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ABSTRACT

Few-Shot Learning (FSL) has emerged as a pivotal area of research in machine learning, addressing the

challenge of training models to recognize classes with limited labeled data. This paradigm is particularly

relevant in real-world scenarios where obtaining large annotated datasets is impractical or costly. This dis-

sertation incorporates semi-supervised learning and investigates two major advancements in the realms of

Few-Shot Class Incremental Learning (FSCIL) and few-shot classification on large-scale datasets. It tack-

les the limitations of conventional approaches and strives to improve overall performance in these complex

contexts. The second chapter introduces a novel approach to FSCIL that effectively minimizes the issue of

catastrophic forgetting — a common challenge in incremental learning scenarios. This method utilizes a

generic feature extractor, pretrained on a vast dataset, combined with the proposed k-Probabilistic Principal

Component Analyzers (k-PPCAs) model as the classifier for a collection of classes. Unlike conventional

methods that rely on fully connected layers for projection, this PPCA-based approach localizes classes

around their respective means in a shared feature space, allowing for the seamless addition of new classes

without the need to retrain existing models. The learning algorithm is a modified k-Means, strategically de-

signed to freeze the models of established classes while updating only those corresponding to new classes.

This dual strategy not only enhances computational efficiency but also ensures high accuracy with less catas-

trophic forgetting. Experimental results demonstrate that this innovative approach significantly outperforms

existing FSCIL methods, particularly in tests conducted on the ImageNet-1k dataset — a large and complex

dataset that has previously been underutilized in FSCIL research. Building on the insights gained from the

first project, the second endeavor presents a hierarchical few-shot semi-supervised framework, Hierarchical

k-Probabilistic Principal Component Analyzers (Hk-PPCAs), aimed at improving few-shot classification

within large-scale datasets. The Hk-PPCAs structure the feature space in a two-level hierarchy, modeling

both the first-level image classes and second-level super-classes as Gaussian distributions via PPCA. This

hierarchical design not only facilitates the scalable addition of new classes without necessitating full model

retraining but also significantly reduces classification time from O(K) to O(
√
K), making the framework

both efficient and practical for large-scale classification tasks. Rigorous experiments on the ImageNet-1k

and ImageNet-10k datasets validate the effectiveness and robustness of this approach, showcasing its ability

to maintain classification stability under few-shot conditions.
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CHAPTER 1

INTRODUCTION

Few-Shot Learning (FSL) is a machine learning technique where a model learns to make predictions and

generalize well with only a small number of training examples. Few-shot learning is an extension of unsu-

pervised and semi-supervised learning. Unlike traditional machine learning supervised models, which rely

on large amounts of labeled data for training, Few-Shot Learning focuses on learning efficiently with limited

labeled examples—usually as few as five or fewer. Few-shot learning is defined as the ability of a model to

learn from a few examples and generalize to new tasks. It typically relies on prior knowledge or pre-training

on related tasks, enabling the model to quickly adapt to new challenges with minimal data.

Few-shot learning is targeted to addresses several challenges. Data scarcity is the situation where labeled

data is scarce or expensive to obtain. Under this circumstance, Few-Shot Learning allows models to perform

well even with very limited labeled examples, this advantage can significantly reduce the dependency on

large labeled datasets and is crucial in fields like medicine or astronomy, where obtaining labeled data is

both expensive and difficult. Traditional models usually struggle to generalize when the new tasks are quite

different from the training tasks, but Few-Shot Learning can quickly adapt to different tasks by learning

how to extract meaningful information from previous experience and improve the model’s generalization

ability when faced with new, unseen tasks. This fast adaptation to new tasks is particularly useful in dynamic

environments or rapidly changing scenarios. Few-shot learning operates with a very small number of labeled

samples, thus it reduces training time and computational resources, making it suitable for scenarios where

hardware capacity is limited. Few-shot learning is a significant area of focus in artificial intelligence and

machine learning research, particularly in solving data-scarcity problems and improving task adaptability. It

holds great potential for applications in domains where acquiring large amounts of labeled data is difficult.

Few-shot learning typically involves several popular approaches. Meta-learning is often called “learning

to learn”, which involves training the model across many tasks so that it can quickly adapt to new tasks using

only a few examples. The model extracts general patterns from diverse tasks to transfer to new ones.

Meta-learning-based methods have several popular learning strategies: metric learning, optimization-

based methods, and feature transfer. Metric learning models (Vinyals et al., 2016; Snell et al., 2017; Ore-

shkin et al., 2018; Zhang et al., 2020) learn to measure the similarity between different data points, allowing

1



it to make predictions on new tasks by comparing new examples to those in the few-shot set. Optimization-

based methods (Ravi and Larochelle, 2016; Finn et al., 2017) focus on optimizing gradient-based model

parameters efficiently with limited data. Regarding feature transfer learning methods (Santoro et al., 2016;

Snell et al., 2017; Oreshkin et al., 2018; Qi et al., 2018; Chen et al., 2019), the model typically leverages and

transfers the features pretrained from related tasks to improve performance on new tasks with limited data.

There has been a growing interest in leveraging unlabeled data to enhance the accuracy of Few-Shot

Learning, and this interest breeds the development of Semi-Supervised Few-Shot Learning (SSFSL), which

is an overlapped set of Semi-Supervised Learning (SSL) and Few-Shot Learning. Semi-Supervised learning

is a type of machine learning that combines a small amount of labeled data with a large amount of unlabeled

data during the training process. The goal is to leverage the structure of the unlabeled data to improve

the performance of the model, making it particularly useful in scenarios of Few-Shot Learning. However,

directly applying SSL methods to the few-shot setting often yields subpar results due to the extremely small

number of labeled observations. A lot of endeavors (Snell et al., 2017; Ren et al., 2018; Liu et al., 2018;

Wang et al., 2020; Lazarou et al., 2021; Huang et al., 2021) have been made to address the challenges of

SSFSL.

In this dissertation, we utilize feature transfer and metric learning strategies and propose two novel semi-

supervised few-shot learning frameworks, respectively tackled with two important challenges in Few-Shot

Learning, Class Incremental Learning (CIL) and Large-scale learning.

In Chapter Two, we delve into a subbranch of Few-Shot Learning within the context of Class Incremental

Learning (CIL). CIL is a rapidly evolving research area, closely tied to advancements in deep learning. The

goal of CIL is to incrementally train a unified classifier capable of recognizing all the classes encountered

throughout the training process. However, because labeled data is often scarce and costly to obtain, there is

growing interest in maximizing the utility of the available labels. In this context, Few-Shot Class Incremental

Learning (FSCIL) has emerged as an extension of CIL, where the constraint is that only a limited number

of labeled samples per class are available in each incremental session.

Despite its promise, FSCIL methods face significant challenges, particularly overfitting and catastrophic

forgetting, due to the small number of labeled examples. To address these issues, we propose a simple yet

effective framework called k-Probabilistic Principal Component Analyzers (k-PPCAs), which is inspired

by Probabilistic PCA (PPCA) and organizes the output space into a collection of PPCAs. By applying this

approach to the CIL task, our method outperforms most existing state-of-the-art techniques on three widely-

used FSCIL benchmarks. Additionally, we are the first to evaluate FSCIL on a large-scale benchmark, which

2



is less commonly used due to its extensive output space. The experimental results are presented in Chapter

Three.

Building on the effectiveness of the proposed method for large-scale datasets, in Chapter Four, we extend

the approach to larger-scale few-shot classification by incorporating the concept of hierarchical classifica-

tion. Hierarchical classification is a machine learning strategy that organizes classes or categories into a

hierarchical tree structure. We propose a new framework, called Hierarchical k-PPCA, which leverages

this hierarchy to improve classification. In this model, classes are represented using Gaussian distributions

constructed through PPCAs, and a two-level taxonomy is used to reflect the semantic relationships between

classes, though more levels can be added if necessary.

The method begins by initializing image classes with labeled data using PPCAs. Then, pseudo-labels

are predicted for unlabeled data by identifying the nearest class using the Mahalanobis distance. The class

representations are iteratively refined until convergence is achieved.

At the higher semantic level, classes that share similar characteristics are grouped into semantic clusters,

referred to as super-classes, which are modeled by Gaussian distributions. A modified k-means clustering

algorithm is used to uncover the underlying relationships between image classes and construct the hierarchi-

cal structure. During classification, for instance, an image of a panda could be first assigned to a super-class

like ’Ursidae’ and then further classified into one of the image classes within the ’Ursidae’ super-class.

This hierarchical framework reduces the search space and computational requirements compared to flat

classification models. For a dataset with K classes, the hierarchical model can classify images in O(
√
K)

time, a significant improvement over the O(K) time required for non-hierarchical classification. Experi-

ments detailed in Chapter Five demonstrate that the proposed method is both more accurate and efficient

when applied to large-scale datasets.

In Chapter Six, we provide a summary of the conclusions drawn from this dissertation and outline several

directions for future research.

3



CHAPTER 2

SEMI-SUPERVISED FEW-SHOT INCREMENTAL
LEARNING WITH K-PROBABILISTIC PCAS

2.1 Introduction

Class Incremental Learning (CIL) is an active research topic along with the development of deep learn-

ing. It aims to incrementally learn a unified classifier to recognize all classes that have been met during

training. However, due to the scarcity of costly labeled data in practice, there is an emerging interest in

promoting the utility of existing labels. Against this background, the Few-Shot Class Incremental Learning

(FSCIL) task (Tao et al., 2020) has recently risen from CIL. An FSCIL model needs to involve new classes

with limited labeled observations sequentially without forgetting the discriminability of old classes. How-

ever, due to the limited number of labeled samples, FSCIL methods are prone to overfitting and catastrophic

forgetting compared to traditional CIL.

From the FSCIL perspective, preserving representative memories (Tao et al., 2020; Zhang et al., 2021;

Zhu et al., 2021; Peng et al., 2022) and knowledge distillation (Dong et al., 2021; Cui et al., 2021) are pop-

ular techniques to maintain the representation capability for old classes and address catastrophic forgetting.

For mitigating the overfitting problem from the very few labeled samples, existing methods have proposed

different solutions, for example by decoupling the representation and classifier (Zhang et al., 2021), and the

node-adjustable network (Yang et al., 2021).

Compared to labeled data, unlabeled data is less expensive and easier to access in the real world. Hence,

it is naturally used to leverage the performance in the incremental sessions. Cui et al. (2021) first proposed

Semi-Supervised Few-Shot Class-Incremental Learning (SSFSCIL), a sub-task of FSCIL. They utilized

exemplars and knowledge distillation to mitigate catastrophic forgetting and alleviated overfitting with su-

pervised massive unlabeled samples. One of the other recent SSFSCIL works, FeSSSS (Ahmad et al., 2022),

fuses a multi-layer perceptron with self-learning and pretrained supervised feature generators to overcome

overfitting.

These neural network-based SSFSCIL methods achieved remarkable performance on different popular

FSCIL benchmarks. However, the retraining of neural networks can be difficult due to several factors, e.g.

continuous adapting to the data stream, data imbalance, privacy concerns, computational effort, etc. To

4



Figure 2.1: Flowchart of k-PPCAs (2-way 5-shot). The colored points are labeled or classified observations.
The grey points are unlabeled.

reduce the inconvenience of retraining and lessen catastrophic forgetting, this Chapter proposes a novel SS-

FSCIL framework, termed k-Probabilistic Principal Component Analyzers (k-PPCAs). First, the proposed

method models the class embedding in the feature space with the Gaussian distribution reconstructed from a

lower-dimensional subspace. Specifically, each class is modeled by an individual Probabilistic PCA (PPCA)

(Tipping and Bishop, 1999b), and all classes are systematized as a collection of PPCAs, which is essentially

a mixture of Gaussian models (Tipping and Bishop, 1999a). When new classes are added, the PPCA models

for the old classes do not necessitate retraining, and catastrophic forgetting can be significantly alleviated.

Second, a Mahalanobis distance-based k-Means is introduced to perform parameter estimation and classi-

fication for the FSCIL problem. This modification considers and leverages the shape information of class

embeddings. Furthermore, this metric-based classifier can help identify the out-of-distribution samples.

Third, the framework uses a generic pretrained feature extractor which is frozen and static during training.

5



The design can take advantage of the recent developments in self-learning algorithms, and the benefit of de-

coupling the representation learner and classifier has also been shown in mitigating catastrophic forgetting

(Zhang et al., 2021; Ahmad et al., 2022; Peng et al., 2022). To demonstrate the effectiveness of the proposed

method, extensive experiments are performed on four benchmark datasets: CUB200, CIFAR100, miniIm-

ageNet, and ILSVRC-2012 (ImageNet-1k). The proposed method outperforms most of the state-of-the-art

SSFSCIL methods on the first three benchmarks. To the best of our knowledge, there are no SSFSCIL

methods evaluated on the ImageNet-1k dataset due to its large scale, where the proposed k-PPCAs achieves

an accuracy of 58.44%.

The main contributions of proposed method in this chapter are:

• It proposes a semi-supervised FSCIL framework named k-PPCAs that avoids the retraining for old
classes so that catastrophic forgetting can be significantly reduced when new classes are incorporated.

• A Mahalanobis distance-based k-Means classifier is adapted for the FSCIL task, which can capture
the shape information of class embeddings and classify the out-of-distribution samples to ”unknown”
through a low-confidence score metric.

• Performs a comprehensive comparison between the proposed method and state-of-the-art semi-supervised
FSCIL methods on three popular FSCIL benchmarks: CUB200, CIFAR100, and miniImageNet. The
results show that the proposed method outperforms most of the other methods.

• Conducts experiments on the large-scale dataset ImageNet-1k, which is less frequently evaluated for
the FSCIL task.

2.2 Related Work

Because FSCIL is a subdomain of class-incremental learning, this section starts with the related works

in class-incremental learning.

