
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCE

SPARSE MOTION ANALYSIS

By

LIANGJING DING

A Dissertation submitted to the
Department of Scientific Computing

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Degree Awarded:
Summer Semester, 2013

Liangjing Ding defended this dissertation on June 13, 2013.

The members of the supervisory committee were:

Adrian Barbu
Professor Directing Thesis

Anke Meyer-Baese
Co-Professor Directing Thesis

Xiuwen Liu
University Representative

Dennis Slice
Committee Member

Xiaoqiang Wang
Committee Member

The Graduate School has verified and approved the above-named committee members,
and certifies that the dissertation has been approved in accordance with the university
requirements.

ii

To my wife, Tingting

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor, Prof. Adrian Barbu.

It is my real fortune and pleasure to be a student of Prof. Barbu, for his thoughtful guidance

and inspiring advice. I have enjoyed every minute in research. I would also like to thank my

co-advisor Prof. Anke Meyer-Baese for her consistent support and warm encouragement.

I am also deeply indebted and grateful to my committee members, Prof. Xiuwen Liu,

Prof. Dennis Slice and Prof. Xiaoqiang Wang. I learned a great amount of knowledge from

your courses and seminars.

I would like to thank Dana Lutton, Xiaoguang Li, Jim Wilgenbusch and Kyle Gower-

Winter for their generous help when I worked as a graduate assistant. Finally, I deeply

appreciate the consistent financial support from Department of Scientific Computing for

my Ph.D study.

iv

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Abstract . xii

1 Introduction 1
1.1 Motion Segmentation and its Main Challenges 1
1.2 Feature Detection . 2

1.2.1 Corner Detector . 3
1.3 Optical Flow . 6

1.3.1 Kanade-Lucas-Tomasi (KLT) Feature Tracker 9
1.4 Mathematical Background . 10

1.4.1 Affine Camera Model . 11
1.4.2 Segmentation of Multiple Rigid Motions 12

1.5 Spectral Clustering . 13
1.6 Dataset . 16

1.6.1 The Hopkins 155 Dataset . 17
1.6.2 Moseg Dataset . 19
1.6.3 Middlebury Optical Flow Database 21

1.7 Outlines . 23

2 Learning a Quality-Based Ranking for Feature Point Trajectories 24
2.1 Introduction . 24
2.2 A Method for Evaluating Feature Trackers 25

2.2.1 RMSE Error for One Trajectory . 26
2.2.2 Comparison with the Middlebury Dataset 28

2.3 A Trajectory Pruning Algorithm based on RankBoost 29
2.3.1 The RankBoost Algorithm . 29
2.3.2 Features Used by the Weak Learners 30
2.3.3 Training the Weak Learners . 31
2.3.4 Training the Ranking Algorithm . 32
2.3.5 Pruning Feature Trajectories with the Ranking Algorithm 33

2.4 Experiments . 34
2.4.1 Trajectory Generation . 34
2.4.2 Dataset and Evaluation Methods . 34
2.4.3 Results . 36

v

2.5 Conclusions . 40

3 Motion Segmentation by Velocity Clustering with Estimation of Subspace
Dimension 41
3.1 Introduction . 41

3.1.1 Related Work . 42
3.1.2 Our Contributions . 43

3.2 Motion Segmentation by Spectral Clustering 44
3.2.1 Noise Reduction using Velocity Vectors 44
3.2.2 Spectral Clustering of Subspaces . 46
3.2.3 Best Subspace Dimension . 47
3.2.4 Motion Error Measure . 48

3.3 Complete Procedure . 50
3.4 Experiments . 52
3.5 Conclusion . 54

4 A Ranking Based Method for Motion Segmentation 56
4.1 Introduction . 56
4.2 Related Work . 57
4.3 The Feature Selection with Annealing Algorithm 58
4.4 Ranking Using FSA . 60

4.4.1 Piecewise Linear Learners for Nonlinearity 61
4.4.2 FSA-PL For Ranking . 62

4.5 Ranking for Motion Segmentation . 63
4.5.1 Segmentation by Spectral Clustering 64
4.5.2 Likelihood and Prior Based Features 64
4.5.3 Training the Ranking Function . 66
4.5.4 Motion Segmentation Algorithm . 66

4.6 Experimental Results . 66
4.6.1 RankBoost . 66
4.6.2 Misclassification Rate . 68

4.7 Conclusion . 70

5 Scalable Motion Segmentation using Swendsen-Wang Cuts 72
5.1 Introduction . 72

5.1.1 Our Contributions . 72
5.2 The Swendsen-Wang Cuts Method . 73
5.3 Motion Segmentation Background . 76

5.3.1 Dimension Reduction . 76
5.3.2 Trajectory Affinity Matrix . 77

5.4 Motion Segmentation by Swendsen-Wang Cuts 78
5.4.1 Graph Construction . 79
5.4.2 Posterior Probability . 79
5.4.3 Optimization by Simulated Annealing 80
5.4.4 Complexity Analysis . 81

vi

5.5 Experiments on the Hopkins 155 Dataset 81
5.6 Scalability Experiments on Large Data . 84
5.7 Conclusion . 88

6 Summary and Future Works 89
6.1 Summary . 89
6.2 Future Works . 91

Bibliography . 92

Biographical Sketch . 98

vii

LIST OF TABLES

1.1 Distribution of the number of points and frames in Hopkins 155 Dataset . . . 17

3.1 The SSE and variance of the distances from the projected points to the fit-
ted subspaces in 3D for a synthetic experiment. The projected points were
generated from trajectories with different noise levels. 45

3.2 Misclassification rate (in percent) for sequences of full trajectories in the Hop-
kins 155 dataset (Subscript 4k means using fixed dimension 4k instead of
dimension search, and superscript ∗ means not using velocity for clustering). 53

3.3 Average computing time for sequences in the Hopkins 155 database. 54

4.1 Misclassification rate (in percent) for sequences of full trajectories in the Hop-
kins 155 dataset. 69

5.1 Misclassification rates (in percent) of different motion segmentation algorithms
on the Hopkins 155 dataset. 83

5.2 Average misclassification rate for the sequence cars10 (in percent). 87

viii

LIST OF FIGURES

1.1 Harris and Shi-Tomasi corner features generated for the example image, rep-
resented with green circles. 5

1.2 The normalized spectral clustering algorithm [48]. 15

1.3 Sample frames from the Hopkins 155 dataset with tracked points superimposed. 18

1.4 Sample frames from the Moseg dataset and the corresponding ground truth.
Note that cars9 and people1 are sequences from the Hopkins 155 dataset. . 20

1.5 Different types of data in the Middlebury database. 21

2.1 The average RMSEτ measure vs the threshold τ for five optical flow algorithms.
The relative order of the algorithms is consistent with the Middlebury ranking
for τ ≥ 3. 28

2.2 The original RankBoost algorithm [22]. 30

2.3 The features used for ranking are trajectory shape features and intensity co-
herence features. By controlling the parameters s, t, and l, an over-complete
feature representation of the trajectory can be obtained. 31

2.4 Left: the RMSE5 error (2.4) of the trajectories sets generated by different algo-
rithms for different pruning rates. Right: the RMSEτ error vs. the threshold
τ when the pruning rate is set to 20%. The relative rank of the algorithms is
consistent with the Middlebury ranking for a large range of thresholds. . . . 37

2.5 Trajectories from different tracking algorithms on the cars7 sequence from
the Hopkins 155 dataset. Row 1 to row 6: Brox, Classic+NL, BA, HS, KLT,
Rankboost. The number of trajectories is kept the same and the truncation
rate is 20%. From left to right: frame 1, 13, 25. The images were cropped for
clarity. 39

2.6 The overall clustering error (left) and average clustering error (right) from 12
annotated sequences for different pruning rates. 40

3.1 Illustration of the process of selection of the best result after performing spec-
tral clustering in spaces of dimensions in the range [dmin, dmax]. The selection

ix

is based on a clustering error measure described in Section 3.2.4. 42

3.2 Spectral clustering of lines with a distance-based affinity mixes points from
different subspaces (left), while the angle-based affinity (3.2) separates them
very well (right). 46

3.3 The average percentage of times the proposed error estimators find the better
segmentation out of two segmentations vs. their difference in misclassifica-
tion rates for sequences with 3 motions in the Hopkins 155 dataset. If one
segmentation is much better than the other, it will be found most of the time. 49

3.4 The cumulative distribution of the misclassification rate for two and three
motions in the Hopkins 155 database. 54

4.1 The value of the number of features Me vs iteration e for three annealing
schedules, where M = 10, 000, s = 10. 59

4.2 Examples of trained piecewise linear response functions hk(xk, βk) = βTk uk(x)
that are the components of the ranking function hβ(x). 62

4.3 The cumulative distribution of the misclassification rate for two and three
motions in the Hopkins 155 database. 70

5.1 Difficulty in sampling the Ising and Potts models 73

5.2 The edges between vertices of the same label are turned on/off probabilistically
to yield a number of connected components. The Swendsen-Wang algorithm
flips the color of a connected component V0 in one step. The set of edges
marked with crosses is called the Swendsen-Wang cut [4]. 74

5.3 The Swendsen-Wang Cut algorithm [4]. 75

5.4 Two 2D subspaces in 3D. The points in both subspaces have been normalized
to unit length. Due to noise, the points may not lie exactly on the subspace.
One can observe that the angular distance may find the neighbors in most
places except at the plane intersections. 77

5.5 Examples of weighted graphs constructed for the SWC algorithm for a checker-
board (left), traffic (middle) and articulated (right) sequence. The images
show the positions of the feature points in the first frame. The edge intensities
represent their weights from 0 (white) to 1 (black). 78

5.6 The Swendsen-Wang Cuts algorithm for sparse motion segmentation. 80

5.7 Dependence of the misclassification rate on the affinity parameter m (left) and
prior strength ρ (right). 82

5.8 Clustering the sequence 1R2TCR of the Hopkins 155 dataset by the SWC

x

algorithm. There are 3 motions in this example. The images show the positions
of the feature points in the first frame. The darkness of the edges represents
the strength of the connection. The point colors are the labeling states π
obtained while running the SWC algorithm from the initial state (top left)
to the final state (bottom right). The correct segmentation was successfully
obtained in the end. 84

5.9 Selected frames of sequence cars10 with 1000 tracked feature points. 85

5.10 Left. Dependence of the computation time (sec) vs number of trajectories N
for SC and SWC. Right: log-log plot of the same data with the fitted regression
lines. 86

xi

ABSTRACT

Motion segmentation is an essential pre-processing task in many computer vision problems.

In this dissertation, the motion segmentation problem is studied and analyzed. At first, we

establish a framework for the accurate evaluation of the motion field produced by different

algorithms. Based on the framework, we introduce a feature tracking algorithm based on

RankBoost which automatically prunes bad trajectories. The algorithm is observed to out-

perform many feature trackers using different measures. Second, we develop three different

motion segmentation algorithms. The first algorithm is based on spectral clustering. The

affinity matrix is built from the angular information between different trajectories. We also

propose a metric to select the best dimension of the lower dimensional space onto which

the trajectories are projected. The second algorithm is based on learning. Using training

examples, it obtains a ranking function to evaluate and compare a number of motion seg-

mentations generated by different algorithms and pick the best one. The third algorithm is

based on energy minimization using the Swendsen-Wang cut algorithm and the simulated

annealing. It has a time complexity of O(N2), comparing to at least O(N3) for the spec-

tral clustering based algorithms; also it could take generic forms of energy functions. We

evaluate all three algorithms as well as several other state-of-the-art methods on a standard

benchmark and show competitive performance.

xii

CHAPTER 1

INTRODUCTION

This chapter is a brief overview of the sparse motion segmentation problems. In section 1.1,

we sketch the idea of sparse motion segmentation and present the main challenges. In sec-

tion 1.2 and 1.3, we introduce some preliminary knowledge, such as concepts and algorithms

of feature detection and optical flow that form the basis of generation of trajectories, a.k.a.

tracked feature points. In section 1.4, we present the mathematical models of motion seg-

mentation. In section 1.5, we review the spectral clustering, which has been widely used

in the sparse motion segmentation literature recently. In section 1.6, we briefly talk about

several datasets that are used in this dissertation. Finally, the outline of the dissertation is

given in in section 1.7.

1.1 Motion Segmentation and its Main Challenges

The goal of motion segmentation is to separate a sequence of images into different re-

gions, each of which should correspond to a distinct motion. It is an important fundamental

step for many applications in computer vision, such as robotics, video surveillance, action

recognition, tracking, traffic monitoring, etc. There are two kinds of motion segmentation,

sparse motion segmentation and dense motion segmentation. In the sparse motion segmen-

tation, the moving objects are represented by a limited number of feature points, whereas

dense motion segmentation compute pixel-wise motion. In this dissertation, we will only

talk about sparse motion segmentation.

There are several issues that need to be resolved to make motion segmentation algo-

rithms applicable in practice. One of the main problems is the presence of noise. In some

1

scenarios, the noise level can become critical, for example, underwater imaging [11, 67].

Blurring is also a common issue when motion is involved. Another common problem is

occlusion, or even worse, the disappearance and reappearance of objects in the scene. Fur-

thermore, one does not always have knowledge about the objects or the number of motions

in the scene. The main challenges of motion segmentation could be summarized as follows.

• Occlusion: is the algorithm able to deal with pixels that appear or disappear between

frames?

• Sequentiality: is the algorithm able to handle the motion that is not present at some

frames in a video sequence?

• Robustness: does the algorithm work well when the noise level is relatively large or

there are many outliers existing?

• Number of motions: is the algorithm able to detect the number of motions in the

scene dynamically?

• Non-rigid object: is the algorithm able to deal with motions of non-rigid objects?

• Dependent motions: is the algorithm able to deal with motions that are not totally

independent?

Furthermore, for a generic motion algorithm that is supposed to work in different unpre-

dictable situations, the requirement of prior knowledge or training might be considered as

a drawback.

In a word, motion segmentation is a crucial but difficult task in computer vision. Many

researchers have focused on this problem, but the performance of most algorithms is still

far behind human perception. More effort is still needed to completely solve the problem.

1.2 Feature Detection

Detection of features is the prerequisite of feature tracking algorithms. It plays a big

role in the process of tracking [54]. A local feature is an image pattern which differs from

its neighborhood. It is usually associated with some change of image properties, such as

intensity, color, and texture. The exact definition of features often depends on the type

of application. The resulting features could be in the form of isolated points, continuous

curves, or connected regions.

2

Feature detection is usually performed as an starting point for many computer vision

algorithms. The desirable property for a good feature detector is Repeatability. Given a

object or a scene, people could obtain many images by changing the viewing conditions,

repeatability requires that a high percentage of the features detected are identical on all

images. Moreover, the feature detection methods should be insensitive to some small de-

formations, such as image noise, discretization effects, compression artifacts, blur, etc. In

other words, the accuracy of the detection should not drastically decrease due to such

deformations. Repeatability is the most important property of feature detection.

Efficiency is also important in feature detection. Preferably, the detection of features

in an image should be applied for time-critical applications. Additionally, the number of

features detected in a image should not be too few.

Commonly used features are edges, corners, blobs, ridges, etc. but for tracking, one

main approach is to find suitable features in the first image, and then track those features

in the other frames of the sequence by a local search technique. In the process, people

usually use corner features. So in the following, we only introduce corner feature detection

algorithms.

1.2.1 Corner Detector

The corner points are point-like features with high curvature in the 2D image. The terms

’corners’ and ’interest points’ are used interchangeably in literature. They don’t necessarily

correspond to projections of 3D corners. A corner can be defined as the intersection of two

edges. A frequently used corner detection algorithm is proposed by Harris and Stephens [30].

Intuitively, image patches with large contrast change (gradients) are easier to localize

than textureless ones, especially those with gradients in at least two different orientations.

The intuition can be formalized by looking at the simplest possible matching criterion for

comparing two image patches, i.e., their (weighted) summed square difference,

EWSSD(u) =
∑
i

w(xi)[I1(xi + u)− I0(xi)]
2,

where I0 and I1 are the two images being compared, u = (u, v) is the displacement vector,

w(x) is a spatially varying weighting (or window) function, and the summation i is over all

the pixels in the patch.

3

When performing feature detection, for the purpose of stability, we can compute the

metric with respect to small variations in position ∆u by comparing an image patch against

itself, which is known as an auto-correlation function or surface

EAC(∆u) =
∑
i

w(xi)[I1(xi + ∆u)− I0(xi)]
2.

Using a Taylor Series expansion of the image function I0(xi+∆u) ≈ I0(xi)+∇I0(xi)·∆u,

we can approximate the auto-correlation surface as

EAC(∆u) =
∑
i

w(xi)[I1(xi + ∆u)− I0(xi)]
2

≈
∑
i

w(xi)[I0(xi) +∇I0(xi) ·∆u− I0(xi)]
2

=
∑
i

w(xi)[∇I0(xi) ·∆u]2

= ∆uTA∆u,

where

∇I0(xi) = (
∂I0

∂x
,
∂I0

∂y
)(xi)

is the image gradient at xi. This gradient can be computed in various ways. Early works

usually use a fixed filter due to the limited computational resource, for example, the Harris

detector uses a [-2 -1 0 1 2] filter, but modern variants convolve the image with horizontal

and vertical derivatives of a Gaussian.

The auto-correlation matrix A can be written as

A = w ∗
[

I2
x IxIy

IxIy I2
y

]
where we have replaced the weighted summations with discrete convolutions with the

weighting kernel w. If we use the gaussian kernel, the auto-correlation matrix is

A = σ2
Dg(σI) ∗

[
I2
x(σD) Ix(σD)Iy(σD)

Ix(σD)Iy(σD) I2
y (σD)

]
with

Ix(σD) =
∂

∂x
g(σD) ∗ I

g(σ) =
1

2πσ2
e−

x2+y2

2σ2

4

where the σD and the σI is the differentiation scale and the integration scale, respectively.

The eigenvalues of A represent the principal signal changes in two orthogonal directions in

a neighborhood around the point, and corners can be found as locations in the image for

which the image signal varies significantly in both directions, which means both eigenvalues

are large.

(a) The example image

(b) Harris features (c) Shi-Tomasi features

Figure 1.1: Harris and Shi-Tomasi corner features generated for the example image, repre-
sented with green circles.

Based on this property, Harris detector uses the following measure for cornerness,

det(A)− α trace(A)2 = λ0λ1 − α(λ0 + λ1)2

with det(A) the determinant and trace(A) the trace of the matrix A. A typical value for α

is 0.06. The measure does not require to actually compute the eigenvalue decomposition of

5

the matrix A which is computationally expensive at that time, and instead it is sufficient

to evaluate the determinant and trace to make sure the two eigenvalues are big.

The Shi-Tomasi corner detector [54] directly use

min(λ1, λ2) > λ (1.1)

as a feature selection criterion to find features which can be tracked well, where λ is a

predefined threshold.

According to [60], the stages of typical corner extraction process are,

1. Compute the horizontal and vertical derivatives of the image Ix and Iy by

convolving the original image with derivatives of Gaussian.

2. Compute the three images I2
x, IxIy, I

2
y .

