predicted using the 3D pose.

4. Face scores S(θj), j = 1, n are computed and low scoring candidates are removed.

5. Non-maximal suppression is applied to output a set of high score candidates that satisfy the

overlap constraints, greedily minimizing the energy E(n, θ1, ..., θn).

We expand on these steps in the following subsections.

2.4.1 Detecting Keypoints

Both the keypoints and pose candidates are detected over a range of scales. The 3D pose candidates

θi are generated by image-based regression from the detected keypoint locations. Since these θi

depend on the detected keypoint detectors, we start by describing the keypoint detection.

Keypoint Detection. The face keypoints are detected using a sliding window classifier (see

Figure 2.13) on a Gaussian pyramid (see Figure 2.14 for examples) with 4 scales per octave (i.e.

resized by powers of 21/4) down to a minimum of 24× 24 pixels. This leads to a representation of

the face keypoints as (x, y, s) where (x, y) is the pixel location and s is the index in the pyramid of

the image containing the point. Appendix B provides more details on the use of Gaussian Pyramid

in our work.

Feature Pool. The keypoint classifiers are trained using a feature pool consisting of 288×3 = 864

Histograms of Oriented Gradients [30](HOG) features and 61, 000 Haar features (see Section 2.2

for more details) extracted from the RGB channels in a 24× 24 pixel window centered at the point

of interest (x, y) in the appropriate image of a Gaussian pyramid.

35

Figure 2.13: Illustration of Window Classifier

Figure 2.14: Illustration of Gaussian Pyramids. Left image from http://fourier.eng.hmc.edu/e161
/lectures/canny/node3.html. Right image from https://elementalray.wordpress.com/ 2012/04/

Training Details. Given our bottom-up approach to face detection, it is essential that we detect

as many keypoints as possible since a single keypoint may fail. Furthermore, each keypoint implic-

itly contains information about the 3D pose. We point out that an advantage of using keypoints

to predict face pose is that they exhibit smaller variation compared to the whole face.

As previously mentioned, the feature pool used to predict the 2D location of keypoints consists

of 61, 000 Haar features and 864 Hog features. Each image is re-scaled using a Gaussian pyramid

scheme over 4 octaves. The trainin set consists of 60, 000 positive examples and 2.5 billion negatives.

Given memory limitations of 24 GBs, we are restricted to about 300, 000 training examples. We

deal with memory constraints by implementing hard data mining in order to train on the most

challenging negative examples. For example, in Figure 2.15, there are negative detections in the

36

Figure 2.15: Examples of training examples for keypoint detection. The positive examples (correct
detections on the faces) and negative examples (e.g. detections in the trees) of keypoints.

trees. These negative examples may not prove to be very useful in improving the discriminatory

power of our classifier. Thus, we use hard data mining to fill our limited memory space with the

most relevant negative examples, such as examples on the face near keypoints that could confuse

our classifier.

More specifically, we train a FSA classifier (see Algorithm 1) that minimizes the Lorenz loss of

Equation (1.16). We initially train this classifier with all the positive examples and a subset of the

negative examples. Then, with this trained classifier, we perform 10 iterations of hard data mining

where each iteration sees about 20, 000 negatives added. This process is carried out for each of the

9 keypoints we use to detect a face.

2.4.2 Generating 3D Pose Candidates

Since the keypoints are detected for faces in a range of scales, the pose candidates are also obtained

for faces in the same range. Specifically, the 3D pose candidates are generated by image-based

regression from the detected keypoint locations. The 3D pose θ = (u, s, R) has six parameters

(u, s,φ) = (ux, uy, s, ϕx, ϕy, ϕz), where φ = (ϕz, ϕx, ϕy) is the roll-pitch-yaw decomposition of the

rotation matrix R.

37

Image based regression. The pose is predicted from a point (x0, y0, s0) by predicting the rela-

tive vector

y = (ux/s0−x0, uy/s0−y0, s/s0, ϕx, ϕy, ϕz) (2.6)

Training details. Given the 3D configuration F (of Equation (2.2)) and 2D coordinates P of

the (previously found) keypoints, we obtain the ground truth 3D pose of each face by least squares

energy minimization of Equation (2.7).

E(u, s, R) = ‖u1 + sπ(RF)− P‖2 (2.7)

We describe the energy minimization of Equation (2.7) through Algorithm 4. We note that the

POSIT algorithm [33] could also be used for this purpose.

Algorithm 4 Fit Rigid Projection

Input: 3× L matrix F and 2× L matrix P .

Output: θ = (u, s, R)

1: Initialize L× 3 matrix B = (P T , 0).

2: for e=1 to N iter do

3: Call Algorithm 5 to find u, s, R that minimize ‖1TuT + sF TR−B‖2

4: Extract third column c3 = (Ci3)i of C = sF TR

5: Update B = (P T , c3)

6: end for

7: Change R to RT and discard the z-component of u.

Note that in Algorithm 5, the input matrix A is F T from Algorithm 4 and the input matrix B

is the same B from Algorithm 4. Thus given these two matrices, we use Algorithm 5 to find the

θ = (u, s, R) that minimizes Equation (2.8). On average about 3, 000 face poses θ will be generated

per face.

‖1TuT + sAR−B‖2 (2.8)

Next, the ground truth vectors for training the 3D pose regressors are obtained as in Equation (2.6)

for each annotated face from the fitted 3D pose (u, s,φ) = (ux, uy, s, ϕx, ϕy, ϕz) and the keypoint

location (xi, yi, si). A specific 6D pose regressor is trained for each keypoint, using the same feature

pool as the keypoint detectors. The regressors for the 3D pose candidate generators are trained

using FSA for the square loss

38

Algorithm 5 Fit Rigid Transformation

Input: Matrices A,B of size p× d.

Output: θ = (u, s, R) to minimize ‖1TuT + sAR−B‖2

1: Compute the column means ᾱ = 1A/p, β̄ = 1B/p and column centered matrices A∗ = A−1T ᾱ

and B∗ = B − 1T β̄

2: Decompose A∗TB∗ = UDV T by SVD, where U, V are rotation matrices and D is a diagonal

matrix.

3: Obtain R = UV T ,u = β̄ − sᾱR and s = tr[RTA∗TB∗]/tr(A∗TA∗)

LD(β) =
N∑
i=1

‖yi − fβ(xi)‖2 +
M∑
j=1

ρ(βj) =
N∑
i=1

d∑
k=1

(yki − fkβ(xi))
2 +

M∑
j=1

ρ(βj) (2.9)

where yi = (y1i , ..., y
d
i) ∈ Rd and fβ(xi) = (f1β(xi)...f

d
β(xi)) ∈ Rd are piecewise linear in each

dimension. Other regression methods could be employed to generate the 3D pose candidates, for

example regression forests [29] or boosted regression [123].

2.4.3 The 3D Face Candidate Score S(θ)

The score function S(θ) depends directly on the detections of the L face keypoints in the image.

A sliding window classifier or a Hough Forest [44] could be used to detect the face keypoints on a

Gaussian pyramid. The detected keypoints are rescaled to the original image scale, obtaining for

each keypoint i ∈ {1, ..., L} a set Ki of detections.

Modified LBF. To obtain the face score for a candidate F = (θ), we modified the LBF features

[92] so that they align based on the 3D pose θ instead of the 2D shape. For that, an approximate

tangent plane at each keypoint on the 3D face model is assigned a system of coordinates. This

coordinate system is projected to a 2D coordinate system based on the 3D pose, which is used to

define a skewed point grid centered at the predicted keypoint location pi, as illustrated in Figure

5. The modified LBF features are then obtained as the leaf indexes for the Random Forest trees

trained with these modified features. The LBF were trained with 100 Random Trees of depth 6 for

each of the 9 keypoints, for a total of 100 · 32 · 9 = 28, 800 features. Let x(θ) be the vector of LBF

features extracted from the image for the candidate F = (θ).

39

Figure 2.16: Examples of LBF sampling grid patterns obtained using the 3D pose of the face.

Then, for a face with 3D pose θ = (u, s, R), we compute the (modified) LBF x(θ). The score

S(θ) = S(u, s, R) of the 3D pose θ = (u, s, R) is given by:

S(θ) = βTx(θ) (2.10)

Training the score function S(θ). The scoring function is a classifier trained to predict the

candidates with large overlap between the face bounding box Bθ and the bounding box of an

annotated face with largest overlap with Bθ. From all the face candidates of the training set, the

candidates with overlap at least 0.7 are used as positives and the ones with overlap at most 0.3

as negatives. Given a training set of poses θj , j = 1, N and yj (see Equation 2.6), learning the

parameters β is obtained by minimizing the following quadratic energy:

E(β) =

N∑
j=1

L(yjS(θj)) +

M∑
j=1

ρ(βj) =

N∑
j=1

L(yjβ
T
j x(θj)) + s‖β‖2 (2.11)

where L(·) is the Lorenz loss (Equation (1.16)).

2.4.4 Non-Maximal Suppression

The non-maximal suppression repeats the following steps until convergence:

1. Select the pose candidate with the largest support above a threshold and finds the bounding

box B of its projected points..

2. Remove the candidates that have high overlap with B.

40

2.5 Evaluation of Intermediate Face Detection Steps

2.5.1 Dataset Description

Before presenting evaluations on our face detection approach, we elaborate on the different datasets

used in this section.

AFLW. The Annotated Facial Landmarks in the Wild [60] is a large scale database for facial

landmark localization. This dataset was developed by Martin Koestinger, Paul Wohlhart, Peter

M. Roth, Horst Bischof at the Institute for Computer Graphics and Vision housed within the

Graz University of Technology. It is a multi-view (i.e. not limited to frontal faces), real-world face

database, an examples demonstrated in the left image of Figure 2.17, with annotated facial features.

The images were downloaded from Flickr (via face tags) which were then manually vetted.

The database has a total of 21, 123 images containing 24, 386 faces annotated with 21 points, as

seen in right image of Figure 2.17. Of them, 16, 207 images were found to contain one face per

image. There were 2, 164 images containing at least 2 annotated faces. Most of the images were

color and some were gray-scale. They state that no rescaling or cropping was performed and that

some images contain multiple faces. They also provide a gender break-down: 59% of the faces

are female and 41% of the faces are male. In total, the dataset contains about 380K manually

annotated facial landmarks.

AFLWMF. The AFLWMF dataset is subset of the AFLW dataset. By visual inspection, 1, 555

of them were found to have all the faces annotated and were used as the test dataset AFLWMF.

These 1, 555 images contain 3, 861 faces.

LFPW. This dataset of 1, 432 images was collected via queries on search engines. A total of 35

face keypoints were annotated (unless the keypoint was occluded). Figure 2.18 provides an example

of image collected in [7] with the ear keypoints omitted due to occlusion. The coordinates of each

keypoint on a face is represented in a CSV file where the coordinate of each point is given followed

by a number (0-3) to indicate whether it is occluded or not.

Helen. The Helen dataset [66] was also collected via Flickr using specific queries. The images

were annotated using the Amazon Mechanical Turk and example of an image is presented in Figure

2.19. There is a total of 2, 000 training images and 330 test images.

41

Figure 2.17: Examples of the real-world scenario face images (left) and the 21 face keypoint template
of AFLW (right). Both images were taken from [60]

2.5.2 Face Keypoint Evaluation

We present experiments on detecting face keypoints from color images. The face keypoints such as

eye centers, nose sides, mouth corners, chin, bottom of ears, are represented as 2D points (x, y).

The training examples are points on the Gaussian pyramid, with the positives within one pixel from

the keypoint annotation on the images of the pyramid where the inter-eye distance is in the [20, 40]

pixel range. The negatives are all points at least 4 pixels from the keypoint annotation. In total

the 999 AFLWT training images contain about 1 billion negatives. All the negatives were used for

training the classifiers through a negative mining procedure similar to [42], with the difference that

about 20,000 hard negatives were added to the training set at each iteration, thus the set of training

negatives increased with each mining iteration. All classifiers were trained with 10 iterations of

mining hard negatives.

A separate classifier was trained for each keypoint being evaluated. All classifiers except SVM-PL

HOG were trained as monolithic classifier with 1500 features or weak learners. The SVM-PL HOG

classifier was trained on the 864 HOG features, without feature selection

The following criteria were used for evaluating detection performance. The visible face keypoint is

42

Figure 2.18: Example of image with most of the face keypoints used in LFPW (except the ear
points) taken from [7]

Figure 2.19: Example of image from Helen dataset taken from [66]

considered detected in an image if a detection is found at most 5% of the IED (inter-eye distance,

computed by fitting a rigid 3D face model) away in one of the images of the pyramid. A detected

point p in one of the images of the pyramid is a false positive if it is at least 10% of the IED away

from the face part being evaluated (visible or not) of any face of the image.

43

Figure 2.20: Precision-recall curves for face keypoint detection on the test set AFLWMF containing
1555 images and 3861 faces. From top to bottom, left to right: left/right eye center, left/right nose,
left/right mouth corner, left/right ear, chin.

We compared the following learning algorithms:

1. FSA-Logistic - The FSA method on the Logistic loss Equation (1.12) with piecewise linear

learners, µ = 300, N iter = 500.

2. FSA-SVM - The FSA method on the SVM loss Equation (1.14) with piecewise linear learners,

µ = 300, N iter = 500.

3. FSA-Lorenz - The FSA method on the Lorenz loss Equation (1.16) with piecewise linear

learners, µ = 300, N iter = 500.

4. LogitBoost using univariate piecewise constant regressors as weak learners. For speed reasons,

only 10% of the learners were selected at random and trained at each boosting iteration and

the best one was added to the classifier.

44

5. SVM-PL HOG - The SVM algorithm with piecewise linear response on each variable. The

variables were the 864 HOG features.