Class-Incremental Learning (CIL). Class-incremental learning aims to learn a unified classifier to rec-

ognize new incremental classes without forgetting the old class representations. There are two popular

ways to mitigate catastrophic forgetting, exploring better exemplars for old classes and modifying loss

function. iCaRL(Rebuffi et al., 2017) dynamically updates important exemplars and adopts nearest-class-

mean(Mensink et al., 2013) for classification. Nakata et al. (2022) proposed a k-Nearest Neighbor (KNN)

classifier based on a zero-shot pretained feature extractor named CLIP (Radford et al., 2021), and it is eval-

uated and achieves state-of-arts on several popular benchmarks. EEIL (Castro et al., 2018) introduces the

knowledge distillation loss in an end-to-end framework. NCM (Hou et al., 2019) employs three rectification

components in the loss function to discriminate the old and new classes by magnitude and spatial orientation.
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Few-shot class incremental learning (FSCIL). FSCIL is a recent active research area derived from CIL,

aiming to classify inputs with few shot labeled samples.

Two major strategies are employed by recent FSCIL methods. The first one is knowledge representation

learning and refinement. TOPIC (Tao et al., 2020) incorporates a neural gas network (Martinetz et al., 1991)

to obtain and store the topology structure of the feature space. Zhang et al. (2021) proposed the Continu-

ally Evolved Classifier (CEC) which decoupled representation learning and classification and employed a

graph model as the representation learner to propagate the global context between old and new sessions.

Self-Promoted Prototype Refinement (SPPR)(Zhu et al., 2021) constructs a cosine-similarity-based relation

matrix between old and new classes, which acts as a transitional coefficient for adapting old prototypes in the

new feature space. The ALICE(Peng et al., 2022) framework, incorporates the angular penalty loss to adapt

the feature extractor to obtain well-clustered features. Another strategy is knowledge distillation. Dong et al.

(2021) proposed ERL++, an exemplar relation graph, to preserve the angular-based structural relations from

old classes, and the distillation loss is used to retain the relation information in the new session.

Semi-Supervised FSCIL (SSFSCIL). SSFSCIL algorithms introduce additional unlabeled data to the FS-

CIL task to mitigate overfitting. From a representation learning perspective, FeSSSS (Ahmad et al., 2022) in-

corporates a self-learning ResNet50 encoder to a pretrained supervised ResNet18 model by a feature fusion

design that concatenates the outputs of the two feature extractors. Kalla and Biswas (2022) proposed S3C

which uses the stochastic classifier with a self-supervised feature extractor and its weights are kept frozen in

the incremental session to reduce catastrophic forgetting. There are also some methods based on knowledge

distillation. Cui et al. (2021) introduced a detailed semi-supervised configuration for a distillation-based

network by revising the network until all unlabeled data obtain high-confidence pseudo-labels. Then unla-

beled samples are combined with labeled data to enhance the performance of FSCIL. They further proposed

Us-KD (Cui et al., 2022) which incorporates an uncertainty-guided component to filter out low-certainty

unlabeled data to alleviate overfitting and noise during knowledge transfer. In their latest work (Cui et al.,

2023), they observed that easily classifiable classes necessitate fewer unlabeled samples to achieve a high

prediction accuracy, thus a data selection method was devised to avoid contaminating well-learned classes

by less-reliable unlabeled data.

2.3 Incremental Learning with Probabilistic PCA

This section presents a method for semi-supervised incremental learning using probabilistic PCA (PPCA).

First, an overview of the probabilistic PCA model is introduced, followed by k-means clustering using the

7



Mahalanobis distance. The Mahalanobis distance could be obtained from PPCA models or from standard

Gaussian models. The proposed algorithm for semi-supervised incremental learning is introduced, as well

as an efficient method for maintaining the cluster models based on running averages.

2.3.1 Probabilistic PCA Representation

Probabilistic PCA (PPCA) (Tipping and Bishop, 1999b) models a cluster of data with a Gaussian

probability-cloud proxy in a lower-dimensional subspace with a mean µ and covariance matrix Σ. The

PPCA model will be used as the model for each class (cluster), but instead of classifying the data based on

posterior and estimating the models by EM in Tipping and Bishop (1999a), our approach uses the Maha-

lanobis distance and performs estimation by k-Means.

PPCA is a plane with noise, where a d-dimensional observable variable x is approximated using a latent

q-dimensional variable t as:

x = Wt+ µ+ ϵ, (2.1)

where t ∼ N (0, Iq), and µ ∈ Rd is the mean of observable variable x. The transformation matrix

W ∈ Rd×q connects the d-dimensional space and the lower q-dimensional subspace, and ϵ represents

the i.i.d noise following a Gaussian distribution with a diagonal covariance matrix N (0,Ψ). Then the

conditional distribution of x given the latent variable t is

x|t = t ∼ N (Wt+ µ,Ψ). (2.2)

The marginal distribution of x can be obtained by integration on the latent variable t, obtaining x ∼

N (µ,Σ), where Σ = WWT +Ψ.

To better capture the principal information of x in the lower dimensional subspace, Principal Compo-

nent Analysis (PCA) (Pearson, 1901; Hotelling, 1933) is naturally considered in the factor analysis. If the

singular value decomposition (SVD) is applied to the sample covariance matrix, we have

VSVT =
1

n− 1

n∑
i=1

(xi − µk)(xi − µk)
T (2.3)

where V is the matrix containing the eigenvectors as columns, and S is the diagonal matrix with eigenvalues

as diagonal elements.

Tipping and Bishop (1999a) show that PCA arises from factor analysis when Ψ = σ2I and the d - q

minor eigenvalues of the sample covariance matrix are equal. In this respect, the covariance matrix in Σ
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above can be defined as the combination of the reconstruction from the principal components which span

the lower dimensional space, and the covariance from the noise term. It can be written as

Σ̂ = LTDL+ λId. (2.4)

It is clear that LT are formed by the first q principal eigenvectors in VT , and D is the upper-left q × q

sub-matrix of the eigenvalue matrix S, which includes the first q principal eigenvalues as diagonal elements.

The parameter λ > 0 is a small number (e.g. λ = 0.01 in our experiments) indicating the variance σ2 of the

noise.

2.3.2 k-Means Clustering with the Mahalanobis Distance (k-PPCAs)

When using PPCA for classification, the data in each class is assumed to be mostly separable from

the other classes in the feature space. Then the data can be naturally modeled by a mixture of Gaussian

distributions with different parameters for each class. For example, the data belonging to the k-th class

follows the Gaussian distribution with its mean µk and covariance Σk. Then the likelihood of observing

data x in a given class k is

p(x|y=k)=
1

(2π)d/2|Σk|1/2
exp(−1

2
(x− µk)

TΣ−1
k (x− µk)). (2.5)

After taking the negative log-likelihood, the score function of k-th class can be calculated as follows, without

the constant (2π)d/2:

sk(x)=−2 log p(x|y=k)= log|Σk|+ (x−µk)
TΣ−1

k (x−µk) (2.6)

where a smaller score corresponds to a higher likelihood.

Mahalanobis Distance. The Mahalanobis distance is a well-known measure of distance first posted by

P. C. Mahalanobis in 1936 (Mahalanobis, 2018). It takes the correlations of the variables into consideration

and measures the distance between a point and the mean of a distribution by the unit of standard deviation

of this distribution.

The Mahalanobis distance of a d-dimensional point x ∈ Rd from a Gaussian distribution Q = N (µ,Σ)

is defined as

dM (x, Q) =
√
(x− µ)TΣ−1(x− µ). (2.7)

In the our proposed k-PPCAs, a simplified score function from Eq. (2.6) is

9



r(x) = d2M (x, Q) = (x− µ)TΣ−1(x− µ) (2.8)

which is a corresponding representation of Mahalanobis distance in the following modified k-Means clus-

tering.

Given PPCA parameters θ = (µ,L,S) and denoting by s ∈ Rq the vector containing the first q elements

of S, the score (2.8) can be computed faster using the following

Theorem 1. (Wang and Barbu, 2022) The score (2.8) can also be computed as:

r(x;µ,L,S) = ∥x− µ∥2/λ− ∥u(x)∥2/λ, (2.9)

where u(x) = diag( s√
s2+λIq

)LT (x− µ), and the determinant as:

log |Σ| = (d− q) log λ+

q∑
i=1

log(s2i + λ). (2.10)

k-Means Clustering with Mahalanobis Distance. The k-means clustering method is a popular un-

supervised learning algorithm (Lloyd, 1982). It divides observations into k clusters by assigning each point

to its closest cluster centroid, and recalculating the centroids as the means of the clusters based on their as-

signed observations. In order to capture the shape information of the clusters in feature space, the Euclidean

distance can be replaced by the Mahalanobis distance and the centroids are initialized from the labeled

samples in each incremental session, as it is discussed in the following section.

For n observations x1, ...,xn, the first step is to assign them to their closest cluster centroid respectively,

yi = argmin
k

r(x) = argmin
k

(xi − µk)
TΣ−1

k (xi − µk), (2.11)

and then update the cluster parameters (µ̂k,Σ̂k) for each cluster,

µ̂k =

∑
{i|yi=k} xi

nk
(2.12)

Σ̂k =

∑
{i|yi=k}(xi − µ̂k)(xi − µ̂k)

T

nk − 1
(2.13)

where nk is the number of assigned observations in the k-th cluster. The above two steps are iteratively

performed until the parameters have converged. When combining k-Means clustering with PPCA models,

the above covariance matrix is decomposed by Eq. (2.3) and is remodeled by the first q principal components

and the covariance of the probabilistic term, and it is formulated as follows,

Σ̂k = LT
kD

2
kLk + λId (2.14)
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2.3.3 Semi-Supervised Class-Incremental k-Means

The whole k-PPCAs algorithm is described in Alg. 1 and the flowcharts are shown in 2.2 and 2.3.

Algorithm 1 k-PPCAs

Input: Models θk = (µk,Lk,Sk) for existing classes k ∈ Co, new training dataset Dtrain =

{D(l)
train, D

(u)
train} for current incremental session, with labeled set D(l)

train, unlabeled set D(u)
train, and

new classes Cn.
Output: Updated PPCA models θk = (µk,Lk,Sk) for each new class k ∈ Cn.

1: for each new class k ∈ Cn do
2: Initialize θk = (µk,Lk,Sk) by PCA with q principal vectors on the labeled data from class k using

Eq. (2.3)
3: end for
4: for j=1 to niter do
5: Initialize RAVE Rk = (0,0,0) for each new class k ∈ Cn

6: for each new observation x ∈ Dtrain do
7: if x ∈ D

(l)
train then

8: Set k = y as the observation label y
9: else

10: Compute scores rk = r(x,µk,Lk,Sk) for all classes k ∈ Cn ∪ Co.
11: Obtain label k = argmink rk.
12: end if
13: if k ∈ Cn and rk < µrk + τσrk then
14: add x to Rk using Eq. (2.18)
15: end if
16: end for
17: for k ∈ Cn do
18: Obtain µk and Σk from Rk using Eq. (2.17)
19: Obtain Sk from VkS

2
kV

T
k = Σk using SVD

20: Obtain Lk as the first q columns of Vk

21: end for
22: end for

In a preprocessing step, a pretrained and frozen feature extractor is utilized to generate features from

images or any other types of raw data. In this dissertation we used CLIP (Radford et al., 2021), a flexible

and general contrastive learning method that builds two models, one from an image and one from an as-

sociated text, with maximum similarity between the image features and the text embedding features. The

image encoder pre-trained by CLIP is introduced and kept frozen as the feature extractor for images in our

experiments.
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Figure 2.2: k-PPCAs in the base session under 2-way 5-shot setting with 2-Dimensional samples

For the base session and successive incremental sessions, the training dataset Dtrain includes the subset

with few-shot labeled features D(l)
train and the relatively massive subset of unlabeled features D(u)

train. Then

for each class in the new training set Dtrain, Principal Component Analysis (PCA) is applied to the covari-

ance matrix of features labeled in that class, and the PPCA parameters θ = (µ,L,S) are initialized from

PCA, as described in Algorithm 2.

Algorithm 2 Initialization with PCA

Input: Labeled dataset D(l) = {D(l)
1 , D

(l)
2 , ..., D

(l)
k , ..., D

(l)
K } for all classes k ∈ C. C is the set of classes

Output: Initialized PPCA models θk = (µk,Lk,Sk) for each class k ∈ C.
1: for each class k ∈ C do
2: Obtain µk and Σk from D

(l)
k using Eq. (2.12) and Eq. (2.14) respectively.

3: Obtain Sk from VkS
2
kV

T
k = Σk using SVD

4: Obtain Lk as the first q columns of Vk

5: end for

After initialization of PPCA models, for the base session Dtrain,0, the set of existing classes Co is empty,

so all classes will be involved in k-means and the PPCA models will be updated for each class in the base

session. The labeled observations will be directly assigned to the clusters corresponding to their labels. Then
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Figure 2.3: k-PPCAs in the incremental session under 2-way 5-shot setting with 2-Dimensional samples

for the unlabeled observations, the Mahalanobis distance between them and each cluster will be calculated

as a score function using Eq. (2.9). Then each unlabeled observation will receive a pseudo-label that is the

cluster id with the smallest score, and thus will be assigned to the corresponding cluster with the shortest

Mahalanobis distance.