3. Convolve each of these images with a larger Gaussian.

4. Compute a scalar interest measure using one of the formulas mentioned

above, e.g. (1.1).

5. Find local maxima above a certain threshold and report them as detected

feature point locations.

A example of Harris features and Shi-Tomasi features is shown as Fig. 1.1. Note that

many Harris features and Shi-Tomasi features share the same locations.

1.3 Optical Flow

The goal of optical flow is to compute an independent estimate of motion at each pixel.

It generally involves minimizing the brightness or color difference between corresponding

pixels summed over the image

E(vi) =
∑
i

[I1(xi + vi)− I0(xi)]
2,

where I0 and I1 are two consecutive frames in a video and v is the displacement (u, v)′.

Because the number of variables of vi is twice the number of measurements, the problem

is unconstrained. One way to solve the problem is to perform the summation locally over

overlapping regions and use differential techniques. The first instances used first-order

derivatives and were based on image translation [19, 32]

I(x, t) = I(x− vt, 0).

6

From the Taylor expansion, the gradient constraint equation could be easily derived

∇I(x, t) · v + It(x, t) = 0, (1.2)

where It(x, t) denotes the partial time derivative of I(x, t) and ∇I(x, t) = (Ix(x, t), Iy(x, t))
′.

The equation yields the normal component of motion of spatial contours of constraint

intensity

vn = sn.

where the normal speed s and the normal direction n are given by

s(x, t) =
−It(x, t)
‖∇I(x, t)‖ , n(x, t) =

∇I(x, t)

‖∇I(x, t)‖ .

Because there are two unknown components of v in (1.2) constrained by one linear equation,

further constraints are needed to solve for v.

It is also possible to use second-order derivatives to constrain 2-d velocity [45, 46][
Ixx(x, t) Iyx(x, t)
Ixy(x, t) Iyy(x, t)

](
v1

v2

)
+

(
Itx(x, t)
Ity(x, t)

)
=

(
0
0

)
There are many different approaches to set the constraints. For example, Horn and

Schunck [32] develop a regularization-based framework where the gradient constraint (1.2)

with a global smoothness term to constrain the estimated velocity field v(x, t). They mini-

mize ∫
D

(∇I · v + It)
2 + α2(‖∇u‖22 + ‖∇v‖22)dx (1.3)

defined over a domain D, where the weighting factor α reflects the influence of the smooth-

ness term.

Eq. (1.3) can be solved iteratively to obtain the image velocity

uk+1 = ūk − Ix[Ixū
k + Iyv̄

k + It]

α2 + I2
x + I2

y

vk+1 = v̄k − Iy[Ixū
k + Iyv̄

k + It]

α2 + I2
x + I2

y

where k is the iteration number, u0 and v0 denote initial velocity approximations which are

set to zero, and ūk and v̄k denote neighborhood averages of uk and vk.

7

Black and Anandan use another smoothness constraint, for an image of size n×n pixels,

they define a grid of sites as

S = {s1, s2, . . . , sn2 |∀w, 0 ≤ i(sw), j(sw) ≤ n− 1},

where (i(s), j(s) is the pixel coordinates of site s. The energy function (1.3) would become

∑
s∈S

[
∑
R

(Ixu+ Iyv + It, σ1) + λ
∑
n∈G

[ρ2(us − un, σ2) + ρ2(vs − vn, σ2)]]

where subscripts s and n indicate sites in S, Gs represents the set of north, south, east,

west neighbors of s in the grid, σ1 and σ2 are scale parameters, and ρ1 and ρ2 are different

estimators.

Brox et al. [6] try to minimize the energy E(u, v) = EData + αESmooth, where the data

term is defined based on several constraints that they think should be considered in any

motion models.

EData(u, v) =

∫
D

Ψ(I(x+w)− I(x)|2 + γ|∇I(x+w)−∇I(x)|2)dx,

where γ is some weighting and function Ψ is some increasing concave function. The smooth-

ness term is introduced to achieve piecewise smoothness flow field by penalizing the total

variation

ESmooth(u, v) =

∫
D

Ψ(|∇3u|2 + |∇3v|2)dx,

where ∇3 := (∂x, ∂y, ∂t)
′ is the spatio-temporal gradient. The functions u and v that

minimize the energy could be solved using the Euler-Lagrange equations.

By utilizing the median filtering during optimization to denoise the flow field, Sun et

al. [58] minimizes

E(u, v, û, v̂) =
∑
i,j

{ρd(I0(i, j)− I1(i+ ui,j , j + vi,j))+

λ[ρs(ui,j − ui+1,j) + ρs(ui,j − ui,j+1) + ρs(vi,j − vi+1,j) + ρs(vi,j − vi,j+1)]}

+ λ2(‖u− û‖2 + ‖v− v̂‖2) +
∑
i,j

∑
(i′,j′)∈Ni,j

λ3(|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |),

where ρd and ρs are the data and spatial penalty functions, û and v̂ denote an auxiliary

flow field, Ni,j is the set of neighbors of pixel (i, j), λ, λ2 and λ3 are weights. The function

8

could be optimized by alternately minimizing

EO(u, v) =
∑
i,j

ρd(I0(i, j)− I1(i+ ui,j , j + vi,j))+

λ[ρs(ui,j − ui+1,j) + ρs(ui,j − ui,j+1) + ρs(vi,j − vi+1,j) + ρs(vi,j − vi,j+1)]

+ λ2(‖u− û‖2 + ‖v− v̂‖2)

and

EM (û, v̂) = λ2(‖u− û‖2 + ‖v− v̂‖2) +
∑
i,j

∑
(i′,j′)∈Ni,j

λ3(|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |).

1.3.1 Kanade-Lucas-Tomasi (KLT) Feature Tracker

The Kanade-Lucas-Tomasi (KLT) algorithm [42, 62] is a popular optical flow method.

The displacement vector v is chosen to minimize the residual error defined by

ε =

∫
W

[I(x− v, t)− I(x, t+ τ)]2w dx (1.4)

over the given window W. In this expression, w is a weighting function. In the simplest

case, it could be set to 1. Alternatively, w could be a Gaussian-like function to emphasize

the central area of the window.

By Taylor expansion, we have

I(x− v) = I(x)− g · v,

where g is the first derivative of I(x), and the residue defined in equation (1.4) could be

written as

ε =

∫
W

[I(x)− g · v− J(x)]2w dx =

∫
W

(h− g · v)2w dx,

where h = I(x, t)− I(x, t+ τ).

The residue is a quadratic function of the displacement v. The minimum could be

obtained when the first derivative equals zero:∫
W

(h− g · v)gw dA = 0.

Since (g · v)g = (ggT)v, and v is assumed to be constant within W, we have

(

∫
W

ggTw dA)v =

∫
W
hgw dA.

9

This is a system of two scalar equations in two unknowns. It can be rewritten as

Gv = e,

where the coefficient matrix is the symmetric, 2× 2 matrix

G =

∫
W

ggTw dA,

and the right-hand side is the two-dimensional vector

e =

∫
W

(I(x, t)− I(x, t+ τ)gw dA.

In practice, for discrete images, the displacement is

v ≈ [
∑

x

(
∂I

∂x
)T [I(x, t)− I(x, t+ τ)]][

∑
x

(
∂I

∂x
)T (

∂I

∂x
)]−1.

In implementation the displacement between the feature and its estimated position are

calculated in an iterative Newton-Raphson style search. Smoothing and multi-resolution

are used to improve the search range.

The KLT algorithm usually combines with the Shi-Tomasi features to obtain better

performance. In this process, the Shi-Tomasi features are extracted from the first frame,

and the KLT algorithm is applied to find the corresponding features in the following frames.

Because the KLT algorithm is much faster than traditional techniques for examining far

fewer potential matches between the images, it is widely used in practice.

1.4 Mathematical Background

Two kinds of models are widely used in motion segmentation. One is the affine camera

model, which generalizes orthographic, weak-perspective and paraperspective projection.

Under the affine camera model, the tracked feature points from a rigid moving object lie on

a linear subspace of dimension at most 4. Thus the motion segmentation problem could be

changed to subspace clustering problem. The other one is the perspective projection model.

Under this model, tracked feature points from each moving object live in a multilinear

variety for example, bilinear for two views, trilinear for three views, etc. Therefore the

motion segmentation is solved by clustering these multilinear varieties. Typically, most

10

prior work that adapts the perspective projection model has utilized algebraic methods

for factorizing the multilinear variety [31, 71] or statistical methods for two and multiple

views [64, 52].

At present, the performances of the perspective projection model based methods are

still much worse than those of the affine camera model based methods. Also we use the

affine camera model in the dissertation, so in this section, we will only introduce the affine

camera model.

1.4.1 Affine Camera Model

Many works on motion segmentation [37], [12], [18], [41] use the affine camera model,

which is approximatively satisfied when the objects are far from the camera. Under the

affine camera model, a point on the image plane (x, y) is related to the real world point

(X,Y, Z) by [
x
y

]
= K

 1 0 0 0
0 1 0 0
0 0 0 1

[R t
0T 1

]
︸ ︷︷ ︸

A∈R2×4

X
Y
Z
1

 , (1.5)

where A is the affine motion matrix, which is determined by the camera calibration ma-

trix K ∈ R2×3 and the relative orientation of the image plane with respect to the world

coordinates (R, t) ∈ SE(3).

Let t = (x1, y1, x2, y2, . . . , xF , yF)T be a trajectory of a tracked feature point in F

frames. Given P trajectories undergoing the same rigid motion, the measurement matrix

W = [t1, t2, . . . , tP] is constructed. From equation (1.5), W can be decomposed into a

motion matrix M ∈ R2F×4 and a structure matrix S ∈ R4×P as

W = MS
x1

1 x1
2 · · · x1

P

y1
1 y1

2 · · · y1
P

...
...

. . .
...

xF1 xF2 · · · xFP
yF1 yF2 · · · yFP

 =

 A1

...
AF

X1 · · · XP

Y1 · · · YP
Z1 · · · ZP
1 · · · 1

 , (1.6)

where Af is the affine motion matrix at frame f . It implies that rank(W) ≤ 4. In other

words, under the affine camera model, the trajectories from a rigidly moving object reside

in a subspace of dimension at most 4. Also, it is worth noting that the rows of each Af

11

involve linear combinations of the first two rows of the rotation matrix Rf , hence rank(W) ≥
rank(Af) = 2.

Additionally, the entries of the last row of the structure matrix S are identically 1. It is

easy to derive the orthographic camera model [63]. Define the registered trajectories as

t̃i = ti −
∑P

i=1 ti
P

, (1.7)

then the registered measurement matrix

W̃ = [t̃1, t̃2, . . . , t̃P] (1.8)

is at most rank 3. This means that the trajectories are in a 3-D affine subspace within the

4-D space.

Ideally, the measurement matrix should contain perfect information about the object

being tracked. Unfortunately, in practice most trackers can only provide inaccurate point

tracks if placed in an unstructured environment.

1.4.2 Segmentation of Multiple Rigid Motions

Assume that there are P trajectories {ti}Pt=1 corresponding to k rigid moving objects

relative to a moving camera. People want to cluster these trajectories according to their

corresponding motion. From the affine camera model, the trajectories from one motion span

a linear subspace of R2F whose dimension d is not fixed, thus the motion segmentation

problem is equivalent to clustering a set of points into k subspaces of R2F of unknown

dimension di ∈ [2, 3, 4] for i = 1, . . . , k.

If we put the measurement matrices from k motions together as

W = [W1,W2, . . . ,Wk] Γ ∈ R2F×P ,

where Wi ∈ R2F×Pi is the measurement matrix of i-th motion which has Pi trajectories,

and ΓT is an unknown matrix permuting the P =
∑k

i=1 Pi trajectories.

Based on the factorization in equation (1.6), we have Wi = MiSi. Thus W can be

12

factorized into matrices M ∈ R2F×
∑n
i=1 di and S ∈ R(

∑n
i=1 di)×P as

W = [M1,M2, . . . ,Mk]

S1

S2

. . .

Sk

Γ

= MS Γ.

(1.9)

From equation (1.9), it is intuitive to solve the motion segmentation problem by finding a

permutation matrix Γ, such that the matrixWΓT could be decomposed into a motion matrix

M and a block diagonal structure matrix S. However, the motion subspaces {W ⊂ R2F }ki=1

must be independent to factor W as (1.9) [34]. In other words, for every i 6= j, we must

have dim(Wi ∩Wj) = 0, so that

rank(W) =

k∑
i=1

dim(Wi).

Unfortunately, most pratical motion sequences show partially dependent motions, which

means

0 < dim(Wi ∩Wj) < min(dim(Wi), dim(Wj)) i, j ∈ [1, . . . , k], i 6= j.

For instance, when two objects have the same rotational but different translational mo-

tion [57], or for articulated motions [74].

1.5 Spectral Clustering

The goal of clustering is to partition data points into several groups according to their

similarities. Spectral clustering is one of the widely used clustering techniques, which has

been used in many applications. Compared to the traditional clustering algorithms, such as

k-means, expectation-maximization (EM) algorithm, spectral clustering often gives better

clustering results, and it is also very simple to implement and has relatively fast computa-

tional speed.

Given a set of data points x1, . . . , xn, spectral clustering needs a affinity metric to

measure the similarity between all pairs of data points xi and xj , for example, the Gaussian

similarity function

Aij = e
−‖xi−xj‖

2

2σ2 ,

13

where the parameter σ controls the strength of the connection between points. The affinity is

always a non-negative number in the range [0, 1]. Consider an undirected graph G = (V,E)

with vertex set V = {v1, . . . , vn}. Each vertex vi represents a point xi in the graph, and

wi,j is the weight of the edge connecting vertices vi and vj . The larger the weight is, the

stronger the connection between the two nodes. If weight wij = 0, vertices vi and vj are not

connected. It is of interest to find a partition of the graph such that the weights between

different groups are small and the edges within a group have large weights.

Given a subset of vertices A ⊂ V , and its complement V \ A as Ā, and define the

connections between two sets A,B ⊂ V which are not necessarily disjoint as

W (A,B) =
∑

i∈A,j∈B
wij .

and the degree matrix D as a diagonal matrix in which

Dii =

n∑
j=1

wij .

Several different cuts are introduced to formalize the goal. For example, the mincut ap-

proach simply consists in choosing the partition A1, . . . , Ak which minimizes

cut(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, Āi).

However, the mincut is not robust enough to obtain satisfactory partitions in practice. The

two common objective functions used today are the RatioCut [29] and the normalized cut

(Ncut) [53]. RatioCut measures the size of a subset A of a graph by the number of vertices

in it while the normalized cut measures it by the weights of its edges.

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Āi)

|Ai|
=

k∑
i=1

cut(Ai, Āi)

|Ai|

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Āi)

vol(Ai)
=

k∑
i=1

cut(Ai, Āi)

vol(Ai)
,

where |Ai| is the number of vertices in Ai and vol(A) =
∑

i∈ADii is the sum of the edge

weights between vertices in A. We only discuss the normalized cut in the following since

the case for RatioCut is very similar.

14

Input: a set of points x1, . . . , xn of dimensionality of d from k clusters.

1. Construct the affinity matrix A ∈ Rn×n by some affinity metric if i 6= j, and Aii = 0.

2. Construct D as a diagonal matrix whose (i, i)-element is the sum of A’s i-th row and

S = D−1/2AD−1/2.

3. Compute the leading k eigenvectors u1, . . . , uk of S. and build the matrix U ∈ Rn×k

4. Normalize the rows of U .

5. Treat each row of U as point in Rk and cluster them into k clusters by k-means or any

other algorithm.

6. Assign points xi to their corresponding clusters.

Figure 1.2: The normalized spectral clustering algorithm [48].

Suppose there are k = 2 clusters and define f as the cluster indicator vector by

fi =

√

vol(Ā)
vol(A) if vi ∈ A

−
√

vol(A)
vol(Ā)

if vi ∈ Ā.
(1.10)

It could be approved that the problem of minimizing Ncut could be rewritten to the equiv-

alent problem

min
A
f ′Lf subject to f as in (1.10), Df ⊥ 1, f ′Df = vol(V).

where the Laplacian matrix L is defined as

L = D −W.

By allowing f to take arbitrary real values, the problem could be relaxed as

min
f∈Rn

f ′Lf subject to Df ⊥ 1, f ′Df = vol(V).

After substituting g = D1/2f , the problem is

min
g∈Rn

g′D−1/2LD−1/2g subject to g ⊥ D1/21, ‖g‖2 = vol(V).

One can observe that the problem is in the form of the standard Rayleigh-Ritz theorem,

and the solution g is given by the second eigenvector of D−1/2LD−1/2.

When k > 2, the indicator vectors hj = (h1,j , . . . , hn,j)
′ is defined by

hi,j =

{
1/
√

vol(Aj) if vi ∈ Aj
0 otherwise

i = 1, . . . , n; j = 1 = 1, . . . , k.

15

Then build matrixH by using k indicator vectors as its columns. SinceH ′H = I, h′iDhi = 1,

and h′iLhi = cut(Ai, Āi/vol(Ai), the problem of minimizing Ncut could be changed to

min
A1,...,Ak

Tr(H ′LH) subject to H ′DH = I.

By relaxing the discreteness condition and substituting T = D1/2H, we obtain the relaxed

problem

min
T∈Rn×k

Tr(T ′D−1/2LD−1/2T) subject to T ′T = I.

The solution of the standard trace minimization problem is the matrix T which contains

the first k eigenvectors of D−1/2LD−1/2.

Finally one could yield the normalized spectral clustering method as shown in Figure 1.2.

The computational cost of the Algorithm 1.2 could be analyzed as the following. Some

inexpensive steps are omitted.

1. Construct the affinity matrix: The cost of obtaining an affinity is O(d). Con-

structing the whole affinity matrix A requires O(n2d).

2. Construct matrix S: Since A is a symmetric matrix and D is a diagonal matrix,

calculating S needs O(n2) operations.

3. Eigendecomposition: The complexity of generalized eigendecomposition is O(n3).

4. k-means: Calculating the distance between two points is O(k). For each point, we

need to compare its distance to k centroids and assign it to the cluster with the

smallest distance. The complexity is O(nk2). Plus, k-means runs in an iterative way.

If the iteration number is m, the whole complexity would be O(nk2m).

Combining all the steps, because the number of points n is always much bigger than the

number of clusters k, the dimensionality of points d, and the number of iterations in k-means

m, the overall complexity of spectral clustering is O(n3), in which the eigendecomposition

is the most time-consuming step.

1.6 Dataset

Datasets for quantitatively evaluating algorithms are important to boost the develop-

ment of better algorithms. Scientific research always benefits from objective measurement

to compare among methods. Several datasets are used in the dissertation for comparison

with different algorithms in different situations.

16

1.6.1 The Hopkins 155 Dataset

The Hopkins 155 Dataset1 [66] is a public benchmark for testing feature based motion

segmentation algorithms. It contains video sequences along with some feature points ex-

tracted on the first or the second frame and tracked in the following frames. The datset

also provides the ground-truth segmentation of all the sequences for comparison purposes.

Figure 1.3 shows some sample frames from videos in the Hopkins 155 database with feature

points added on. The sequences contain a great variety of motions, such as degenerate and

non-degenerate motions, independent and partially dependent motions, articulated motions,

nonrigid motions [66], etc.