In Figure 2.20, the precision-recall curves are shown for detecting nine keypoints on the AFLWMF

data. One can see that the FSA-SVM and FSA-Lorenz perform similarly and slightly outperform

the FSA on the logistic loss. All three FSA versions outperform Logitboost and greatly outperform

the piecewise linear SVM on the HOG features. At the same time, the FSA algorithm is about 8

times faster than the LB algorithm, which is 10 times faster than the full LB version that trains

all weak learners at each boosting iteration. The regression-based FSA-Lorenz method is at least

as good as the sliding window classifiers, while being about 4 times faster.

Also shown are the supervised descent method [113] and the CNN based face point detection method

[104] on the eye and mouth, which were the keypoints that were in common with the keypoints we

evaluated.

These two methods outperform the classification and regression-based FSA detectors. However,

we must point out that the two face alignment methods are top-down methods that rely on the

face being detected first by a face detector, which in the case of the CNN method was trained

with about 100k faces In contrast, our point detectors are bottom-up detectors that were trained

with 999 faces to directly detect the keypoints without the intermediary step of finding the face.

If we involve our own 3D-model based face detector [5] that uses all nine FSA-Lorenz keypoint

detectors to detect the face and its 3D pose, we obtain the curve denoted as FSA-Lor Face. These

results were obtained using a top-down pruning step that keeps only the keypoint detections that

are within 0.5 IED (Inter-Eye Distance) from the predicted locations from the 3D pose. We see

that using the top-down information we obtain results comparable to the CNN method [104] and

slightly better than the supervised descent method [113].

2.5.3 Evaluating 3D Pose Candidate Generator

It would be useful to know how good is the 3D Pose Candidate Generator (3DCG) at predicting

the correct 3D poses by regression. A 3D pose candidate θ = (u, s, R) can be evaluated using the

relative error:

err(θ) =
1

D|I|
∑
i∈I
‖Tθ(Fi)−Gi‖

which is the average point-to-point distance between the 2D points Tθ(Fi) predicted by the pose θ

and the corresponding ground truth (GT) annotation points Gi, divided by the inter-eye distance

45

D of the GT face. Then for a set of 3D pose candidates in an image one could compute the

smallest relative error towards each of the faces present in the image, obtaining the relative error

for predicting each face.

The errors percentiles for these relative errors are shown in Figure 2.21. On the left are shown the

percentiles for fitting the 3D model to the GT location of the nine keypoints in different datasets,

showing that the 3D model fits the GT well. To evaluate only the 3DCG while removing the effect

of missed keypoint detections, the 3DCG was run from all points at distance at most 2 pixels from

the true keypoint locations and the error percentiles of the closest candidate to the GT are shown

in Figure 2.21, middle. This was only possible on the LFPW and AFLW datasets, which had all

9 keypoints annotated. In Figure 2.21, right are evaluated the 3DCG together with the keypoint

detection by FSA-SVM, showing the relative error percentiles for predicting the GT faces. It is clear

that the LFPW dataset is much easier than the AFLW dataset, because it contains more frontal

faces. One could also see that the 3D pose candidate generator does a good job in predicting the

3D pose on about 90% of the AFLWMF faces and on all the LFPW faces.

Figure 2.21: Candidate Generator Evaluation. Left: errors of the best fit of the 3D model to the
ground truth (GT). Middle: errors of the best 3D pose candidate predicted from the true keypoint
locations. Right: errors of the best 3D pose candidate.

2.5.4 Illustration of Keypoints and Difference Features

In Figure 2.22, we provide an illustration of the 9 keypoints (of 21) we use to perform our bottom-

up face detection. We accentuate each point by centering a grid of radius 4 over which we compute

the difference features of Section 2.2.3.

46

Figure 2.22: Illustration of keypoints and difference features (with radius of 4). Top Image: tem-
plate face with 21 keypoints. From top left to bottom right: bottom right ear, middle right eye,
middle left eye, bottom left ear, right nose edge, left nose edge, right mouth corner, left mouth
corner, chin

47

CHAPTER 3

PARAMETER SENSITIVE CLASSIFIERS WITH

FEATURE SELECTION WITH ANNEALING

3.1 Motivation

The idea for Parameter Sensitive Feature Selection with Annealing (PFSA) was motivated by the

data we analyze. For example, in the case of face detection, one of the difficulties lies in the various

possible poses. As can be seen in Figure 3.1, there are many in-plane and out-of-plane face rotations

that can occlude vital face features. These rotations are commonly known as roll, pitch, and yaw

angles.

Figure 3.1: The image demonstrates the different angle rotations for a 3D object (image taken from
http://www.hindawi.com/journals/mse/2009/245606/fig7/).

In the URL Reputation dataset we analyze, and describe in Section 4.2, malicious websites only stay

on-line for a limited time due to various reasons (e.g. government agencies shutting them down).

That is, time is a natural parameter that can be used to better understand the characteristics of

malicious websites. We hypothesized that if we could capture the inherent variability in our data,

such as the Yaw angle demonstrated in Figure 3.2, we would be able to improve classification.

48

Figure 3.2: The image demonstrates the variability in face detection that we wish to account
for in our model (image taken from http://imgarcade.com/1/frontal-face-drawing/) - the
motivation for PFSA.

We saw three advantages to parameterizing a classifier trained using FSA. First, by making this

classifier dependent on a parameter that describes variability in the data (such as time or the Yaw

angle), we would be able to perform classification with a single classifier as opposed to several

classifiers. As will be discussed in the following Related Works section, prior work has involved

training several classifiers for different parameter values. Instead, we use bins to describe the

variability. For example, in Figure 3.3, the Yaw angle might be a natural parameter to discretize

into bins. The optimal number of bins can be fined tuned empirically.

Figure 3.3: Example of how bins can be used to capture variability in face pose (face-images taken
from http://i.cs.hku.hk/cisc/projects/websiteITS08211/Background.html)

We begin by summarizing prior work done in this area.

3.2 Related Works

Yuan et al. propose classifiers that are associated with continuous parameters [118] in order to

perform object detection. These parameters are used to describe large within class variability

49

inherent to problems such as object detection. Since these classifiers reside in a parameterized

function space, these parameters can be learned from the training data in an unsupervised fashion.

The advantage of this approach is that it resolves the necessity of partitioning the continuous

parameter space. Their method allows them to exploit the correlation that exists between classifiers

that share features since their parameterized classifiers are learned jointly. Their work classifies

faces, hand shapes and pedestrians in images and the classification function is solved using Support

Vector Machine (SVM) or Adaboost. Of particular interest to us is to be able to extend this idea

to accurately detecting profile faces (i.e. a face with only one side showing). As pointed out in

[118], detection rates are lower for profile faces compared to frontal faces [58, 81].

The work in [119] builds upon [118] and uses the product of two kernels within a SVM training.

One kernel is used for pose estimation as well as feature sharing. The other kernel handles the

classification of foreground and background. The support vectors obtained from the SVM training

are reweighed so that only those support vectors having a common parameter value (θ) will have

a large weights (hence, feature sharing). This allows [119] to “generate” individual classifiers that

are associated with a particular weighting of support vectors and thus, a specific parameter value.

He et al. also learn detection and pose estimation via a product of two kernels [51]. One of the

differences with [119] is that He et al. learn continuous pose estimation. The joint kernel approach

[51] produces a non-convex optimization objective that they solve in a cascaded manner. More

specifically, one kernel they refer to as a “structural kernel” which is used for detection and the

other kernel the refer to as a “pose kernel” which is used for continuous parameterization. In order

to reduce the complexity of the search space, their two-step cascaded algorithm, prune + refine,

makes several proposals to the algorithm. The end game is to return the best bounding box and

object view angle. We provide the steps taken by [51] in order to reach this final solution:
1. Prune: They obtain a smaller search space that consists of candidate pairs of bounding boxes

and ranges for possible poses.

• The possible view angles are uniformly divided into M intervals. These intervals are

represented by a single theta value such as the geometric mean.

• Once a specific θ value is given, their model reduces to a single linear classifier.

• Gradient based optimization is used to generate bounding box and view angles pairs.

2. Refine: They optimize over the possible candidates and return a final pair.

• During this stage, the reduced search space permits a gradient ascent optimization of

the objective function.

50

• This part of the algorithm requires careful tuning so that the possible range for the view

angles is small enough to allow few local optima but enough representative bounding

boxes to permit a thorough exploration of the search space.

We note that similar to our approach, He et al. use non-maximum suppression in order to insure

that a diverse and predetermined number of candidates are generated. They modify the loss

function in their structural SVM in order to account for both detection and pose. They also train

their model in an on-line fashion by providing small batches of training examples at each model

update iteration.

The work by Gu and Ren [47] builds upon the discriminate part based model of [42] for object

detection by adding pose estimation. In fact, in their paper, they present two different viewpoint

models: discrete and continuous. We summarize their contributions for each category below.

1. Discrete Viewpoint: The final output of this framework returns a confidence score for the

presence of the object and a viewpoint label.

(a) A pre-determined number (V) of canonical viewpoints of the object is saved in order

compare against when objects are detected. Each viewpoint will have a label associated

with it.

(b) Several canonical viewpoints, for a specific object, are represented using a mixture model

of HOG-based templates.

• NOTE: they point out that they use HOG based features to represent the spatial

layout of the object because of its robustness to intra-class and intra-viewpoint

variation.

(c) A sliding window classifier is used to detect the object where non-maximal suppression

is used to enforce a diverse candidate set (i.e. remove redundant image patches).

(d) Their large margin optimization extends what is done in [42]. One of their contributions

is learning the viewpoint labels in the supervised, semi-supervised, and unsupervised

case.

2. Continuous Viewpoint: Here the output, in addition to the BB, is a viewpoint angle

θ ∈ R3.

• After modifying the discrete mixture model, they partition the continuous viewpoint

space into small chunks that are each associated with a canonical viewpoint.

• Assuming small chunks, a viewpoint is approximated by a linear deformation of the

canonical template w.r.t. the difference of viewpoint angles and canonical angles.

• A window classifier is also employed to detect the object

51

There has also been work in multi-view object detection with a 3D Geometric model [83, 70]. A

three step algorithm for 3D multi-view object detection is introduced in [83]. They address the

computationally intensive demands of searching over an image for various image scales by first

generating a bounding box for the object. Then, within this image patch, they construct features

expressed as histogram pyramids [65] that are robust against small errors in the bounding box size

and object view variance. A Naive Bayes classifier is trained using these spatial pyramid histograms

to learn the object pose. Finally, a SVM is used to determine the presence of the object (which in

this work is cars).

Liebelt and Schmidt learn a 3D model and object classifier separately and then combine them [70].

They rely on a few synthetic 3D models to learn a 3D representation of the geometry of the object.

This allows them to estimate a 3D object pose which they use to evaluate the 2D part detection.

Their approach allows them to avoid tedious manual annotations of the individual object parts,

only a 2D bounding box and the viewpoint of the object is needed. In summary, their detection

process is as follows:

1. Pre-Detection: Initial 2D detection of regions of interest using sliding windows

• Sliding windows are used and then mean-shift mode estimation

• They point out that sliding windows cannot capture all possible window layouts on all

possible scales.

2. Object-Parts Detection: Sub-Grids are made on the regions of interest to focus on the object

and remove background variability.

3. 3D Pose Estimation: Using an EM-like procedure (Genetic algorithm), the optimize the

likelihood of the detected 2D parts over spherical camera parameters.

A probabilistic framework for 3D object classification is proposed in [103] where image features

and geometric constraints are combined to ensure detection across different viewpoints. Sun et al.

model can generate a distribution of the parts that represent an object in a Bayesian manner. We

summarize how Sun et al. train their generative model:

1. They initialize their model using a single object instance over all viewpoints. In order to

match features across different views, they employ the multiRANSAC algorithm.

(a) They sample a viewpoint (from K) using a Uniform Distribution.

(b) After generating image features, for image feature

i. generate the expected (object) part proportion for the current viewpoint. Use this to

obtain the labels for the parts. (Note: these labels have a Multinomial Distribution).

52

ii. generate the feature appearance and location. Sun et al. point out that the object

parts are represented by appearance elements (codewords).

(c) For each image, they introduce an affine transformation variable. Sun et al. state that a

contribution of their work is the ability to automatically compute affine transformation

so that object detection can be performed under any viewpoint. This of course is done

within their Bayesian framework.

(d) They reduce the complexity of the parameter space by enforcing the following geometric

constraints for parts with nearby viewpoints: they are assumed to have similar appear-

ances/codewords AND their 2D configuration is constrained using epipolar geometry.

2. Updates are done incrementally. For a new training image, its affine transformation (relative

to the base instance) is estimated.

3. Sun et al. predict where new parts might be based on existing parts.

Su et al. build upon [103] by developing a model that requires less supervision and superior

viewpoint depiction [102]. Su et al. argue that a dense representation of poses can lead to robust

object detection and avoid the tedious manual labeling of 3D poses by initializing their model using

a video clip from a cell phone. They learn the model as follows:

1. Starting with a viewing sphere centered at the object, they parameterize the sphere using

triangles. This sphere is “built” in practice by using a cell phone to capture a 360◦ video of

the object, lowering and raising the cell phone as filmer walks around the object

• They enforce feature-level correspondence across frames using the Lucas-Kanade tracker.

They say that on average, about 100 viewpoints are sampled from each video clip.

• They triangulate the sphere by requiring the neighboring viewpoints by grouped into

the same triangles. Note: They claim that this parameterization permits synthesis of

new viewpoints within each triangle.

2. They apply modified version of the J-Linkage clustering algorithm to generate object parts.

Su et al. provide a very specific definition of what they mean by an object part.

3. They learn a probabilistic model for a 3D object class similar to [103] with the two differences

that they introduce a morphing variable in order to recognize and generate new poses and their

triangular representation of the viewpoint sphere permits more robust geometric constraints.