In order to improve the robustness of our method, the scores of observations within each cluster will

be compared. Those observations with obviously large Mahalanobis distances will be identified as extreme

values and removed from the model update step. In the experiment on the CUB200 dataset, the mean (µrk )

and standard deviation (σrk ) of scores in each cluster are calculated, and each observation whose score

is larger than µrk + 1.96σrk will be labeled as an extreme value. We use the criteria of µrk + 1.96σrk

because under the assumption that the scores in each class follow a normal distribution, only approximately

2.5% of scores are expected to be larger than this criteria. After this filtering, the mean and the covariance

will be updated for each cluster using Eq. (2.12) and Eq. (2.14) respectively. Then, by applying singular

value decomposition (SVD) to updated covariance in each cluster, for example, for k-th PPCA model, the

updated parameter Sk are obtained directly from the SVD, VkS
2
kV

T
k = Σk, and the principal vectors Lk
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are obtained from the first q columns of Vk. After training the base session, the updated PPCA models will

be stored and frozen for the following incremental sessions, and the classes in the base session will be listed

in the set of existing classes Co.

For the incremental sessions, the initialized PPCA models for the new classes will be appended to the

inherited PPCA models for the existing classes. Then all PPCA models will be involved in the calculation of

scores and the assignment of pseudo-labels for the incremental observations, but the PPCA models for the

existing classes will be kept frozen and only the models for the new classes will be updated during training.

After training an incremental session, the same procedures used in processing the base session are followed,

which means that all models are stored for the next incremental session and the new classes will be treated as

existing classes. The new PPCA models are continually added as new clusters until all incremental sessions

are processed.

In practice, the lines 6-16 from Algorithm 1, which assign labels based on the current models and update

the RAVEs, are done using mini-batches for efficient computation on the GPU. Mini-batches and running

averages (Sun et al., 2024) (RAVE) are used to compute more efficiently the means and covariances for

large datasets. RAVE is an online learning technique that can be employed to compute the mean and the

covariance for each class incrementally. The details about how to compute the mean and the covariance

from mini-batches will be introduced in the next subsection.

2.3.4 Maintaining Running Averages for Computing Covariance Matrices

Given a set of observations xi, i ∈ J , we need to compute µ̂J = 1
|J |

∑
i∈J xi and

Σ̂J =

∑
{i∈J}(xi − µ̂)(xi − µ̂)T

|J | − 1
. (2.15)

This can be done efficiently by maintaining running averages RJ = (|J |,S(J)
x ,S

(J)
xx ), where:

S(J)
x =

1

|J |
∑
i∈J

xi,S
(J)
xx =

1

|J |
∑
i∈J

xix
T
i . (2.16)

From these running averages we can obtain µ̂J = S
(J)
x and

Σ̂J =
|J |

|J | − 1
(S(J)

xx − µ̂J µ̂
T
J ) (2.17)

The running averages can be updated incrementally, e.g. one observation at a time. For simplicity of

notation, assume that J = {1, ..., n} and denote S
(J)
x = S

(n)
x and S

(J)
xx = S

(n)
xx . Then the running averages

can be updated as follows:
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S(n)
x =

n− 1

n
S(n−1)
x +

1

n
xn (2.18)

and similarly for S(n)
xx .
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CHAPTER 3

EXPERIMENTAL EVALUATION AND DISCUSSION FOR
INCREMENTAL K-PPCAS

3.1 Experiments

3.1.1 Datasets

Experiments are conducted on four popular datasets, the Caltech-UCSD Birds-200-2011 (CUB200), CI-

FAR100, miniImageNet and ILSVRC-2012 (ImageNet-1k) datasets. The first three datasets are widely used

benchmark datasets for FSCIL, while ImageNet-1k is one of the most popular datasets for classification and

incremental learning. Tao et al. (2020) provided a series of training schemes for few-shot class incremental

learning on CUB200, CIFAR100, and miniImageNet. Their setting is widely adopted by the subsequent

FSCIL research, e.g. Zhang et al. (2021), Ahmad et al. (2022). So for the convenience of comparison with

previous related works, the experiments on these three datasets will follow the same schedules.

Caltech-UCSD Birds-200-2011. CUB200 (Wah et al., 2011) includes 5994 training and 5794 test fine-

grained images about 200 classes of birds. In Tao et al. (2020), 100 classes were selected as the base session

and the remaining 100 classes were equally divided into 10 incremental sessions. In our experiments, for

each session, base and incremental, five samples per class are utilized with labels and the remaining samples

are treated as unlabeled. This schedule follows a 10-way 5-shot setting.

CIFAR100. CIFAR100 (Krizhevsky et al., 2009) comprises 60000 small scale images equally distributed in

100 classes. For each class, there are 500 training images and 100 test images. In Tao et al. (2020), the 100

classes are separated into a base session with 60 classes and 5 classes for each of eight incremental sessions.

The same 5-way 5-shot settings was used in this dissertation for CIFAR100.

miniImageNet. miniImageNet is a 100 class subset of ImageNet (Russakovsky et al., 2015), where we used

the same 100 classes as Ravi and Larochelle (2016). Each class contains 500 training images and 100 test

images. Similar to CIFAR100, Tao et al. (2020) splits the 100 classes into 60 classes for the base session

and 40 classes for eight incremental sessions, thus 5 classes for each session. In our experiment, 5 samples

are labeled in each of base session and incremental sessions, so a 5-way 5-shot setting is followed. In the

ablation study, we find that applying data augmentation and preserving more principal components in PPCA

can further improve the performance, and the accuracy is also improved when a stricter criteria for extreme
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Table 3.1: Comparison of k-PPCAs with the state-of-the-art on the CUB200 dataset under 10-way 5-shot
settings with 100 base and 100 incremental classes. † indicates results reported in Ahmad et al. (2022), *
denotes the few-shot approaches adapted by Zhang et al. (2021) for FSCIL. Our results are obtained from
five independent runs with the standard deviation in parentheses.

Method
Acc. in each session(%)

0 1 2 3 4 5 6 7 8 9 10
NCM†(Hou et al., 2019) 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87
EEIL†(Castro et al., 2018) 68.68 53.63 47.91 44.2 36.3 27.46 25.93 24.7 23.95 24.13 22.11
iCaRL†(Rebuffi et al., 2017) 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
TOPIC†(Tao et al., 2020) 68.68 62.49 54.81 49.99 45.25 41.4 38.35 35.36 32.22 28.31 26.28
LEC-Net†(Yang et al., 2021) 70.86 58.15 54.83 49.34 45.85 40.55 39.70 34.59 36.58 33.56 31.96
SS-iCaRL†(Cui et al., 2021) 69.89 61.24 55.81 50.99 48.18 46.91 43.99 39.78 37.50 34.54 31.33
SS-NCM†(Cui et al., 2021) 69.89 61.91 55.51 51.71 49.68 46.11 42.19 39.03 37.96 34.05 32.65
SPPR†(Zhu et al., 2021) 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33
SS-NCM-CNN†(Cui et al., 2021) 69.89 64.87 59.82 55.14 52.48 49.60 47.87 45.10 40.47 38.10 35.25
Decoupled-DeepEMD†*(Zhang et al., 2020) 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60
Decoupled-Cosine†*(Vinyals et al., 2016) 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31
ERL†(Dong et al., 2021) 73.52 70.12 65.12 62.01 58.56 57.99 56.77 56.52 55.01 53.68 50.01
ERL++†(Dong et al., 2021) 73.52 71.09 66.13 63.25 59.49 59.89 58.64 57.72 56.15 54.75 52.28
CEC†(Zhang et al., 2021) 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28
FeSSSS†(Ahmad et al., 2022) 79.60 73.46 70.32 66.38 63.97 59.63 58.19 57.56 55.01 54.31 52.98
k-Means 69.27 67.38 66.37 64.10 63.56 62.23 62.48 62.03 61.00 61.21 61.64

(1.12) (0.79) (0.73) (0.72) (0.60) (0.39) (0.24) (0.70) (0.81) (0.73) (0.70)
k-PPCAs 68.77 67.24 66.25 63.64 63.13 61.95 61.80 60.99 59.76 60.08 60.44

(1.23) (1.32) (1.10) (1.16) (1.33) (1.32) (1.27) (1.37) (1.45) (1.42) (1.42)

values is used. The highest accuracy of miniImageNet is listed in the Tab. 3.3, while the other settings are

detailed in Sec. 3.2.1.

ImageNet. ImageNet (Russakovsky et al., 2015) is one of the most popular datasets for image classification

and incremental learning. Compared to the other datasets mentioned above, ImageNet is a relatively large

dataset including 1,281,167 training and 50,000 validation images covering 1000 classes of objects. For

each class, there are about 1,300 training images and 50 validation images. To the best of our knowledge,

we are the first to report FSCIL results on ImageNet. In our experiment, the dataset is split into 500 classes

for the base session and 100 new classes for five incremental sessions. In order to test the limit of our ap-

proach, we only provide 2 labeled samples for each of the base and incremental sessions, and the remaining

images in the training set are treated as unlabeled samples. So we applied a 100-way 2-shot settings for this

experiment.
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Table 3.2: Experiments on CIFAR100 under 5-way 5-shot settings with 60 base and 40 incremental classes.
† indicates results reported in Ahmad et al. (2022), * denotes the few-shot approaches adapted by Zhang
et al. (2021) for FSCIL. Our results are obtained from five independent runs, with the standard deviation in
parentheses.

Method
Acc. in each session(%)

0 1 2 3 4 5 6 7 8
iCaRL†(Rebuffi et al., 2017) 64.1 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73
EEIL†(Castro et al., 2018) 64.1 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85
NCM†(Hou et al., 2019) 64.1 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54
TOPIC†(Tao et al., 2020) 64.1 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37
LEC-Net†(Yang et al., 2021) 64.1 53.23 44.19 41.87 38.54 39.54 37.34 34.73 34.73
SS-NCM-CNN†(Cui et al., 2021) 64.1 62.22 61.11 58.0 54.22 50.66 48.88 46.0 44.44
SPPR-ive†(Zhu et al., 2021) 64.1 66.66 63.33 57.66 54.33 50.66 48.33 45.66 43.0
Dec-DeepEMD†*(Zhang et al., 2020) 69.75 65.06 61.2 57.21 53.88 51.40 48.80 46.84 44.41
ERL†(Dong et al., 2021) 73.62 66.79 63.67 60.54 56.98 53.63 50.92 48.73 46.33
Dec.-Cosine†*(Vinyals et al., 2016) 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68
ERL++†(Dong et al., 2021) 73.62 68.22 65.14 61.84 58.35 55.54 52.51 50.16 48.23
CEC†(Zhang et al., 2021) 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14
SPPR†(Zhu et al., 2021) 76.33 72.33 67.33 63.33 59.0 55.33 53.0 50.33 47.33
FeSSSS†(Ahmad et al., 2022) 75.35 70.81 66.7 62.73 59.62 56.45 54.33 52.10 50.23
k-Means 54.42 53.19 51.53 50.47 49.83 49.68 49.47 49.36 49.12

(1.10) (1.03) (1.31) (1.14) (0.87) (0.83) (0.52) (0.51) (0.54)
k-PPCAs 64.53 64.01 63.28 61.62 61.14 61.08 61.55 61.38 60.98

(1.00) (1.26) (1.13) (1.06) (1.03) (0.99) (0.91) (0.85) (0.78)

3.1.2 Implementation Details

All experiments are implemented with PyTorch and run on a RTX 3060 GPU. As mentioned in Sec. 2.3.3,

the pre-trained image encoder of CLIP (Radford et al., 2021), which uses a ResNet-50x4 as its backbone, is

adopted as feature extractor.

For image preprocessing on the CUB200, miniImageNet, and ImageNet datasets, we follow the settings

recommended by the feature extractor, which is to resize the image so that the short edge is 288 while

maintaining the original aspect ratio, followed by central cropping to obtain a 288×288 image as input for

the feature extractor. For the CIFAR100 dataset, because of its low resolution 32×32 images, we tried two

resizing scales with interpolation, 144×144 and 288×288 respectively. The images resized to 144×144

gave a better performance.

For all benchmarks, the model is trained for 10 epochs. The value of the PPCA parameter λ in Eqns.

(2.4) and (2.14) is set to λ = 0.01.
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Table 3.3: Experiments on miniImageNet under 5-way 5-shot settings with 60 base and 40 incremental
classes. † indicates results reported in Ahmad et al. (2022), * denotes the few-shot approaches adapted by
Zhang et al. (2021) for FSCIL. The results are obtained from five independent runs.

Method
Acc. in each session(%)

0 1 2 3 4 5 6 7 8
NCM†(Hou et al., 2019) 61.31 47.8 39.31 31.91 25.68 21.35 18.67 17.24 14.17
iCaRL†(Castro et al., 2018) 61.31 46.32 42.94 37.63 30.49 24 20.89 18.8 17.21
EEIL†(Castro et al., 2018) 61.31 46.58 44 37.29 33.14 27.12 24.1 21.57 19.58
LEC-Net†(Yang et al., 2021) 61.31 35.37 36.66 38.59 33.90 35.89 36.12 32.97 30.55
TOPIC†(Tao et al., 2020) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
ERL†(Dong et al., 2021) 61.67 56.19 54.70 51.19 47.61 45.23 44.0 40.95 39.8
ERL++†(Dong et al., 2021) 61.67 57.61 54.76 51.67 48.57 46.42 44.04 42.85 40.71
SS-NCM-CNN†(Cui et al., 2021) 62.88 60.88 57.63 52.8 50.66 48.28 45.27 41.65 41.21
Dec-DeepEMD†*(Zhang et al., 2020) 69.77 64.59 60.21 56.63 53.16 50.13 47.49 45.42 43.41
Dec-Cosine†*(Vinyals et al., 2016) 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63
CEC†(Zhang et al., 2021) 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63
SPPR†(Zhu et al., 2021) 80.0 74.0 68.66 64.33 61.0 57.33 54.66 51.66 49.0
FeSSSS†(Ahmad et al., 2022) 81.5 77.04 72.92 69.56 67.27 64.34 62.07 60.55 58.87
k-Means 62.46 62.95 61.96 62.22 62.49 62.34 61.84 62.15 62.37

(1.05) (0.97) (1.07) (0.99) (0.91) (1.03) (0.99) (1.41) (0.99)
k-PPCAs-Full Cov. 62.46 62.95 61.96 62.24 62.51 62.34 61.85 62.15 62.51

(1.03) (0.94) (1.06) (0.97) (0.89) (1.01) (0.97) (1.38) (1.14)
k-PPCAs 73.99 74.33 73.69 73.96 74.34 74.15 73.68 74.27 74.76

(1.16) (1.07) (1.05) (0.96) (0.93) (0.86) (0.85) (0.82) (0.76)

Data Augmentation. Because the number of principal components q is limited by the number of labeled

samples per class, in order to overcome this constraint, data augmentation (random cropping and random

horizontal flipping) was applied and 10 augmented images were generated for each labeled image. Based

on the results from Tab. 3.5 in the ablation study, q = 10 principal components were used for all datasets.