Based on the content of the video and the motion types, the 155 sequences can be

categorized into three main groups:

Checkerboard sequences: this group includes 104 sequences of indoor scenes which were

taken with a camera under controlled conditions. The checkerboard pattern which

appears on most of the objects is used to assure a large number of tracked points.

Traffic sequences: this group includes 38 sequences of outdoor traffic scenes which were

taken by moving cameras.

Articulated/non-rigid sequences: this group has 13 sequences showing motions from

non-rigid objects, for example, head and face motions, people walking, etc.

Table 1.1: Distribution of the number of points and frames in Hopkins 155 Dataset

2 Groups 3 Groups
Sequences Points Frames Sequences Points Frames

Checkerboard 78 291 28 26 437 28
Traffic 31 241 30 7 332 31

Articulated 11 155 40 2 122 31

All 120 266 30 35 398 29

1Available at http://www.vision.jhu.edu/data/hopkins155/.

17

(a) 1R2RCT B (b) 2T3RCRT

(c) cars3 (d) cars10

(e) people2 (f) kanatani3

Figure 1.3: Sample frames from the Hopkins 155 dataset with tracked points superimposed.

In the 155 sequences, some point trajectories were provided in the respective datasets.

some are produced by a tool based on a tracking algorithm implemented in OpenCV 2.

2The OpenCV library, http://opencv.org/

18

The ground-truth segmentation was assigned by an operator manually. The operator also

removed obviously wrong tracked feature trajectories. The 155 sequences are obtained from

50 videos. Most sequences with 2 motions are extracted from sequences with 3 motions.

The dataset chooses 2 clusters from a sequence with 3 motions and names it as a new

sequence.

Table 1.1 reports the number of sequences and the average number of tracked points

and frames for each category. The number of points per sequence ranges from 39 to 556,

and the number of frames from 15 to 100 [66].

The Hopkins 155 dataset provides a platform for researchers to compare the efficiency

of different algorithms, it boosts the research on multi-motion segmentation. Since its pub-

lication, many sparse motion segmentation methods [69, 50, 37, 18, 41, 78] were developed

and benchmarked on the dataset.

1.6.2 Moseg Dataset

Brox, et al [7] provide a dataset of 26 video sequences with pixel-accurate segmentation

annotation of moving objects3. The dataset has 14 sequences from detective movies and

the 10 car and 2 people sequences from Hopkins 155 dataset. 189 frames are annotated in

pixel-wise accuracy, and not every frame is annotated. More frames are annotated at the

beginning of a shot so that methods which could not handle long sequences can also be

evaluated. In figure 1.4 are shown sample frames and their corresponding ground truth in

the dataset.

The annotated frames allows one to obtain the ground truth of many tracked feature

points. Compared to the Hopkins 155 dataset, the Moseg dataset is more suitable to test

algorithms that could deal with a large number of trajectories or long trajectories. The only

drawback is that there is no ground truth for every frame, so that the segmentation may

not be that accurate, compared to the Hopkins 155 dataset. Nonetheless, the performance

of different algorithms still could be revealed based on the relative ranking on the dataset.

3http://lmb.informatik.uni-freiburg.de/resources/datasets/

19

(a) cars9 (frame 1) (b) people1 (frame 1) (c) marple1 (frame 1)

(d) GT of cars9 (frame 1) (e) GT of people1 (frame 1) (f) GT of marple1 (frame 1)

(g) cars9 (frame 60) (h) people1 (frame 40) (i) marple1 (frame 300)

(j) GT of cars9 (frame 60) (k) GT of people1 (frame 40) (l) GT of marple1 (frame 300)

Figure 1.4: Sample frames from the Moseg dataset and the corresponding ground truth.
Note that cars9 and people1 are sequences from the Hopkins 155 dataset.

20

1.6.3 Middlebury Optical Flow Database

(a) Hidden texture data

(b) Synthetic data

(c) High-speed data for interpolation

(d) Stereo data

Figure 1.5: Different types of data in the Middlebury database.

The Middlebury optical flow database [3] is used for the quantitative evaluation of

different optical flow algorithms. There are four types of data to test different aspects of

21

optical flow algorithms in the database,

1. sequences with nonrigid motion where the ground-truth is determined by tracking a

hidden fluorescent texture.

2. realistic synthetic sequences.

3. high frame-rate video used to study interpolation error.

4. modified stereo sequences of static scenes.

The third type doesn’t have the ground truth. To the other types, there are two kinds of

sequences, one kind with public ground truth which could be used for training, the other

kind with hidden ground truth for test purpose. Sample data is shown in figure 1.5.

This database also proposes a set of evaluation methods to measure the performance of

optical flow algorithms. The average angular error (AE) between a flow vector (u, v) and the

ground truth flow (uGT, vGT) is the angle in 3D space between (u, v, 1.0) and (uGT, vGT, 1.0)

AE = arccos(
1.0 + u× uGT + v × vGT√

1.0 + u× v + v × v√1.0 + uGT × uGT + vGT × vGT

).

The absolute flow endpoint error (EE) is

EE =
√

(u− uGT)2 + (v − vGT)2.

The interpolation error (IE) is the root-mean-square difference between the ground truth

image and the estimated interpolated image

IE = [
1

N

∑
(x,y)

(I(x, y)− IGT(x, y))2]
1
2 ,

where N is the number of pixels. The normalized interpolation error (NE) between an

interpolated image I and a ground truth image IGT is given by:

NE = [
1

N

∑
(x,y)

(I(x, y)− IGT(x, y))2

‖∇IGT(x, y)‖2 + ε
]
1
2 .

The database is freely available on the web at http://vision.middlebury.edu/flow/. Many

researchers have uploaded their results to the database and the database will rank those

algorithms based on the proposed measures.

22

1.7 Outlines

The dissertation is organized as follows. In chapter 2, we will create a framework to

evaluate different feature tracking algorithms. Also in this framework, we will introduce a

feature tracking algorithm based on RankBoost that automatically prunes bad trajectories

obtained by an optical flow algorithm. In chapter 3, we will develop a motion segmentation

algorithm based on spectral clustering. In chapter 4, we will propose a novel motion seg-

mentation algorithm based on learning. In chapter 5, we will establish a scalable motion

segmentation algorithm which is based on the Swendsen-Wang Cuts. In chapter 6, we will

give some concluding remarks and study some interesting problems to guide our future

works.

23

CHAPTER 2

LEARNING A QUALITY-BASED RANKING

FOR FEATURE POINT TRAJECTORIES

2.1 Introduction

Motion segmentation and estimation over tens or hundreds of frames is a difficult prob-

lem that still poses many challenges. Two of these challenges are finding good algorithms

for tracking feature points over long sequences and a framework for accurately evaluating

and comparing these algorithms.

While there exist frameworks and datasets for evaluating optical flow algorithms, such

as the Middlebury dataset [3], the optical flow is evaluated only on two frames in these

datasets. When estimating motion over long sequences, occlusion handling becomes very

important because a large percentage of the image pixels will sooner or later be occluded

in the sequence.

Many motion analysis algorithms based on tracking feature points [62] only track a sub-

set of the image pixels, and these subsets can be different for different algorithms. Evaluation

of the obtained motion fields would ideally require dense ground truth correspondences over

the entire sequence, which is difficult to obtain.

There are efforts on evaluating the performance of a tracker [47] [76] objectively using a

manually annotated dataset. For this reason, a number of metrics are defined in [47] [76]to

evaluate motion trackers comprehensively. However, this raises the question: which metric

is the best for ranking? Or should the metrics be combined in some way, such as by a

weighted sum? A similar issue exists in the Middlebury optical flow dataset [3] where a

number of error metrics are evaluated based on the ground truth.

24

Due to the complexity of reality scenes, no methods usually obtain the best performance

on all sequences being tested. Also, when comparing the performance of trackers, people are

always talking about the average performance. It is not strange that the best tracker would

generate some bad trajectories, while a bad tracker would produce some good ones. Thus,

in order to control the quality of the output trajectories, pruning out the bad trajectories

seems to be a reasonable strategy.

In this chapter we bring two contributions. First, we introduce an error measure for

evaluating feature tracking algorithms on sequences containing objects undergoing rigid

motion under the affine camera model. The proposed measure was observed to be consistent

with the relative ranking of several selected optical flow algorithms on the Middlebury

dataset. Moreover, the proposed error measure was observed to be more robust than an

indirect measure based on evaluating the segmentation error of the generated trajectories.

Second, we introduce a feature tracking algorithm based on RankBoost that ranks the

feature trajectories obtained by any optical flow algorithm from well tracked to badly tracked

and removes a percentage of the badly tracked ones.

The proposed feature tracking algorithm is evaluated using two different error measures:

the proposed error measure and an indirect measure based on motion segmentation accuracy.

Both evaluations show that the proposed feature tracker outperforms other feature trackers

based on optical flow on a number of publicly available image sequences.

2.2 A Method for Evaluating Feature Trackers

As mentioned in the introduction, it is difficult to evaluate feature tracking algorithms

because dense ground truth motion fields over tens or hundreds of frames have not been

obtained so far. There exist indirect error measures such as the segmentation error [7] re-

turned by a predefined motion segmentation algorithm on the obtained feature trajectories.

However, such a measure depends on the segmentation algorithm and tends to be quite

unstable, as it will be seen in experiments.

In this section we investigate a direct error measure that can be used for sequences

containing rigid motions under the affine camera model. The proposed measure is based on

25

the observation that it is unlikely for a badly tracked feature point to accurately follow the

rigid motion model of the object it belongs.

To use the proposed measure, the following are needed for each sequence being evaluated:

1. A set of full length ground truth (GT) feature point trajectories for each motion of the

sequence. These trajectories have been verified to be correct and manually adjusted

if necessary.

2. A dense (manual) segmentation of the first frame of the sequence (optional).

The proposed measure evaluates any given feature point trajectory by obtaining the

motion label based on the dense segmentation of the first frame and the rigid motion model

from the GT feature trajectories for that object.

Assume the set of full length GT trajectories for the rigid motion of interest is ti =

(x1
i , y

1
i , ..., x

T
i , y

T
i)′, i = 1, ..., k. Assume the sequence obeys the affine camera model [66],

which generalizes orthographic, paraperspective and weak perspective projections. From

the trajectories t1, ..., tk, we construct the measurement matrix

W = (t1, t2, ..., tk) =

x1

1 x1
2 ... x1

k

y1
1 y1

2 ... y1
k

.. . . .
xT1 xT2 ... xTk
yT1 yT2 ... yTk

The affine camera model [63, 66] factorization allows us to write

W = MS

where M is a 2T × 4 motion matrix and S is a 4× k matrix representing the 3D structure

of the points. We will also refer to the matrix M as the motion model for the rigid object

containing the trajectories t1, ..., tk.

There is an inherent ambiguity in M and S but we will show that it is irrelevant for our

evaluation purpose.

2.2.1 RMSE Error for One Trajectory

Given a feature point trajectory t = (xb, yb, ..., xe, ye)′ that needs to be evaluated, as-

sumed to belong to this motion, beginning at frame b and ending at frame e will have a

26

corresponding 3D structure point P obtained by least squares:

P = argmin
P
‖t−MbeP‖2 = argmin

P
(t−MbeP)′(t−MbeP) = (M ′beMbe)

−1M ′bet (2.1)

where Mbe is the submatrix of M corresponding to the frames from b to e.

We can estimate P in a least square sense from the entire trajectory t and generate a

most likely rigid motion trajectory as the projection tG = MbeP of P to the frames from b

to e through the motion matrix M .

Finally define the SSE tracking error of the trajectory t as the sum of the squared errors

between the trajectory points and the corresponding points of tG:

SSEW (t) = min
P

(t−MbeP)′(t−MbeP) = t′t− t′Mbe(M
′
beMbe)

−1M ′bet (2.2)

Remark 2.2.1. The SSEW (t) is invariant to the choice of M and S in the decomposition

W = MS.

Proof. Multiplying M by any 4 × 4 invertible matrix A results in multiplying Mbe by

A. It can be easily verified that SSEW (t) does not change when Mbe is multiplied by an

invertible matrix A. �

We can now define the RMSE error for a trajectory t as:

RMSEW (t) =

√
SSEW (t)

e− b+ 1
, (2.3)

which is measured in pixels and tells how well the trajectory fits the motion model of W .

The error measures SSEW (t),RMSEW (t) can be computed for any trajectory t of a

sequence that has the GT feature trajectories, against any measurement matrix W from

the same sequence.

The RMSEW (t) error can be used to evaluate the fitness of the trajectory t to the motion

W , when the GT trajectories are available. If there is more than one motion in the ground

truth, the error RMSE(t) of a trajectory can be obtained as follows:

1. If a dense motion segmentation is available, it can be used to obtain the motion

label of the trajectory and the corresponding measurement matrix W can be used, so

RMSE(t) = RMSEW (t).

27

2. If a dense segmentation is not available, the most likely motion is chosen as the motion

that leads to the smallest RMSE error. Thus, the RMSE error is computed against

all motions, and the smallest one is selected, so RMSE(t) = minW RMSEW (t).

In what follows we will use the second alternative since we don’t have manual segmen-

tations for the first frame of all 47 Hopkins sequences that will be used for evaluation.

We can now define the measure for evaluating the quality of the trajectories obtained

by a feature tracking algorithm as the percentage of trajectories with RMSE larger than a

threshold τ .

RMSEτ =
1

N
|{ti,RMSE(ti) ≥ τ, i = 1, N}| (2.4)

2.2.2 Comparison with the Middlebury Dataset

0 1 2 3 4 5 6 7 8 9 10
5%

10%

15%

20%

25%

Threshold

A
ve

ra
ge

 R
M

S
E

τ e
rr

or

HS
BA
KLT
Brox
Classic+NL

Figure 2.1: The average RMSEτ measure vs the threshold τ for five optical flow algorithms.
The relative order of the algorithms is consistent with the Middlebury ranking for τ ≥ 3.

The accuracy of the proposed error metric was evaluated on five standard optical flow

algorithms: Kanade-Lucas-Tomasi (KLT) [62], Brox [6], Classic+NL [58], Black & Anandan

(BA) [5] and Horn & Schunck (HS) [32]. An brief introduction about the five algorithms

could be found in section 1.3.

The algorithms were evaluated on 47 image sequences from the Hopkins 155 dataset.

The trajectories were obtained using the different algorithms starting from the same points

in the first frame, as described in Section 2.4.1.

28

The relative ranking of these algorithms on the Middlebury dataset was compared with

the ranking obtained from the proposed measure RMSEτ with a range of thresholds τ .

In Figure 2.1 is shown the average RMSEτ of the five algorithms for a range of values τ .

The relative order based on the RMSE measure is consistent with the Middlebury relative

ranking for a large range of values τ ≥ 3.

The only exception is the KLT algorithm that ranks better than in the Middlebury

ranking.

We will see in the experimental section that the KLT performance changes with the

strength of the feature points, so it would make sense that it ranks better than in the

Middlebury dataset because the Hopkins sequences contain a majority of checkerboard

images with strong feature points.

On the other hand, in Figure 2.6 are shown two indirect error measures based on motion

segmentation. One can see from the graph that the measures are quite unstable and are

not consistent with the Middlebury ranking.

2.3 A Trajectory Pruning Algorithm based on RankBoost

In this section we present a method for ordering feature point trajectories by predicting

their relative quality using RankBoost [22]. This ranking is used to remove a percentage

(e.g. 20%) of the trajectories predicted to have the worst quality.

2.3.1 The RankBoost Algorithm

We will use RankBoost [22] to learn an ordering of the feature point trajectories obtained

by any feature tracker or optical flow algorithm.

RankBoost is a boosting algorithm that combines a number of ranking functions hi :

X → R, i = 1,M into a single ranking function H : X → R for instances x ∈ X .

Given a set of training instances S = {xi ∈ X , i = 1, n}, we assume that a ground truth

ranking is given on these instances as a function Φ : S×S → R, where Φ(x0, x1) > 0 means

x1 should be ranked above x0 and vice versa.

RankBoost attempts to find a ranking that is similar to the given function Φ. In order

to formalize this goal, construct the distribution D by D(x0, x1) = c · max{0,Φ(x0, x1)},

29

Given: initial distribution D over X × X .

Initialize: D1 = D.

for t = 1, . . . T do

1. Train weak learner using distribution Dt to get weak ranking ht.

2. Choose αt ∈ R.

3. Update: Dt+1(x0, x1) = Dt(x0,x1)exp(αt(ht(x0)−ht(x1))))
Zt

where Zt is a normalization

factor (chosen so that Dt+1 will be a distribution).

end for

Output the final ranking: H(x) =
∑T

t=1 αtht(x).

Figure 2.2: The original RankBoost algorithm [22].

where c is a constant to make
∑

x0,x1
D(x0, x1) = 1. The learning algorithm tries to find a

final ranking H : X → R that minimizes the weighted sum of wrong orderings:

rlossD =
∑

(x0,x1)∈S×S

D(x0, x1)[[H(x1) ≤ H(x0)]]

where the notation [[π]] is defined to be 1 if predicate π holds and 0 otherwise.

Like other boosting algorithms, RankBoost operates in rounds. In each round t, Rank-

Boost maintains a distribution Dt on S × S and selects the best weak ranker ht along

with its corresponding weight αt from a large set of candidate weak rankers. The weight

Dt(x0, x1) will be decreased if ht(x1) > ht(x0), and increased otherwise. Thus Dt will tend

to concentrate on the pairs that are hard to rank. The final ranking H is a weighted sum of

the weak rankers selected in each round. The algorithm is given in more detail in Figure 2.2.

2.3.2 Features Used by the Weak Learners

The input to a weak learner h : X → R is a trajectory x ∈ X . Based on the trajectory,

shape and appearance features are generated. The process of obtaining the features is

illustrated in figure 2.3.

The shape features are based on the position information along the trajectory. The

features are parametrized by two attributes: the start time s, and the time gap t between

two adjacent selected points. Based on these parameters we generate features that are

supposed to measure constant velocity along the trajectory. For example, if we denote the

30

· · ·
s

l

l

t

Figure 2.3: The features used for ranking are trajectory shape features and intensity coher-
ence features. By controlling the parameters s, t, and l, an over-complete feature represen-
tation of the trajectory can be obtained.

positions of the points along a trajectory as pi, i = 1, . . . , T , the features are

fst =
L−1∑
i=1

‖2 ∗ ps+it − ps+(i−1)t − ps+(i+1)t‖.

where L is the index of the last point that we could pick. The appearance features are

intensity coherence features based on square image patches along the trajectory. The pa-

rameters of these features are s, t as in the geometric features and the side length of the

square l. Different features are obtained using different brightness constancy measures such

as SSD, normalized cross-correlation, etc. By changing the s, t, l and brightness constancy

measure f , we get an over-complete feature representation of each trajectory. From the

range of parameters used in our experiments, we obtained about 1200 features.

These features are easy to obtain and fast to compute. Each weak learner is based on

one of these features, and RankBoost will select the ones that are most useful in obtaining

an accurate ranking of the training set.