Ali et al. jointly learn pose-indexed image features and pose estimators in a boosted manner: each

boosting iteration chooses the best pose estimator and pose-indexed pair that addresses errors from

the previous iteration [1]. This allows the classifier to deform the features according to computed

pose parameters. While they use AdaBoost, they point out that other classification methods could

53

be used, such as SVM or decision trees. This method is similar to our approach in that a single

classifier is used and different learning algorithms can be used.

3.3 Parameter Sensitive Classifiers with FSA

The formal representation of our PFSA framework is as follows. Let (xi, yi, θi), i = 1, N be

training examples with xi ∈ RM , a loss function L(β) based on these examples. Then, the modified

constrained optimization problem we solve in PFSA is

β = argmin
|{j:βj 6=0}|≤k

L(β) (3.1)

where the number k of relevant features is set a-priori, and the loss function L(β) is differentiable

with respect to β. The β learned in this scenario is a matrix that can be visualized as in Figure

3.4. Each row represents a bin that is used to discretize the parameter θ. All learned values for

the bin ` is represented by the vector β`. Note that there are M columns representing the number

of features.

Figure 3.4: Example of the β that is learned in PFSA. Note how the bins are represented via rows
and the number of β vectors learned are represented via columns (a total of M)

54

The classifier can be expressed as eq. (3.2)

fβ(xi) =

M∑
j=1

βj(θi) · xj (3.2)

There are several ways to parameterize the classifier fβ such as discretizing θ into bins that cover the

range of the parameter space or using splines. In order to enforce smooth βj , we enforce a second

order prior across all bins (see Equation (3.3)). An example of the smooth βj that we generated

during simulations (for 30 bins) can be seen in Figure 3.5, we will discuss these simulations in more

detail in the section on Experiments.

ρ(βj) = c

M∑
j=2

(βj,b+1 + βj,b−1 − 2βj,b)
2 + s‖β‖2 (3.3)

With the previous notations in mind, we can state the loss function being optimized in Equation

(3.4).

L(β) =

N∑
i=1

L(yiβ
T (θi)xi) +

M∑
j=1

ρ(βj) (3.4)

In Algorithm 1, during the update step, depending on which bin the current training example falls

into, we update that bin. The criterion we use to determine which βj to keep depends on the sum

of squares across the bin values: ‖βj‖22

3.4 PFSA for Face Detection

3.4.1 Overview

As stated in the Motivation section, we wish to capture the variability in face poses in order

to improve our accuracy in face detection. Recall that the process of detecting the face and its

pose begins with detecting the face keypoints, then predict the 3D pose from those keypoints (i.e.

generate 3D candidates), score those candidates and remove those that have significant overlap,

and finally, use a global model to make a (bounding box) prediction. The entire process can be

visualized in Figure 2.12.

The parameter sensitive classifier comes into use after we have generated 3D face pose candidates

(i.e. the second image in Figure 2.12). Specifically, our goal was to have a more robust method

for scoring the pose candidates. From experiments, we realized that the yaw angle had the largest

55

Figure 3.5: Example of smooth β obtained with our second order prior

face pose variability. We pursued the hypothesis that a yaw-angle dependent model would improve

how we scored candidates.

The yaw-angle dependent image-based score function can be represented in Equation (3.5). For

each feature x extracted from image I at yaw angle θy, we assign it the weight β(θy),

S(dx, dy, ds, θr, θp, θy) = β(θy)Tx (3.5)

where dx, dy is the x, y coordinate of the keypoint in the image, ds is the image scale, θr is the roll

angle and θp is the pitch angle.

3.4.2 Training Details for the Scoring Function of Face Candidates

We expand on the scoring of face candidates since this is where we leverage our parameterized

classifier. The Face candidate F = (θ) contains the 3D pose θ = (u, s, R) and predicted locations

P = (p1, ...,pL) of the L keypoints. The score is obtained by a parameter-sensitive classifier that

depends on the yaw angle ϕy.

Score function. The score S(θ) of the 3D face candidate with face keypoints P and pose θ is

based on the LBF feature vector x(θ):

S(θ) = S(x) = β(ϕy)Tx(θ). (3.6)

56

The coefficients β(ϕy) depend parametrically on the yaw angle ϕy of the rotation A. The yaw angle

ranges between −π and π, being 0 for frontal faces and ±π/2 for profile faces. For this application,

it is discretized into B = 16 bins, so there are parameter vectors βk, k = 1, B, one for each yaw

angle bin.

Figure 3.6: Top 50 LBF coefficients by total variation, out of 28,800.

Training the score function S(θ). The scoring function is a classifier trained to predict the

candidates with large overlap between the face bounding box Bθ and the bounding box of an

annotated face with largest overlap with Bθ. From all the face candidates of the training set, the

candidates with overlap at least 0.7 are used as positives and the ones with overlap at most 0.3 as

negatives. We obtain this way a training set of face candidates Fj = (Pj , θj), j = 1, N with yaw

angle bins bj ∈ {1, ..., B}, LBF feature vectors xj , and labels yj ∈ {−1, 1}. Learning the parameters

β of the face score is obtained by minimizing the classification loss:

E(β) =

N∑
j=1

L(yjS(Fj)) +

B∑
k=1

ρ(βk) =

N∑
j=1

L(yjβ
T
bj
xj) +

B∑
k=1

ρ(βk) (3.7)

57

where L(x) is the Lorenz loss [4]

L(x) =

{
ln(1 + (x− 1)2) if x < 1

0 else

and the prior ρ(β) encourages smooth changes of the coefficients between adjacent bins

ρ(β) = s‖β‖2 + c

B−1∑
i=2

(βi+1 + βi−1 − 2βi)
2. (3.8)

The loss function E(β) is differentiable but non convex. It is minimized by 50 epochs of stochastic

gradient descent with momentum µ = 0.99 and learning rate η = 10.

58

CHAPTER 4

EXPERIMENTS

4.1 Simulations

In this chapter, we build upon the simulation structure from Chapter 1.

4.1.1 Background

Regular FSA has strong classification performance on Normally simulated data compared to other

classification algorithms (given sufficient training examples), with or without noisy labels. We

proceeded to simulate a classification problem that could potentially benefit from our parameterized

classifier. As in Chapter 1.8.2, the data is simulated using a Normal distribution where only 10 or

30 of the 1000 features are used to compute the true signal.

However, these simulations add a weight factor to Equation (1.26) that wasn’t present before.

Specifically, the responses are computed as in Equation (4.1).

y =

{
1 if

∑k∗

i=1 x10i · βi > 0

0 otherwise
(4.1)

We use two different kinds of weights β: one comes from a sine function, Equation (4.2), and the

other comes from a sine function that has been modified to be zero whenever the original sine

function takes on negative values, Equation (4.3). We note that both weight functions have a

constant phase shift.

βi =

B∑
j=1

sin(2jπ/B) + c (4.2)

βi =

{∑B
j=1 sin(2jπ/B) + c if

∑B
j=1 sin(2jπ/B) + c > 0

0 otherwise
(4.3)

The phase shift c can be set by the user to be as much as desired. We set our phase shift to be a

multiple of π/6. The max summation index B is the number of bins. The tables in this chapter

that summarize the simulation results demonstrate that we experimented with three different bin

59

values: 3, 10 and 50. We illustrate these weights in Figures 4.1 and 4.2. We only present graphs

for bins of size 10 and 50 since it is difficult to visualize the graphs at 3 bins (as we can start to

see in the plot for 10 bins, fewer bins lead to a more distorted graph).

Figure 4.1: Illustration of Sinusoidal Weights

60

Figure 4.2: Illustration of Zero Sub-Domain Weights

An important goal of these experiments is to be able to recover the original weights that give rise

to the response values as closely as possible. The estimates of the weights are represented as bi.

Thus, an accurate recovery of these weights will permit us to recover the true signal. Given the

61

variability of the sinusoidal weights or the weights the vary between sine values and zero values,

we hypothesized that our parametric classifier would be able to model this behavior better than

other existing methods. The results in the tables that follow give empirical evidence to support

our belief.

4.1.2 Simulation Results

For various combinations of N and M , we present the results for a FSA classifier as well as our

parameter sensitive classifiers:

1. Parameter sensitive classifier with FSA and logistic loss (Equation (1.13)) - PFSA.

2. Parameter sensitive classifier with FSA and huberised loss (Equation (1.14)) - PFSV.

3. Parameter sensitive classifier with FSA and lorenz loss (Equation (1.16)) - PFSL.

In Figures 4.4 - 4.9, we present examples of the bi our parameterized classifier recovered for the

case K∗ = 10, 10 bins, and noiseless weights. As expected, as the number of observations increases,

our recovered weights behave more closely to the true weights. We also point out that of the three

sensitive parameter classifiers (PFSA, PFSV, PFSL), the one based on the Lorenz loss does a better

job at staying within the upper and lower limits of the ground truth weights.

An interesting finding is the difficulty that most methods had with the weights that were strictly

sinusoidal. As the tables demonstrate, all of the non-parameterized algorithms (explained in Chap-

ter 1.8.2) failed to obtain a single all-variable detection, regardless of the sample size. However, for

the zero sub-domain experiments, once there were sufficient observations, the non-parameterized

approaches were able to increase their all-variables detection rate. We hypothesize that it has to

do with the segments where the zero sub-domain weights have a constant behavior which makes it

easier for the non-parameterized methods to approximate.

Conversely, our parameter sensitive classifiers did not perform as well in the case of Zero Sub-

Domain weights. We believe that this might be do to the fact that an extended trough, the ’bottom’

part of the waves in Figure 4.3 where our weights take on zero values, is needed to account for the

zero domain. This constant behavior might diminish our parameter sensitive classifier’s ability to

capitalize on variability. That is, our classifier ends up acting like a parameter insensitive classifier.

It is worth noting that the choice of weights was motivated from a dataset we applied our method

to: URL Reputation [71] (described in Section 4.2). One of the challenges posed by this dataset is

62

Figure 4.3: Visual description of waves from Wikipedia

that features describing URLs were time dependent and could vary between being zero and non-

zero. For example, a website being used for criminal activity could be shut down after some time;

thus, there wouldn’t be more data from this site. Our goal was to simulate this variability and

evaluate the performance of our parameter sensitive classifier.

4.2 URL Reputation Dataset

The use of the dataset generated by Justin Ma et al. in [72]. Essentially, the data set represents

URLs that are either benign or malicious. The goal is to classify the URLs using the features

extracted for each website (which we will explain shortly). Ma et al. collected websites over 121

days with approximately 20, 000 websites per day.

4.2.1 Description of URL Reputation Dataset

For reasons of protecting user sensitive information, prevent illegal transactions, or deter less than

reputable activities, it is vital that methods continually improve to detect websites that fall into

either of the previously mentioned categories. This problem is accentuated by the fact the these

websites are ever evolving to avoid being detected. As pointed out in [72], these malicious websites

can be engaging in:

• Marketing counterfeit goods

• Financial fraud

63

Table 4.1: Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 3 bins, averaged over 100 runs. Sinusoidal weights were used as
illustrated in Figure 4.1

Noiseless

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 62 82 86 0 0 0 0 0 0 0 0.8 96.1 98.2 98.6 0 1.9 - 1.7 1.7 1.9 1.7
3000 1000 10 0 100 100 100 0 0 0 0 0 0 0 2.2 100 100 100 0 2.3 - 3.5 3.4 2.3 2.9
10000 1000 10 0 100 100 100 0 0 0 0 0 0 0 2.9 100 100 100 0 9.3 - 8.4 8.8 4.5 6.0
30000 1000 10 0 100 100 100 0 0 0 0 0 0 0 9.2 100 100 100 0 21.5 - 20.7 22.6 14.0 7.9

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 2.7 72.3 75.8 78.0 0 2.2 - 2.6 2.6 2.8 2.7
3000 1000 30 0 40 46 60 0 0 0 0 0 0 0 2.9 97.0 97.5 98.3 0 2.7 - 3.3 3.3 3.2 2.7
10000 1000 30 0 100 100 100 0 0 0 0 0 0 0 2.3 100 100 100 0 2.5 - 3.1 3.3 3.3 3.0
30000 1000 30 0 100 100 100 0 0 0 0 0 0 0 1.8 100 100 100 0 1.8 - 3.5 3.5 3.3 3.4

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .501 .993 .997 .997 .500 .500 .502 .500 .500 .502 .503 0.09 0.09 0.08 0.08 329 206 3.9 1142 1262 0.44 0.05
3000 1000 10 .502 .999 .999 .999 .500 .505 .506 .507 .507 .505 .505 0.23 0.21 0.18 0.21 1853 619 12.0 1538 1343 1.4 0.15
10000 1000 10 .506 1.00 1.00 1.00 .500 .506 .508 .514 .514 .509 .509 0.91 0.89 0.79 0.86 11040 2301 47.2 2358 2649 4.6 0.47
30000 1000 10 .511 1.00 1.00 1.00 .502 .509 .513 .521 .521 .513 .514 3.1 3.1 2.9 3.1 2.3e4 6379 127 5954 6486 14.0 1.4

1000 1000 30 .498 .966 .971 .975 .500 .499 .500 .500 .500 .498 .499 0.12 0.11 0.10 0.11 436 230 2.0 1138 1097 1.3 0.14
3000 1000 30 .501 .996 .997 .997 .499 .503 .506 .501 .501 .500 .501 0.32 0.30 0.28 0.29 4084 712 7.4 1445 1478 4.1 0.42
10000 1000 30 .501 1.00 .999 .999 .500 .501 .509 .500 .500 .500 .501 1.3 1.2 1.1 1.2 6807 2472 29.1 2727 2807 13.8 1.4
30000 1000 30 .500 1.00 1.00 1.00 .500 .499 .511 .501 .501 .500 .500 4.0 3.9 3.7 3.9 2.6e4 8308 66.3 6060 6355 41.7 4.2