Five independent runs were conducted on each dataset and the mean and standard deviation of the accuracy

are reported for each session.

3.1.3 Results

The results on CUB200, CIFAR100, miniImageNet and ImageNet datasets are reported in Tab. 3.1,

Tab. 3.2, Tab. 3.3, and Tab. 3.4 respectively. Besides the average accuracy on the five independent runs,

the standard deviation is also shown in parentheses. Tab. 3.1, Tab. 3.2, Tab. 3.3 present a comparison of k-

PPCAs against other state-of-the-art FSCIL models (Tao et al., 2020; Yang et al., 2021; Cui et al., 2021; Zhu

et al., 2021; Dong et al., 2021; Zhang et al., 2021; Ahmad et al., 2022). On these three datasets, CUB200,
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Table 3.4: ImageNet-1k experiments under 100-way 2-shot settings with 500 base and 500 incremental
classes. No other ImageNet results were found for FSCIL in the literature. The results are obtained from
five independent runs.

Method
Acc. in each session(%) with std.
0 1 2 3 4 5

k-Means 53.68 54.99 54.03 52.81 51.49 51.93
(0.39) (0.51) (0.49) (0.46) (0.19) (0.23)

k-PPCAs 57.05 59.27 59.44 59.05 58.10 58.44
(0.27) (0.33) (0.52) (0.44) (0.32) (0.27)

Table 3.5: The influence of the number of principal components (PC) on accuracy for the miniImageNet
dataset.

Number Acc. in each session(%)
of PC 0 1 2 3 4 5 6 7 8
0 PC 62.46 62.95 61.96 62.22 62.49 62.34 61.84 62.15 62.37
k-Means (1.05) (0.97) (1.07) (0.99) (0.91) (1.03) (0.99) (1.41) (0.99)
5 PC 73.19 73.47 72.82 73.05 73.44 73.30 72.91 73.39 73.92

(1.09) (1.05) (1.01) (0.89) (0.90) (0.87) (0.84) (0.82) (0.77)
10 PC 73.96 74.28 73.68 73.93 74.32 74.12 73.63 74.22 74.69

(1.29) (1.17) (1.13) (1.08) (1.03) (0.95) (0.93) (0.90) (0.83)
20 PC 74.00 74.24 73.44 73.71 74.20 73.87 73.27 73.89 74.42

(1.25) (1.13) (1.02) (1.00) (0.97) (0.83) (0.94) (0.91) (0.87)
30 PC 73.92 74.12 73.22 73.53 74.05 73.60 72.96 73.58 74.11

(1.31) (1.17) (1.15) (1.13) (1.11) (0.91) (0.89) (0.85) (0.82)
50 PC 73.87 74.07 73.10 72.97 73.45 72.87 72.04 72.76 73.31

(1.26) (1.15) (1.07) (1.23) (1.21) (1.17) (1.05) (1.01) (0.97)
All PC 62.46 62.95 61.96 62.24 62.51 62.34 61.85 62.15 62.51
Full Cov. (1.03) (0.94) (1.06) (0.97) (0.89) (1.01) (0.97) (1.38) (1.14)

CIFAR100, and miniImageNet, the proposed approach outperforms these models by a large margin. In

Tab. 3.4 are shown the results on ImageNet-1k.

Tab. 3.1 shows the results on CUB200. Our approach performs better than other FSCIL approaches.

Comparing the accuracy after the last incremental session, our approach obtains an accuracy of 60.44% and

outperforms the second highest accuracy from FeSSSS (Ahmad et al., 2022) by 7.46%. On the CIFAR100

dataset, from Tab. 3.2, our approach reaches an accuracy of 60.98% and it exceeds the accuracy of FeSSSS

by 10.75% after the eighth incremental session. On miniImageNet, shown in Tab. 3.3, our method obtains

an accuracy of 74.76% and it outperforms the second highest approach, FeSSSS, by 15.89% after the last

incremental session.

It is interesting to note that in the comparison on these three datasets, our method does not perform
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the best after the base session, but thanks to the robustness to catastrophic forgetting, our approach can

retain a more stable accuracy and outperforms the other methods after updating on three or four incremental

sessions.

As mentioned in Sec. 3.1.1, we may be the first to experiment an FSCIL method on the ImageNet-1k

dataset. So only the result of our approach is provided in Tab. 3.4, and k-PPCAs achieve at an accuracy of

58.44% on 1000 classes on ImageNet-1k under a 100-way 2-shot setting.

We also compared our method with a simple k-Means method adapted for the FSCIL task in a similar

way as our k-PPCAs, but using the Euclidean distance as a score function. The results are documented as

k-Means in Tab. 3.1, Tab. 3.2, Tab. 3.3, and Tab. 3.4. Our method outperforms the k-Means on CIFAR100,

miniImageNet and ImageNet datasets. The k-Means method performs better than ours on CUB200 dataset

by 1.2% after the 10th incremental session, but considering the standard deviations of two results, we have

observed that the difference between the two results is not statistically significant using a two-sample t-test

(p > 0.05).

3.2 Discussion

3.2.1 Ablation Study

The Number of Principal Components in PPCA. In the proposed method, more principal components

in PPCA can reconstruct more variation and shape information about the classes embedded in the feature

space. But, when deciding the number of principal components, there is a trade-off because using more

principal components may overfit the training data. As mentioned in Sec. 3.1.2, ten augmented images are

generated for each labeled image under the 5-way 5-shot setting. Tab. 3.5 shows the miniImageNet accuracy

of using different numbers of principal components, from 0 principal components, which is equivalent to a

constant covariance in PPCA, i.e. k-Means, to containing all components, i.e. full covariance for each class.

From the results, we can observe that the accuracy increases initially as more components are introduced

in PPCAs, reaches the peak at the level of 10 principal components, then starts to drop if more principal

components are added.

The Criteria of Extreme Values. As mentioned in Sec. 2.3.3, we assume the scores in each cluster follow a

normal distribution, and during training any observation with a score larger than an extreme value criterion

will be identified as extreme value and will be removed from the calculation of PPCA parameters. Exper-

iments for extreme value criteria µrk + τσrk with different values of τ were conducted on miniImageNet,

using q = 10 principal components. Tab. 3.6 shows that in general, a less strict criteria for extreme values
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Table 3.6: The influence on accuracy of the threshold µrk + τσrk for removing extreme values for the
miniImageNet dataset.

Acc. in each session(%)
τ % 0 1 2 3 4 5 6 7 8
0 50 73.02 73.17 72.32 72.55 73.00 72.75 72.22 72.74 73.23

(1.36) (1.26) (1.12) (1.00) (0.94) (0.93) (0.91) (0.83) (0.80)
1 16 73.74 74.03 73.37 73.60 73.99 73.79 73.33 73.83 74.35

(1.30) (1.17) (1.12) (0.99) (0.95) (0.92) (0.89) (0.85) (0.78)
1.64 5 73.97 74.29 73.66 73.91 74.30 74.12 73.66 74.21 74.73

(1.09) (0.99) (0.98) (0.91) (0.87) (0.80) (0.76) (0.73) (0.70)
1.96 2.5 73.99 74.33 73.69 73.96 74.34 74.15 73.68 74.27 74.76

(1.16) (1.07) (1.05) (0.96) (0.93) (0.86) (0.85) (0.82) (0.76)
2.56 0.5 73.96 74.28 73.68 73.93 74.32 74.12 73.63 74.22 74.69

(1.29) (1.17) (1.13) (1.08) (1.03) (0.95) (0.93) (0.90) (0.83)
∞ 0 73.97 74.31 73.70 73.97 74.33 74.14 73.67 74.25 74.72

(1.11) (1.03) (0.98) (0.91) (0.89) (0.83) (0.82) (0.79) (0.74)

contributes to a higher accuracy because more unlabeled features can help the estimation of PPCA parame-

ters. But the accuracy will start to drop if a loose criteria (e.g. ≥ µrk + 2.56σrk or all observations) cannot

filter out the observations with a large Mahalanobis distance to their center.

3.2.2 Conclusion

Chapter Two and Three focus on the challenging yet practically significant task of Semi-Supervised Few-

Shot Class Incremental Learning (SSFSCIL), where models are required to continually learn new classes

from limited labeled samples and a relatively large pool of unlabeled data. We introduce k-PPCAs, an

efficient probabilistic classifier built upon a pretrained self-supervised generic feature extractor. The k-

PPCAs approach models classes using a mixture of probabilistic principal component analyzers, effectively

capturing and distinguishing class variance in the feature space under the FSCIL setting.

Comprehensive experiments demonstrate the effectiveness of k-PPCAs on popular benchmarks like

CUB200, CIFAR100, and miniImageNet. Additionally, we evaluate the method on the large-scale ImageNet-

1k dataset, which had not previously been tested by SSFSCIL methods due to its size, showcasing the

scalability of our approach.

The promising results on ImageNet-1k suggest that k-PPCAs can scale well to larger datasets, naturally

extending the research to address challenges in large-scale few-shot learning.

Hierarchical clustering is widely used to uncover the hierarchical structure of clusters. There are two

main types of approaches: agglomerative (bottom-up) and divisive (top-down). Agglomerative methods
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merge smaller clusters into larger ones to build a hierarchy, while divisive methods start with one large

cluster and split it recursively. Human beings tend to organize categories of objects based on semantic

hierarchies. Inspired by this, our next framework aims to integrate agglomerative clustering with the k-

PPCAs method, creating a semi-supervised hierarchical classification system without requiring super-class

annotations. This enhancement is expected to further improve classification performance, particularly on

larger datasets with many more classes.

In the following Chapter Four, we explore how hierarchical clustering can reduce the computational

complexity of large-scale few-shot learning, addressing the heavy computational burden associated with

large output spaces.

3.3 Additional Experiments

3.3.1 Comparison with Other FSCIL Methods

In Sec. 3.1 are listed the results of comparing our methods against state-of-the-art SSFSCIL approaches.

Tab. 3.7, Tab. 3.8, Tab. 3.9 displays the results of our method and other FSCIL methods, supervised and

semi-supervised, on CUB200, CIFAR100, and miniImageNet respectively. FeSSSS(Ahmad et al., 2022),

an SSFSCIL method, is still the second-best performer on all benchmarks. Specifically, for the other FSCIL

methods, the samples in the base session are all provided as labeled.

3.3.2 Different Shots in the Base Session on CUB200 and CIFAR100

Considering the labeled data in the base session can also be expensive in reality, thus it is valuable to

compare the few-shot base session and the conventional full-labeled design. We used a 5-shot base session

and examined our method on all benchmarks. All experiments used CLIP-based ResNet50x4 as the feature

extractor. Besides the result of miniImageNet provided in the main experiments, the results of CUB200 and

CIFAR100 are listed in Tab. 3.10.

3.3.3 Comparison of k-Means and k-PPCAs on CUB200 and CIFAR100

Besides the comparison between k-PPCAs and the k-Means in Tab. 3.5 for ImageNet-1k, We also com-

pared them for CUB200 and CIFAR100 based on a setting of the 5-shot base session. The results are

documented in the Tab. 3.11. All experiments are performed with a CLIP-based ResNet50x4 as the back-

bone. The proposed method outperforms the k-Means on CIFAR100. On CUB200 the k-Means accuracy

exceeds our proposed approach by 1.2%, but considering the standard deviations of two results, we have
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Table 3.7: Comparison of k-PPCAs with the state-of-the-art FSCIL methods on the CUB200 dataset under
10-way 5-shot settings with 100 base and 100 incremental classes. † indicates results reported in Ahmad
et al. (2022). * denotes the few-shot approaches adapted by Zhang et al. (2021) for FSCIL. ‡ denotes the
semi-supervised methods. The prefix CLIP- denotes the backbone pretrained by CLIP(Radford et al., 2021)
and the backbones without a prefix are pretrained on ImageNet in a conventional way. Our results are
obtained from five independent runs with the standard deviation in parentheses.