2.3.3 Training the Weak Learners

We want the weak rankers have range [0, 1] rather than the actual values of the ranking

features. For this reason, a threshold-based weak ranking h is adopted

h(x) =

{
1 if fi(x) > θ
0 if fi(x) ≤ θ (2.5)

where θ ∈ R. A weak ranking is derived from a ranking feature fi by comparing the score

of fi to a threshold θ.

31

A set of candidate thresholds {θj}Jj=1, θ1 ≥ . . . ≥ θJ are chosen for each weak learner.

We pick the thresholds evenly in the range of a feature in the training set. For a feature

fi, the maximum and minimum value in the training set is max(fi) and min(fi). The

thresholds for it are set to

θj = max(fi)−
j − 1

J − 1
(max(fi)−min(fi)), j = 1, . . . , J. (2.6)

Based on the discussion in [22], if a weak ranker has the form as equation ((4.7)), it

should be trained to maximize |r| where r is defined as

r =
∑

x:fi(x)>θ

π(x)

where π(x) =
∑

x′(D(x′, x)−D(x, x′)).

At each boosting iteration, we exhaust all weak rankers to find the one that maximizes |r|
along with its associated θ value. If rmax is the maximal value of |r|, then the corresponding

weight α is calculated as

α =
1

2
ln(

1 + rmax

1− rmax
).

2.3.4 Training the Ranking Algorithm

Training of the trajectory ranking algorithm requires a pool of weak rankers and ground

truth ranking information in the form of a distribution D over all pairs of training examples.

Given a set of trajectories obtained by a feature tracking algorithm, the weak rankers are

trained at each boosting iteration as described in Section 2.3.3, based on features extracted

from the given trajectories and the image sequences.

The ground truth ranking of the trajectories is obtained from the RMSE error (2.3)

based on the GT labeling of the trajectories into a number of rigid motions. All trajectories

belonging to the same moving object from a video sequences can be ranked by their RMSE

error. Obviously, a trajectory with a smaller error should be ranked above another one with

a larger error. The initial distribution D is constructed based on the relative rank of the

trajectories. Actually, the exact value of D(i, j) is not important, so we simply put it 0 or

1 to indicate the rank between trajectories. Let the label and RMSE error of a trajectory

xi be li, ei, respectively. The ranking D(i, j) between trajectories xi and xj is calculated as

32

D(i, j) =

{
1 if li == lj and ei > ej
0 Otherwise

(2.7)

With the initial distribution D, the feature set and candidate weak rankers, the RankBoost

training algorithm can be applied to get the boosted ranking algorithm. The process is

explained in Algorithm 1.

Algorithm 1 Training the Trajectory Ranking Algorithm

Given: A set of trajectories with their labels and RMSE errors (2.3)

1. Compute features for each trajectory as described in section 2.3.2.

2. Calculate the candidate thresholds (equation (2.6)) for each feature.

3. Build the initial distribution D by equation (2.7), and normalize it.

4. Perform T iterations of RankBoost with weak rankers (4.7). In each iteration, obtain

a weak ranking ht with threshold θt and weight αt.

Output: The final ranking function: H(x) =
∑T

t=1 αtht(x).

2.3.5 Pruning Feature Trajectories with the Ranking Algorithm

The trained ranking function can be used to rank a set of trajectories produced by any

feature tracker from a video sequence. Based on the final rank, a percentage of the worst

trajectories can be discarded. The pruning algorithm is summarized as Algorithm 2.

In this way, one could obtain a more refined set of trajectories. It is worth noting that

in this process no a priori information – such as segmentation, or RMSE error – is needed

to obtain the rank. Thus, the algorithm could be widely used for videos with or without

ground truth.

Algorithm 2 Feature Pruning using RankBoost

Given: a video sequence.

1. Detect interest points in the first frame.

2. Track interest points in all frames using a feature tracker,

3. Apply the trained ranker to sort the trajectories.

4. Discard the worst p% of the trajectories.

33

2.4 Experiments

In this section we present an evaluation of the proposed pruning-based ranking algo-

rithm on the 47 video sequence of the Hopkins 155 Dataset [66] that contain ground truth

trajectories for all motions that are present.

2.4.1 Trajectory Generation

For the comparison purpose, five optical flow algorithms were employed to generate tra-

jectories. They are, the Kanade-Lucas-Tomasi (KLT) algorithm [62], the Brox algorithm [6],

the Classic+NL algorithm [58], the Black & Anandan (BA) algorithm [5] and the Horn &

Schunck (HS) algorithm [32]. When generating trajectories, Shi-Tomasi features [55] were

detected on the first frame of the video, and then the corresponding feature points in the

following frames were extracted by the five optical flow algorithms. Because many motion

segmentation algorithms [37, 18] require the input trajectories to have the same length, the

incomplete trajectories that were stopped before the last frame were discarded. Moreover,

in the spirit of fairness, if any of the five algorithms stopped the trajectory from a feature

point early, the trajectories of all five algorithms starting at that point were discarded. So

in the end, the trajectories produced by all algorithms for one video sequence will share the

same set of starting points.

2.4.2 Dataset and Evaluation Methods

We evaluated the proposed algorithm and error measure on the Hopkins 155 Dataset.

The 155 sequences in the Hopkins 155 dataset are actually extracted from 50 video se-

quences. Among them, there are three sequences missing the ground truth for the back-

ground motion: articulated, three-cars and arm. Since we need ground truth trajectories

for all motions in the video, these three sequences were not included in the evaluation,

remaining with 47 video sequences.

RMSE Error Measure. The ground truth trajectories provided by the Hopkins

dataset enable us to calculate the RMSEτ error (2.4) for each algorithm averaged over the

47 sequences. It should be mentioned that the number of motions in the ground truth may

be smaller than that in the video, but most of the motions that are not in the ground truth

34

are not present in all frames, and they always cover small regions in the frame, so it is

reasonable to ignore their impact and simply set the number of motions as given in the

ground truth.

Segmentation Error Measure. Of the 50 video sequences of the Hopkins 155 dataset,

Brox et.al. [7] annotated 10 car and 2 people sequences in the Moseg dataset. The first frame

is always annotated to allow the evaluation of segmentation methods which could not deal

with long trajectories. Based on this ground truth, any segmentation result obtained on

any set of trajectories can be evaluated. This facilitates us to use the segmentation as an

indirect measure of the performance of different trackers. There are five measure about

segmentation proposed in [7]:

density The density of the tracked points.

overall clustering error The number of bad trajectory labels divided by the total number

of labeled trajectories.

average clustering error Similar to the overall clustering error, the average clustering

error is the average of the clustering error for each region separately. It gives more

weight to small objects.

over-segmentation error The number of clusters that need to be merged to obtain the

ground truth segmentation. This error is used to prevent obtaining a small error by

producing a severe over-segmentation.

number of extracted objects The number of regions covered with a small error.

Among the five measures, the density is important for dense motion segmentation. In

our experiments, the density is fixed at the very beginning since we use the Shi-Tomasi

features as the starting points and we use the same starting points for all algorithms being

compared. Moreover, the sparse motion segmentation methods [37] [18] that will be used

for indirect evaluation ask for the number of motions in advance, so it has no meaning

to measure the number of extracted objects here. In this case, the over-segmentation is

hard to happen, so we do not measure the over-segmentation error either. As a result,

two significant measures are adopted, the overall clustering error and the average clustering

error. These two error measures will be evaluated on the 12 sequences that have a dense

GT motion segmentation of the first frame.

35

2.4.3 Results

The RankBoost algorithm was trained on trajectories generated by the Classic+NL

method from four image sequences and tested on all 47 sequences. From the pool of more

than 1200 features, 150 were selected by RankBoost during training. The number of candi-

date thresholds J was set to 65. The ground truth ranking was obtained using the RMSE

errors and trajectory labels based on the GT trajectories, as described in Section 2.3.4.

We evaluate the performance of the proposed algorithm using the two error measures

described above. The first error measure is the proposed RMSEτ error (2.4) that measures

directly the quality of the trajectories based on rigid motion models. The second error

measure is an indirect measure in which the obtained trajectories are segmented using a

motion segmentation algorithm and the segmentation error is evaluated on the dense GT

motion segmentation of the first frame. The performance using these two error measures is

discussed in more details below.

RMSE Error. First, we evaluate the average RMSEτ error (2.4) of all the trajec-

tories. Starting with a large pool of trajectories, the pruning rate p% is changed for the

RankBoost algorithm, to obtain different numbers of trajectories. For the other algorithms,

the trajectory pruning can be controlled based on the strength of the Shi-Tomasi feature

points. For different values of the pruning rate, the corresponding average RMSE error can

be computed for the sets of trajectories obtained by the different algorithms. The average

RMSE5 error measure vs. the pruning rate from 0% to 80% is shown in figure 2.4, left.

From figure 2.4, left, one could find that the RMSE5 error of BA, HS, Classic+NL and

Brox algorithm is almost unchanged with respect to the pruning rate. This is understand-

able because these methods are independent of the selection of feature points (up to a

point). However, the RMSE error of the KLT algorithm decreases moderately as the prun-

ing rate is increased. This is indication that the Shi-Tomasi features have an impact on the

performance of the KLT tracker. Better Shi-Tomasi features will lead to better performance

of the KLT algorithm. There is no wonder that the two are always used together. Among

all the algorithms, the RankBoost algorithm performs the best according to the RMSE5

measure. When the pruning rate is 80%, its average RMSE5 error is less than 1%, while

that of the second best (the Classic+NL algorithm) is more than 9%. Also, as the prun-

36

0% 10% 20% 30% 40% 50% 60% 70% 80%
0%

5%

10%

15%

Pruning rate

A
ve

ra
ge

 R
M

S
E

5 e
rr

or

HS
BA
KLT
Brox
Classic+NL
Rankboost

0 1 2 3 4 5 6 7 8 9 10
0%

5%

10%

15%

20%

25%

Threshold

A
ve

ra
ge

 R
M

S
E

τ e
rr

or

HS
BA
KLT
Brox
Classic+NL
Rankboost

Figure 2.4: Left: the RMSE5 error (2.4) of the trajectories sets generated by different
algorithms for different pruning rates. Right: the RMSEτ error vs. the threshold τ when
the pruning rate is set to 20%. The relative rank of the algorithms is consistent with the
Middlebury ranking for a large range of thresholds.

ing rate increases, the error decreases much faster than the KLT algorithm. In particular,

one could see the large difference in RMSE error between the RankBoost and Classic+NL

algorithm, and keep in mind that the trajectories evaluated in the RankBoost algorithm

and the Classic+NL algorithm were actually the same before pruning. The reason that the

RankBoost algorithm could get better results is that the trained algorithm can predict very

well which trajectories might not have been tracked properly.

In figure 2.4, right, is shown the RMSEτ error vs the threshold τ for the pruning rate

of 20%. From the figure, one could find that the RankBoost method with 20% pruning

outperforms the other algorithms according to the RMSEτ measure for any value of τ ∈
[2, 10]. Moreover, we find that the relative performance of the tracking algorithms could

be measured by the order of the curves for a given threshold τ . In figure 2.4, right, the

performance order is Classic+NL > Brox > KLT > BA > HS for all values of the threshold

τ ∈ [2, 10]. This order is very similar to the order of the average endpoint error and average

angle error in the Middlebury dataset, which is Classic+NL > Brox > BA > HS > KLT.

As mentioned above, the Shi-Tomasi corner features could boost the performance of the

KLT algorithms, it is better to take the KLT out of the list, then the orders are exactly the

same. This study validates the power of the proposed RMSE error. We could pick other

37

pruning rates than 20%, but the results will be almost the same.

Figure 2.5 shows the generated trajectories from different algorithms on a sample se-

quence in the Hopkins 155 dataset. The number of trajectories is kept the same and the

pruning rate is 20%. It is clear the Rankboost algorithm prunes the trajectories in the path

of the car and obtains better trajectories.

Segmentation Error. Another way to compare the performance of different feature

tracking algorithms is by an indirect measure such as the segmentation error. The trajecto-

ries obtained by different tracking algorithms are segmented using a motion segmentation

method and a measure of segmentation error is reported. Observe that this is an indirect

measure since it depends on an additional step, that could introduce additional noise in the

evaluation.

We use the state-of-the-art motion segmentation algorithm sparse subspace clustering

(SSC) [18]. As explained before, there may be some moving objects in the first frame that

are not present in all frames. In order to evaluate the segmentation error accurately, we

only consider the ’major’ motions in the video, so the number of motions for the motion

segmentation is set to the value given by the ground truth in the Hopkins 155 dataset. We

omit other motions when calculating the segmentation error.

The segmentation error is averaged over the 12 video sequences that have the dense

ground truth motion segmentation of the first frame. Because of using fewer image sequences

for this evaluation than for the RMSE measure (12 instead of 47), this measure is expected

to be less accurate.

Furthermore, the motion segmentation imposes limitations on the maximum pruning

rate that can be used. Since the rank of the measurement matrix from one rigid motion is

at most four, many segmentation methods require that the number of trajectories in one

motion is at least four. Because of this requirement, the maximum pruning rate that can

be handled by the motion segmentation is 25%. The RMSEτ error described above does

not suffer from this limitation, allowing a pruning rate of 80% or more.

In figure 2.6 are shown the overall clustering error and the average clustering error for

different pruning rates, averaged over the 12 sequences with dense GT motion segmentation.

These measures were explained in Section 2.4.2.

38

Figure 2.5: Trajectories from different tracking algorithms on the cars7 sequence from the
Hopkins 155 dataset. Row 1 to row 6: Brox, Classic+NL, BA, HS, KLT, Rankboost. The
number of trajectories is kept the same and the truncation rate is 20%. From left to right:
frame 1, 13, 25. The images were cropped for clarity.

39

0% 5% 10% 15% 20% 25%

10%

14%

18%

22%

SSC

Pruning rate

O
ve

ra
ll

cl
us

te
rin

g
er

ro
r

Brox
Classic+NL
BA
HS
KLT
Rankboost

0% 5% 10% 15% 20% 25%
4%

8%

12%

16%

20%
SSC

Pruning rate

A
ve

ra
ge

 c
lu

st
er

in
g

er
ro

r

Brox
Classic+NL
BA
HS
KLT
Rankboost

Figure 2.6: The overall clustering error (left) and average clustering error (right) from 12
annotated sequences for different pruning rates.

One could find that the RankBoost algorithm enables to reduce the overall clustering

error effectively, constantly decreasing as the pruning rate is increased. Moreover, the Rank-

Boost algorithm also constantly reduces the average clustering error when the pruning rate

is at least 10%. These segmentation experiments also show that the RankBoost algorithm

improves the quality of the feature trajectories.

2.5 Conclusions

In this chapter, we presented a RMSE error measure based on factorization of the affine

camera model. By comparing the percentage of trajectories whose RMSE error is above a

threshold for a number of tracking algorithms, we find the relative order of the algorithms

is consistent with that in the Middlebury dataset. Based on this RMSE trajectory error

measure and RankBoost, we introduce an algorithm for ranking the quality of feature point

trajectories. One feature of the algorithm is that it does not require any priori information

to rank trajectories, and it can be used to rank the trajectories obtained with any feature

tracker. The comparative study has demonstrated that the proposed algorithm obtains

smaller RMSE errors than other selected feature tracking algorithms after pruning. An

indirect measure based on motion segmentation was also employed to evaluate the perfor-

mance of different trackers. The segmentation evaluation shows again that the RankBoost

algorithm can effectively improve the quality of the obtained feature point trajectories.

40

CHAPTER 3

MOTION SEGMENTATION BY VELOCITY

CLUSTERING WITH ESTIMATION OF

SUBSPACE DIMENSION

3.1 Introduction

Motion segmentation has been studied mostly in the case of the affine camera model,

under which the vectors of feature points from each rigid motion lie in a subspace of dimen-

sion four or less [63], thus the motion segmentation problem can be posed as a subspace

separation problem. The main difficulty in subspace separation is that it is usually hard

to determine the number of subspaces and their dimension. For example, tracked feature

points from a static background might lie on a 2-dimensional subspace, while points from

other motions might lie on subspaces of dimension 3 or 4. Moreover, practical motion scenes

usually exhibit partially dependent motions.

Many methods [18], [37], [50], [68], [75] project the feature trajectories onto a smaller

dimensional space and perform clustering on the projected points. This approach not only

provides computational advantages, but also imposes some sort of a spatial prior on the

point trajectories.

Unlike earlier attempts to find a best projection dimension for subspace separation, this

chapter proposes a new motion segmentation method to perform subspace separation for

all possible dimensions. Based on this idea, we propose a motion segmentation approach

which performs spectral clustering in many dimensions, and then carefully selects the result

with the best separability using a novel clustering error measure.

41

...

High Dimensional Trajectory Data Final Clustering Result

min(E)Projection &
Clustering

E E E

Figure 3.1: Illustration of the process of selection of the best result after performing spectral
clustering in spaces of dimensions in the range [dmin, dmax]. The selection is based on a
clustering error measure described in Section 3.2.4.

3.1.1 Related Work

Early works of multiframe 3-D motion segmentation based on matrix factorization [14],

[25] find the segmentation by thresholding the entries of a similarity matrix built from the

factorization of the matrix of data points. However, the thresholding process is very sensitive

to noise and such methods are only provably correct when the subspaces are independent.

The Generalized Principal Component Analysis (GPCA) [68] is an algebraic method for

subspace separation which could deal with dependent motions, but it is not robust to

data contaminated by outliers and noise. Some statistical methods, such as Agglomerative

Lossy Compression (ALC) [50], RANSAC [20], Multi-Stage Learning (MSL) [57], etc, can

42

handle noise in the data, but their assumptions about the distribution of the noise are not

optimal. In recent years, spectral clustering has become a widely used method in motion

segmentation. Based on the fact that a point and its k-nearest neighbors (k-NNs) often

belong to the same subspace, Local Subspace Affinity (LSA) [75], Spectral Local Best-fit

Flats (SLBF) [78], Locally Linear Manifold Clustering (LLMC) [27] use the angle or distance

between a point and the subspace fitted through the point and its k-NNs to construct the

affinity measure for spectral clustering. However, the neighbors of a point could belong to

different spaces, especially when close to the intersection of two subspaces. Also, the selected

neighbors may not span the underlying subspace. The spectral clustering (SC) method [37],

which uses the angular information between trajectories as affinity, is simple and efficient,

but its criterion to select the best subspace dimension is noise-sensitive. More recently, some

approaches such as Spectral Curvature Clustering (SCC) [12], Sparse Subspace Clustering

(SSC) [18], and Low-Rank Representation (LRR) [41], use the so-called sparsity information

as the affinity measure. Optimization is always involved in these methods, which makes

them computationally expensive.

3.1.2 Our Contributions

In this work, we provide two main contributions. First, we use the velocity vector as a

preprocessing step to reduce the influence of the errors accumulated during feature point

tracking. This step proves to be very important for improving performance. Second, we

present a method for estimating the optimal projection dimension for spectral clustering.