Noisy

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 16 38 48 0 0 0 0 0 0 0 0.7 87.3 92.0 93.9 0 1.4 - 1.4 1.4 1.6 1.1
3000 1000 10 0 95 97 99 0 0 0 0 0 0 0 1.5 99.5 99.6 99.9 0 2.6 - 3.2 3.3 2.5 2.1
10000 1000 10 0 100 100 100 0 0 0 0 0 0 0 2.2 100 100 100 0 8.4 - 7.4 8.0 5.0 5.7
30000 1000 10 0 100 100 100 0 0 0 0 0 0 0 7.7 100 100 100 0 16.3 - 18.7 19.6 12.5 7.1

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 2.4 54.1 58.9 61.2 0 3.0 - 3.4 3.6 2.9 3.3
3000 1000 30 0 3 9 25 0 0 0 0 0 0 0 2.8 89.5 93.2 95.7 0 2.7 - 3.1 3.1 2.9 3.2
10000 1000 30 0 94 95 99 0 0 0 0 0 0 0 2.7 99.8 99.8 100 0 2.5 - 3.3 3.3 3.2 3.3
30000 1000 30 0 100 100 100 0 0 0 0 0 0 0 1.9 100 100 100 0 2.0 - 3.4 3.3 3.5 3.2

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .501 .932 .938 .941 .500 .503 .503 .502 .502 .504 .503 0.08 0.08 0.07 0.08 250 198 3.8 1493 990 0.49 0.05
3000 1000 10 .501 .948 .948 .949 .500 .504 .502 .504 .504 .503 .504 0.24 0.23 0.21 0.24 2544 679 12.5 1160 1434 1.4 0.15
10000 1000 10 .504 .949 .949 .949 .500 .506 .506 .511 .511 .507 .507 0.94 0.91 0.85 0.93 6203 2460 45.1 1777 1758 4.7 0.48
30000 1000 10 .509 .950 .950 .950 .501 .509 .511 .518 .518 .511 .511 3.1 3.0 2.8 3.1 2.4e4 7266 153 5097 4991 14.1 1.4

1000 1000 30 .501 .892 .897 .902 .500 .500 .501 .501 .501 .500 .499 0.11 0.10 0.09 0.11 301 238 2.7 1508 941 1.3 0.14
3000 1000 30 .502 .939 .942 .945 .501 .501 .501 .501 .501 .500 .501 0.33 0.31 0.29 0.32 2588 748 12.4 1136 1466 4.1 0.42
10000 1000 30 .501 .948 .948 .949 .500 .501 .507 .500 .500 .501 .500 1.3 1.2 1.2 1.2 8583 3621 32.4 1799 1794 14.0 1.4
30000 1000 30 .500 .950 .950 .950 .500 .501 .509 .500 .500 .500 .500 4.0 4.1 3.8 4.1 3.3e4 8006 90.7 5463 5190 42.0 4.3

• Propagating malware

Brief Overview of CW On-line Approach. Ma et al. developed a real-time classification

of the URLs as to whether the associated website was malicious or not. Their approach can be

visualized in Figure 4.10. That is, they implemented an on-line learning algorithm to classify

websites with very good results (1% misclassification rate). They built upon their batch learning

approach [71] with the reasoning that on-line algorithms are better suited to handle large number

64

Table 4.2: Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 3 bins, averaged over 100 runs. Zero sub-domain weights were
used as illustrated in Figure 4.2

Noiseless

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 1 1 29 43 0 0 0 0 0 0 0 59.6 87.8 92.1 93.9 0 40 - 53.9 51.1 54.6 21.0
3000 1000 10 23 1 45 76 0 0 0 10 3 20 0 86.1 90.1 94.5 97.6 0.1 52.1 - 79.9 74.6 83.9 26.0
10000 1000 10 92 0 71 96 0 0 0 91 78 95 0 92.0 90.0 97.1 99.6 7.3 61.1 - 99.1 97.8 99.5 29.9
30000 1000 10 100 0 97 100 0 2 0 100 100 100 0 100 90.0 99.7 100 10 67.3 - 100 100 100 26.9

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 25.5 66.2 70.2 72.7 0 25.9 - 30.1 28.9 24.7 17.9
3000 1000 30 0 4 25 34 0 0 0 0 0 0 0 58.6 92.2 96.0 97.1 0 35.4 - 53.7 50.3 52.2 27.9
10000 1000 30 2 86 99 100 0 0 0 1 0 1 0 90.3 99.5 100 100 0 44.6 - 84.1 79.7 87.0 35.8
30000 1000 30 94 100 100 100 0 0 0 58 25 82 0 99.8 100 100 100 0.3 50.1 - 98.3 96.2 99.3 40.2

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .803 .985 .990 .992 .654 .788 .737 .780 .768 .781 .765 0.09 0.09 0.08 0.09 352 151 3.1 1183 809 0.43 0.05
3000 1000 10 .817 .989 .994 .997 .660 .794 .782 .794 .782 .798 .775 0.25 0.23 0.21 0.23 2307 520 10.2 875 1105 1.4 0.15
10000 1000 10 .821 .990 .997 .999 .657 .802 .807 .798 .794 .800 .780 0.98 0.95 0.85 0.93 6233 1597 35.1 1305 1088 4.7 0.48
30000 1000 10 .822 .991 1.00 1.00 .656 .805 .814 .798 .793 .801 .781 3.0 3.0 2.8 3.0 2.6e4 3918 102 1477 1834 13.7 1.4

1000 1000 30 .758 .965 .969 .972 .594 .768 .728 .757 .746 .756 .755 0.12 0.12 0.12 0.12 302 188 3.3 1354 898 1.3 0.14
3000 1000 30 .797 .991 .996 .997 .580 .784 .776 .772 .758 .783 .775 0.34 0.32 0.31 0.32 2418 609 10.9 1233 1430 4.1 0.42
10000 1000 30 .812 .999 .999 .999 .594 .791 .801 .792 .782 .800 .786 1.3 1.3 1.2 1.2 7032 1998 37.9 2018 1802 14.0 1.4
30000 1000 30 .815 1.00 1.00 1.00 .612 .793 .808 .805 .801 .804 .790 4.0 3.8 3.6 3.8 3.1e4 5289 91.2 3186 2763 40.8 4.1

Noisy

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 1 18 29 0 0 0 0 0 0 0 49.5 80.6 88.2 90.5 0 38.6 - 51.2 49.1 44.6 18.6
3000 1000 10 5 1 50 77 0 0 0 3 2 5 0 77.2 89.5 95.0 97.7 0 46.9 - 72.3 69.4 74.4 22.7
10000 1000 10 78 1 78 93 0 0 0 74 59 86 0 97.6 90.1 97.8 99.3 4.4 56.7 - 96.7 94.9 98.5 28.6
30000 1000 10 100 1 95 100 0 2 0 100 100 100 0 100 90.1 99.5 100 10 67.3 - 100 100 100 25.7

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 19.2 51.4 55.4 57.1 0 21.8 - 26.5 26.6 18.4 14.7
3000 1000 30 0 0 4 9 0 0 0 0 0 0 0 48.1 84.1 89.1 92.2 0 32.0 - 47.2 44.3 41.7 24.9
10000 1000 30 2 54 88 97 0 0 0 0 0 0 0 84.4 98.3 99.6 99.9 0 39.4 - 75.4 71.2 79.7 33.4
30000 1000 30 80 100 100 100 0 0 0 58 25 61 0 99.3 100 100 100 0.3 50.1 - 98.3 96.2 98.4 37.5

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .764 .926 .935 .939 .639 .761 .699 .751 .742 .743 .735 0.09 0.09 0.08 0.09 225 151 3.4 903 772 .43 .05
3000 1000 10 .782 .934 .944 .947 .642 .764 .746 .764 .754 .764 .747 0.24 0.24 0.21 0.24 2366 453 10.9 840 1180 1.5 0.16
10000 1000 10 .788 .940 .947 .949 .640 .768 .772 .768 .763 .769 .748 0.95 0.92 0.84 0.94 7566 1342 38.6 1144 1135 4.7 0.48
30000 1000 10 .790 .942 .949 .950 .656 .805 .814 .798 .793 .770 .751 3.1 3.0 2.8 3.0 1.8e4 4015 89.9 1784 1984 13.9 1.4

1000 1000 30 .715 .894 .896 .900 .586 .735 .693 .729 .721 .720 .720 0.12 0.12 0.11 0.12 304 201 3.2 813 924 1.3 0.14
3000 1000 30 .759 .934 .939 .943 .574 .752 .741 .742 .729 .747 .742 0.34 0.32 0.30 0.33 2718 609 10.6 1286 1435 4.3 0.44
10000 1000 30 .779 .947 .948 .949 .583 .758 .767 .757 .747 .768 .754 1.3 1.2 1.2 1.2 7806 2006 38.4 1950 1872 14.1 1.4
30000 1000 30 .784 .949 .949 .950 .612 .793 .808 .805 .801 .774 .759 4.0 3.9 3.6 3.9 2.2e4 5795 97.6 3151 3406 41.7 4.2

of observations and the need to adapt to evolutions in malicious websites and their corresponding

features.

Features Description. The features extracted for each website fall into two categories: lexical

and host-based. A general description of the type of features obtained can be seen in Figure 4.7.

These features are obtained using crawling techniques. The lexical features are used to describe

65

Table 4.3: Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 10 bins, averaged over 100 runs. Sinusoidal weights were used
as illustrated in Figure 4.1

Noiseless

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 24 45 55 0 0 0 0 0 0 0 0.7 88.8 93.0 94.8 0 0.8 - 0.5 0.6 1.0 0.6
3000 1000 10 0 88 96 100 0 0 0 0 0 0 0 0.7 98.8 99.6 100 0 0.8 - 0.6 0.6 0.5 0.9
10000 1000 10 0 100 100 100 0 0 0 0 0 0 0 0.7 100 100 100 0 0.6 - 0.9 0.8 0.8 0.7
30000 1000 10 0 100 100 100 0 0 0 0 0 0 0 0.3 100 100 100 0 0.6 - 1.1 1.0 0.8 0.9

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 2.9 57.3 63.4 67.8 0 2.8 - 2.7 2.5 2.8 2.7
3000 1000 30 0 2 6 17 0 0 0 0 0 0 0 3.2 88.2 92.1 94.8 0 2.9 - 3.5 3.4 3.3 3.5
10000 1000 30 0 93 96 99 0 0 0 0 0 0 0 2.5 99.7 99.8 100 0 3.0 - 3.4 3.6 2.7 3.0
30000 1000 30 0 100 100 100 0 0 0 0 0 0 0 1.8 100 100 100 0 2.5 - 2.6 2.7 3.0 3.0

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .499 .976 .984 .988 .499 .500 .500 .501 .501 .499 .500 0.09 0.09 0.08 0.09 252 209 2.4 1013 1008 0.50 0.36
3000 1000 10 .501 .996 .997 .998 .500 .502 .501 .501 .501 .502 .501 0.23 0.22 0.20 0.23 2524 642 7.2 1025 1111 1.4 0.14
10000 1000 10 .500 .999 .999 .999 .500 .501 .500 .500 .500 .500 .500 0.93 0.91 0.84 0.94 8616 2199 27.4 2006 2186 4.6 0.47
30000 1000 10 .499 1.00 1.00 1.00 .500 .500 .501 .500 .500 .500 .500 3.1 3.0 2.8 3.1 2.7e4 8.0e3 69.5 6.2e3 4.9e3 14.0 1.4

1000 1000 30 .499 .935 .951 .957 .498 .500 .502 .500 .500 .500 .501 0.11 0.11 0.11 0.12 284 231 4.1 1036 1056 1.3 0.15
3000 1000 30 .500 .981 .989 .992 .500 .501 .501 .500 .500 .501 .500 0.34 0.32 0.30 0.33 2559 700 7.5 1056 1104 4.1 0.42
10000 1000 30 .500 .998 .998 .998 .500 .500 .501 .499 .499 .499 .500 1.3 1.2 1.1 1.2 8507 2468 27.2 1986 2104 13.7 1.4
30000 1000 30 .500 .999 .999 .999 .500 .500 .500 .500 .500 .500 .500 4.0 3.9 3.7 4.0 2.7e4 8.7e3 63.0 5.5e3 5.4e3 42.3 4.3

Noisy

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 4 19 33 0 0 0 0 0 0 0 0.3 80.2 87.3 91.2 0 1.2 - 1.0 0.9 0.7 0.9
3000 1000 10 0 72 91 98 0 0 0 0 0 0 0 0.7 97.0 99.1 99.8 0 0.8 - 1.0 1.0 1.0 0.6
10000 1000 10 0 100 100 100 0 0 0 0 0 0 0 0.7 100 100 100 0 1.1 - 0.7 0.6 1.7 1.2
30000 1000 10 0 100 100 100 0 0 0 0 0 0 0 0.3 100 100 100 0 0.4 - 1.0 0.8 0.5 0.8

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 3.0 46.4 51.3 53.1 0 3.1 - 2.7 2.6 3.1 2.4
3000 1000 30 0 0 1 2 0 0 0 0 0 0 0 2.8 79.6 85.3 89.3 0 2.8 - 3.2 3.2 3.2 3.2
10000 1000 30 0 58 77 92 0 0 0 0 0 0 0 2.2 98.3 99.2 99.7 0 2.5 - 3.4 3.5 3.1 2.8
30000 1000 30 0 99 100 100 0 0 0 0 0 0 0 1.6 100 100 100 0 2.2 - 2.9 3.0 3.1 3.1

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .499 .914 .925 .932 .500 .501 .502 .502 .502 .501 .501 0.11 0.11 0.11 0.12 270 171 3.8 1051 1078 0.47 0.06
3000 1000 10 .500 .942 .946 .947 .500 .500 .501 .501 .501 .501 .500 0.24 0.23 0.21 0.25 2971 642 9.1 1144 1157 1.5 0.17
10000 1000 10 .499 .949 .949 .949 .500 .499 .500 .499 .499 .499 .500 0.95 0.93 0.87 0.98 1.2e4 2087 28.8 2347 2163 4.6 0.47
30000 1000 10 .500 .949 .950 .950 .500 .500 .500 0.500 .500 .500 .501 3.1 3.1 2.9 3.2 1.9e4 8.0e3 100.0 5.1e3 5.8e3 14.0 1.4

1000 1000 30 .499 .872 .881 .884 .501 .501 .503 .500 .500 .500 .500 0.15 0.15 0.14 0.15 524 215 3.8 1130 1040 1.4 0.16
3000 1000 30 .499 .922 .932 .937 .501 .501 .500 .499 .499 .500 .501 0.34 0.33 0.31 0.35 2343 791 13.5 1222 1133 4.6 0.47
10000 1000 30 .500 .945 .947 .948 .500 .500 .500 .500 .500 .500 .500 1.3 1.2 1.1 1.3 1.1e4 2774 29.9 2294 2260 13.9 1.4
30000 1000 30 .500 .949 .949 .949 .500 .500 .500 0.500 .500 0.500 0.500 4.0 3.8 3.7 4.0 2.4e4 8.8e3 93.3 5.4e3 6.0e3 41.8 4.2

the characteristic that malicious websites “look different” while host-based features describe the

website host. Ma et al. represent lexical features using bag-of-words for tokens in the URL. The

3.2 million features are accumulated over the 121 with each day adding features to existing ones.