Method
Acc. in each session(%)

0 1 2 3 4 5 6 7 8 9 10
NCM†(Hou et al., 2019) 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87
EEIL†(Castro et al., 2018) 68.68 53.63 47.91 44.2 36.3 27.46 25.93 24.7 23.95 24.13 22.11
iCaRL†(Rebuffi et al., 2017) 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
TOPIC†(Tao et al., 2020) 68.68 62.49 54.81 49.99 45.25 41.4 38.35 35.36 32.22 28.31 26.28
LEC-Net†(Yang et al., 2021) 70.86 58.15 54.83 49.34 45.85 40.55 39.70 34.59 36.58 33.56 31.96
SS-iCaRL†‡(Cui et al., 2021) 69.89 61.24 55.81 50.99 48.18 46.91 43.99 39.78 37.50 34.54 31.33
SS-NCM†‡(Cui et al., 2021) 69.89 61.91 55.51 51.71 49.68 46.11 42.19 39.03 37.96 34.05 32.65
SPPR†(Zhu et al., 2021) 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33
SS-NCM-CNN†‡(Cui et al., 2021) 69.89 64.87 59.82 55.14 52.48 49.60 47.87 45.10 40.47 38.10 35.25
Decoupled-DeepEMD†*(Zhang et al., 2020) 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60
Decoupled-Cosine†*(Vinyals et al., 2016) 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31
ERL†(Dong et al., 2021) 73.52 70.12 65.12 62.01 58.56 57.99 56.77 56.52 55.01 53.68 50.01
ERL++†(Dong et al., 2021) 73.52 71.09 66.13 63.25 59.49 59.89 58.64 57.72 56.15 54.75 52.28
CEC†(Zhang et al., 2021) 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28
FeSSSS†‡(Ahmad et al., 2022) 79.60 73.46 70.32 66.38 63.97 59.63 58.19 57.56 55.01 54.31 52.98
Us-KD‡(Cui et al., 2022) 74.69 71.71 69.04 65.08 63.60 60.96 59.06 58.68 57.01 56.41 55.54
S3C‡(Kalla and Biswas, 2022) 80.62 77.55 73.19 68.54 68.05 64.33 63.58 62.07 60.61 59.79 58.95
ALICE(Peng et al., 2022) 77.4 72.7 70.6 67.2 65.9 63.4 62.9 61.9 60.5 60.6 60.1
UaD-CE‡(Cui et al., 2023) 75.17 73.27 70.87 67.14 65.49 63.66 62.42 62.55 60.99 60.48 60.72
k-PPCAs 81.46 78.84 76.87 73.09 71.90 70.02 69.24 67.93 66.25 66.18 66.06
(CLIP-RN50x4) (0.04) (0.26) (0.33) (0.66) (0.86) (0.74) (0.74) (1.13) (1.34) (1.35) (1.29)
k-PPCAs 76.72 73.87 70.90 66.90 65.28 63.16 62.17 61.12 59.38 59.42 58.96
(RN50) (0.03) (0.27) (0.31) (0.50) (0.40) (0.44) (0.67) (0.65) (0.73) (0.68) (0.79)
k-PPCAs 75.23 71.82 68.79 65.42 63.62 61.32 59.87 58.90 57.08 56.87 56.10
(RN18) (0.02) (0.23) (0.22) (0.26) (0.16) (0.19) (0.19) (0.26) (0.33) (0.39) (0.49)

observed that the difference between the two results is not statistically significant using a two-sample t-test

(p > 0.05).

3.3.4 Experiments on Various Backbones

The comparison of accuracy on various backbones is provided in Tab. 3.12. All experiments are per-

formed with a setting of full-labeled base session and each labeled image is augmented to 10 images. The

other hyperparameters have the same configuration as the approaches comparison in the main experiment.

From the results, we can see that a larger backbone results in a higher performance, and the plain ResNet50

outperforms the CLIP-based model.
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Table 3.8: Experiments on CIFAR100 under 5-way 5-shot settings with 60 base and 40 incremental classes.
† indicates results reported in Ahmad et al. (2022). * denotes the few-shot approaches adapted by Zhang
et al. (2021) for FSCIL. ‡ denotes the semi-supervised methods. Only the accuracy of the end incremental
session is provided in S3C(Kalla and Biswas, 2022). The prefix CLIP- denotes the backbone pretrained by
CLIP(Radford et al., 2021) and the backbones without a prefix are pretrained on ImageNet in a conventional
way. Our results are obtained from five independent runs.

Method
Acc. in each session(%)

0 1 2 3 4 5 6 7 8
iCaRL†(Rebuffi et al., 2017) 64.1 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73
EEIL†(Castro et al., 2018) 64.1 53.11 43.71 35.15 28.96 24.98 21.01 17.26 15.85
NCM†(Hou et al., 2019) 64.1 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54
TOPIC†(Tao et al., 2020) 64.1 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37
LEC-Net†(Yang et al., 2021) 64.1 53.23 44.19 41.87 38.54 39.54 37.34 34.73 34.73
SS-NCM-CNN†‡(Cui et al., 2021) 64.1 62.22 61.11 58.0 54.22 50.66 48.88 46.0 44.44
SPPR-ive†(Zhu et al., 2021) 64.1 66.66 63.33 57.66 54.33 50.66 48.33 45.66 43.0
Dec-DeepEMD†∗(Zhang et al., 2020) 69.75 65.06 61.2 57.21 53.88 51.40 48.80 46.84 44.41
ERL†(Dong et al., 2021) 73.62 66.79 63.67 60.54 56.98 53.63 50.92 48.73 46.33
Dec.-Cosine†∗(Vinyals et al., 2016) 74.55 67.43 63.63 59.55 56.11 53.80 51.68 49.67 47.68
ERL++†(Dong et al., 2021) 73.62 68.22 65.14 61.84 58.35 55.54 52.51 50.16 48.23
CEC†(Zhang et al., 2021) 73.07 68.88 65.26 61.19 58.09 55.57 53.22 51.34 49.14
SPPR†(Zhu et al., 2021) 76.33 72.33 67.33 63.33 59.0 55.33 53.0 50.33 47.33
FeSSSS†‡(Ahmad et al., 2022) 75.35 70.81 66.7 62.73 59.62 56.45 54.33 52.10 50.23
S3C‡(Kalla and Biswas, 2022) - - - - - - - - 53.96
ALICE(Peng et al., 2022) 79.0 70.5 67.1 63.4 61.2 59.2 58.1 56.3 54.1
Us-KD‡(Cui et al., 2022) 76.85 69.87 65.46 62.36 59.86 57.29 55.22 54.91 54.42
UaD-CE‡(Cui et al., 2023) 75.55 72.17 68.57 65.35 62.80 60.27 59.12 57.05 54.5
k-PPCAs 73.06 71.54 70.30 68.23 67.41 66.99 67.18 66.81 66.15
(CLIP-RN50x4) (0.07) (0.15) (0.24) (0.26) (0.17) (0.18) (0.15) (0.18) (0.15)
k-PPCAs 73.29 72.26 71.16 68.53 68.41 67.59 67.53 66.76 65.34
(RN50) (0.06) (0.09) (0.32) (0.32) (0.36) (0.26) (0.21) (0.16) (0.19)
k-PPCAs 69.87 68.83 67.83 65.39 65.05 63.73 63.74 62.88 61.40
(RN18) (0.07) (0.10) (0.33) (0.34) (0.34) (0.32) (0.32) (0.31) (0.28)
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Table 3.9: Experiments on miniImageNet under 5-way 5-shot settings with 60 base and 40 incremental
classes. † indicates results reported in Ahmad et al. (2022). * denotes the few-shot approaches adapted
by Zhang et al. (2021) for FSCIL. ‡ denotes the semi-supervised methods. Only the accuracy of the end
incremental session is provided in S3C(Kalla and Biswas, 2022). The prefix CLIP- denotes the backbone
pretrained by CLIP(Radford et al., 2021). The results are obtained from five independent runs.

Method
Acc. in each session(%)

0 1 2 3 4 5 6 7 8
NCM†(Hou et al., 2019) 61.31 47.8 39.31 31.91 25.68 21.35 18.67 17.24 14.17
iCaRL†(Castro et al., 2018) 61.31 46.32 42.94 37.63 30.49 24 20.89 18.8 17.21
EEIL†(Castro et al., 2018) 61.31 46.58 44 37.29 33.14 27.12 24.1 21.57 19.58
LEC-Net†(Yang et al., 2021) 61.31 35.37 36.66 38.59 33.90 35.89 36.12 32.97 30.55
TOPIC†(Tao et al., 2020) 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42
ERL†(Dong et al., 2021) 61.67 56.19 54.70 51.19 47.61 45.23 44.0 40.95 39.8
ERL++†(Dong et al., 2021) 61.67 57.61 54.76 51.67 48.57 46.42 44.04 42.85 40.71
SS-NCM-CNN†‡(Cui et al., 2021) 62.88 60.88 57.63 52.8 50.66 48.28 45.27 41.65 41.21
Dec-DeepEMD†∗(Zhang et al., 2020) 69.77 64.59 60.21 56.63 53.16 50.13 47.49 45.42 43.41
Dec-Cosine†∗(Vinyals et al., 2016) 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63
CEC†(Zhang et al., 2021) 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63
SPPR†(Zhu et al., 2021) 80.0 74.0 68.66 64.33 61.0 57.33 54.66 51.66 49.0
Us-KD‡(Cui et al., 2022) 72.35 67.22 62.41 59.85 57.81 55.52 52.64 50.86 50.47
UaD-CE‡(Cui et al., 2023) 72.35 66.91 62.13 59.89 57.41 55.52 53.26 51.46 50.52
S3C‡(Kalla and Biswas, 2022) - - - - - - - - 52.14
ALICE(Peng et al., 2022) 80.6 70.6 67.4 64.5 62.5 60.0 57.8 56.8 55.7
FeSSSS†‡(Ahmad et al., 2022) 81.5 77.04 72.92 69.56 67.27 64.34 62.07 60.55 58.87
k-PPCAs 81.57 81.28 80.12 79.98 79.97 79.44 78.60 78.92 79.02
(CLIP-RN50x4) (0.05) (0.04) (0.11) (0.11) (0.11) (0.07) (0.08) (0.07) (0.06)
k-PPCAs 76.82 76.17 75.06 75.03 75.01 74.61 73.75 73.97 74.19
(CLIP-RN50) (0.07) (0.14) (0.22) (0.21) (0.22) (0.23) (0.20) (0.18) (0.17)

Table 3.10: Comparison of few-shot and all-labeled base session on CUB200 and CIFAR100. All experi-
ments are performed with a CLIP-based ResNet50x4 as the backbone

Benchmark Base Session
Acc. in each session(%)

0 1 2 3 4 5 6 7 8 9 10

CUB200
5-shot

68.77 67.24 66.25 63.64 63.13 61.95 61.80 60.99 59.76 60.08 60.44
(1.23) (1.32) (1.10) (1.16) (1.33) (1.32) (1.27) (1.37) (1.45) (1.42) (1.42)

all-labeled
81.46 78.84 76.87 73.09 71.90 70.02 69.24 67.93 66.25 66.18 66.06
(0.04) (0.26) (0.33) (0.66) (0.86) (0.74) (0.74) (1.13) (1.34) (1.35) (1.29)

CIFAR100
5-shot

64.53 64.01 63.28 61.62 61.14 61.08 61.55 61.38 60.98 - -
(1.00) (1.26) (1.13) (1.06) (1.03) (0.99) (0.91) (0.85) (0.78) - -

all-labeled
73.06 71.54 70.30 68.23 67.41 66.99 67.18 66.81 66.15 - -
(0.07) (0.15) (0.24) (0.26) (0.17) (0.18) (0.15) (0.18) (0.15) - -
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Table 3.11: Comparison of k-Means and k-PPCAs on CUB200 and CIFAR100. All experiments are per-
formed with a CLIP-based ResNet50x4 as the backbone.

Benchmark Method
Acc. in each session(%)

0 1 2 3 4 5 6 7 8 9 10

CUB200
k-Means

69.27 67.38 66.37 64.10 63.56 62.23 62.48 62.03 61.00 61.21 61.64
(1.12) (0.79) (0.73) (0.72) (0.60) (0.39) (0.24) (0.70) (0.81) (0.73) (0.70)

k-PPCAs
68.77 67.24 66.25 63.64 63.13 61.95 61.80 60.99 59.76 60.08 60.44
(1.23) (1.32) (1.10) (1.16) (1.33) (1.32) (1.27) (1.37) (1.45) (1.42) (1.42)

CIFAR100
k-Means

54.42 53.19 51.53 50.47 49.83 49.68 49.47 49.36 49.12 - -
(1.10) (1.03) (1.31) (1.14) (0.87) (0.83) (0.52) (0.51) (0.54) - -

k-PPCAs
64.53 64.01 63.28 61.62 61.14 61.08 61.55 61.38 60.98 - -
(1.00) (1.26) (1.13) (1.06) (1.03) (0.99) (0.91) (0.85) (0.78) - -

Table 3.12: Comparison of various backbones on benchmarks. The prefix CLIP- denotes the backbone
pretrained by CLIP(Radford et al., 2021) and the backbones without prefix are pretrained on ImageNet in a
conventional way. A suffix -ft denotes the backbone is fine-tuned on the base session.