We use the angular information between the points proposed in SC [37] to build the affinity

matrix. Compared to the SC algorithm, the proposed method presents a different strategy

for selecting the best subspace dimension. The SC finds the best dimension before per-

forming the spectral clustering, and the dimension is determined by the so called relative

gap which is related to the eigenvalues of a Laplacian matrix L . However, when the noise

level is large, the relative gap is not very effective. Instead, our method performs spectral

clustering after projecting to each of the possible dimensions in a range [dmin, dmax], and

then selects the best result based on a novel clustering error measure. The advantage of the

proposed strategy is that the performance is much more robust to data corrupted by noise.

Moreover, the complexity of the resulting algorithm remains low as long as the number

43

of motions is small. When applied to the motion segmentation data from the Hopkins155

database [66], the proposed method is competitive with the current state-of-the-art methods

both in terms of segmentation accuracy and computational speed.

3.2 Motion Segmentation by Spectral Clustering

In this chapter, we only focus on the problem of segmentation of tracked feature point

trajectories. The goal is to find labels for all trajectories, to group them according to their

corresponding motions. Also, we assume that the number of different motions is already

known.

3.2.1 Noise Reduction using Velocity Vectors

Methods for reducing the noise level in the trajectory data is an area that did not receive

enough attention in previous work. Noise is an inevitable by-product of feature tracking.

Tracking errors are introduced with each new frame, due to factors such as aliasing, non-

constant brightness, lack of texture, occlusion, and so on. These errors tend to accumulate

and the total tracking error tends to grow as the number of frames increases.

In order to reduce the effect of the accumulated error in the motion segmentation, we

use the velocity vector to characterize the trajectories, which is defined by

[x1 − x2, y1 − y2, . . . xF−1 − xF , yF−1 − yF , xi, yi]T , i ∈ [1, · · · , F] (3.1)

With the exception of the last two rows, the entries of the other rows are replaced with the

corresponding velocities. In the last two rows, the feature locations of the i-th frame are

kept. The selection of i is not crucial. In this chapter, we use i = F but we could as well

use i = 1 for example. The advantage is that the velocities in each frame contain only the

tracking error from the previous frame to the current frame, and not the error accumulated

from the starting frame. A similar velocity has been used to measure the distance between

trajectories for motion segmentation in [7].

It is easy to see that when the measurement matrix W ′ is built from the velocity vectors,

no information is lost since the original measurement matrix W can be recovered from W ′

by simple row operations. Because of this, the ranks of W and W ′ are the same. In other

44

words, the subspace clustering problem has not been changed. However, even though the

velocity matrix differs from the original measurement matrix only by row operations, the

subspace projections are different because these row operations cannot be represented by a

rotation matrix.

Table 3.1: The SSE and variance of the distances from the projected points to the fitted
subspaces in 3D for a synthetic experiment. The projected points were generated from
trajectories with different noise levels.

SSE Variance

Distance Vector (No noise added) 0 0
Velocity Vector (No noise added) 0 0

Distance Vector (SNR = 10) 0.256e-5 0.0011e-5
Velocity Vector (SNR = 10) 0.106e-5 0.0004e-5

Distance Vector (SNR = 5) 1.058e-5 0.005e-5
Velocity Vector (SNR = 5) 0.208e-5 0.001e-5

The noise reduction effect of using the velocity vector can be well observed in a synthetic

experiment. For this purpose, 242 synthetic trajectories of length 20 were generated for two

different motions, perfectly following the affine camera model. The starting feature points

were randomly chosen in the first frame, and different levels of Gaussian tracking errors

were introduced based on the displacement of feature points. If denote the tracker as f ,

and noise as n, to a point pi in frame i, the tracked point in the next frame would be

pi+1 = f(pi) + n.

The trajectories were projected to a 3D subspace by truncated SVD. A plane was fitted

in a least squares sense to the projected points of each motion. The sum of squared error

(SSE) and variance of the distances from projected points to the fitted planes are shown

in table 3.1. One could see that by using velocity vectors the noise is reduced, and the

reduction is greater when the tracking errors are larger. Since the projected points obtained

by velocity clustering are closer to satisfying the planarity assumption, it should be expected

that the segmentation results would also be better.

45

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 3.2: Spectral clustering of lines with a distance-based affinity mixes points from
different subspaces (left), while the angle-based affinity (3.2) separates them very well
(right).

3.2.2 Spectral Clustering of Subspaces

Spectral clustering [53], [48] is a popular technique for solving motion segmentation

problems [73], [49], [75], [78], [27], [18], [41], [12]. One challenge in applying

spectral clustering is the construction of a good affinity matrix. Two points that lie in

two different subspaces and are near the intersection of the subspaces may be close to each

other. Conversely, a pair of points in the same subspace could be far from each other. As

a consequence, one cannot use the typical distance-based affinity.

SC [37] proposes an affinity measure based on the angle between two vectors, defined

by

Aij = (
xTi xj

‖xi‖2‖xj‖2
)2α, i 6= j, α ∈ N (3.2)

where xi, xj are two vectors. The parameter α > 1 is used to increase the separation and

should be tuned according to the noise level. It has been proved [37] that the proposed affin-

ity measure (3.2) guarantees that each point xi has a higher connection with its own group

than the others. Figure 3.2 shows the power of angle-based affinity over the distance-based

affinity in clustering 1D subspaces in 2D. This chapter also uses the angular information

to build the affinity matrix. While SC [37] suggests to set α = 4 for motion segmentation,

in the experiments of section 3.4, we find that α = 2 could produce better results for our

algorithm.

46

3.2.3 Best Subspace Dimension

Most motion segmentation methods usually require the projection to a low dimensional

space where the clustering is performed. The dimension of this projection space has a

large impact on the speed and accuracy of the final result. GPCA [68] suggests to project

trajectories onto a 5-dimensional space. However, five dimensions are not sufficient to com-

plex scenes, such as scenes with articulated or nonrigid motions. Motivated by compressive

sensing [17], ALC [50] chooses to use the sparsity-preserving dimension

dsp = min
d≥2D log(2F/d)

d

for D-dimensional subspaces (with D = 4 for motion segmentation). SC [37] wants the

intersection of different subspaces to have minimal dimension and proposes to set dimension

d = kD+ 1, where k is the number of motions and 1 ≤ D ≤ 4 for motion segmentation; the

d used for clustering is searched in range [k + 1, 4k + 1] by some relative gap.

The main difficulty for selecting the best subspace dimension is that the dimension

of one affine subspace is not fixed. If one tries to find the correct dimension by setting a

threshold of noise, this scheme will not work well because different scenes may have different

thresholds.

The search strategy in SC [37] is innovative, but the range of possible dimensions that

are searched is a parameter that needs to be tuned. Moreover, the criterion to select the

best dimension in SC [37] is related to the noise level, and is not optimal in some scenarios,

as we will see in experiments.

In this chapter, we don’t look for the best subspace dimension directly. Instead, we

employ an exhaustive strategy. Since the best dimension is unknown and hard to determine,

our method performs clustering after projecting to spaces of all possible dimensions, then

the best result is chosen by a clustering measure. Based on this idea, finding the best

subspace dimension is not necessary here. What we need to do is to find a bound on the

possible dimensions.

The dimension of one affine subspace S is not fixed but is bounded by

2 ≤ dim(S) ≤ 4.

47

If there are k linear affine subspaces in general position embedded in space Sk, we would

expect

2k ≤ dim(Sk) ≤ 4k.

This is the range of space dimensions that will be used in our method. The best dimension

will be determined using the clustering error measure defined in the next section.

3.2.4 Motion Error Measure

When the spectral clustering is performed in the selected spaces, a number of results

will be obtained. A question is raised naturally: how to select the best one? In this paper

we investigate two types of estimators of the segmentation error, both based on a RMSE

error measure for each trajectory.

The Tomasi-Kanade factorization [63] allows us to write the registered matrix W̃ in

equation (1.8) as

W̃ = M̃S̃

where M̃ is a 2F × 3 matrix and S̃ is a 3×P matrix. There is an inherent ambiguity in M̃

and S̃ but we will show that it is irrelevant for the error measure.

Any registered trajectory t̃ in W̃ will have a corresponding point P̃ ∈ R3 obtained by

least squares:

P̃ = argmin
P̃

‖t̃− M̃P̃‖2.

We define the RMSE error of t̃ as

RMSEW̃ (t̃) =

√
minP̃ ‖t̃− M̃P̃‖2

F
(3.3)

The RMSE error is measured in pixels and can be viewed as the tracking error for one

trajectory.

Remark 3.2.1. The RMSEW̃ (t̃) is invariant to the choice of M̃ and S̃ in the decomposition

W̃ = M̃S̃.

Proof. To any 3× 3 invertible matrix A, W̃ = M̃AA−1S̃. It can be easily verified that

RMSEW̃ (t̃) in equation (3.3) does not change when M̃ is multiplied by an invertible matrix

48

A. Moreover, any decomposition W̃ = M̃ ′S̃′ has M̃ ′ = M̃A for some invertible matrix A.

�

Given a labeling L of the trajectories, obtain for each label l the registered measurement

matrix W̃ l containing all trajectories with label l. Based on W̃ l we define two types of

estimators of the segmentation error.

The first type is just the sum of the RMSE errors of all registered trajectories based on

their corresponding motion matrices

E(L) =
k∑
l=1

∑
i,L(i)=l

RMSEW̃ l(t̃i). (3.4)

The second type makes the contribution of each registered trajectory comparing to a

threshold τ

Eτ (L) =

k∑
l=1

∑
i,L(i)=l

I(RMSEW̃ l(t̃i) ≥ τ). (3.5)

where I(·) is the indicator function taking on value 1 if its argument is true or 0 otherwise.

0% 5% 10% 15% 20%
50%

60%

70%

80%

90%

100%

Difference in misclassification error

A
ve

ra
ge

 p
er

ce
nt

 o
f c

or
re

ct
 d

et
ec

tio
n

E
E

0.4

E
1

Figure 3.3: The average percentage of times the proposed error estimators find the better
segmentation out of two segmentations vs. their difference in misclassification rates for
sequences with 3 motions in the Hopkins 155 dataset. If one segmentation is much better
than the other, it will be found most of the time.

In a perfect segmentation result, each trajectory would have a small RMSE error because

of the affine camera model, resulting in a small clustering error E(L) and Eτ (L).

49

A number of segmentation results can be obtained by projecting the original trajectories

to spaces of different dimensions and performing clustering in those spaces. The problem

is how to select from the obtained segmentations the one with the smallest error. For that

we can use an estimator that correlates well with the segmentation error.

We propose to use the measures E(L) and Eτ (L) to rank the obtained segmentations.

We evaluated the capability of these error measures to find the better one out of two seg-

mentations on the sequences with 3 motions in the Hopkins 155 dataset (See section 3.4). It

is expected that when one segmentation is much better than the other (i.e. the error differ-

ence is large), the better segmentation should be found more often. Different segmentations

were obtained in this way: for one sequence, a random set of p% of trajectories (p ≤ 50 is a

random number) were assigned random labels, while the labels of the remaining trajectories

were untouched. 500 sets of segmentation were generated for each sequence (25000 segmen-

tations in total for all sequences). At last, we calculated the difference in misclassification

rate and the average correct detection rate shown in Figure 3.3. One can see that if one

segmentation is much better than the other, it will be found most of the time. Also, E(L)

always outperforms the other two estimators. Thus in this paper, E(L) is adopted.

3.3 Complete Procedure

Dimension Reduction. Dimension reduction seems to be a standard procedure

for motion segmentation by spectral clustering in [37], [50], [68]. It can improve the

computational tractability without adversely affecting the quality of the segmentation, since

in general the projection onto an arbitrary d-dimensional space preserves the multi-subspace

structure of data lying on subspaces with dimensionality strictly less than d. There are two

different strategies in dimension reduction: the random sampling [12], [18] and the truncated

SVD [14], [37], [57]. This paper uses the latter method for dimension reduction from

W ′ ∈ R2F×P to X = [x1, ..., xP]T ∈ RD×P in our framework, where D is the dimension

of the subspace. The truncated SVD is related to the factorization-based methods [13],

[34], which use the SVD, W = UΣV T , to obtain a shape interaction matrix Q = V V T . In

order to deal with the noise and dependencies, we use the truncated SVD of the velocity

measurement matrix, W ′ ≈ UDΣDV
T
D .

50

Details of Spectral Clustering. After the projection for dimension reduction,

the spectral clustering method is applied to obtain the clustering result.

The affinity matrix is constructed using the angular affinity metric in equation (3.2).

In fact, the affinity matrix can be easily calculated as Q = (ṼDṼ
T
D)2α, where ṼD is the

VD with normalized rows. This normalization ensures that only the angular information is

taken into account.

From the affinity matrix, the corresponding Laplacian matrix L is obtained. Then the k

largest eigenvectors of L are found, where k is the number of clusters. A matrix A is formed

by stacking the k eigenvectors in columns. Finally, the segmentation of the trajectories

follows by applying K-means clustering to the rows of Ã, which is obtained by normalizing

the rows of A .

Algorithm 3 Velocity Clustering with Estimation of Subspace Dimension (VC)

Input: The measurement matrix W = [t1, t2, . . . , tP] ∈ R2F×P whose columns are point

trajectories, and the number of clusters k.

Preprocessing: Build the velocity measurement matrix W ′ by row transformations of

W given by equation (3.1).

for D = dmin to dmax do

1. Perform SVD: W ′ = UΣV T

2. Build the N -by-D data matrix

XD = [v1, ..., vD]

where vi is the i-th column of V .

3. Apply spectral clustering to the N points in XD using the affinity measure (3.2).

4. Compute the clustering error ED of the segmentation result using equation (3.4).

end for

Output: The segmentation result with the smallest error ED.

Selection of the best result. According to section 3.2.3, to ensure that the best

result is not missed, an exhaustive search strategy is employed. Let dmin = 2k and dmax =

4k be the minimal and maximal subspace dimensions, motion segmentation is performed in

spaces with all dimensions D in the range D ∈ [dmin, dmax]. Then the best result is selected

among all results based on the smallest clustering error (3.4) or (3.5). The whole procedure

51

is illustrated in Figure 3.1 and described in Algorithm 6.

3.4 Experiments

We have tested our algorithm on the image sequences from the Hopkins 155 database,

as well as several other state-of-the-art algorithms: ALC [50], SC [37] and SSC [18]. For

each algorithm on each sequence, we recorded the misclassification rate defined as

Misclassification Rate =
of misclassified points

total # of points
(3.6)

The parameter setting in our method are α = 2, dmin = 2k, dmax = 4k, and the locations

of the last frame are kept to build the velocity matrix. The results on sequences with 2, 3

motions and the whole dataset are presented in Table 3.2 and compared with the three state-

of-the-art and baseline methods. We also show in the table the results of the algorithm with

fixed subspace dimension D = 4k as well as results without using the velocity preprocessing

step.

One could see that by using the velocity for clustering the misclassification rate decreases

by about 0.8% while by using the clustering error measure to decide the best segmentation

the error decreases from 4.91% to 0.99%. Thus the clustering error measure has a large

impact in the spectral clustering performance while the velocity clustering has a smaller

but also important impact.

Compared to other motion segmentation algorithms, our approach outperforms for the

3 motion sequences and for all the sequences combined and is outperformed on the two

motion sequences by SC [37] and SSC [18]. We achieve an overall misclassification rate of

1.10% for 3 motions, around half of the best reported result (SC [37]); an overall error of

0.96% for 2 motions, coming close to the best performing SSC [18]; and an overall error of

0.99% for the whole database, which is better than the other methods. Our method always

obtains good results for checkerboard sequences which have the most complicated scenes

(including both translation and rotation motions) in the dataset.

The performance on the articulated sequences with 3 motions is worse than the SC,

possibly because these sequences don’t obey the rigid motion model and thus the RMSE

measure might not be accurate. On the other hand, when the motions follow the rigid

52

model, the RMSE measure helps obtain very good results. This is clearly visible in the

three motion checkerboard sequences, where our algorithm obtains errors less than half of

the other algorithms.

Table 3.2: Misclassification rate (in percent) for sequences of full trajectories in the Hopkins
155 dataset (Subscript 4k means using fixed dimension 4k instead of dimension search, and
superscript ∗ means not using velocity for clustering).

Method ALC SC SSC VC∗4k VC∗ VC4k VC

Checkerboard (2 motion)

Average 1.55 0.85 1.12 2.07 1.38 1.38 0.67
Median 0.29 0.00 0.00 0.30 0.00 0.00 0.00

Traffic (2 motion)

Average 1.59 0.90 0.02 6.87 1.35 8.25 0.99
Median 1.17 0.00 0.00 1.33 0.30 1.09 0.22

Articulated (2 motion)

Average 10.70 1.71 0.62 6.02 2.56 2.46 2.94
Median 0.95 0.00 0.00 0.99 0.88 0.88 0.88

All (2 motion)

Average 2.40 0.94 0.82 3.67 1.48 3.25 0.96
Median 0.43 0.00 0.00 0.51 0.00 0.00 0.00

Checkerboard (3 motion)

Average 5.20 2.15 2.97 4.38 1.06 2.28 0.74
Median 0.67 0.47 0.27 1.37 0.58 0.51 0.21

Traffic (3 motion)

Average 7.75 1.35 0.58 27.80 8.22 19.21 1.13
Median 0.49 0.19 0.00 32.27 1.42 28.28 0.21

Articulated (3 motion)

Average 21.08 4.26 1.42 6.18 6.18 18.95 5.65
Median 21.08 4.26 0.00 6.18 6.18 18.95 5.65

All (3 motion)

Average 6.69 2.11 2.45 9.17 2.78 6.62 1.10
Median 0.67 0.37 0.20 1.99 0.67 0.85 0.22

All sequences combined

Average 3.37 1.20 1.24 4.91 1.78 4.01 0.99
Median 0.49 0.00 0.00 0.57 0.00 0.24 0.00

From the cumulative distributions in Figure 3.4, we see that for 2 motions, our method

is comparable to the best method SSC; and for 3 motions, our method outperforms all

others. Moreover, the largest error of our method for 3 motions is about 10%, while that

53

of the other methods is around 40%.

Table 3.3 shows that the average computing time per sequence (obtained on a 2.66GHz

Core 2 Duo computer with Matlab on Linux) for sequences with 2 motions is less than 1

second, while that for sequences with 3 motions is less than 2 seconds. In comparison to

other methods, our method is much faster than ALC and SSC, but slightly slower than SC.

Table 3.3: Average computing time for sequences in the Hopkins 155 database.

ALC SC SSC Our Method

2 motions 7.85m 0.53s 2.27m 0.72s

3 motions 16.77m 1.34s 4.08m 1.81s

0 10 20 30 40 50
40%

50%

60%

70%

80%

90%

100%

2 motions

Misclassification rate %

P
er

ce
nt

ag
e

of
 s

eq
ue

nc
es

VC
SC
SSC
ALC

0 10 20 30 40 50
40%

50%

60%

70%

80%

90%

100%

3 motions

Misclassification rate %

P
er

ce
nt

ag
e

of
 s

eq
ue

nc
es

VC
SC
SSC
ALC

Figure 3.4: The cumulative distribution of the misclassification rate for two and three
motions in the Hopkins 155 database.