Data Collection. They obtain the malicious URLS from a large Webmail provider (the provider

requested a to be kept anonymous). The benign URLs were drawn randomly from Yahoo’s directory

listing. The average ratio of benign-to-malicious URLS is 2-to-1. These sources only provide the

66

Table 4.4: Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 10 bins, averaged over 100 runs. Zero sub-domain weights were
used as illustrated in Figure 4.2

Noiseless

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 14 31 40 0 0 0 0 0 0 0 59.6 85.8 90.4 92.2 0 40.4 - 52.9 50.3 53.9 20.4
3000 1000 10 30 77 86 97 0 0 0 13 6 24 0 89.5 97.7 98.6 99.7 0.1 50.6 - 80.6 76.6 86.5 25.1
10000 1000 10 99 100 100 100 0 0 0 91 80 93 0 99.9 100 100 100 7.4 57.5 - 99 97.7 99.3 28.2
30000 1000 10 100 100 100 100 0 2 0 100 100 100 0 100 100 100 100 10.0 65.8 - 100 100 100 29.9

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 27.2 54.1 62.2 64.9 0 27.4 - 31.6 31.3 24.0 17.5
3000 1000 30 0 0 1 8 0 0 0 0 0 0 0 59.1 86.0 90.4 93.7 0 35.1 - 53.4 50.0 53.2 29.5
10000 1000 30 9 67 96 98 0 0 0 1 0 3 0 91.7 98.8 99.9. 99.9 0 44.2 - 84.1 80 88.3 36.5
30000 1000 30 95 100 100 100 0 0 0 59 30 79 0 99.8 100 100 100 0.4 48.5 - 98.3 96.3 99.3 39.3

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .799 .974 .981 .984 .580 .784 .732 .773 .762 .776 .767 0.08 0.08 0.08 0.09 239 157 3.2 771 832 0.48 0.09
3000 1000 10 .813 .989 .994 .996 .583 .790 .773 .788 .779 .792 .775 0.30 0.29 0.26 0.30 2636 431 9.7 920 874 1.5 0.17
10000 1000 10 .818 .997 .999 .999 .607 .795 .802 .796 .796 .797 .777 0.94 0.93 0 .86 0.95 7619 1368 38.1 1139 1182 4.6 0.47
30000 1000 10 .818 .998 1.00 1.00 .626 .800 .810 .796 .797 .798 .778 3.1 3.1 2.9 3.2 2.1e4 4.0e3 96.1 1.8e3 1.5e3 14.0 1.4

1000 1000 30 .761 .930 .946 .950 .593 .775 .733 .765 .752 .758 .760 0.15 0.15 0.14 0.15 310 197 3.3 1021 884 1.4 0.15
3000 1000 30 .801 .979 .986 .989 .582 .787 .781 .777 .762 .787 .780 0.38 0.38 0.35 0.38 2791 677 11.3 1283 1314 4.6 0.49
10000 1000 30 .817 .996 .997 .998 .590 .795 .805 .795 .784 .804 .789 1.2 1.2 1.1 1.2 1.0e4 2162 38.5 1677 1870 13.7 1.4
30000 1000 30 .819 .999 .999 .999 .619 .796 .812 .810 .807 .807 .793 4.1 3.9 3.7 4.0 2.3e4 5.9e3 92.1 2.9e3 3.1e3 42.0 4.2

Noisy

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 1 10 19 0 0 0 0 0 0 0 50.3 78.0 83.4 86.8 0 37.8 - 48.1 45.7 43.5 20.0
3000 1000 10 18 44 67 85 0 0 0 7 2 8 0 84.1 93.6 96.5 98.5 0 45.3 - 75.1 70.5 77.7 22.8
10000 1000 10 89 99 100 100 0 1 0 86 73 77 0 98.9 99.9 100 100 6.5 54.7 - 98.6 97.2 97.6 28.0
30000 1000 10 100 100 100 100 0 1 0 100 100 100 0 100 100 100 100 10.0 61.6 - 100 100 100 26.3

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 21.2 46.7 49.7 51.5 0 23.2 - 18.7 15.1 20.1 15.2
3000 1000 30 0 0 0 1 0 0 0 0 0 0 0 50.1 77.4 83.6 87.8 0 32.6 - 47.0 30.8 42.9 25.4
10000 1000 30 2 39 75 93 0 0 0 0 0 0 0 86.9 97.2 99.0 99.8 0 39.3 - 77.2 49.6 82.2 34.9
30000 1000 30 83 99 100 100 0 0 0 44 16 60 0 99.4 100 100 100 0.1 45.6 - 97.3 94.0 98.3 38.4

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .762 .915 .923 .927 .569 .756 .697 .743 .732 .741 .737 0.12 0.12 0.12 0.13 381.1 129.4 3.6 855.6 905.8 0.46 0.06
3000 1000 10 .780 .936 .942 .943 .576 .758 .742 .756 .747 .758 .744 0.32 0.31 0.29 0.33 2.8e3 499.1 11.2 1.0e3 956.2 1.6 0.19
10000 1000 10 .786 .945 .948 .949 .589 .764 .769 .766 .765 .766 .748 0.92 0.91 0.84 0.96 8.8e3 1.6e3 38.4 1.3e3 1.2e3 4.6 0.47
30000 1000 10 .786 .947 .949 .949 .614 .768 .778 .767 .767 .768 .749 3.1 3.0 2.8 3.1 1.8e4 4.3e3 102.6 2.2e3 1.9e3 13.9 1.5

1000 1000 30 .718 .872 .877 .880 .580 .737 .693 .731 .730 .721 .722 0.11 0.11 0.10 0.11 434.1 185.3 3.7 1.1e3 1.0e3 1.3 0.15
3000 1000 30 .764 .919 .927 .932 .577 .756 .745 .744 .732 .751 .745 0.34 0.33 0.31 0.35 3.1e3 675.8 11.1 1.3e3 1.1e3 4.5 0.46
10000 1000 30 .784 .943 .945 .947 .580 .763 .771 .760 .752 .772 .759 1.2 1.2 1.1 1.2 1.3e4 2.4e3 38.5 1.9e3 2.1e3 13.7 1.4
30000 1000 30 .787 .948 .948 .949 .602 .766 .780 .777 .772 .776 .762 4.0 3.8 3.7 4.0 2.3e4 6.8e3 111.2 3.6e3 3.2e3 41.7 4.2

URLs; they wrote the web crawling techniques that query for DNS, WHOIS, geographic information

servers, etc., for every incoming URL.

On-line Algorithm. Ma et al. tested several on-line algorithms and settled upon the Confidence-

Weighted algorithm [28, 37]. The punchline behind this algorithm is that it represents confidence

for each feature via an uncertainty weight wi with a Gaussian distribution N(µi,Σi) where µ is

the vector of feature means and Σ is the diagonal covariance matrix. For an observation x, the

67

Table 4.5: Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 50 bins, averaged over 100 runs. Sinusoidal weights were used
as illustrated in Figure 4.1

Noiseless

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 0 1 7 0 0 0 0 0 0 0 0.9 66.7 76.1 81.3 0 1.3 - 0.7 0.6 0.8 0.5
3000 1000 10 0 2 27 68 0 0 0 0 0 0 0 0.9 81.8 90.2 96.4 0 0.9 - 0.7 0.7 0.5 0.6
10000 1000 10 0 10 85 99 0 0 0 0 0 0 0 0.2 87.7 98.5 99.9 0 0.7 - 1.3 1.2 1.2 1.0
30000 1000 10 0 24 100 100 0 0 0 0 0 0 0 0.5 91.0 100 100 0 0.6 - 0.9 0.9 0.9 1.1

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 2.9 40.8 45.6 50.0 0 2.7 - 2.4 2.5 2.5 2.8
3000 1000 30 0 0 0 0 0 0 0 0 0 0 0 2.8 66.0 71.8 79.7 0 3.2 - 1.9 2.3 3.0 2.7
10000 1000 30 0 0 4 43 0 0 0 0 0 0 0 2.5 88.5 93.4 97.7 0 2.2 - 2.4 2.5 2.7 2.7
30000 1000 30 0 0 1 69 0 0 0 0 0 0 0 1.9 93.5 94.2 98.9 0 2.3 - 2.8 2.9 2.4 2.7

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .502 .922 .944 .959 .500 .501 .501 .503 .502 .500 .501 0.10 0.10 0.10 0.11 279.1 210.7 2.4 1.4e3 1.2e3 0.45 0.08
3000 1000 10 .501 .955 .975 .989 .500 .502 .501 .502 .502 .502 .502 0.26 0.26 0.24 0.29 2.4e3 649.8 7.4 1.2e3 1.3e3 1.5 0.38
10000 1000 10 .500 .970 .994 .998 .500 .500 .500 .500 .501 .500 .500 0.93 0.94 0.87 1.0 6.6e3 2.6e3 29.2 2.3e3 2.3e3 4.7 0.55
30000 1000 10 .500 .976 .999 .999 .500 .500 .500 .500 .500 .500 .500 3.0 3.1 2.9 3.3 3.0e4 7.0e3 99.8 6.6e3 6.6e3 14.0 2.8

1000 1000 30 .503 .872 .901 .912 .499 .502 .503 .499 .499 .499 .500 0.11 0.11 0.11 0.12 327.8 245.3 3.1 1.2e3 1.3e3 1.3 0.15
3000 1000 30 .501 .929 .950 .966 .500 .501 .502 .502 .500 .502 .501 0.36 0.36 0.34 0.39 2.7e3 738.6 10.6 1.1e3 1.0e3 4.3 0.71
10000 1000 30 .500 .973 .982 .992 .500 .500 .501 .500 .500 .500 .499 1.3 1.3 1.2 1.3 8.7e3 3.1e3 21.4 2.2e3 2.4e3 14.0 1.4
30000 1000 30 .500 .985 .988 .996 .501 .500 .500 .499 .500 .500 .499 3.9 3.9 3.7 4.1 2.8e4 8.6e3 98.7 7.1e3 6.4e3 41.8 6.5

Noisy

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 0 0 1 0 0 0 0 0 0 0 0.8 59.5 68.1 73.5 0 1.0 - 1.1 0.9 0.6 1.1
3000 1000 10 0 2 12 34 0 0 0 0 0 0 0 1.0 80.2 87.0 92.5 0 1.0 - 1.3 1.2 1.0 1.0
10000 1000 10 0 11 63 96 0 0 0 0 0 0 0 0 86.9 96.0 99.6 0 0.6 - 0.9 1.0 0.9 0.6
30000 1000 10 0 21 99 100 0 0 0 0 0 0 0 0.3 89.9 99.9 100 0 0.9 - 1.3 1.3 1.1 1.0

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 2.8 34.1 38.7 42.4 0 2.8 - 2.8 2.6 2.7 2.7
3000 1000 30 0 0 0 0 0 0 0 0 0 0 0 3.1 59.6 64.3 72.1 0 2.5 - 2.9 2.8 2.9 2.9
10000 1000 30 0 0 0 20 0 0 0 0 0 0 0 2.5 85.4 89.8 95.6 0 2.2 - 2.3 2.2 2.7 2.8
30000 1000 30 0 0 1 54 0 0 0 0 0 0 0 1.9 93.5 94.0 98.3 0 2.2 - 2.9 2.8 2.7 2.6

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .500 .866 .885 .898 .500 .501 .502 .502 .502 .502 .501 0.10 0.10 0.10 0.11 418 181.4 3.2 1.1e3 1.2e3 0.46 0.06
3000 1000 10 .501 .905 .920 .931 .500 .501 .501 .502 .502 .501 .500 0.25 0.25 0.23 0.28 2.3e6 648.3 .6.5 1.4e3 1.3e3 1.4 0.18
10000 1000 10 .500 .922 .941 .948 .500 .499 .500 .500 .500 .500 .499 0.93 0.95 0.88 0.97 8.7e3 2.7e3 29.8 2.2e3 2.1e3 4.8 0.64
30000 1000 10 .500 .928 .949 .949 .500 .500 .500 .500 .500 .500 .500 3.1 3.1 2.9 3.4 2.1e4 7.3e3 152.7 7.1e3 6.8e3 14.0 1.8

1000 1000 30 .501 .820 .841 .851 .500 .501 .503 .499 .499 .500 .500 0.13 0.14 0.13 0.14 451 229.0 3.1 1.1e3 1.1e3 1.3 0.15
3000 1000 30 .500 .874 .892 .907 .500 .501 .501 .499 .499 .500 .501 0.34 0.34 0.33 0.37 2.7e3 756.4 10.8 1.e3 1.1e3 4.2 0.44
10000 1000 30 .500 .919 .928 .939 .500 .500 .501 .500 .500 .499 .500 1.3 1.3 1.2 1.4 9.4e3 2.8e3 24.5 2.2e3 2.1e3 14.2 1.5
30000 1000 30 .500 .936 .938 .945 .500 .500 .500 .500 .500 .500 .500 4.0 4.0 3.8 4.2 2.3e4 8.3e3 103.7 7.1e3 6.2e3 42.0 4.9

prediction of its class (−1 or +1) is given by the signed dot product of the observation and the

mean: h(x) = sign(µ · x).