Benchmark Backbones
Acc. in each session(%)

0 1 2 3 4 5 6 7 8 9 10

CUB200

CLIP-RN50x4
81.46 78.84 76.87 73.09 71.90 70.02 69.24 67.93 66.25 66.18 66.06
(0.04) (0.26) (0.33) (0.66) (0.86) (0.74) (0.74) (1.13) (1.34) (1.35) (1.29)

CLIP-RN50
74.15 71.05 68.42 64.44 62.95 60.98 59.74 58.17 56.19 56.37 55.85
(0.03) (0.35) (0.35) (0.48) (0.51) (0.40) (0.46) (0.86) (0.69) (0.38) (0.60)

RN50
72.28 69.23 66.34 62.59 60.41 58.41 56.87 55.19 53.11 53.10 52.94
(0.09) (0.05) (0.19) (0.46) (0.57) (0.48) (0.44) (0.56) (0.61) (0.56) (0.77)

RN50-ft
76.72 73.87 70.90 66.90 65.28 63.16 62.17 61.12 59.38 59.42 58.96
(0.03) (0.27) (0.31) (0.50) (0.40) (0.44) (0.67) (0.65) (0.73) (0.68) (0.79)

RN18
69.41 65.76 62.41 59.31 57.16 54.84 53.19 51.74 50.06 49.89 49.35
(0.04) (0.15) (0.29) (0.42) (0.42) (0.43) (0.32) (0.41) (0.53) (0.55) (0.60)

RN18-ft
75.23 71.82 68.79 65.42 63.62 61.32 59.87 58.90 57.08 56.87 56.10
(0.02) (0.23) (0.22) (0.26) (0.16) (0.19) (0.19) (0.26) (0.33) (0.39) (0.49)

CIFAR100

CLIP-RN50x4
73.06 71.54 70.30 68.23 67.41 66.99 67.18 66.81 66.15 - -
(0.07) (0.15) (0.24) (0.26) (0.17) (0.18) (0.15) (0.18) (0.15) - -

CLIP-RN50
66.36 64.24 63.05 61.07 60.40 59.60 59.47 58.48 57.56 - -
(0.11) (0.22) (0.30) (0.34) (0.19) (0.16) (0.13) (0.19) (0.30) - -

RN50
73.29 72.26 71.16 68.53 68.41 67.59 67.53 66.76 65.34 - -
(0.06) (0.09) (0.32) (0.32) (0.36) (0.26) (0.21) (0.16) (0.19) - -

RN18
69.87 68.83 67.83 65.39 65.05 63.73 63.74 62.88 61.40 - -
(0.07) (0.10) (0.33) (0.34) (0.34) (0.32) (0.32) (0.31) (0.28) - -

miniImageNet
CLIP-RN50x4

81.57 81.28 80.12 79.98 79.97 79.44 78.60 78.92 79.02 - -
(0.05) (0.04) (0.11) (0.11) (0.11) (0.07) (0.08) (0.07) (0.06) - -

CLIP-RN50
76.82 76.17 75.06 75.03 75.01 74.61 73.75 73.97 74.19 - -
(0.07) (0.14) (0.22) (0.21) (0.22) (0.23) (0.20) (0.18) (0.17) - -
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CHAPTER 4

LARGE-SCALE FEW-SHOT CLASSIFICATION WITH
SEMI-SUPERVISED HIERARCHICAL K-PROBABILISTIC

PCAS

4.1 Introduction

In the past decades, the field of deep learning has witnessed remarkable advancements in various tasks

Russakovsky et al. (2015); Lin et al. (2014); Everingham et al. (2010). Nonetheless, its efficacy is com-

monly contingent upon a fully-supervised context, necessitating extensive data and annotations. In practical

situations, acquiring high-quality data annotations proves challenging, given its general expensiveness, time-

intensive nature, and occasional reliance on domain knowledge. In contrast to labeled data, unlabeled data

sourced from real-world scenarios is more cost-effective and readily available. Consequently, it is logical to

harness their impact to enhance the performance of the model. Due to the effectiveness in handling limited

labeled data and harnessing extensive unlabeled data, semi-supervised learning has gained considerable in-

terest in the research community Grandvalet and Bengio (2004); Zhou and Li (2010). This approach notably

diminishes the reliance on human labor, addressing the challenges associated with data annotation.

Few-shot learning, as another approach to address the high cost of data annotation, has gained widespread

attention in recent yearsVinyals et al. (2016); Snell et al. (2017); Zhang et al. (2020); Ravi and Larochelle

(2016); Finn et al. (2017); Qi et al. (2018); Chen et al. (2019). A notable hallmark for humans is the ability

to rapidly establish cognitive capabilities for new concepts with just one or a few examples. Inspired by

human learning methods, the goal of few-shot learning is to establish a classifier based on features extracted

from very limited labeled data per class and amplify it with generalization for unknown observations.

A classic paradigm in few-shot learning is to train a classification model on a source dataset with a

large amount of data and then fine-tune it on a target dataset with limited data. However, this approach may

lead to model overfitting since a small amount of data may not reflect the large dataset’s true distribution.

To address this overfitting issue, few-shot learning methods based on auxiliary information, e.g. unlabeled

data, have been proposed, which is the Semi-Supervised Few-Shot Learning task (SSFSL).

The prevailing fashion in SSFSL is to predict unlabeled data skillfully using pseudo-labels by carefully

crafted strategies. Subsequently, this approach aims to enhance the exceptionally limited support set of
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Figure 4.1: Flowchart of Hk-PPCAs Classification: Four image classes and three super-classes, number of
candidate super-classes T=1. (The colored points are labeled or classified observations. The grey points are
unlabeled.)

labeled data in few-shot classification. While there have been numerous works on SSFSL in recent years

Ren et al. (2018); Liu et al. (2018); Wang et al. (2020); Lazarou et al. (2021); Huang et al. (2021), there

are few results evaluated on large-scale multi-class datasets. Therefore, we follow the above fashion and

propose a hierarchical SSFSL approach named Hk-PPCAs designed for addressing challenges on large-

scale datasets.

Our proposed method employs a two-level taxonomy to represent the semantic hierarchy of image

classes, although additional levels can be incorporated as needed. Image classes are conceptualized as

Gaussian distributions reconstructed using Probabilistic Principal Component Analyzers (PPCAs). The

initialization involves using labeled observations to initialize image classes through PPCAs, followed by

predicting pseudo-labels for unlabeled data based on the nearest image classes determined by Mahalanobis

distance. The image classes are then iteratively updated until convergence. For the higher semantic level,
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image classes sharing similar semantic information are assumed to cluster together, forming semantic clus-

ters characterized by Gaussians, referred to as super-classes. To uncover underlying semantic relations

between image classes and establish the class hierarchy, a modified k-means clustering algorithm is intro-

duced. After the construction of the hierarchical structure, an image during classification, such as a panda,

will be initially assigned to a super-class like ’Ursidae’ and be subsequently classified among the image

classes associated with the ’Ursidae’ super-class. The hierarchical design reduces the search space and de-

mands significantly fewer computational resources compared to the flat structure. With a dataset containing

K classes, the hierarchical model can classify images in O(
√
K) time, a notable improvement from the

O(K) time in the non-hierarchical classification. Experiments have demonstrated the effectiveness in both

accuracy and efficiency of the proposed approach when applied to large-scale datasets.

The main contributions of the proposed method are:

• It proposes a semi-supervised hierarchical framework named Hk-PPCAs for few-shot classification
on large-scale datasets with thousands of classes. The hierarchical design formed by two-layer PPCAs
reduces the classification time complexity to O(

√
K), and potentially to O(logK) if incorporating

more layers.

• It introduces a training procedure utilizing a modified k-means clustering that groups class prototypes,
which can classify the out-of-distribution samples as ”unknown” through a low-confidence score met-
ric.

• Conducts experiments on the ImageNet-1k and ImageNet-10k datasets, which have not been used to
evaluate FSL methods because of their large size.

4.2 Related Work

Few-shot Learning. Few-shot learning is a learning task that focuses on training models to make accurate

predictions or classifications with very limited labeled examples. The term ”few-shot” typically refers to

having a small number of labeled observations per class. Approaches to few-shot learning include meta-

learning methods, which involve training models to quickly adapt to new tasks based on a limited number of

examples, and transfer learning methods, which leverage knowledge learned from related tasks or domains

to improve performance on new tasks with limited data.

Meta-learning-based methods, often referred to as ”learning-to-learn,” have two popular learning paradigms:

metric-based methods (Vinyals et al., 2016; Snell et al., 2017; Zhang et al., 2020) and optimization-based

methods (Ravi and Larochelle, 2016; Finn et al., 2017). Specifically, Prototypical Networks (Snell et al.,
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Figure 4.2: Flowchart of Hk-PPCAs: Four image classes and three super-classes, number of candidate super-
classes T=1. (The colored points are labeled or classified observations. The gray points are unlabeled.)

2017), considered a classical metric-based method, is thought to generate an embedding where data points

cluster around a single prototype representation for each class. DeepEMD (Zhang et al., 2020) proposes

adopting Earth Mover’s Distance as a metric to calculate the structural distance between dense image rep-

resentations, determining the similarity between images. For optimization-based methods, MAML (Finn

et al., 2017) learns an optimization method to rapidly learn a classifier for novel classes along the fast gradi-

ent direction. Ravi and Larochelle (2016) formulates the parameter update into an LSTM and accomplishes

this through a meta-learner.

Regarding transfer-learning-based methods, a model is typically pre-trained on a large amount of data

from base classes and then utilizes the pre-trained model to recognize novel classes in few-shot classification.

More specifically, Qi et al. (2018) proposes a new method, weighted imprinting, which directly sets the final

layer weights from novel training examples during few-shot learning. Chen et al. (2019) investigates and

demonstrates that transfer-learning-based methods can achieve competitive performance similar to meta-

learning methods.

With the development of large language models in recent years (Vaswani et al., 2017; Dosovitskiy et al.,

2020), the transfer-learning-based model with Transformer backbone has achieved significant achievements

31



in large-scale dataset (Riquelme et al., 2021; Singh et al., 2023). Riquelme et al. (2021) proposes Vision

Mixture of Experts, a distributed sparsely-activated Transformer model (Dosovitskiy et al., 2020) for vision,

and showed remarkable scalability on various datasets. Singh et al. (2023) introduces a pre-pretraining stage

based on MAE (He et al., 2022), which significantly improves the performance on various datasets.

Semi-Supervised Few-shot Learning. Semi-Supervised Few-Shot Learning (SSFSL) is an overlapped set

of Semi-Supervised Learning (SSL) and Few-Shot Learning (FSL). There has been a growing interest in

leveraging unlabeled data to enhance the accuracy of few-shot learning. However, directly applying SSL

methods to the few-shot setting often yields subpar results due to the extremely small number of labeled

observations. To address the challenges of SSFSL, Ren et al. (2018) adapted Prototypical Networks (Snell

et al., 2017) and incorporated unlabeled samples in prototype generation. Liu et al. (2018) proposed TPN

to learn the manifold structure of labeled data for label propagation from labeled data to unlabeled data.

Recent SSFSL methods, including Wang et al. (2020); Lazarou et al. (2021); Huang et al. (2021), have been

introduced to skillfully predict pseudo-labels for unlabeled data and augment the few-shot set subsequently

in classification.

Hierarchical Clustering. Hierarchical clustering is an unsupervised clustering technique designed to con-

struct a hierarchy of clusters (Day and Edelsbrunner, 1984). Two primary categories within hierarchical

clustering are agglomerative (Gowda and Krishna, 1978) and divisive methods (Samek et al., 2017), repre-

senting the construction of hierarchies through bottom-up and top-down approaches, respectively.

Several endeavors have explored hierarchical clustering in the field of computer vision. For instance,

Zweig and Weinshall (2007) manually crafted a hierarchical tree that amalgamates image classifiers from

different levels into a single higher-level classifier for classification. Marszalek and Schmid (2007) inte-

grated prior information about inter-class relationships derived from the word semantics of image labels,

constructing a hierarchy of visual discriminative classifiers inherited from the word hierarchy. Jia et al.

(2013) introduced a hierarchical framework learned from the confusion matrix of classes using a Bayesian

generalization model, capable of determining an appropriate hierarchical level of generalization from a set

of images. Srivastava and Salakhutdinov (2013) enhanced neural networks with a hierarchical class prior on

the last layer of weights, proving beneficial when the training set is small, as classes with few examples can

access shared features belonging to the super-class.

4.3 Hierarchical k-PPCAs

This section presents the proposed hierarchical method named Hierarchical k-PPCAs (Hk-PPCAs),

which uses probabilistic PCA to incorporate the semantic information behind image classes. First, for the
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completeness of the introduction, an overview of the probabilistic PCA model is reviewed and the parame-

ter estimation method, k-means clustering using the Mahalanobis distance, is explained. Then the proposed

algorithm for semi-supervised large-scale learning is introduced in detail, including running-average-based

parameter adaptation and a discussion on computation complexity.

Probabilistic PCA Representation. As introduced in Sec. 2.3.1, Probabilistic PCA (PPCA) (Tipping

and Bishop, 1999b) models a data cluster with a Gaussian distribution proxy in a lower-dimensional sub-

space. The d-dimensional observable variable x ∈ Rd is modeled by a lower q-dimensional latent variable

t ∈ Rq as expressed in Eq. (2.1) and the conditional distribution of x given the latent variable t is Eq. (2.2).

Similar to the derivation in k-PPCAs, the singular value decomposition (SVD) is applied to the sample

covariance matrix and the covariance matrix is reconstructed by the principal components from SVD, as

described in Eq. (2.4). We have

Σ̂(PPCA) = LTDL+ λId. (4.1)

Hierarchical k-Means Classification with Probabilistic PCAs (Hk-PPCAs). In the proposed ap-

proach, each image class is modeled by PPCA, and similar image classes are viewed as sub-classes from a

common super-class, also modeled by PPCA, so that a two-level taxonomy hierarchical structure is formed.

Our approach performs the classification clustering by k-MeansLloyd (1982) with the Mahalanobis distance,

and generates the super-class clusters by k-Means with Kullback-Leibler divergence.

Feature Extraction. The feature extractor f : Ω → Rd projects input images to informative numerical

features. The proposed work utilized a pretrained and frozen self-learning encoder as the feature extractor.

More details will be described in Sec. 5.1.2.

Algorithm 3 Hk-PPCAs Initialization

Input: Labeled dataset D(l)
train = {D(l)

1 , ..., D
(l)
k , ..., D

(l)
K } for all image-classes k = 1, · · · ,K. The number

of super-classes M .
Output: Initial image-class PPCAs θ(c)k = (µ

(c)
k ,L

(c)
k ,S

(c)
k ) for each image-class k = 1, · · · ,K and super-

class PPCAs θ(s)m = (µ
(s)
m ,L

(s)
m ,S

(s)
m ) for each super-class m = 1, · · · ,M .

1: for each class k = 1, · · · ,K do
2: Obtain µ

(c)
k and Σ

(c)
k from D

(l)
k using Eq. (2.12) and Eq. (4.3) respectively.