3.5 Conclusion

In this paper, we presented a method for segmenting moving objects using spectral

clustering. The method uses the velocity vectors as the input for clustering, which is

more robust to accumulated errors, and then applies spectral clustering in all possible

subspace dimensions. The final segmentation is selected from the obtained results using a

novel clustering error measure. Our evaluation on the Hopkins 155 database shows that

the method is competitive with current state-of-the-art methods, both in terms of overall

54

performance and computational speed. The algorithm has been shown to be robust to

different types of scenes and motions present in the Hopkins 155 database, while remaining

very efficient in computation time.

55

CHAPTER 4

A RANKING BASED METHOD FOR MOTION

SEGMENTATION

4.1 Introduction

Learning based method have seen great popularity in recent years due to their flexibility

and proved robustness on large datasets. Many applications of learning in computer vision

and medical imaging are for detecting and segmenting objects in 2D or 3D images.

In this work we study a learning based approach to sparse motion segmentation. Given

a number of feature points tracked in all frames of an image sequence, the sparse motion

segmentation problem is to group the feature point trajectories into a number of clusters

based on their common motion.

Many works [18, 37, 41, 70, 75] address this problem using spectral clustering, but the

approaches depend on a number of parameters that have a great influence in the quality of

the obtained segmentations.

This chapter proposes a learning based approach to sparse motion segmentation and

brings the following contributions:

1. It proposes a novel method for training a ranking function based on the newly in-

troduced Feature Selection with Annealing (FSA) algorithm. The obtained ranking

function depends nonlinearly on a small number of selected features, which helps in

accuracy and generalization power.

2. It introduces two types of features for ranking motion segmentations. The first type

are likelihood features that evaluate how well the points of each motion lie in a low

dimensional subspace. The second type are prior features that measure how compactly

clustered together are the points of each motion label.

56

3. It introduces a ranking-based method for motion segmentation. A number of candi-

date segmentations are generated using different segmentation parameters. The ob-

tained segmentations are ranked by the trained ranking function and the best ranked

segmentation is reported as the final result.

The proposed motion segmentation method is compared with other state of the art

methods on the Hopkins 155 dataset. The experiments show that the proposed FSA-based

ranking outperforms RankBoost [22] in learning a ranking function from the same set of

features. Moreover the experiments show that the proposed motion segmentation method

is competitive with the other state of the art motion segmentation methods in terms of

average segmentation error.

4.2 Related Work

Aside from the works in sparse motion segmentation that were already discussed, there

are a number of works in image segmentation that use different ways of ranking segmentation

results.

A ranking function trained by Rankboost has been used in [77] to compare object

segmentations parameterized by a PCA model. The simplex algorithm was used to find the

PCA parameters of the final segmentation result. The ranker was trained based on Haar

features extracted from the image. In contrast, our work ranks arbitrary segmentations of

the feature point trajectories, not parameterized by a PCA model. The features are also

different, namely we use appearance (likelihood) features and prior features. Finally we use

a novel ranking algorithm based on FSA that outperforms Rankboost.

A ranking based method for face alignment was presented in [24], using Gradient Boosted

Regression Trees, which is a Random Forest trained for regression. Similar to [77], it uses

only appearance features in constructing the ranking function.

A regression based approach to ranking image segmentations was used in [9, 10]. Instead

of using a ranking approach, the authors directly try to regress the overlap measure of each

segmentation with the ground truth. The features used can be regarded as appearance

features and prior features. Some of their prior features could in principle be used in our

motion segmentation application. The regressor used was either a linear regressor or a

Random forest in [10] and based on support vector regression in [9].

57

4.3 The Feature Selection with Annealing Algorithm

Let xi ∈ RM , i = 1, N be N training examples in an M -dimensional instance space.

The Feature Selection with Annealing algorithm is designed for optimizing a loss function

L(β) defined on these training examples. We assume that each variable i has associated a

coefficient βi and βi = 0 if L(β) does not depend on variable i.

We are interested in the constrained optimization of the loss function

β = argmin
|{i,βi 6=0}|≤s

L(β) (4.1)

where the number s of relevant features is a given parameter. Further assume that the loss

function L(β) is differentiable with respect to β.

The FSA approach starts with an initial value of the parameters β, usually β = 0, and

alternates two basic steps:

• one step of gradient descent parameter updates towards minimizing the loss L(β)

β ← β − η∂L(β)

∂β
(4.2)

• one variable selection step that removes some variables according to a criterion cj(β), j =

1,M .

In this chapter we will use the criterion cj(β) = ‖βj‖2, j = 1,M for which there are

theoretical guarantees of convergence and variable selection consistency for classification.

Usually many variables are removed at each iteration, keeping only a number Me of

variables that have the largest values of the criterion cj(β). The number Me of variables

that are kept after each iteration e = 1, N iter is similar to an annealing schedule.

Through this schedule, the constraint after iteration e is |{i, βi 6= 0}| ≤ Me, thus the

constraint is gradually tightened and after a large number of iterations we reach |{i, βi 6=
0}| ≤ s. This way we obtain a suboptimal solution to the constrained problem (4.1).

In this work we use an inverse schedule Me, e = 1, N iter with a parameter v or µ = M
sv

Me = max(s,
M

1 + eµ
− 1

N iter
). (4.3)

58

Because the Me quickly decreases after the first iteration, the total computation time of

the algorithm is about N(M + sv ln M
s + sN iter) operations, where N is the number of

training examples, assuming one iteration with M variables takes MN operations. Thus

when N iter = 500, the whole algorithm takes about 2MN operations.

Figure 4.1: The value of the number of features Me vs iteration e for three annealing
schedules, where M = 10, 000, s = 10.

In Figure 4.1 are shown the value of Me vs the iteration number e for three schedules

v = 50, 100 and 200, where M = 10, 000 and s = 10. We also experimented with an

exponential schedule Me = max(s,Mξe) with a parameter 0 < ξ < 1, but observed that

the inverse schedule worked better for the same computational expense.

The FSA algorithm is summarized in Algorithm 4. In practice, the gradient update

(4.2) can be replaced by one epoch of stochastic gradient updates.

The performance of the FSA algorithm depends on the following parameters:

• Gradient learning rate η, which can be arbitrarily small provided that the number of

iterations is large enough. If η is too large, the coefficients βi will not converge.

• Parameter v or µ for controlling the number of variables left at each iteration. Pa-

rameter µ should have a value proportional to the parameter η so that if the learning

rate is small, the variables are removed at a slower pace.

• Number of iterations N iter, large enough to obtain in the end a desired number s of

variables and to insure the parameters have converged to a desired tolerance.

59

Algorithm 4 Feature Selection with Annealing (FSA)

Input: Training examples {(xi, yi)}Ni=1.

Output: Trained model parameters β.

1: Initialize β = 0.

2: for e=1 to N iter do

3: Update β ← β − η ∂L(β)
∂β

4: Compute cj(β), j = 1, ...,M

5: Keep the Me variables with highest cj(β) and renumber them 1, ...,Me.

6: Set M = Me

7: end for

Experiments showed that the FSA algorithm obtains good and stable results for a large

range of values of these parameters, but are omitted for lack of space.

4.4 Ranking Using FSA

Let xi ∈ RM be the training instances and rij ∈ [0, 1] be the true rankings between

observations xi,xj , with (i, j) ∈ C ⊂ {1, ..., N} × {1, ..., N}. Observe that the true ranking

might not be given for all pairs (i, j) ∈ {1, ..., N} × {1, ..., N} but only for the subset C. A

criterion (e.g. an error measure) can be used to compare instances xi and xj and generate

the true rankings rij ∈ [0, 1], which can be for example 0 is xi is ”better” than xj , 0.5 if

they are ”equally good” and 1 if xi is ”worse” than xj .

Training can be achieved by finding a ranking function hβ(x) : RM → R specified by

a parameter vector β such that hβ(xi) − hβ(xj) agrees as much as possible with the true

rankings rij .

There are different criteria that could be optimized to measure this degree of agreement,

but we will use the differentiable criterion from [8]

L(β) = −
∑

(i,j)∈C

rij(hβ(xi)− hβ(xj))+

+
∑

(i,j)∈C

ln(1 + ehβ(xi)−hβ(xj)) +

M∑
i=1

ρ(βi)

(4.4)

where we added the prior term
∑M

i=1 ρ(βi) that helps improve the generalization ability.

60

4.4.1 Piecewise Linear Learners for Nonlinearity

A simple way to introduce nonlinear dependence on the feature values is by specifying

the ranking function as a sum of univariate functions

hβ(x) =

M∑
k=1

hk(xk, βk)

where each hk(xk) is a nonlinear function that depends only on the variable xk of the feature

vector x = (x1, ..., xM).

In this chapter we will use piecewise linear functions for the nonlinear functions hk(xk).

To simplify notation we will drop the index k in the rest of this section and we will

implicitly assume that we are working with the variable xk of the feature vector x =

(x1, ..., xM).

A piecewise linear (PL) function h(x) : R→ R is defined based on the range [xmin, xmax]

of the variable x and a predefined number B of bins.

Let b = (xmax − xmin)/B be the bin length.

For each value x, the learner finds the bin index j(x) =
[
(x− xmin)/b

]
∈ {0, ..., B − 1}

and the relative position in the bin α(x) = (x− xmin)/b− j(x) ∈ [0, 1) and returns

h(x, β) = βj(x)(1− α(x)) + βj(x)+1α(x)

Let

ub(x) =

1− α(x) if b = j(x)

α(x) if b = j(x) + 1

0 else

for b ∈ {0, ..., B} be a set of B+1 piecewise linear basis functions. Then h(x) can be written

as a linear combination:

h(x, β) =

B∑
b=0

βbub(x) = βTu(x)

where u(x) = (u0(x), ..., uB(x))T is the vector of responses of the basis functions and β =

(β0, ..., βB)T is the parameter vector.

Some recent works [44, 33] also use nonlinear additive models that depend on the vari-

ables through one dimensional smooth functions.

61

0 1 2 3 4
−0.2

−0.1

0

0.1

0.2

Bin

R
es

po
ns

e

Figure 4.2: Examples of trained piecewise linear response functions hk(xk, βk) = βTk uk(x)
that are the components of the ranking function hβ(x).

4.4.2 FSA-PL For Ranking

Using the notations from the previous section, we can write the nonlinear ranking func-

tion as

hβ(x) =
M∑
k=1

βkuk(xk), (4.5)

where uk(xk) is the basis response vector and βk ∈ RB+1 is the coefficient vector of variable

k.

The loss function (4.1) in this case has the partial derivatives

∂L(β)

∂βk
=
∑
i,j∈C

(
1

1+ehβ(xj)−hβ(xi)
− rij)(uk(xik)−uk(xjk))

+
∂ρ(βk)

∂βk

where xik is variable k of observation xi.

The obtained method for training a ranking function using FSA is summarized in Al-

gorithm 5.

In this work we use the shrinkage prior for each coefficient vector βk ∈ RB+1

ρ(βk) = λ‖βk‖2, (4.6)

which discourages large values of the coefficients and gives response functions such as those

shown in Figure 4.2.

62

Algorithm 5 FSA-Rank

Input: Training examples {xi}Ni=1 and ground truth rankings rij , (i, j) ∈ C ⊂ {1, ..., N}×
{1, ..., N}.
Output: Trained model parameters β.

1: Initialize β = 0.

2: for e=1 to N iter do

3: for (i, j) ∈ C do

4: Compute dij =
1

1 + ehβ(xj)−hβ(xi)
− rij

5: Update

βk ← βk+ηdij(uk(xik)− uk(xjk)), k = 1,M

6: end for

7: Update

βk ← βk + η∇ρ(βk)

8: Keep the Me variables with highest ‖βk‖2 and renumber them 1, ...,Me.

9: Set M = Me

10: end for

The FSA-Rank method will be used in the next section to compare motion segmentations

and choose the best one from a set of segmentations with different parameters.

4.5 Ranking for Motion Segmentation

A popular method for sparse motion segmentation is spectral clustering [37]. In this

method the feature point trajectories are projected to a lower dimensional space where

spectral clustering is performed according to an affinity measure.

A major difficulty in this approach is that a rigid motion lies in a low dimensional space

that does not have a fixed dimension. As a result, when there are several motions present in

the same video sequence, it is hard to determine the best projection dimension for spectral

clustering.

Consequently, some segmentation methods [16, 37] propose to project to a number of

spaces of different dimensions and find the best results according to some measure.

63

However, it is hard to find a versatile measure that is consistent in finding the best

dimension in all scenarios. Also, segmentation algorithms always have one or more param-

eters that need to be tuned according to different scenarios, for example, the noise level,

the separability of the affinity measure, etc. It is also hard to expect there exists a set of

parameters that work well for all problems.

Moreover, many motion segmentation algorithms have been published in recent years.

Different algorithms have different weaknesses and work best on different datasets. It would

be of practical importance to segment one sequence by many different algorithms and find

an automatic way to select the best segmentation.

In this work, we address the problem of choosing the best segmentation from a larger set

of segmentations that are generated by different algorithms or one algorithm with different

parameters. We formalize it as a ranking problem and solve it using supervised learning

with the FSA-Rank algorithm.

4.5.1 Segmentation by Spectral Clustering

The segmentation candidates are generated by the velocity clustering (VC) algorithm 3.

For each sequence, after removing possible repetitive segmentations, around 2K + 1 seg-

mentations would be generated for each sequence. The performance of a segmentation is

characterized by (3.6) which could be easily calculated by comparing with the ground truth

segmentation. While the VC proposes a error measure to select the best segmentation, this

chapter solves the same problem by learning.

4.5.2 Likelihood and Prior Based Features

A motion segmentation can be described by a labeling L : {1, .., P} → {1, ..,K}. We

will use two types of features that can characterize the ranking of a motion segmentation

L: likelihood features and prior features.

Under the orthographic camera assumptions, the point trajectories of each rigid motion

should lie in a 3 dimensional affine subspace.

For a segmentation the likelihood features are used to measure how far are the point

trajectories of the same label from lying in a 3D linear subspace.

64

For both the original trajectory vectors and the points obtained by projection to space

of dimension d, where d is a parameter, we fit in a least squares sense 3-D affine subspaces

Sl through the points of motion label l ∈ {1, ...,K}. Denote L(i) as the label of trajectory

ti and let D(t, S) be the euclidean distance of point t to plane S. Let N is the total number

of trajectories.

We use three types of likelihood features:

• The average distance

1

N

N∑
i=1

D(ti, SL(i))

• The average squared distance

1

N

N∑
i=1

D2(ti, SL(i))

• The average thresholded distance

1

N

N∑
i=1

I(D(ti, SL(i)) ≥ τ),

where I(·) is the indicator function taking on value 1 if its argument is true or 0

otherwise, and τ is a threshold.

Inspired by VC, the first and second types of features obtained in dimensions d ∈
[2K, 4K] are sorted and the smallest 4 are used as features.

By changing the threshold τ and dimension d a number of features of the third type can

be obtained.

The prior features measure the compactness of the partition over different graphs.

For a given k, the k-nearest neighbor (kNN) graph is constructed using a distance

measure in a space of a given dimension d. The distance could be either the Euclidean

distance or the angular distance defined in eq. (3.2). By changing the dimension d, number

of neighbors k and distance measure a number of different graphs and features are obtained.

On the kNN graph G = (V,E) the prior feature is the proportion of the edges that

connect vertices with different labels

FG =
|(i, j) ∈ E,L(i) 6= L(j)|

|E|

65

where L(i) is the segmentation label of vertex i ∈ V .

In total, the features described in this section result in more than 2000 features for each

segmentation.

4.5.3 Training the Ranking Function

The true rankings rij , (i, j) ∈ C is constructed based on the relative misclassification

rates of the segmentations. Since at test time only segmentations belonging to the same

sequence will be compared, the set C contains only pairs of segmentations obtained from

the same sequence.

For any two segmentations i, j obtained from the same sequence, the ranking rij is based

on the misclassification rates of the two segmentations, with value 1 is i is better than j,

0.5 if they have the same error and 0 if j is better than i.

These ground truth rankings and the feature vectors for each segmentation are used in

the FSA-Rank Algorithm 5 to obtain the parameter vector β that generates the ranking

function hβ(x) from eq. (4.5).

4.5.4 Motion Segmentation Algorithm

Given a new sequence, the learned parameter vector β is used to select the best seg-

mentation for that sequence. The whole procedure is described in Algorithm 6.

4.6 Experimental Results

The proposed method was evaluated on the Hopkins 155 dataset [66].

4.6.1 RankBoost

The RankBoost algorithm [22] was used in this chapter as the baseline method to com-

pare performance in learning the ranking function.

Let S = {xi ∈ RM , i = 1, N} be the set of training instances. We assume that a ground

truth ranking is given on a subset C ⊂ {1, ..., N}×{1, ..., N} as rij , (i, j) ∈ C where rij > 0

means xi should be ranked above xj and vice versa.

RankBoost searches for a ranking which is similar to the given ranking r. To formalize

the goal, a distribution D is constructed by Dij = c ·max{0, rij}, where c is a constant to

66

Algorithm 6 Motion Segmentation using Ranking

Input: The measurement matrix W = [t1, t2, . . . , tP] ∈ R2F×P whose columns are point

trajectories, and the number of clusters K.

Preprocessing: Build the velocity measurement matrix W ′ = (v(t1), ..., v(tP)) where

v(t) is given in eq. (3.1).

for d = dmin to dmax do

1. Perform SVD: W ′ = UΣV T

2. Obtain P projected points as the columns of the d× P matrix

Xd = [v1, ..., vd]
T

where vi is the i-th column of V .

3. Apply spectral clustering to the P points of Xd using the affinity measure (3.2),

obtaining segmentation Ld.

4. Extract feature vector xd from segmentation Ld as described in Section 4.5.2.

5. Compute the ranking

h(Ld) =

M∑
k=1

βkuk(xdk)

end for

Output: The segmentation result Ld with the largest value of h(Ld).

make
∑

(i,j)∈C Dij = 1. The learning algorithm tries to find a ranking function H : RM → R

that minimizes the weighted sum of wrong orderings:

rlossD =
∑

(i,j)∈C

DijI(H(x1) ≤ H(x0))

where again I(π) is 1 if predicate π holds and 0 otherwise. The ranking function H(x) is a

weighted sum of weak rankers which are selected iteratively

H(x) =
T∑
t=1

αtht(x).

At iteration t, RankBoost selects the best weak ranker ht along with its weighted ranking

score αt from the pool of candidate weak rankers, and adds αtht(x) to the ranking function

ft−1(x).

We used threshold-based weak rankers

h(x) =

{
1 if xi > θ
0 if xi ≤ θ (4.7)

67

that depend on the threshold θ ∈ R and the variable index i. The pool of weak rankers is

generated using all variables i = 1,M and B = 64 equally spaced thresholds on the range

of each feature.

4.6.2 Misclassification Rate

Parameter Settings

The parameters for RankBoost were the following: the number of thresholds B = 64,

and the number of boosting iterations was set to 100.

The parameters for our FSA-Rank method were: number of bins B = 4, the number of

features s = 40. The other parameters are N iter = 300, η = 0.5, µ = 1, λ = 0.01.