Evaluation of Batch and On-line Algorithms. Ma et al. found that “continuous” training

produced superior results compared to “interval-based” training. The continuous approach, the

typical method for on-line algorithms, allows the classifier to retrain after each observation. The

interval-based approach is more typical of batch algorithms (retraining occurs after an interval of

68

Table 4.6: Classification experiments on simulated linearly separable data (top table) and noisy
data (bottom table) with δ = 0.9 , 50 bins, averaged over 100 runs. Zero sub-domain weights were
used as illustrated in Figure 4.2

Noiseless

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 0 4 6 0 0 0 0 0 0 0 61.0 68.3 75.9 79.9 0 41.6 - 54.0 50.8 54.2 22.1
3000 1000 10 30 4 16 31 0 0 0 15 9 31 0 89.6 82.8 88.8 91.9 0.3 49.8 - 81.3 77.9 87.9 25.8
10000 1000 10 98 42 56 69 0 0 0 83 81 95 0 99.8 93.6 95.6 96.9 6.6 57.5 - 1.1e3 1.1e3 99.5 28.5
30000 1000 10 100 84 89 89 0 4 0 100 100 99 0 100 98.4 98.9 98.9 10.0 66.5 - 100 100 99.9 29.8

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 27.1 38.8 43.9 48.2 0 25.1 - 31.5 30.8 24.7 18.2
3000 1000 30 0 0 0 0 0 0 0 0 0 0 0 59.2 63.6 70.8 78.1 0 30.2 - 53.3 50.0 52.6 27.8
10000 1000 30 2 0 0 15 0 0 0 1 0 0 0 91.7 82.7 90.6 95.6 0 44.0 - 56.5 53.5 88.4 36.4
30000 1000 30 95 0 0 39 0 0 0 58 27 73 0 99.8 90.9 93.4 97.6 0.4 48.5 - 98.2 95.5 99.0 40.6

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .799 .935 .953 .963 .561 .785 .730 .773 .760 .774 .765 0.08 0.09 0.08 0.10 295 141.8 2.7 1.0e3 911.4 0.44 0.06
3000 1000 10 .814 .966 .977 .985 .583 .789 .778 .787 .779 .792 .773 0.25 0.25 0.23 0.28 2.4e3 494.7 12.6 980.6 938.7 1.4 0.25
10000 1000 10 .819 .987 .992 .994 .611 .797 .803 .797 .797 .797 .778 .984 1.0 .94 1.1 6.8e3 1.2e3 30.7 1.1e3 1.1e3 4.8 0.50
30000 1000 10 .819 .995 .997 .997 .629 .801 .811 .795 .796 .799 .778 3.1 3.2 3.0 3.4 2.0e4 4.5e3 111.8 2.2e3 2.2e3 14.1 2.3

1000 1000 30 .762 .879 .906 .918 .570 .775 .736 .766 .753 .760 .760 0.11 0.12 0.11 0.13 389 186.2 2.6 1.1e3 1.0e3 1.3 0.15
3000 1000 30 .803 .929 .951 .965 .584 .788 .781 .777 .763 .787 .779 0.35 0.35 0.33 0.38 2.4e3 605.9 13.3 1.4e3 1.5e3 4.2 0.48
10000 1000 30 .817 .962 .979 .989 .594 .795 .805 .795 .784 .805 .790 1.3 1.3 1.2 1.4 8.4e3 1.9e3 29.6 2.0e3 1.7e3 14.1 1.4
30000 1000 30 .819 .979 .986 .994 .619 .797 .812 .810 .805 .807 .792 4.0 4.0 3.8 4.2 2.7e4 5.9e3 114.5 4.0e3 3.7e3 41.9 6.2

Noisy

All-variable detection rate (DR) Percent correctly detected (PCD)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 0 0 1 3 0 0 0 0 0 0 0 49.3 62.6 68.3 73.4 0 38.5 - 50.1 46.5 43.7 19.9
3000 1000 10 17 2 6 19 0 0 0 2 2 11 0 83.6 78.8 84.4 89.3 0.1 44.9 - 74.8 69.9 77.9 24.2
10000 1000 10 85 29 46 58 0 0 0 68 62 77 0 98.5 91.7 94.4 95.7 4.7 54.8 - 96.6 95.3 97.7 28.9
30000 1000 10 100 78 82 84 0 1 0 100 100 100 0 100 97.7 98.2 98.4 9.9 62.4 - 100 100 100 0

1000 1000 30 0 0 0 0 0 0 0 0 0 0 0 20.4 34.3 37.7 41.0 0 23.0 - 27.1 27.3 20.5 14.6
3000 1000 30 0 0 0 0 0 0 0 0 0 0 0 49.8 57.7 63.2 69.5 0 27.0 - 46.8 44.2 43.0 25.0
10000 1000 30 0 0 0 2 0 0 0 0 0 0 0 87.3 79.8 87.1 93.1 0 40.4 - 53.6 50.3 82.2 34.7
30000 1000 30 75 0 0 20 0 0 0 33 13 52 0 99.2 89.2 92.8 96.4 0.1 44.8 - 96.5 4.1e3 97.8 39.0

Area under the ROC curve (AUC) Training Time (sec)

N M k=k∗FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1 FSA PFSA PFSV PFSL L1 EL L2 MCP SCD LB LB1

1000 1000 10 .760 .883 .895 .905 .572 .755 .696 .741 .729 .737 .736 0.09 0.10 0.09 0.11 367 140.1 3.1 983.7 952.7 0.43 0.07
3000 1000 10 .780 .911 .923 .929 .583 .759 .743 .754 .746 .758 .746 0.26 0.28 0.25 0.30 2.1e3 513.3 10.6 1.2e3 1.2e3 1.6 0.79
10000 1000 10 .787 .934 .941 .942 .594 .766 .770 .767 .766 .766 .749 0.97 0.98 0.92 1.1 7.0e3 1.4e3 31.7 1.4e3 1.2e3 4.7 0.48
30000 1000 10 .787 .944 .946 .947 .615 .769 .778 .766 .766 .769 .749 3.0 3.1 2.9 3.4 1.7e4 4.7e3 110.2 2.9e3 2.3e3 13.7 1.4

1000 1000 30 .717 .829 .846 .854 .564 .738 .695 .732 .724 .721 .721 0.12 0.13 0.12 0.14 488 202.7 2.7 1.0e3 989 1.3 0.14
3000 1000 30 .765 .876 .894 .907 .577 .757 .745 .746 .733 .750 .746 0.36 0.36 0.35 0.40 2.4e3 613.2 10.9 1.4e3 1.4e3 4.4 1.1
10000 1000 30 .784 .910 .925 .936 .580 .764 .772 .762 .752 .772 .759 1.3 1.3 1.2 1.4 8.1e3 1.9e3 33.5 2.0e3 1.7e3 13.9 1.4
30000 1000 30 .787 .929 .937 .942 .602 .766 .780 .776 .771 .776 .763 4.0 3.9 3.7 4.2 2.0e4 5.5e3 116.1 4.6e3 4.1e3 41.0 4.2

time has passed).

They also found that allowing the number of features to change dynamically with new observations

(“variable”) encountered generated better results than using a fixed number of features. Thus, the

variable feature approach permitted the model to grow with newly encountered features.

In Figure 4.11, Ma et al. demonstrate the performance of the on-line algorithm CW versus varying

batch algorithms that use a SVM classifier. Their figure demonstrates that CW can adapt to new

69

Table 4.7: Example of a β recovered with k∗ = 1000 and 100 days

features over time which allows it to obtain better results than the SVM batch algorithms. Note

that the vertical axis represents cumulative error and the horizontal axis represents the days used

for training. To be clear, the error here represents the percentage of misclassified examples for all

URLS encountered up to that date. To understand the meaning of each batch algorithm, we refer

the user to their paper. Ma et al. believe that the success of the CW algorithm comes from treating

the features differently - a characteristic we hope to exploit in PFSA.

4.2.2 Application of PFSA to URL Reputation

We provide the details of how the parameter sensitive classifiers are used in the URL Reputation

dataset. As described in Section 4.2.1, this dataset has the characteristic that variables can have

non-zero values for some days and then be completely zero for other days. For example, a variable

representing a particular geographic location from where a malicious website is originating can have

non-zero values on Day N. A few days later, perhaps due to the developer’s desire to not be caught,

this location is no longer generating a malicious website which leads to this variable taking on zero

values for the remaining days. We want to take this erratic behavior in account when training our

classifiers.

Training Details. We provide a visual of this parameterized β over time in Table 4.8. The idea

is that there can be different coefficient values depending on day t. More specifically, suppose we

are trying to recover the β over 100 days of data with k∗ = 1, 000. Each row will represent a

selected feature and each column of a row represents the value of the feature at particular day t.

70

Table 4.8: Example of a β recovered with k∗ = 1000 and 100 days

β1 b1,1 b1,2 · · · b1,100
β2 b2,1 b2,2 · · · b2,100

...
...

β1000 b1000,1 b1000,2 · · · b1000,100
t1 t2 · · · t100

Recall that the data is provided in CSV files with 20, 000 website observations per file. The files

have a naming convention associated with the day the data was collected: Day0.csv, Day1.csv, etc.

We load Day0 - Day99 as our training set and train our Lorenz based classifier over 500 epochs.

Then, just as Ma et al. did, we test on Day100. We used a learning rate (η) of 0.5, a second order

penalty value of 0.01, and a ridge value of 0.001.

4.2.3 Results

We now present the results from applying FSA and PFSA to the URL Reputation dataset. We

also provide comparison results on the methods CW, SVM and Logistic Regression with Stochastic

Gradient descent as reported by [72] . In Table 4.9, we can see that the CW method has the

best test error while SVM performs the worst. We note that while FSA and PFSA have a higher

test error than CW, they reduce the number of features by 85%. We thought it was curious that

PFSA didn’t outperform FSA but the reason may be similar to why FSA performed better than

our parameter sensitive classifier in the simulations with zero sub-domain data. Recall that we

mentioned that during the portion of the weights that are zero, our PFSA acted like a parameter

insensitive classifier. The nature of the URL Reputation dataset has similar behavior in that a

feature may suddenly disappear (and most do) with no smooth transition. This abruptness is a

behavior our PFSA probably has challenges with.

71

Table 4.9: Experiments results on URL dataset. Our implementations are third and fourth methods.
We use linear FSA algorithms with a Lorenz loss. Note that while we do not outperform CW (the
on-line algorithm), we come close using less than one-fifth the number of features. We also have
a version of FSA that uses the features from the CW implementation that obtains the same test
error.

Number of Error Error Error

Method features k train % valid % test %

SVM all - - 1.8

Log Reg-SGD all - - 1.6

Linear PFSA-Lorenz (3 bins) 75,000 0.49 - 1.16

Linear FSA-Lorenz 75,000 0.50 - 1.15

CW [72] 500,000 0.23 - 1.0

4.3 Face Detection Results

We now present results on two standard face detection datasets. The detection time is about 3

seconds for a 480× 320 image with unoptimized C++ code, with the most time used for detecting

the keypoints. We expect to obtain speedups of 10 − 100 times with a GPU implementation and

code optimization.

4.3.1 FDDB Dataset

Dataset Description. In the technical report [56], Jain and Learned-Miller present the Face

Detection Data Set and Benchmark (FDDB) with the aim of introducing a database for uncon-

strained face detection that permits efficient comparison of face detection methods. The database

has 2, 845 images with a total of 5, 171 faces. Furthermore, their evaluation process has the goal of

enforcing:

1. Reproducibility

2. Wide range of face poses and occlusions

3. Detailed annotations

4. Gray-scale and color images.

72

On their website at http://vis-www.cs.umass.edu/fddb/, researchers can download a script to eval-

uate their method against other state-of-the-art. They explain their paper how they used elliptical

regions to specify face regions, as visualized in Figure 4.12.

Results. Our results are: “Ours, N supp=” are obtained by pruning the candidates with the

support threshold N supp and scoring them with the parameter sensitive classifier. “Ours, Center

only” has candidates predicted only from the face center detections, with N supp = 1.“Ours, LBF”

uses a parameter insensitive classifier trained with the logistic loss.

The results on the FDDB dataset are shown in Figure 4.13. Also shown are results from the Joint

Cascade [26], HeadHunter [74], Boosted Exemplar [67], ACF [116], Yan et al [114] and Zhu [126].

One can see that the proposed method obtains very good results close to the state of the art. For

at least 1000 false positive it lags behind only the HeadHunter [74] and for false positives below

800 it is also outperformed by the Joint Cascade [26].

In Figure 4.14 are shown more results with different values of the support parameter N supp on

FDDB. One can see that the performance increases up to N supp = 4, but the range of false positives

shrinks. It is also clear that by using multiple keypoints to propose the candidates instead of just

the face center the detection accuracy increases considerably. The parameter sensitive classifier

also brings some improvement, though not as much.