3: Obtain S
(c)
k from VkSkV

T
k = Σ

(c)
k using SVD

4: Obtain L
(c)
k as the first q columns of Vk

5: end for
6: Initialize super-class PPCAs θ(s)m = (µ

(s)
m ,L

(s)
m ,S

(s)
m ) with Algorithm 4

7: Update super-class PPCAs with Algorithm 5
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Hk-PPCAs Initialization. Since the proposed work is designed to solve the semi-supervised task, the

training dataset Dtrain includes the labeled subset D(l)
train and the unlabeled subset D(u)

train.

The initialization of the Hk-PPCAs system includes two parts: image-class PPCAs and super-class

PPCAs. For image classes, the sample mean and sample covariance of labeled observations are calculated

for each image class,

µ̂
(c)
k =

∑
{i|yi=k} xi

nk
, (4.2)

Σ̂
(c)
k =

∑
{i|yi=k}(xi − µ̂k)(xi − µ̂k)

T

nk − 1
, (4.3)

where nk is the number of labeled observations in the k-th image class PPCA cluster. The superscript

(c) indicates the parameters for image classes and the superscript (s) in the following section denotes the

parameters for super classes. SVD is applied to the sample covariance afterwards and the PPCA parameters

θ
(c)
k = (µ

(c)
k ,L

(c)
k ,S

(c)
k ) are obtained for each image class. The algorithm of overall Hk-PPCAs initialization

is described in Algorithm 3.

In respect of super-class PPCAs, the k-Means++Arthur and Vassilvitskii (2007) initialization is adopted

for a better clustering performance and a faster convergence. Specifically, the Bhattacharyya distance is

employed as the distance measure of two distributions, e.g. for N (µi,Σi) and N (µj ,Σj),

Dij =
1

8
(µi − µj)

TΣ−1(µi − µj) +
1

2
ln

|Σ|√
|Σi||Σj |

, (4.4)

where Σ =
Σi+Σj

2 . The algorithm of super-class initialization is detailed in Algorithm 4.

After the initialization of super-classes, the super-classes need to be updated to include more image

classes and form the two-level hierarchical structure. The proposed method utilizes the k-Means with

Kullback-Leibler (KL) divergence as the distance measure between image classes and super-classes, both

of which are modeled as Gaussian distributions, where the covariance is reconstructed by PPCA using

Eq. (4.1). The KL divergence reflects how a probability distribution P is different from a reference distri-

bution. In our proposed method, we assume the super-class is the reference distribution Q = N (µq,Σq), a

hypothetical cluster of image classes, and the image classes are the observed distribution P = N (µp,Σp).

DKL(p||q) =
1

2
[ log

|Σq|
|Σp|

+ (µp − µq)
TΣ−1

q (µp − µq)

+ Tr{Σ−1
q Σp} − d].

(4.5)

For each image class, the KL divergence from each of the super-classes will be measured and compared,

and the super-class with the least KL divergence will be the assigned super-class label of this image class.
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Algorithm 4 Super-class PPCAs initialization with k-Means++

Input: Image-class PPCAs θ(c) = {θ(c)1 , · · · , θ(c)k , · · · , θ(c)K } for all image-classes k = 1, · · · ,K, and
number M of super-classes.

Output: Super-class PPCAs θ(s)m = (µ
(s)
m ,L

(s)
m ,S

(s)
m ) for each super-class m = 1, · · · ,M .

1: for each class k = 1, · · · ,K do
2: reconstruct Σ̂(c, PPCA)

k using Eq. (4.1)
3: end for
4: Randomly pick an image-class (µ(c)

k , Σ̂
(c, PPCA)
k ) as the first centroid C1

5: for m = 2, · · · ,M do
6: Calculate Bhattacharyya distance between the last selected centroid Cm−1 using Eq. (4.4)
7: Construct the probability distribution of image classes where the mass function is proportional to the

distance from each image class to its closest centroid from {C1, · · · , Cm−1}
8: Sample the image class (µ(c)

j , Σ̂
(c, PPCA)
j ) as the new centroid Cm = (µ

(s)
m ,Σ

(s)
m ) from the generated

distribution
9: end for

10: for m = 1, · · · ,M do
11: Obtain S

(s)
m from VmSmVT

m = Σ
(s)
m using SVD

12: Obtain L
(s)
m as the first q columns of Vm

13: end for

After all image classes receive their assigned label, the super-class mean and covariance can be obtained

from its assigned image class. Similar to the process of accessing PPCA parameters in the image class,

SVD is applied to the covariance and super-class PPCA parameters θ(s)m = (µ
(s)
m ,L

(s)
m ,S

(s)
m ) are obtained.

The process is explained in Algorithm 5.

Classification and Parameter Estimation. When using PPCA for classification, the image classes

are assumed to be mostly separable from each other in the feature space. Again, similar to k-PPCAs, image

classes are modeled as different Gaussian distributions where the covariance is remodeled by PPCA, for

example, the data belonging to the k-th image class follow the Gaussian distribution with mean µk and

covariance Σk. The negative log-likelihood of observation x for a given class k is shown in Eq. (2.6) and

further simplified as Mahalanobis distance in Eq. (2.8)

The Mahalanobis distance is a measure of the distance between a point and a distribution by the unit

of standard deviation of this distribution. The benefit of employing Mahalanobis distance in the proposed

method is it considers the correlations among features and the shape information of the image classes.

Given PPCA parameters θ = (µ,L,S) and denoting by s ∈ Rq the vector containing the first q diagonal

elements of S, the score (2.8) can be more efficiently computed using Theorem 1.
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Algorithm 5 Super-class PPCAs update with k-Means

Input: Image-class PPCAs θ(c) = {θ(c)1 , · · · , θ(c)k , · · · , θ(c)K } for all image-classes k = 1, · · · ,K, super-
class PPCAs θ(s) = {θ(s)1 , · · · , θ(s)m , · · · , θ(s)M } for each super-class m = 1, · · · ,M , number M of
super-classes, and number n(s)

iter of iterations in super-class updates
Output: Super-class PPCAs θ(s)m = (µ

(s)
m ,L

(s)
m ,S

(s)
m ) for each super-class m = 1, · · · ,M .

1: for i=1 to n
(s)
iter do

2: Initialize super-class RAVEs R(s)
m for m = 1, · · · ,M

3: for each image class k = 1, · · · ,K do
4: Use Eq. (4.5) to compute

dm=DKL(N (µ
(c)
k ,Σ

(c,PPCA)
k )||N (µ(s)

m,Σ(s,PPCA)
m ))

for all m ∈ {1, ...,m}.
5: Obtain super-class label m∗ = argminm dm.
6: Add image class (µ(c)

k , Σ̂
(c, PPCA)
k ) to R

(s)
m∗

7: end for
8: for m = 1, · · · ,M do
9: Obtain µ

(s)
m and Σ

(s)
m from Rm using Eq. (2.17)

10: Obtain S
(s)
m from VmSmVT

m = Σ
(s)
m using SVD

11: Obtain L
(s)
m as the first q columns of Vm

12: Reconstruct Σ̂(s, PPCA)
m using Eq. (4.1)

13: end for
14: end for
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Our approach performs classification by k-Means with the Mahalanobis distance. Considering the num-

ber of classes could be tens of thousands or more in a large-scale dataset, distance calculation becomes

computationally expensive. In the proposed method, we leverage the hierarchical structure and search the

image classes only in the closest T candidate super-classes for each observation, which shrinks the search

range to a manageable scale. Specifically, the Mahalanobis distances to all M super-classes are calculated

for each unlabeled observation xi ∈ Rd, and the closest T super-classes are selected as candidates S∗.

Based on the hierarchy mapping between super-classes and image classes, a set of image classes within S∗

can be formed, denoted as the candidate image classes C∗. The scale of the candidate image class |C∗| is

much smaller than the total number of image classes K if the image classes are evenly distributed in the

super-classes so that the distance calculation can be significantly improved by this hierarchical design.

Then the unlabeled observation xi will be assigned to the closest candidate image class,

yi = argmin
k∈C∗

r(c)(x) = argmin
k∈C∗

(xi − µ
(c)
k )T

[
Σ

(c)
k

]−1
(xi − µ

(c)
k ). (4.6)

In addition, all labeled observations will be directly assigned to the image class corresponding to their

labels. For better robustness from outliers, the observations with obviously large scores will be identified

as extreme values and removed from the parameter update step. Under the assumption that each of the

d variables in a feature vector follows a normal distribution, the Mahalanobis distance will follow a χ2
d

distribution. Therefore in our proposed method, any observations whose score is greater than χ2
d,0.975 are

labeled as extreme values, and this criterion approximately filters out 2.5% observations with the greatest

Mahalanobis distance in the image class.

After the assignment of all observations, the sample mean and sample covariance for each image class

cluster (µ̂(c)
k ,Σ̂(c)

k ) are computed, and SVD is applied to the covariance to obtain the updated image class

PPCA parameters θ
(c)
k = (µ

(c)
k ,L

(c)
k ,S

(c)
k ). Similar to the initialization process, the super-class PPCA

parameters are obtained from the image class PPCAs using Algorithm 4 and Algorithm 5. The complete

algorithm is detailed in Algorithm 6.

Online Update of Covariance with Running Averages. In practice, lines 3-18 from Algorithm 6,

which assign labels to the observations based on the Mahalanobis distance, are performed by mini-batches

due to the large scale of the dataset and GPU memory limitations. However, the mean and the covariance

are calculated (Eq. (4.2) and (4.3)) after assigning all the observations and the mini-batches have been

discarded. In our proposed method, the running averages framework (RAVE) (Sun et al., 2024) in Sec. 2.3.4
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Algorithm 6 Hk-PPCAs

Input: Image-class PPCAs θ
(c)
k = (µ

(c)
k ,L

(c)
k ,S

(c)
k ) for k = 1, · · · ,K, super-class PPCAs θ

(s)
m =

(µ
(s)
m ,L

(s)
m ,S

(s)
m ) for m = 1, · · · ,M , training dataset Dtrain = {D(l)

train, D
(u)
train} including labeled

set D(l)
train and unlabeled set D(u)

train, number T of candidate super-classes, number niter of iterations.
Output: Updated image-class PPCAs θ

(c)
k = (µ

(c)
k ,L

(c)
k ,S

(c)
k ) k = 1, · · · ,K and updated super-class

PPCAs θ(s)m = (µ
(s)
m ,L

(s)
m ,S

(s)
m ) for m = 1, · · · ,M .

1: for i=1 to niter do
2: Initialize image class RAVEs R(c)

k for k = 1, · · · ,K
3: for each observation x ∈ Dtrain do
4: if x ∈ D

(l)
train then

5: Set k∗ = y as the observation label y
6: else
7: Compute scores r(s)m = r(x,µ

(s)
m ,L

(s)
m ,S

(s)
m ),m = 1, · · · ,M

8: Obtain top-T candidate super-classes S∗ = {S(1), · · · , S(T )} with smallest scores
(r(s,1), · · · , r(s,T ))

9: Obtain candidate image classes C∗ = {k|Ck ∈ S∗}
10: Compute scores r(c)k = r(x,µ

(c)
k ,L

(c)
k ,S

(c)
k ) for k ∈ C∗

11: Obtain label k∗ = argmink∈C∗ r
(c)
k

12: end if
13: if rk < χ2

d,τ then
14: add x to R

(c)
k∗ using Eq. (2.18)

15: end if
16: end for
17: for k = 1, · · · ,K do
18: Obtain µ

(c)
k and Σ

(c)
k from R

(c)
k using Eq. (2.17)

19: Obtain S
(c)
k from VkSkV

T
k = Σ

(c)
k using SVD

20: Obtain L
(c)
k as the first q columns of Vk

21: end for
22: Initialize super-class PPCAs θ(s)m = (µ

(s)
m ,L

(s)
m ,S

(s)
m ) with Algorithm 4

23: Update super-class PPCAs with Algorithm 5
24: end for
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is employed again in Hk-PPCAs to compute and update the mean and the covariance incrementally during

screening mini-batches.

For the new batch B = {1, ..., nB}, S(B)
x = S

(nB)
x and S

(B)
xx = S

(nB)
xx , the target running averages in

Eq. (2.16) and Eq. (2.18) can be updated as follows:

S(n+nB)
x =

n

n+ nB
S(n)
x +

nB

n+ nB
S(nB)
x (4.7)

and similarly for S(n+nB)
xx .

Complexity Analysis of Hk-PPCAs. The computation cost can be estimated by the number of PPCA

neurons involved in the classification and parameter estimation. Let K, M , and T be the number of image

classes, number of super-classes, and number of candidate super-classes respectively, then there are KT/M

candidate image classes on average within one super-class, assuming the image classes are uniformly dis-

tributed in super-classes. Hence M +KT/M scores need to be calculated for each observation.

When compared with a non-hierarchical design (flat design), in which K scores need to be generated

for each observation, a metric speed-up can be designed to measure the improvement from a flat design to

the hierarchical design,

speed-up =
K

M +KT/M
=

1

M/K + T/M
(4.8)

From the Eq. (4.8) above, the maximum speed-up can be obtained when M =
√
KT , where the speed

improvement can reach O(
√

K/T ).

Furthermore, let N , q, and d be the sample size, number of principal components, and dimension of the

features. Based on the analysis of optimum M above, the complexity of calculating Mahalanobis distance

by Eq. (2.9) from one observation to one class is O(q2d), then for N observations,
√
KT candidate super-

classes and
√
KT candidate image classes, the complexity of assigning observations is O(q2dN

√
KT ).