Ten Fold Cross Validation

The Hopkins 155 dataset contains sequences from 50 videos. The 50 videos were divided

at random into 10 subsets, each subset containing 5 videos. For each subset of 5 videos were

collected all the Hopkins 155 sequences corresponding to these 5 videos. This way the 155

Hopkins sequences were also divided into 10 subsets. The reason for separating the videos

first and then the sequences is fairness. Some 2 motion sequences are subsets of 3 motion

sequences, and it is possible that the segmentation from 2 motions is a subset of that of 3

motions. If this happens, then it be unfair to have a 3-motion sequence in the training set

and a 2-motion subset from the same sequence for testing.

At round k of the cross validation, we select the k-th of the 10 subsets of sequences

as the test set and form the training set from the remaining 9 subsets. After training, we

apply the obtained ranking function to rank the motion segmentations for each sequence.

The best one is picked as the final result to calculate classification rate.

Ranking Accuracy

Each sequence would be selected in the training set 9 times and in the test set once. In

Table 4.1 are shown the average misclassification rates over all sequences when they were in

the training set and when they were in the test set. Our method outperforms the RankBoost

algorithm in every category on both training and test sets, even though Rankboost uses

100 boosting iterations (thus about 100 features) while FSA-Rank uses only 40 features.

Also the difference in misclassification rate between the training set and test set is

very small for FSA-Rank, especially for 2-motion sequences. In comparison, the average

68

Table 4.1: Misclassification rate (in percent) for sequences of full trajectories in the Hopkins
155 dataset.

Method SC SSC VC RankBoost FSARank

Likelihood
Features

Prior
Features

All
Features

Train Test Train Test Train Test Train Test

Checkerboard (2 motion)

Average 0.85 1.12 0.67 0.67 0.74 0.58 0.69 1.09 1.28 0.12 0.12
Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Traffic (2 motion)

Average 0.90 0.02 0.99 0.69 0.72 0.80 0.76 4.25 4.25 0.59 0.58
Median 0.00 0.00 0.22 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00

Articulated (2 motion)

Average 1.71 0.62 2.94 2.05 2.26 2.30 2.27 1.32 1.32 1.32 1.32
Median 0.00 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

All (2 motion)

Average 0.94 0.82 0.96 0.80 0.87 0.80 0.85 1.93 2.05 0.35 0.35
Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Checkerboard (3 motion)

Average 2.15 2.97 0.74 0.85 2.60 0.74 0.74 4.10 4.22 0.49 0.49
Median 0.47 0.27 0.21 0.26 0.26 0.21 0.21 0.24 0.24 0.21 0.21

Traffic (3 motion)

Average 1.35 0.58 1.13 4.15 4.24 1.13 1.13 4.05 4.05 1.73 1.07
Median 0.19 0.00 0.21 0.00 0.47 0.00 0.00 0.00 0.00 0.00 0.00

Articulated (3 motion)

Average 4.26 1.42 5.65 3.66 18.09 5.32 5.32 3.19 3.19 3.19 3.19
Median 4.26 0.00 5.65 3.66 18.09 5.32 5.32 3.19 3.19 3.19 3.19

All (3 motion)

Average 2.11 2.45 1.10 1.67 3.82 1.08 1.08 4.04 4.13 0.90 0.76
Median 0.37 0.20 0.22 0.20 0.32 0.20 0.20 0.20 0.20 0.00 0.00

All sequences combined

Average 1.20 1.24 0.99 1.00 1.54 0.86 0.90 2.40 2.52 0.47 0.44
Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

69

misclassification rate of 3 motions on test set of RankBoost is about 50% larger than that

on training set, while these two misclassification rates are quite close on our method. This

is probably due to the small number of features selected and the shrinkage prior (4.6), which

together helped obtain a small training error and good generalization.

Compared to VC [16] which uses a fixed measure to select best segmentation, our method

works better on 2 motions sequences which constitutes most of the dataset. For the 3 motion

sequences, our method works better on Checkerboard and Articulated categories and worse

on the Traffic category. Moreover, the average misclassification rates of our method on both

2 motions and 3 motions are almost half of those from SSC [37].

0 10 20 30 40 50
50%

60%

70%

80%

90%

100%

2 motions

Misclassification rate %

P
er

ce
nt

ag
e

of
 s

eq
ue

nc
es

VC
RankBoost (Test)
SSC
FSARank (Test)

0 10 20 30 40 50
50%

60%

70%

80%

90%

100%

3 motions

Misclassification rate %

P
er

ce
nt

ag
e

of
 s

eq
ue

nc
es

VC
RankBoost (Test)
SSC
FSARank (Test)

Figure 4.3: The cumulative distribution of the misclassification rate for two and three
motions in the Hopkins 155 database.

From the cumulative distributions shown in Figure 4.3, we see that for 2 motions our

method performs much better than the other methods compared, while for 3 motions our

method is comparable to the best (VC). Nevertheless, our method outperforms RankBoost

in both situations.

4.7 Conclusion

This chapter presented a novel method for training a ranking function, based on the

Feature Selection with Annealing algorithm. The method allows the use of priors on the

ranking function and nonlinear dependence on the feature values, obtaining models that

are flexible and generalize well to unseen data.

70

A second contribution is a set of likelihood and prior based features for ranking motion

segmentations. The likelihood features measure how well the points from each motion fit

a rigid motion model. The prior features measure how compact are the different motion

clusters.

A third contribution is an approach for motion segmentation based on generating a

number of motion segmentations with different parameters and ranking them using the

proposed ranking function. Experiments on the Hopkins 155 dataset show that the proposed

approach outperforms a similar approach based on Rankboost and is competitive with other

state of the art motion segmentation methods.

71

CHAPTER 5

SCALABLE MOTION SEGMENTATION USING

SWENDSEN-WANG CUTS

5.1 Introduction

A common approach in the state of the art sparse motion segmentation methods [18,

37, 41, 70, 75] is to project the feature trajectories to a lower dimensional space and use

spectral clustering to group the projected points and obtain the motion segmentation.Even

though these methods obtain very good results on standard benchmark datasets, the spec-

tral clustering algorithm requires expensive computation of eigenvectors and eigenvalues on

an N × N dense matrix where N is the number of trajectories. In this manner, the com-

putation time for these motion segmentation methods scales as O(N3), so it can become

prohibitive for large problems (e.g. N = 105 − 106).

5.1.1 Our Contributions

In this chapter, we propose a completely different approach to motion segmentation,

based on the Swendsen-Wang Cut (SWC) algorithm [4] and bring the following contribu-

tions:

• We formulate the sparse motion segmentation as an energy minimization problem in

a Bayesian framework with prior and likelihood terms. The data term is based on a

rigid motion model, while the prior is an Ising/Potts prior.

• We solve the energy minimization problem using the Swendsen-Wang Cuts (SWC)

algorithm and simulated annealing. The SWC algorithm needs a weighted graph to

propose good data-driven clusters for label switching. We construct this graph as a

k-NN graph from an affinity matrix.

72

• We study the computation complexity of the SWC algorithm and observe that it scales

as O(N2) for all practical values of N , making the proposed approach more scalable

than spectral clustering (an O(N3) algorithm) to large scale problems.

• We conduct experiments on the Hopkins 155 dataset to compare the performance of

the proposed algorithm with the state of the art methods. We observe that it obtains

an error less than twice the error of the state of the art methods. We also observed

experimentally that the SWC scaling is about O(N1.3) and the spectral clustering

scaling is about O(N2.5).

Compared to other statistical methods [20, 43, 61], our method doesn’t require a good

initialization, which can be hard to obtain.

Overall, our method provides a new perspective to solve the motion segmentation prob-

lem, and demonstrates the power of Swendsen-Wang Cuts algorithm in clustering problems.

While it does not obtain a better average error, it scales better to large datasets, both the-

oretically as O(N2) and practically as O(N1.3).

5.2 The Swendsen-Wang Cuts Method

1
2

1
2

Figure 5.1: Difficulty in sampling the Ising and Potts models

The Swendsen-Wang (SW) method [59] is a Markov Chain Monte Carlo (MCMC) algo-

rithm for sampling partitions (labelings) π : V → {1, ..., N} of a given graph G =< V,E >.

The probability distribution over the space of partitions is the Ising/Potts model

p(π) =
1

Z
exp[−

∑
<i,j>∈E

βijδ(π(i) 6= π(j)]. (5.1)

where βij > 0, ∀ < i, j >∈ E and N = |V |. Figure 5.1 shows a string of spins whose

label (color) π could be +1 (up) and -1 (down). For a single site update algorithm, like

the Gibbs sampler, the probability for flipping each spin from -1 to +1 is 1/2. Thus the

expected number of steps to flip a string of n spins from -1 to +1 is 2n. This is exponential

waiting.

73

The SW algorithm addresses the slow mixing problem of the Gibbs Sampler [26], which

changes the label of a single node in one step. Instead, the SW algorithm constructs clusters

of same label vertices in a random graph and flips together the label of all nodes in each

cluster. The random graph is obtained by turning off (removing) all graph edges e ∈ E

between nodes with different labels and removing each of the remaining edges < i, j >∈ E
with probability e−βij . The whole process is shown in Figure 5.2. While the original SW

method was developed originally for Ising and Potts models, the Swendsen-Wang Cuts

(SWC) method [4] generalized SW to arbitrary posterior probabilities defined on graph

partitions.

Figure 5.2: The edges between vertices of the same label are turned on/off probabilistically
to yield a number of connected components. The Swendsen-Wang algorithm flips the color
of a connected component V0 in one step. The set of edges marked with crosses is called
the Swendsen-Wang cut [4].

The SWC method relies on a weighted adjacency graph G =< V,E > where each edge

weight qe, e =< i, j >∈ E encodes an estimate of the probability that the two end nodes

i, j belong to the same partition label. The idea of the SWC method is to construct a

random graph in a similar manner to the SW but based on the edge weights, select one

connected component at random and accept a label flip of all nodes in that component with

a probability that is based on the posterior probabilities of the before and after states and

the graph edge weights.

74

This algorithm was proved to simulate ergodic and reversible Markov chain jumps in

the space of graph partitions and is applicable to arbitrary posterior probabilities or energy

functions.

From [4], there are different versions of the Swendsen-Wang Cut algorithm. We use the

SWC-1 algorithm which is shown in Figure 5.3.

Input: Graph G =< V,E >, with weights qe, ∀e ∈ E, and posterior probability p(π|I).

Initialize: A partition π : V → {1, ..., N} by random clustering

for t = 1, . . . T , current state π, do

1. Find E(π) = {< i, j >∈ E, π(i) = π(j)}
2. For e ∈ E(π), turn µe = off with probability 1− qe.
3. Vl = π−1(l) is divided into Nl connected components Vl = Vl1 ∪ . . . ∪ Vlnl for

l = 1, 2, . . . , N .

4. Collect all the connected components in set CP = {Vli : l = 1, . . . , N, i = 1, . . . , Nl}.

5. Select a connected component V0 ∈ CP with probability q(V0|CP) =
1

|CP | , say

V0 ⊂ Vl.
6. Propose to assign V0 a new label cV0 = l′ with a probability q(l′|V0, π), thus obtaining

a new state π′.

7. Accept the proposed label assignment with probability.

α(π → π′) = min(1,

∏
e∈C(V0,Vl′−V0)

(1− qe)∏
e∈C(V0,Vl−V0)

(1− qe)
· q(cV0 = l|V0, π

′)

q(cV0 = l′|V0, π)
· p(π

′|I)

p(π|I)
. (5.2)

end for

Output: Samples π ∼ p(π|I).

Figure 5.3: The Swendsen-Wang Cut algorithm [4].

The set of edges C(V0, Vl′ − V0), C(V0, Vl − V0) from eq. (5.2) are the SW cuts defined in

general as

C(V1, V2) = {< i, j >∈ E, i ∈ V1, j ∈ V2}

The algorithm could automatically decide the number of clusters. But in this chapter,

it is assumed that the number of motions is already known. Thus the new color is sampled

75

with uniform probability from the number M of motions:

q(cV0 = l′|V0, π) = 1/M.

5.3 Motion Segmentation Background

In general, we are given a measurement matrix W that contains trajectories from mul-

tiple possibly nonrigid motions. The task of motion segmentation is to cluster together all

trajectories coming from each motion.

A popular approach [16, 37, 50, 70] is to project the trajectories to a lower dimensional

space and to perform clustering in that space.

5.3.1 Dimension Reduction

Dimension reduction is an essential preprocessing step for obtaining a good motion

segmentation. To realize this goal, the truncated SVD is often applied [16, 37, 50, 70].

To project the measurement matrix W ∈ R2F×N to X = [x1, ..., xN] ∈ RD×N , where D

is the desired projection dimension, the matrix W is decomposed via SVD as W = UΣV T

and the first D columns of the matrix V are chosen as XT .

The value of D for dimension reduction is also a big concern in motion segmentation.

This value has a large impact on the speed and accuracy of the final result, so it is very

important to select the best dimension to perform the segmentation. The dimension of

a motion is not fixed, but can vary from sequence to sequence, and since it is hard to

determine the actual dimension of the mixed space when multiple motions are present,

different methods may have different dimensions for projection. In this chapter, we find

that projecting to dimension D = 2M + 1 can generate good results.

The computation complexity of computing the SVD of a m×n matrix M when m >> n

is O(mn2 + n3) [65]. If n >> m then it is faster to compute the SVD of MT , which takes

O(nm2 +m3).

Assuming that 2F << N , it means that the SVD of W can be computed in O(NF 2+F 3)

operations.

76

5.3.2 Trajectory Affinity Matrix

A popular clustering method [16, 37, 50] that is applied after the dimension reduction

step is spectral clustering, which relies on an affinity matrix that for any pair of trajectories

measures how likely they belong to the same motion.

In this work we will use the affinity matrix to compute the weighted adjacency graph

G =< V,E > needed in the Swendsen-Wang Cuts algorithm.

When building the adjacency graph of trajectories, one challenge is to find a good

distance metric. Two points from two different subspaces that are near the intersection of

the subspaces may be close to each other and conversely, two points in the same subspace

could be far from each other.

Figure 5.4: Two 2D subspaces in 3D. The points in both subspaces have been normalized
to unit length. Due to noise, the points may not lie exactly on the subspace. One can
observe that the angular distance may find the neighbors in most places except at the plane
intersections.

As a result, the traditional Euclidean-based distance might not be the best choice.

Inspired by the affinity measure in [37], we modify the measure to

Aij = exp(−mθij

θ̄
), i 6= j (5.3)

where θij is the angle between the vectors xi and xj , which could be calculated by

θij = 1− (
xTi xj

‖xi‖2‖xj‖2
)2,

77

(a) 1RT2TC (b) cars3 (c) articulated

Figure 5.5: Examples of weighted graphs constructed for the SWC algorithm for a checker-
board (left), traffic (middle) and articulated (right) sequence. The images show the positions
of the feature points in the first frame. The edge intensities represent their weights from 0
(white) to 1 (black).

and θ̄ is the average of all θ. The parameter m is a tuning parameter to control the size

of the connected components obtained by the SWC algorithm. In Figure 5.7, left is shown

the average performance of the motion segmentation with SWC for a range of values of this

parameter.

Fig 5.4 shows two linear subspaces, where all points have been normalized to have norm

1. It is intuitive to find that the point tends to be in the same subspace as their neighbors

in angular distance except those near the intersection of the subspaces.

The affinity measure based on the angular information between points enables to obtain

the neighborhood graph, for example based on the k-nearest neighbors. After the graph

has been obtained, the affinity measure is also used to obtain the edge weights for making

the data driven clustering proposals in the SWC algorithm as well as for the prior term of

the posterior probability.

5.4 Motion Segmentation by Swendsen-Wang Cuts

To apply the Swendsen-Wang Cuts algorithm to motion segmentation, we need to specify

a posterior probability p(π) = p(π|I) that will be sampled and optimized, as well as an

adjacency graph G = (V,E) that will be used by the SWC to generate clusters for label

switching.

Most works in motion segmentation use spectral clustering for obtaining the segmen-

78

tation. Spectral clustering optimizes an approximation of the normalized cut or the ratio

cut [72], which are discriminative measures. In contrast, the proposed approach optimizes

a generative model where the likelihood term is based on the rigid motion model under the

affine camera assumption. It is possible that the discriminative measures are more flexible

and obtain better results, and we will study them in future work.

5.4.1 Graph Construction

The graph G = (V,E) has as vertices the set of trajectories that need to be clustered.

The edges E are constructed based on the proposed distance measure from eq. (5.3). Since

the distance measure is more accurate in finding the nearest neighbors (NN) from the same

subspace, the graph is constructed as the k-nearest neighbor graph (kNN), where k is a

given parameter.

5.4.2 Posterior Probability

The posterior probability is defined in a Bayesian framework up to a constant

p(π) ∝ exp[−Edata(π)− Eprior(π)]

The normalizing constant is irrelevant in the optimization since it cancels out in the accep-

tance probability.

To construct the data term Edata(π), we adopt a model based on the affine camera

model. Given the current partition (or labeling) π, for each label l an affine subspace Ll

is fitted in a least squares sense through all points with label l. Denote the distance of a

point x with label l to the linear space Ll as d(x, Ll). Then the data term is

Edata(π) =
M∑
l=1

∑
i,π(i)=l

d(xi, Ll) (5.4)

The prior term Eprior(π) is set to encourage tightly connected points to stay in the same

cluster.

Eprior(π) = −ρ
∑

<i,j>∈E,π(i) 6=π(j)

log(1−Aij), (5.5)

where ρ is a parameter controlling the strength of the prior term. This is exactly the Potts

prior from (5.1) that would give Aij as the edge weights in the original SW algorithm.

79

5.4.3 Optimization by Simulated Annealing

The SWC algorithm is designed for sampling the posterior probability p(π). To use

SWC for optimization, a simulated annealing scheme should be applied while running the

SWC algorithm.

Simulated annealing means the probability used by the algorithm is not p(π) but p(π)1/T

where T is a ”temperature” parameter that is large at the beginning of the optimization

and is slowly decreased according to an annealing schedule. If the annealing scheduled is

slow enough, it is theoretically guaranteed [36] that the global optimum of the probability

p(π) will be found.

In reality we use a faster annealing schedule, and the final partition π will only be a

local optimum. We use an annealing schedule that is controlled by three parameters: the

start temperature Tstart, the end temperature as Tend, and the number of iterations N it.

The temperature at step i is calculated as

Ti =
Tend

log
(
i
N [e−exp(TendTstart

)]+exp(TendTstart
)
) , i = 1, N it (5.6)

To better explore the probability space, we also use multiple runs with different random

initializations. Then the final algorithm is shown in Figure 5.6.

Input: N trajectories (t1, . . . , tN) from M motions

Dimension reduction: Project the trajectories to a D-dimensional space by truncated

SVD, obtaining points (x1, . . . , xN).

Construct the adjacency graph G as a k-NN graph using eq (5.3)..

for r = 1, . . . , Q do

Initialize the partition π as π(i) = 0,∀i.
for i = 1, . . . , N it do

1. Compute the temperature Ti using eq (5.6).

2. Run one step of the SWC algorithm 5.3 using p(π|I) = p1/Ti(π) in eq (5.2).

end for

Record the clustering result πr and the final probability pr = p(πr).

end for

Output: Clustering result πr with the largest pr.