4.3.2 AFW Dataset

Dataset Description. In [126], Zhu and Ramanan present an annotated faces in the wild (AFW)

built from Flickr images. Their dataset is composed of 205 images with at least one large face (a

total of 468 faces). They label each face with a bounding box and 6 landmarks. They offer code

on their website where anyone can train and test their method.

Results. The results on the AFW dataset are shown in Figure 4.17. Also shown are results from

the Head Hunter [74], Shen et al [100], Structured Models [115] and Zhu [126]. Again, the algorithm

performs well in the high recall regime and lags a little behind in the high precision regime. What

this means is that we can detect many of the faces but also label non-face image patches as faces.

Some improvements that we can make include:

1. Use more discriminating face features

2. Train our score function using CNN

73

Figure 4.4: Recovered weights in the case of Sinusoidal Noiseless weights using a parameter sensitive
classifier and FSA with a logistic loss (PFSA)

74

Figure 4.5: Recovered weights in the case of Sinusoidal Noiseless weights using a parameter sensitive
classifier and FSA with a huberised loss (PFSV)

75

Figure 4.6: Recovered weights in the case of Sinusoidal Noiseless weights using a parameter sensitive
classifier and FSA with a lorenz loss (PFSL)

76

Figure 4.7: Recovered weights in the case of Zero Sub-Domain Noiseless weights using a parameter
sensitive classifier and FSA with a logistic loss (PFSA)

77

Figure 4.8: Recovered weights in the case of Zero Sub-Domain Noiseless weights using a parameter
sensitive classifier and FSA with a huberised loss (PFSV)

78

Figure 4.9: Recovered weights in the case of Zero Sub-Domain Noiseless weights using a parameter
sensitive classifier and FSA with a lorenz loss (PFSL)

79

Figure 4.10: Visual of URL Classification Steps in [72]

Figure 4.11: Figure from [72] Comparing CW and Batch Algorithms

80

Figure 4.12: Example of an image and annotation used in FDDB dataset

Figure 4.13: Results and comparisons on the FDDB dataset

81

Figure 4.14: Detection results on the FDDB dataset for different values of the support parameter
N supp.

Figure 4.15: Example of images used in AFW dataset and presented in [126]

82

Figure 4.16: Detected faces on the AFW dataset using the 3D model and FSA-SVM keypoint
detectors. Also shown are the detected keypoints that were closest to the 3D pose of the detected
face. The annotations are shown as thin yellow boxes.

83

Figure 4.17: Results and comparisons on the AFW dataset (205 images with 486 faces).

84

APPENDIX A

SUPPORT VECTOR MACHINES

An overview of support vector machines (SVM) is provided. Several papers, textbooks (in particular

[50]), and online resources were used in order to develop this section.

SVM generalize the linear decision boundary for classification of the nonseparable case. The SVM

produce nonlinear boundaries by constructing a linear boundary in a transformed version of the

feature space [107]. That is, they map observations into a high (possibly infinite) dimensional space

and construct an optimal hyperplane in this space.

A.1 Constructing the Support Vector Classifier

Suppose our data consists ofN pairs (x1, y1), (x2, y2), . . . , (xN , yN) with p predictors, where xi ∈ Rp

and yi ∈ {−1, 1}. The goal of SVM is to find a hyperplane that correctly separates the training

examples into their two classes of −1 and +1. We will represent a hyperplane by,

{x : f(x) = xTβ + β0 = 0} (A.1)

where β is a unit vector. A property of using the hyperplane representation of Equation (A.1) is

that a f(x) induces a classification rule (see Equation (A.2)). That is, for an observation x, G(x)

will assign this observation to a class.

G(xi) = sign[xTi β + β0] (A.2)

As previously mentioned, the goal is to find the hyperplane that “best” separates the two classes

among the data. SVM achieves this best hyperplane by finding the hyperplane the creates the

largest margin (from the hyperplane) between both classes. In fact, this is why SVM is sometimes

referred to as a Max-Margin method. Figure A.1 demonstrates the ideal case where two classes can

be separated completely.

This optimization problem can be represented using Equation (A.3).

85

Figure A.1: Figure taken from [50]

max
β,β0,‖β‖=1

M

subject to yi(x
T
i β + β0) ≥M

i = 1, . . . , N.

(A.3)

Or more conveniently, we will represent this optimization using Equation (A.4) (let M = 1/‖β‖).

min
β,β0

1

2
‖β‖2

subject to yi(x
T
i β + β0) ≥ 1

i = 1, . . . , N.

(A.4)

The more interesting and realistic case is when the two classes in question are not separable, as in

Figure A.2. Define the slack variables ξ = (ξ1, ξ2, . . . , ξN).

• Points labeled ξ∗ are on the wrong side of their margin by ξ∗ = Mξ

• Points on the correct side have ξ∗ = 0.

• We wish to maximize margin with constraint
∑
ξ ≤ C.

• Thus,
∑
ξ∗ is the total distance of points on the wrong side.

86

Figure A.2: Figure taken from [50]

There are two ways to modify the constraint in (A.3):

yi(x
Tβ + β0) ≥M − ξi (A.5)

or

yi(x
Tβ + β0) ≥M(1− ξi) (A.6)

∀i, , ξi ≥ 0,
N∑
i=1

ξi ≤ C

The first choice measures overlap in actual distance from the decision boundary. However, this

choice leads to a nonconvex optimization. The second choice measures overlap in relative distance

(changes with M). This choice leads to a convex optimization.

• The value ξi is the proportional amount by which the prediction f(x) is on the wrong side.

• Misclassification occurs when ξi > 1. By bounding
∑
ξi ≤ V , we limit the number of

misclassifications to about V .

As before, we can let M = 1/‖β‖ and now write (A.4) as

min
β,β0

1

2
‖β‖2

subject to yi(x
T
i β + β0) ≥ 1− ξi ∀i

ξi ≥ 0,
∑

ξi ≤ C.

(A.7)

87

Since we will use Lagrange Multipliers to arrive at a solution, we will re-express (A.7) as:

min
β,β0

C
N∑
i=1

ξi +
1

2
‖β‖2

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi ∀i

(A.8)

We now set-up the Lagrange function:

LP (β, β0, ξ) = C
N∑
i=1

ξi +
1

2
‖β‖2 −

N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi (A.9)

We minimize w.r.t. β, β0, ξ and obtain:

β=
N∑
i=1

αiyixi (A.10)

0 =
N∑
i=1

αiyi (A.11)

αi = C − µi, ∀i (A.12)

with positivity constraints αi, µi, ξi ≥ 0. By substituting (A.10)-(A.12) into A.9, this yields the
Lagrangian dual function:

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj (A.13)

The dual (A.13) gives a lower bound on the objective function (A.8) for any feasible point. We maximize
(A.13) subject to 0 ≤ αi ≤ C and (A.11). This can be achieved using standard software packets. The
Karush–Kuhn-Tucker (KKT) conditions generalize the method of Lagrange multipliers, which allows only
equality constraints. The KKT conditions for our problem include the constraints:

αi[yi(x
T
i β + β0)− (1− ξi)] = 0 (A.14)

µiξi = 0 (A.15)

yi(x
T
i β + β0)− (1− ξi) ≥ 0 (A.16)

The partial derivatives we found previously and these KKT conditions uniquely characterize the solution.
From (A.10), we see that the solution for β∗ has the form:

β̂ =

N∑
i=1

α̂iyixi (A.17)

with nonzero coefficients α̂i ONLY for observations that satisfy (A.16). These observations are called sup-

port vectors since β̂ is represented in terms of them alone. Once Equation (A.13) has been optimized in
α, a classification function can be used to classify new observations z from the support vectors xi.

f(z) =

N∑
i=1

αiyix
T
i z + β0 (A.18)

88

APPENDIX B

EXPLANATION OF THE GAUSSIAN PYRAMID

We provide a brief tutorial on the use of a Gaussian Pyramid when downsamlping images as well as details
on how we use this technique in our work. Since our work is implemented in C++, we relied on OpenCV’s
implementation of the Gaussian Pyramid as well as their tutorials (found at http://docs.opencv.org/

doc/tutorials/imgproc/pyramids/pyramids.html) from which this appendix draws heavily from.

B.1 Background

The idea behind the Gaussian Pyramid is that each successive and higher level in the pyramid represents
a scaled down version of the original image. That is, at level i of the pyramid, the pixels in this image
are “averaged” from neighboring pixels in the image right below it (i − 1). Figure B.1 from the tutorial
http://opencv-code.com/tutorials/fast-template-matching-with-image-pyramid/ is provided as an
illustration. At higher levels in pyramid, each pixel in the eyes of the baboon, for example, are “averaged”
from eye pixels from the most previous level.

Figure B.1: Illustration of Gaussian Pyramids (taken directly off the web)

What we mean by an average is that each successive level is obtained by convolving the prior level image
with a Gaussian Kernel. A typical Gaussian kernel used is the one presented in Figure B.2

89

Figure B.2

90

BIBLIOGRAPHY

[1] Karim Ali, François Fleuret, David Hasler, and Pascal Fua. Joint pose estimator and feature
learning for object detection. In Computer Vision, 2009 IEEE 12th International Conference
on, pages 1373–1380. IEEE, 2009.

[2] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning for
control. In Lazy learning, pages 75–113. Springer, 1997.

[3] Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning.
Artificial Intelligence Review, 1999.

[4] A Barbu, She Y., D. Liangjing, and G. Gramajo. Feature selection with annealing for big
data learning. arXiv preprint arXiv:1310.2880, 2014.

[5] Adrian Barbu and Gary Gramajo. Face detection using a 3d model on face keypoints. arXiv
preprint arXiv:1404.3596, 2014.

[6] Peter Bartlett. Statistical learning theory (lectures), 2008.

[7] P.N. Belhumeur, D.W. Jacobs, D.J. Kriegman, and N. Kumar. Localizing parts of faces using
a consensus of exemplars. In CVPR, pages 545–552, 2011.

[8] DA Belsley, Edwin Kuh, and Roy E Welsch. Regression diagnostics: identifying influential
data and sources of collinearity, 1980.

[9] Andrew Blake and Andrew Zisserman. Visual reconstruction, volume 2. MIT press Cam-
bridge, 1987.

[10] Avrim L Blum and Pat Langley. Selection of relevant features and examples in machine
learning. Artificial intelligence, 97(1):245–271, 1997.

[11] Paul S Bradley and Olvi L Mangasarian. Feature selection via concave minimization and
support vector machines. In ICML, volume 98, pages 82–90, 1998.

[12] PS Bradley, OL Mangasarian, and JB Rosen. Parsimonious least norm approximation. Com-
putational Optimization and Applications, 11(1):5–21, 1998.

[13] P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression,
with applications to biological feature selection. Ann. App. Statistics, 5(1):232–253, 2011.

[14] Leo Breiman. Prediction games and arcing algorithms. Neural computation, 11(7):1493–1517,
1999.

91

[15] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[16] Andrew G Bruce and Hong-Ye Gao. Understanding waveshrink: variance and bias estimation.
Biometrika, 83(4):727–745, 1996.

[17] Florentina Bunea, Alexandre Tsybakov, Marten Wegkamp, et al. Sparsity oracle inequalities
for the lasso. Electronic Journal of Statistics, 1:169–194, 2007.

[18] R.L. Burden and J.D. Faires. Numerical analysis. 2001. Brooks/Cole, USA.

[19] Xavier P Burgos-Artizzu, Pietro Perona, and Piotr Dollár. Robust face landmark estimation
under occlusion. ICCV, 2013.

[20] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. Face alignment by explicit shape regres-
sion. In CVPR, pages 2887–2894, 2012.

[21] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun. Face alignment by explicit shape regres-
sion. International Journal of Computer Vision, 107(2):177–190, 2014.

[22] H. Cevikalp and B. Triggs. Efficient object detection using cascades of nearest convex model
classifiers. In CVPR, pages 3138–3145, 2012.

[23] Hakan Cevikalp, Bill Triggs, and Vojtech Franc. Face and landmark detection by using
cascade of classifiers. In ICAFGR, 2013.

[24] Olivier Chapelle. Training a support vector machine in the primal. Neural Computation,
19(5):1155–1178, 2007.

[25] Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing mul-
tiple parameters for support vector machines. Machine learning, 46(1-3):131–159, 2002.

[26] Dong Chen, Shaoqing Ren, Yichen Wei, Xudong Cao, and Jian Sun. Joint cascade face
detection and alignment. In Computer Vision–ECCV 2014, pages 109–122. Springer, 2014.

[27] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. The Journal of Machine Learning Research, 7:551–585, 2006.

[28] Koby Crammer, Mark Dredze, and Fernando Pereira. Exact convex confidence-weighted
learning. In Advances in Neural Information Processing Systems, pages 345–352, 2009.

[29] Antonio Criminisi, Jamie Shotton, Duncan Robertson, and Ender Konukoglu. Regression
forests for efficient anatomy detection and localization in ct studies. In Medical Computer Vi-
sion. Recognition Techniques and Applications in Medical Imaging, pages 106–117. Springer,
2011.

92

[30] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Con-
ference on, volume 1, pages 886–893. IEEE, 2005.

[31] Oscar Danielsson and Stefan Carlsson. Projectable classifiers for multi-view object class
recognition. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pages 577–584. IEEE, 2011.

[32] M. Dantone, J. Gall, G. Fanelli, and L. Van Gool. Real-time facial feature detection using
conditional regression forests. In CVPR, pages 2578–2585, 2012.

[33] Daniel F DeMenthon and Larry S Davis. Model-based object pose in 25 lines of code. In
Computer VisionECCV’92, pages 335–343. Springer, 1992.

[34] Ayhan Demiriz, Kristin P Bennett, and John Shawe-Taylor. Linear programming boosting
via column generation. Machine Learning, 46(1-3):225–254, 2002.