For covariance estimation, the time complexity is O(d2N). The complexity of SVD to each covariance is

O(d3), then for
√
KT image classes, the complexity is O(d3

√
KT ). So the overall complexity of k-PPCAs

is O(q2dN
√
KT + d2N + d3

√
KT ).
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CHAPTER 5

EXPERIMENTAL EVALUATION AND DISCUSSION FOR
HIERARCHICAL K-PPCAS

5.1 Experiments

The proposed two-level hierarchical design and a non-hierarchical flat design are evaluated and com-

pared on two popular large-scale datasets, ILSVRC-2012 (ImageNet-1k) and ImageNet-10k datasets. The

flat design is a one-level mixture of PPCAs where the classification is performed on all image classes

k ∈ {1, · · · ,K} without using any super-classes.

5.1.1 Datasets

ImageNet-1k (Russakovsky et al., 2015). ImageNet-1k is one of the most popular large-scale datasets

for classification which contains 1,281,167 training and 50,000 validation images from 1000 object classes.

There are about 1,300 training images and 50 validation images in each class.

ImageNet-10k. ImageNet-10k is the subset of the whole ImageNet (Russakovsky et al., 2015) that includes

10,450 classes and more than nine million images. For each category, there are at least 450 training images

and 50 testing images.

5.1.2 Implementation Details

Feature Extraction. As mentioned in Sec. 4.3, a pretrained and frozen image encoder of a flexible

and generic contrastive learning method, CLIP (Radford et al., 2021), is adopted as the feature extractor for

the proposed method. CLIP maximizes the similarity between the image features and the associated text

embeddings. CLIP pretrained the image encoders with different backbones, e.g. ResNet-50x4, ResNet-50,

etc, on a wide variety of images from the internet. In our experiments, the ResNet-50x4 encoder is adopted

as the backbone of the feature extractor.

For image preprocessing on the ImageNet datasets, we follow the settings of the pretrained CLIP en-

coder. The short edge of the image is resized to 288 while maintaining the original aspect ratio, followed by

central cropping to obtain a square image as input for the feature extractor. The transformed size is 288 for

CLIP backbones.
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Discussion about CLIP and ImageNet. We would like to discuss the training set of CLIP because our

results on ImageNet-1k and ImageNet-10k can be less reliable if there is an overlapping between the training

set of CLIP and ImageNet. However, even though the detailed data source is not provided, they mentioned

the dataset is created from various publicly available sources on the Internet, and more convincingly, the

CLIP can be used for zero-shot transfer learning and is evaluated on ImageNet-1k in their paper. In addition,

there is an existing method (Nakata et al., 2022) that applied CLIP to evaluate a class-incremental learning

task on ImageNet-1k.

Raw-Observation Based Super-Class. In Algorithm 6, super-classes are estimated by clustering

Gaussian distributions of image classes, in which the covariance is remodeled by PPCA. Another method of

forming the hierarchical structure is also evaluated by clustering the raw observations that represent each im-

age class. A subset of the observations are sampled from the image classes, and then these raw observations,

as prototypes of their image class, will be assigned to the closest super-class. Because the raw observations

from the same image class can be assigned to different super-classes, each image class could be shared by

multiple super-classes, which is meaningful since a single image class can be categorized from different

aspects. The super-classes are updated afterward as described in Algorithm 5. Since the distance measures

a raw observation to a super-class Gaussian distribution, the KL divergence in Algorithm 5 is replaced by

the Mahalanobis distance using Eq. (2.8).

In our experiment, 20 raw observations are sampled from each image class. Two different sampling

methods are evaluated, one is to randomly sample from each image class, and the other one is to pick the

observations with the smallest scores to their image class centers, which makes the selection having higher

confidence represent their image class. The comparison is provided in Sec. 5.2.1.

Other Details. The value of the PPCA parameter λ in Eq. (4.1) and Eq. (2.9) is set to λ = 0.01.

The number of labeled data per image class is l = 2, the number of candidate super-classes is T = 4, and

the number of principal components is q = 2. For both benchmarks, the model is trained for 10 epochs.

The speed-up in Eq. (4.8) is employed as the efficiency metric in the experiments. All experiments were

performed on an RTX 3060 GPU.

5.1.3 Results

We evaluated the flat (non-hierarchical) k-Means, which applied Euclidean distance in Eq. (2.6), flat k-

PPCAs, the proposed Hk-PPCAs with PPCA-based clustering, and the proposed method with raw-observation

clustering on ImageNet-1k and ImageNet-10k. To the best of our knowledge, we are not aware of other
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Table 5.1: Hk-PPCAs evaluation on ImageNet-1k and ImageNet-10k with number of super-classes M = 50
and M = 200 respectively. The flat design in Sec. 4.3 is compared with Hk-PPCAs with PPCA-based
super-class clustering and raw-observation clustering in terms of accuracy and efficiency. The efficiency
metric is the speed-up defined in Sec. 4.3.

Method
ImageNet-1k ImageNet-10k

Accuracy(%) Speed-up Accuracy(%) Speed-up
Flat k-Means 51.17 1.0 14.98 1.0
Flat k-PPCAs 52.47 1.0 16.61 1.0
Hk-PPCAs 51.19 4.8 15.62 19.9
Random raw observations 52.64 2.5 16.72 8.5

Table 5.2: Super-class construction with raw-observation clustering: randomly sampled raw observations vs
high confidence raw observations.

Method
ImageNet-1k ImageNet-10k

Accuracy(%) Speed-up Accuracy(%) Speed-up
Random sampling 52.13 1.7 16.5 6.1
High confidence raw obs. 52.09 2.1 16.43 8.6

methods evaluated based on the same backbone and benchmarks, so only our results are reported in Tab. 5.1.

The non-hierarchical k-Means obtains an accuracy of 51.17% on ImageNet-1k, and the flat-designed k-

PPCAs improves the accuracy to 52.47%. The proposed hierarchical method, Hk-PPCAs with PPCA-

clustered super-classes, achieves an accuracy of 51.49% which is a little inferior to the flat k-PPCAs,

but instead, receives a 4.8 speed-up compared to the flat design. As for the proposed method using raw-

observation-clustered super-classes and augmentation, it has an accuracy, of 52.64%, which slightly im-

proves the flat design, and obtains a speed-up of 2.5. Regarding ImageNet-10k, we can observe similar

results. The non-hierarchical k-Means and k-PPCAs achieve the accuracy of 14.98% and 16.61% respec-

tively on 10,450 categories. The proposed Hk-PPCAs with PPCA-clustered super-classes shows a slightly

inferior accuracy of 15.62% but has a speed-up of 19.9 compared to the flat design. After clustering the

super-classes by randomly sampled raw data, the accuracy is further improved to 16.72% having a speed-up

of 8.5.

5.2 Discussion

5.2.1 Ablation Study

The ablation study will evaluate the importance of the selection method for the observations (raw ob-

servations) that will be used as prototypes for the image classes and of data augmentation for increasing the
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pool of labeled observations.

Raw-Observation Selection. As explained in Sec. 5.1.2, the raw observations are selected as the

prototypes from each of the image classes, and the super-classes are obtained by clustering these selected

raw observations. Two different methods of observation selection are evaluated. The first one is the raw

observations are randomly sampled from all labeled and unlabeled data in each image class. The other

method is to choose the observations with the highest confidence (smallest scores) within each image class,

which makes the selected raw data close to the center of their image class.

The selected observations in the second method are more clustered around the image class center, so

it is less possible to observe observations from the same image class captured by different super-classes,

therefore, the candidate image classes are fewer than the first method and the speed-up is expected to be

higher than the first method.

The results based on the two selection methods are provided in Tab. 5.2. From the comparison, we can

see the accuracy of the random sampling method slightly surpasses the second method on both benchmarks.

As we expected above, a higher speed-up is obtained by using the more clustered low-score raw observations

in the second method.

Data Augmentation on Labeled Raw Observations. Since the few-shot setting limits the definite

image class information from the labeled observations, data augmentation is applied to generate modified

copies of the labeled data and we put more weight on the labeled raw observations while estimating the

super-classes.

Specifically, in ImageNet-1k, ten augmented observations are generated from each of the labeled data,

hence there are 20 augmented labeled observations and two originally labeled observations per image class.

Then, during the estimation of super-classes, the collection of raw observations is formed by 12 labeled and

eight unlabeled observations in two ways, random sampling and high confidence selection, as mentioned in

Sec. 5.1.2. For ImageNet-10k, due to its large scale, two augmented images per observation are generated

hence there are 4 augmented labeled observations and two originally labeled observations per image class.

The raw observation collection is formed by 6 labeled and 14 unlabeled observations. The evaluation results

are shown in Tab. 5.3.

An accuracy increase of 0.54% and 0.55% for ImageNet-1k and 0.3% and 0.29% for ImageNet-10k are

observed respectively for random sampling and high confidence selection in Tab. 5.3. If compared with

the results in Tab. 5.1, we can find the methods with augmented raw observations surpass the flat design in

accuracy and obtain a speed increase at the same time.
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Table 5.3: Data augmentation to raw observations. The collection of raw observations consists of 12 labeled
observations and 8 unlabeled observations.

Method Augmentation
ImageNet-1k ImageNet-10k

Accuracy(%) Speed-up Accuracy(%) Speed-up

Random Sampling
N 52.13 1.7 16.5 6.1
Y 52.67 2.0 16.8 6.1

High confidence raw obs.
N 52.09 2.1 16.43 8.6
Y 52.64 2.5 16.72 8.5

5.2.2 Conclusion

Chapters Four and Five introduced a novel framework aimed at addressing the challenges of few-shot

large-scale semi-supervised classification. The proposed method, Hierarchical k-Probabilistic Principal

Component Analyzers (Hk-PPCAs), is designed to efficiently handle large-scale datasets by leveraging a

hierarchical classification structure based on a set of PPCA-modeled Gaussian distributions. This frame-

work builds upon the strengths of probabilistic principal component analysis (PPCA) by modeling class

covariance structures with a small number of principal components, thereby capturing essential variations

in the data while significantly reducing computational overhead.

The key innovation of Hk-PPCAs lies in its hierarchical design, which enables the model to classify

an observation by first narrowing down the candidate classes through a super-class hierarchy. Instead of

searching through all possible image classes, the method focuses only on the most likely super-classes for

a given observation, reducing the search space to the classes within those super-classes. This approach

significantly improves efficiency, reducing the computational complexity from O(K) for K classes in a flat

classification model to O(
√
K) in the hierarchical model. Such a reduction in complexity makes the Hk-

PPCAs framework highly scalable and practical for large-scale datasets, where the number of classes can be

prohibitively large.

The framework’s hierarchical nature not only reduces computation time but also ensures that classifica-

tion remains accurate by organizing classes based on semantic similarity. The use of PPCA-based Gaussian

distributions allows the model to effectively discriminate between different classes, even when the data is

sparse or noisy, as is often the case in few-shot learning scenarios.

Extensive experiments were conducted to validate the effectiveness of Hk-PPCAs on two widely-used

large-scale benchmarks: ImageNet-1k and ImageNet-10k. These experiments demonstrated that the hierar-

chical structure of Hk-PPCAs provides both computational efficiency and robust classification performance,

making it an ideal solution for large-scale semi-supervised classification tasks. The results confirmed that
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the proposed method not only scales well with an increasing number of classes but also maintains high

classification accuracy, even with limited labeled samples, which is a key challenge in few-shot learning.
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CHAPTER 6

SUMMARY AND FUTURE RESEARCH

6.1 Summary

This dissertation focused on two challenging yet highly practical problems: Semi-Supervised Few-Shot

Class Incremental Learning (SSFSCIL) and Large-Scale Semi-Supervised Few-Shot Learning (SSFSL).

Chapter Two introduced an efficient probabilistic classifier, k-PPCAs, which leverages a pretrained self-

supervised feature extractor to address the issue of catastrophic forgetting in Few-Shot Class Incremental

Learning tasks. The k-PPCAs framework models classes using a mixture of probabilistic principal compo-

nent analyzers, enabling it to effectively capture and differentiate class variance in the feature space under

the FSCIL setting. This metric-based approach also allows for the identification of out-of-distribution sam-

ples by assigning them a low-confidence score, classifying them as ”unknown.”

Extensive experiments reported in Chapter Three demonstrate the effectiveness of k-PPCAs on several

well-known benchmarks, including CUB200, CIFAR100, and miniImageNet. Additionally, the method is

evaluated on the large-scale ImageNet-1k dataset, which had not previously been tested in SSFSCIL due to

its size, further validating the scalability and robustness of the approach.

The second framework presented in this dissertation, discussed in Chapter Four, addresses the problem

of Large-Scale Semi-Supervised Few-Shot Classification. The proposed method, Hk-PPCAs, is a hierar-

chical classifier based on a collection of PPCA-modeled Gaussian distributions. By modeling the essential

variations of data with fewer principal components, this approach reduces both computational cost and

model complexity. Hk-PPCAs classifies observations by first narrowing down the candidate super-classes

before focusing on the specific image classes within those super-classes, reducing the overall search space.

This hierarchical structure decreases the computational complexity from O(K) to O(
√
K) for K classes,

making it feasible for use with large-scale datasets.

Chapter Five presents experimental results that validate the effectiveness of Hk-PPCAs on two widely-

used large-scale benchmarks, ImageNet-1k and ImageNet-10k, confirming the practicality of the proposed

method for large-scale semi-supervised classification tasks.
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6.2 Future Research

The proposed k-PPCAs and Hk-PPCAs classifiers are built on top of a pretrained feature extractor,

meaning that the performance of these classifiers is heavily dependent on the quality and specific purpose of

the feature extractor used. For example, if the feature extractor is trained to recognize broad, coarse-grained

categories, such as “bird,” it may pose challenges when applied to tasks requiring finer distinctions, such

as classifying different bird subspecies. This limitation suggests the need to explore an end-to-end PPCA-

based classification algorithm in future work, where the feature extraction and classification processes are

optimized together.

Additionally, we plan to extend our approach to even larger datasets, such as the full ImageNet dataset,

which contains over 20,000 classes, to further evaluate the scalability and robustness of the proposed meth-

ods.
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