[35] Piotr Dollár, Peter Welinder, and Pietro Perona. Cascaded pose regression. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1078–1085. IEEE,
2010.

[36] David L Donoho, Michael Elad, and Vladimir N Temlyakov. Stable recovery of sparse over-
complete representations in the presence of noise. Information Theory, IEEE Transactions
on, 52(1):6–18, 2006.

[37] Mark Dredze, Koby Crammer, and Fernando Pereira. Confidence-weighted linear classifica-
tion. In Proceedings of the 25th international conference on Machine learning, pages 264–271.
ACM, 2008.

[38] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. Least angle regression.
The Annals of statistics, 32(2):407–499, 2004.

[39] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zis-
serman. The pascal visual object classes (voc) challenge. International journal of computer
vision, 88(2):303–338, 2010.

[40] Jianqing Fan, Yang Feng, and Rui Song. Nonparametric independence screening in sparse
ultra-high-dimensional additive models. Journal of the American Statistical Association,
106(494), 2011.

[41] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

93

[42] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 32(9):1627–1645, 2010.

[43] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The annals of
statistics, 28(2):337–407, 2000.

[44] Juergen Gall and Victor Lempitsky. Class-specific hough forests for object detection. In
Decision Forests for Computer Vision and Medical Image Analysis, pages 143–157. Springer,
2013.

[45] Gene H Golub and Charles F van Van Loan. Matrix computations (johns hopkins studies in
mathematical sciences). 1996.

[46] Adam J Grove and Dale Schuurmans. Boosting in the limit: Maximizing the margin of
learned ensembles. In AAAI/IAAI, pages 692–699, 1998.

[47] Chunhui Gu and Xiaofeng Ren. Discriminative mixture-of-templates for viewpoint classifica-
tion. In Computer Vision–ECCV 2010, pages 408–421. Springer, 2010.

[48] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A Zadeh. Feature extraction:
foundations and applications, volume 207. 2006.

[49] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for
cancer classification using support vector machines. Machine learning, 46(1-3):389–422, 2002.

[50] Trevor. Hastie, Robert. Tibshirani, and J Jerome H Friedman. The elements of statistical
learning, volume 1. Springer New York, 2001.

[51] Kun He, Leonid Sigal, and Stan Sclaroff. Parameterizing object detectors in the continuous
pose space. In Computer Vision–ECCV 2014, pages 450–465. Springer, 2014.

[52] M. Hejrati and D. Ramanan. Analyzing 3d objects in cluttered images. In NIPS, pages
602–610, 2012.

[53] Lothar Hermes and Joachim M Buhmann. Feature selection for support vector machines. In
Pattern Recognition, 2000. Proceedings. 15th International Conference on, volume 2, pages
712–715. IEEE, 2000.

[54] G.B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. 2007.

[55] Jian Huang, Joel L Horowitz, and Fengrong Wei. Variable selection in nonparametric additive
models. Annals of statistics, 38(4):2282, 2010.

94

[56] Vidit Jain and Erik Learned-Miller. Fddb: A benchmark for face detection in unconstrained
settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst, 2010.

[57] D. Jiang and J. Huang. Majorization minimization by coordinate descent for concave penal-
ized generalized linear models. Technical Report, 2011.

[58] Michael Jones and Paul Viola. Fast multi-view face detection. Mitsubishi Electric Research
Lab TR-20003-96, 3:14, 2003.

[59] Keith Knight and Wenjiang Fu. Asymptotics for lasso-type estimators. Annals of statistics,
pages 1356–1378, 2000.

[60] Martin Koestinger, Paul Wohlhart, Peter M. Roth, and Horst Bischof. Annotated facial
landmarks in the wild: A large-scale, real-world database for facial landmark localization. In
First IEEE International Workshop on Benchmarking Facial Image Analysis Technologies,
2011.

[61] K. Koh, S.J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic
regression. JMLR, 8(8):1519–1555, 2007.

[62] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional data: A
survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Transactions on Knowledge Discovery from Data (TKDD), 3(1):1, 2009.

[63] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[64] J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. JMLR,
10:777–801, 2009.

[65] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 2169–2178. IEEE,
2006.

[66] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T.S. Huang. Interactive facial feature localization.
In ECCV, pages 679–692. 2012.

[67] Haoxiang Li, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Gang Hua. Efficient boosted
exemplar-based face detection. In Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 1843–1850. IEEE, 2014.

95

[68] Ping Li. Robust logitboost and adaptive base class (abc) logitboost. arXiv preprint
arXiv:1203.3491, 2012.

[69] Stan Z Li and ZhenQiu Zhang. Floatboost learning and statistical face detection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1112–1123, 2004.

[70] Joerg Liebelt and Cordelia Schmid. Multi-view object class detection with a 3d geometric
model. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 1688–1695. IEEE, 2010.

[71] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Beyond blacklists:
learning to detect malicious web sites from suspicious urls. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 1245–1254.
ACM, 2009.

[72] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Identifying suspi-
cious urls: an application of large-scale online learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 681–688. ACM, 2009.

[73] Jerrold E Marsden and Anthony Tromba. Vector calculus. WH freeman, 2003.

[74] Markus Mathias, Rodrigo Benenson, Marco Pedersoli, and Luc Van Gool. Face detection
without bells and whistles. In Computer Vision–ECCV 2014, pages 720–735. Springer, 2014.

[75] Lukas Meier, Sara Van de Geer, Peter Bühlmann, et al. High-dimensional additive modeling.
The Annals of Statistics, 37(6B):3779–3821, 2009.

[76] Jaime Miranda, Ricardo Montoya, and Richard Weber. Linear penalization support vector
machines for feature selection. In Pattern Recognition and Machine Intelligence, pages 188–
192. Springer, 2005.

[77] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to linear
regression analysis, volume 821. Wiley, 2006.

[78] Patrenahalli M. Narendra and Keinosuke Fukunaga. A branch and bound algorithm for
feature subset selection. Computers, IEEE Transactions on, 100(9):917–922, 1977.

[79] Julia Neumann, Christoph Schnörr, and Gabriele Steidl. Combined svm-based feature selec-
tion and classification. Machine Learning, 61(1-3):129–150, 2005.

[80] Minh Hoai Nguyen and Fernando De la Torre. Optimal feature selection for support vector
machines. Pattern recognition, 43(3):584–591, 2010.

96

[81] Margarita Osadchy, Yann Le Cun, and Matthew L Miller. Synergistic face detection and pose
estimation with energy-based models. The Journal of Machine Learning Research, 8:1197–
1215, 2007.

[82] Mustafa Ozuysal, Michael Calonder, Vincent Lepetit, and Pascal Fua. Fast keypoint recog-
nition using random ferns. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 32(3):448–461, 2010.

[83] Mustafa Ozuysal, Vincent Lepetit, and Pascal Fua. Pose estimation for category specific
multiview object localization. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 778–785. IEEE, 2009.

[84] Mahesh Pal and Giles M Foody. Feature selection for classification of hyperspectral data by
svm. Geoscience and Remote Sensing, IEEE Transactions on, 48(5):2297–2307, 2010.

[85] Nadia Payet and Sinisa Todorovic. From contours to 3d object detection and pose estimation.
In ICCV, pages 983–990, 2011.

[86] Hanchuan Peng, Fulmi Long, and Chris Ding. Feature selection based on mutual informa-
tion criteria of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 27(8):1226–1238, 2005.

[87] Bojan Pepik, Michael Stark, Peter Gehler, and Bernt Schiele. Teaching 3d geometry to
deformable part models. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 3362–3369. IEEE, 2012.

[88] Alain Rakotomamonjy. Variable selection using svm based criteria. The Journal of Machine
Learning Research, 3:1357–1370, 2003.

[89] Gunnar Rätsch, Takashi Onoda, and Klaus R Müller. Regularizing adaboost. 1999.

[90] Gunnar Rätsch and Manfred K Warmuth. Maximizing the margin with boosting. In Com-
putational Learning Theory, pages 334–350, 2002.

[91] Pradeep D Ravikumar, Han Liu, John D Lafferty, and Larry A Wasserman. Spam: Sparse
additive models. In NIPS, 2007.

[92] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Face alignment at 3000 fps via
regressing local binary features. In Computer Vision and Pattern Recognition (CVPR), 2014
IEEE Conference on, pages 1685–1692. IEEE, 2014.

[93] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum
margin classifier. The Journal of Machine Learning Research, 5:941–973, 2004.

97

[94] Cynthia Rudin, Ingrid Daubechies, and Robert E Schapire. The dynamics of adaboost:
Cyclic behavior and convergence of margins. The Journal of Machine Learning Research,
5:1557–1595, 2004.

[95] Cynthia Rudin, Robert E Schapire, and Ingrid Daubechies. Boosting based on a smooth
margin. In Learning theory, pages 502–517. Springer, 2004.

[96] Stefan Schaal and Christopher G Atkeson. Constructive incremental learning from only local
information. Neural Computation, 10(8):2047–2084, 1998.

[97] R.E. Schapire. The strength of weak learnability. Machine learning, 5(2):197–227, 1990.

[98] Yiyuan She. An iterative algorithm for fitting nonconvex penalized generalized linear models
with grouped predictors. Computational Statistics & Data Analysis, 56(10):2976–2990, 2012.

[99] Yiyuan She et al. Thresholding-based iterative selection procedures for model selection and
shrinkage. Electronic Journal of Statistics, 3:384–415, 2009.

[100] Xiaohui Shen, Zhe Lin, Jonathan Brandt, and Ying Wu. Detecting and aligning faces by
image retrieval. In CVPR, pages 3460–3467, 2013.

[101] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew
Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in parts from
single depth images. Communications of the ACM, 56(1):116–124, 2013.

[102] Hao Su, Min Sun, Li Fei-Fei, and Silvio Savarese. Learning a dense multi-view representation
for detection, viewpoint classification and synthesis of object categories. In Computer Vision,
2009 IEEE 12th International Conference on, pages 213–220. IEEE, 2009.

[103] Min Sun, Hao Su, Silvio Savarese, and Li Fei-Fei. A multi-view probabilistic model for
3d object classes. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1247–1254. IEEE, 2009.

[104] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolutional network cascade for facial
point detection. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Confer-
ence on, pages 3476–3483. IEEE, 2013.

[105] Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou. Stochastic gradient descent
training for l1-regularized log-linear models with cumulative penalty. In Proceedings of the
AFNLP/ACL, pages 477–485, 2009.

[106] Vladimir Vapnik and Olivier Chapelle. Bounds on error expectation for support vector ma-
chines. Neural computation, 12(9):2013–2036, 2000.

[107] Vladimir N Vapnik. Statistical learning theory. 1998.

98

[108] Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incremental online learning in high
dimensions. Neural computation, 17(12):2602–2634, 2005.

[109] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference on, volume 1, pages I–511. IEEE, 2001.

[110] Jason Weston, André Elisseeff, Bernhard Schölkopf, and Mike Tipping. Use of the zero
norm with linear models and kernel methods. The Journal of Machine Learning Research,
3:1439–1461, 2003.

[111] Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso Poggio, and
Vladimir Vapnik. Feature selection for svms. In NIPS, volume 12, pages 668–674, 2000.

[112] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
JMLR, 11:2543–2596, 2010.

[113] Xuehan Xiong and Fernando De la Torre. Supervised descent method and its applications to
face alignment. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference
on, pages 532–539. IEEE, 2013.

[114] Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z Li. The fastest deformable part model
for object detection. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, pages 2497–2504. IEEE, 2014.

[115] Junjie Yan, Xuzong Zhang, Zhen Lei, and Stan Z Li. Face detection by structural models.
Image and Vision Computing, 32(10):790–799, 2014.

[116] Bin Yang, Junjie Yan, Zhen Lei, and Stan Z Li. Aggregate channel features for multi-view
face detection. In Biometrics (IJCB), 2014 IEEE International Joint Conference on, pages
1–8. IEEE, 2014.

[117] Bin Yu and Baozong Yuan. A more efficient branch and bound algorithm for feature selection.
Pattern Recognition, 26(6):883–889, 1993.

[118] Quan Yuan, Ashwin Thangali, Vitaly Ablavsky, and Stan Sclaroff. Parameter sensitive de-
tectors. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1–6. IEEE, 2007.

[119] Quan Yuan, Ashwin Thangali, Vitaly Ablavsky, and Stan Sclaroff. Learning a family of detec-
tors via multiplicative kernels. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 33(3):514–530, 2011.

[120] C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. of
Statistics, 38(2):894–942, 2010.

99

[121] Peng Zhao and Bin Yu. On model selection consistency of lasso. The Journal of Machine
Learning Research, 7:2541–2563, 2006.

[122] Jun Zheng, Furao Shen, Hongjun Fan, and Jinxi Zhao. An online incremental learning support
vector machine for large-scale data. Neural Computing and Applications, 22(5):1023–1035,
2013.

[123] Shaohua Kevin Zhou and Dorin Comaniciu. Shape regression machine. In Information
Processing in Medical Imaging, pages 13–25. Springer, 2007.

[124] Yingbo Zhou, Utkarsh Porwal, Ce Zhang, Hung Q Ngo, Long Nguyen, Christopher Ré, and
Venu Govindaraju. Parallel feature selection inspired by group testing. In Advances in Neural
Information Processing Systems, pages 3554–3562, 2014.

[125] Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. 1-norm support vector ma-
chines. In NIPS, volume 15, pages 49–56, 2003.

[126] Xiangxin Zhu and Deva Ramanan. Face detection, pose estimation, and landmark localization
in the wild. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on, pages 2879–2886. IEEE, 2012.

100

BIOGRAPHICAL SKETCH

After finishing high school in Florida, the author completed a Bachelor of Science degree at Florida

State University in mathematics. Right after, the author enrolled in the statistics graduate program

at FSU to pursue a PhD. The author would have never made it this far without his Lord and Savior

Jesus Christ.

101