Figure 5.6: The Swendsen-Wang Cuts algorithm for sparse motion segmentation.

80

5.4.4 Complexity Analysis

Let N be the number of feature trajectories that need to be clustered. The complexity

of the proposed motion segmentation method can be broken down as follows:

• The dimension reduction step is O(NF 2 + F 3) as discussed in Section 5.3.1.

• Adjacency graph construction is O(N2D log k) since for one point, one needs to cal-

culate the distance from it to the other N − 1 points and use a heap to maintain its

k-NNs.

• Each of the N it iterations of the SWC algorithm involves:

– Sampling the edges at each SWC step is O(|E|) = O(N) since the k-NN graph

G =< V,E > has at most 2kN edges.

– Constructing connected components at each SWC step isO(|E|α(|E|)) = O(Nα(N))

using the disjoint set forest data structure [23, 21]. The function α(N) is the

inverse of f(n) = A(n, n) where A(m,n) is the fast growing Ackerman function

[1] and α(N)≤5 for N ≤2210
19729

.

– Computing Edata(π) involves fitting linear subspaces for each motion cluster,

which is O(D2N) +O(D3) where D = 2M + 1 is the projection dimension.

– Computing the Eprior(π) is O(N).

The number of iterations is N it = 2000, so all the SWC iterations take O(Nα(N)) time.

We see that the entire algorithm complexity in terms of the number N of trajectories is

O(N2) so it should scale better than spectral clustering for large problems.

5.5 Experiments on the Hopkins 155 Dataset

In this section, we apply the Swendsen-Wang algorithm to the motion segmentation

problem. We evaluate our algorithm on the Hopkins 155 motion database [66].

Before applying the Swendsen-Wang method, we reduce the dimension of the data from

2F to D = 2M + 1, where M is the number of motions. After the projection, the points

are assigned with same label, and then applied with the SW method. For each sequence,

the misclassification rate is measured as equation 3.6.

Parameter settings. In these experiments we held the parameters constant to the

following values. The number of NN (nearest neighbors) for graph construction is k = 7,

81

2 4 6 8 10 12 14
2.50%

4.00%

5.50%

7.00%

m

M
is

cl
as

si
fic

at
io

n
ra

te

3 Motions

1 1.5 2 2.5 3 3.5 4
2.50%

3.00%

3.50%

4.00%

ρ

M
is

cl
as

si
fic

at
io

n
ra

te

3 Motions

Figure 5.7: Dependence of the misclassification rate on the affinity parameter m (left) and
prior strength ρ (right).

the parameter m in the affinity measure is m = 10, and the prior coefficient is ρ = 2.2.

The sensitivity of the average misclassification rate to the parameters m and ρ is shown in

Figure 5.7. The annealing parameters are tstart = 1, tend = 0.01, N it = 2000. The number

of independent runs to obtain the most probable partition is Q = 10.

Results. In figure 5.8 shows the whole process of segmenting a sample sequence in

Hopkins 155 dataset by the SWC algorithm. At first, it starts from one cluster; after a couple

of iterations, the correct segmentation is obtained. The average and median classification

errors are listed in Table 5.1. For accuracy, the results of the SWC algorithm from table 5.1

are averaged over 10 runs. In parentheses are shown the standard deviations of the averages

over the 10 runs. In order to compare the SW method with the state of the art methods,

we also list the results of ALC [50], SC [37], SSC [18] and VC [16].

We see that SWC obtains average errors that are less than twice the errors of the other

methods. In our experiments we observed that the energy of the final state is usually smaller

than the energy of the ground truth state. This fact indicates that the SWC algorithm is

doing a good job optimizing the model but the Bayesian model is not accurate enough in

its current form and could be improved.

82

Table 5.1: Misclassification rates (in percent) of different motion segmentation algorithms
on the Hopkins 155 dataset.

Method ALC SC SSC VC SWC (std)

Checkerboard (2 motion)

Average 1.55 0.85 1.12 0.67 1.25 (0.11)
Median 0.29 0.00 0.00 0.00 0.00 (0.00)

Traffic (2 motion)

Average 1.59 0.90 0.02 0.99 1.87 (0.55)
Median 1.17 0.00 0.00 0.22 0.00 (0.0)

Articulated (2 motion)

Average 10.70 1.71 0.62 2.94 2.15 (0.11)
Median 0.95 0.00 0.00 0.88 0.00 (0.00)

All (2 motion)

Average 2.40 0.94 0.82 0.96 1.49 (0.19)
Median 0.43 0.00 0.00 0.00 0.00 (0.00)

Checkerboard (3 motion)

Average 5.20 2.15 2.97 0.74 2.26 (0.04)
Median 0.67 0.47 0.27 0.21 0.67 (0.00)

Traffic (3 motion)

Average 7.75 1.35 0.58 1.13 2.88 (0.00)
Median 0.49 0.19 0.00 0.21 0.81 (0.00)

Articulated (3 motion)

Average 21.08 4.26 1.42 5.65 6.33 (1.88)
Median 21.08 4.26 0.00 5.65 6.33 (1.88)

All (3 motion)

Average 6.69 2.11 2.45 1.10 2.62 (0.13)
Median 0.67 0.37 0.20 0.22 0.81 (0.00)

All sequences combined

Average 3.37 1.20 1.24 0.99 1.75 (0.15)
Median 0.49 0.00 0.00 0.00 0.00 (0.00)

83

Figure 5.8: Clustering the sequence 1R2TCR of the Hopkins 155 dataset by the SWC
algorithm. There are 3 motions in this example. The images show the positions of the
feature points in the first frame. The darkness of the edges represents the strength of the
connection. The point colors are the labeling states π obtained while running the SWC
algorithm from the initial state (top left) to the final state (bottom right). The correct
segmentation was successfully obtained in the end.

5.6 Scalability Experiments on Large Data

To show the scalability of different algorithms, we need evaluate on sequences that

have a large number of trajectories. The trajectories could be generated by some optical

flow algorithm, but it is difficult to obtain the ground truth segmentation and remove bad

trajectories caused by occlusions. From the Moseg dataset, we picked the cars10 sequence

and tracked every pixels of the first frame using the Classic+NL method [58]. There are

two reasons for choosing cars10. Firstly it has three motions, two moving cars and the

background. Secondly, the two moving cars are relatively large in the video, so that we

could obtain a large number of trajectories from each motion.

84

(a) Frame 1 (b) Frame 10

(c) Frame 20 (d) Frame 30

Figure 5.9: Selected frames of sequence cars10 with 1000 tracked feature points.

There are 30 frames in the sequence, and 3 of them have a dense manual segmentation of

all pixels. We removed trajectories that have different labels on the 3 ground truth frames.

To avoid occlusion, the trajectories close to the motion boundaries were also removed. Plus,

we only kept the full trajectories for clustering. At last, we obtained around 48000 trajec-

tories as a pool. From the pool, different numbers N of trajectories could be subsampled

for evaluation. For each given N , a total of N trajectories were randomly selected from

the pool such that the number of trajectories in each of the three motions was roughly the

same. For example, to generate N = 1000 trajectories, we would randomly pick from the

pool 333 trajectories from two of the motions and 334 trajectories from the third motion. If

there is not enough trajectories from one motion, we will add more from the motion which

have the most trajectories.

85

1000 11000 21000 31000 41000
0

200

400

600

800

1000

1200

Number of trajectories (N)

R
un

ni
ng

 ti
m

e
(s

)

SC
SWC

10
3

10
4

10
1

10
2

10
3

Number of trajectories (N)

R
un

ni
ng

 ti
m

e
(s

)

SC, slope=2.51
SWC, slope=1.29

Figure 5.10: Left. Dependence of the computation time (sec) vs number of trajectories N
for SC and SWC. Right: log-log plot of the same data with the fitted regression lines.

We compare our method with the SC algorithm which is one of the fastest algorithms [16]

based on spectral clustering. We generated data containing between 1000 to 15000 trajecto-

ries, and applied the two segmentation algorithms. Sample frames are shown in Figure 5.9.

The parameters for SC are kept the same as in the original paper, and those for SWC

are identical with Section 5.5. The SC algorithm is implemented in Matlab (which has

optimized SVD algorithms), while the SWC code is in C++. The experiments were per-

formed on a Windows machine with an Intel core i7-3970 CPU and 12 GB memory. We also

generated data with 24000 and 48000 trajectories for SWC clustering. For SC, the same

experiments could not be conducted because Matlab will run out of memory.

The misclassification rate is recorded in Table 5.2 and the running time is shown on

Figure 5.10. In Table 5.2, both methods perform well and the misclassification rate of SWC

is about one third of that of the SC.

From Figure 5.10, which shows the computation time vs the number N of trajectories,

one could find that for a small number of trajectories, the SC is faster than SWC, but for

more than N = 6000 trajectories, the computation time of SC is greater than that of SWC,

and increases much faster. We also plot the log(time) vs. log(N) and use linear regression

to fit lines through the data points of the two methods. If the slope of the line is α, then

time = O(Nα). We observe that the slope of SC is 2.52 while the slope for SWC is 1.29,

which is consistent with the complexity analysis of Section 5.4.4.

86

One may note that the complexity of the SC algorithm is different from the complexity

analysis in section 1.5. The reason is that in practice, spectral clustering only needs top k

eigenvectors. To calculate the top k eigenvectors, the implicitly restarted Arnoldi method

(IRAM) [56, 38] is adopted in Matlab (Actually, Matlab wraps the ARPACK implemen-

tation [39]). From the computational costs analysis in [2], for each iteration in IRAM, the

total cost is

γpN + 2[(5k − 2)p+ 2p2]N + 2k2N +O((k + p)3),

where γ = 2N for a dense matrix, p = m− k, and m is the Arnoldi length. In practice, p is

usually set to be several times larger than k. Therefore, if k is very small compared to N ,

the overall cost of IRAM is

O(N2)× (# of iterations).

The number of iterations in IRAM is very difficult to estimate, since it involves in the

setting of tolerance, initial guess, etc. In Matlab, the maximum iteration number is set

to max(300, d2N/max(p, 1)e), where de is the ceil function. Thus, even in the worst case,

when the maximum iteration number is reached, the overall complexity is O(N2) (when the

iteration number is 300) or O(N3) (when the iteration number is d2N/max(p, 1)e). Also,

when N is much bigger than p, it is unlikely to achieve O(N2) complexity.

Based on the above analysis, the computation complexity of spectral clustering should

be between O(N2) and O(N3) if the eigendecomposition is performed using IRAM. It is

reasonable to find the complexity O(N2.5) in the conducted experiments.

Table 5.2: Average misclassification rate for the sequence cars10 (in percent).

Number of Trajectories N SC SWC

1000 to 15,000 2.77 0.99

24,000 to 48,000 - 1.00

On the other hand, the complexity of the SWC is different with the analysis in theory.

It is caused by the coefficient of O(N2) part is very small compared to the coefficient

of the O(N) part. The adjacency graph construction is only one step which has O(N2)

cost. The coefficient is around D log k, which is 21 in the experiments. The other steps

87

have complexity of O(N). Among them, the most time-consuming part is the iterations

of the SWC algorithm. The total iteration number would be QN it, which is 20000 in the

experiments. As a result, for relatively small number of trajectories N , e.g. thousands of

trajectories, one could expect a complexity between O(N) and O(N2). It is not a surprise

to obtain complexity of O(N1.3) in the experiments. If the number of the trajectories is

much larger, the computational cost would get closer to O(N2).

5.7 Conclusion

In this chapter we presented a stochastic method based on the Swendsen-Wang Cuts

(SWC) algorithm for segmenting feature trajectories obtained by a feature tracker or an

optical flow algorithm. We defined the graph used by the SWC algorithm for making

informed relabeling proposals as the k-NN graph based on an affinity matrix. The posterior

probability is a generative model defined in a Bayesian framework with data and likelihood

parts.

The complexity analysis showed that the proposed algorithm is O(N2) in the number

N of trajectories that need to be clustered.This is in contrast to the spectral clustering

algorithms that have O(N3) complexity.

Experiments on the Hopkins 155 motion segmentation dataset showed that the algorithm

performs slightly worse than the state of the art motion segmentation algorithms based on

spectral clustering. This could probably be due to the rigidity of the generative model in

contrast to the flexibility of the Normalized Cut or Ratio Cut or their approximations that

are optimized by the spectral clustering algorithms. Experiments also revealed that the

spectral clustering is about O(N2.5) in reality while the proposed SWC method is O(N1.3).

In the future we will experiment with posterior probabilities based on the Normalized

Cut or Ratio Cut and see if the Swendsen-Wang Cuts algorithm can obtain better errors in

that case.

88

CHAPTER 6

SUMMARY AND FUTURE WORKS

In this chapter, we first summarize our former works on sparse motion analysis and then

point out the possible directions of future work.

6.1 Summary

The generation of high quality feature trajectories is an important preprocessing step

for motion segmentation. It has great influence on the results of motion segmentation. It

poses many standing challenges that need to be addressed for advancing this field. One

of these challenges is how to correctly handle occlusion and detect when a pixel trajectory

needs to be stopped. Very few optical algorithms provide an occlusion map and are ap-

propriate for this task. Another challenge is how to accurately evaluate the motion field

produced by different algorithms. Our work makes two contributions in these directions.

First, it presents a RMSE based error measure for evaluating feature tracking algorithms

on sequences with rigid motion under the affine camera model. The proposed measure was

observed to be consistent with the relative ranking of a number of optical flow algorithms

on the Middlebury dataset. Second, it introduces a feature tracking algorithm based on

RankBoost that automatically prunes bad trajectories obtained by an optical flow algo-

rithm. The proposed feature tracking algorithm is observed to outperform many feature

trackers based on optical flow using both the proposed measure and an indirect measure

based on motion segmentation.

Given some good trajectories for segmentation, such as the sequences in the Hopkins

155 dataset, in this work we proposed three different motion segmentation methods, the

89

spectral clustering based algorithm, the learning-based algorithm and the Swendsen-Wang

cuts based algorithm.

The spectral clustering based motion segmentation method uses the angular information

as the affinity measure. Based on the fact that the dimension of the subspace where the

point trajectories are projected has a great impact on the performance of different motion

segmentation algorithms, we present a strategy for estimating the best subspace dimension

using a novel clustering error measure. For each obtained segmentation, the proposed

measure estimates the average least square error between the point trajectories and synthetic

trajectories generated based on the motion models from the segmentation. The second

contribution we make is the use of the velocity vector instead of the traditional trajectory

vector for segmentation. The evaluation on the Hopkins 155 video benchmark database

shows that the proposed method is competitive with current state-of-the-art methods both

in terms of overall performance and computational speed.

In the learning based segmentation methods, firstly our work proposes a novel method

for training a ranking function using the recently introduced Feature Selection with Anneal-

ing algorithm. The obtained ranking function depends nonlinearly on a small number of

selected features, which helps in accuracy and generalization power. Second, it introduces

two types of features, likelihood based and prior based, for ranking motion segmentations.

Third, it introduces a ranking based motion segmentation method that uses a trained rank-

ing function to evaluate and compare a number of motion segmentations generated with

different parameters and select the best one. Experiments on the Hopkins 155 dataset show

that the proposed method is competitive with the state of the art. The experiments also

show that the ranking functions obtained by the proposed FSA-Rank algorithm outperform

those obtained by RankBoost from the same feature pool on both training and unseen test

data.

The third motion segmentation algorithm is based on energy minimization using the

Swendsen-Wang cuts algorithm and simulated annealing. The energy or probability model

is defined in a Bayesian framework with a likelihood based on a rigid motion model and

a Ising/Potts prior to regularize the result. The computation complexity of the algorithm

is O(N2), so it should scale better than the spectral clustering based methods to large

90

datasets, as spectral clustering has time complexity O(n3). Experiments on the Hopkins

155 dataset show that the error of the proposed method is comparable to that of the state

of the art algorithms. Experiments on the running time show that the proposed method

has about O(N1.3) complexity while the spectral clustering has about O(N2.5), confirming

the conclusion that the our method scales better to large datasets.

6.2 Future Works

At present, one disadvantage of motion segmentation is that nearly all algorithms assume

the number of motions is already known. But the assumption is hardly satisfied in practice.

Some initial exploration has been made in [7]. Since the spectral clustering algorithm could

only take ratio cuts or normalized cuts as energy, it is not suitable to determine the number

of trajectories. In contrast, the Swendsen-Wang cuts could take a generic energy form and

could determine the number of motions automatically. Therefore, one possible solution is

to design a proper energy for the Swendsen-Wang cuts algorithm.

Another challenge is how to make the motion segmentation algorithms more scalable.

Suppose one is already given a segmentation, the question is how to cluster new trajectories

or how to refine the segmentation if tracked feature points from new frames are added?

Currently, dimension reduction is a necessary step for almost all motion segmentation al-

gorithms. However, either the two common dimension reduction method, truncated SVD

or random sampling could not deal with new entries, which means that the segmentation

has to be recomputed from scratch. A naive way to solve this problem is to fit subspaces

without dimension reduction and assign new points to the cluster that generates the nearest

subspace, but this is not accurate and robust at all. These difficulties may stimulate us to

design new motion segmentation algorithms that are completely different from the existing

ones.

91

BIBLIOGRAPHY

[1] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Mathematische
Annalen, 99(1):118–133, 1928. 81

[2] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst.
Templates for the solution of algebraic eigenvalue problems: A practical guide. 2000.
87

[3] S. Baker, D. Scharstein, JP Lewis, S. Roth, M.J. Black, and R. Szeliski. A database and
evaluation methodology for optical flow. International Journal of Computer Vision,
92(1):1–31, 2011. 21, 24

[4] Adrian Barbu and Song-Chun Zhu. Generalizing swendsen-wang to sampling arbi-
trary posterior probabilities. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1239–1253, 2005. x, 72, 74, 75

[5] M.J. Black and P. Anandan. The robust estimation of multiple motions: Paramet-
ric and piecewise-smooth flow fields. Computer Vision and Image Understanding,
63(1):75–104, 1996. 28, 34

[6] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estima-
tion based on a theory for warping. European Conference on Computer Vision, pages
25–36, 2004. 8, 28, 34

[7] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis of point
trajectories. In European Conference on Computer Vision, pages 282–295. 2010. 19,
25, 35, 44, 91

[8] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der. Learning to rank using gradient descent. In International Conference on Machine
Learning, pages 89–96, 2005. 60

[9] João Carreira, Fuxin Li, and Cristian Sminchisescu. Object recognition by sequential
figure-ground ranking. International journal of computer vision, pages 1–20, 2012. 57

[10] Joao Carreira and Cristian Sminchisescu. Constrained parametric min-cuts for au-
tomatic object segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 3241–3248, 2010. 57

92

[11] Andrea Cavallaro, Olivier Steiger, and Touradj Ebrahimi. Tracking video objects in
cluttered background. Circuits and Systems for Video Technology, IEEE Transactions
on, 15(4):575–584, 2005. 2

[12] G. Chen and G. Lerman. Spectral curvature clustering. International Journal of
Computer Vision, 81(3):317–330, 2009. 11, 43, 46, 50

[13] J. Costeira and T. Kanade. A multi-body factorization method for motion analysis. In
Proceedings of the 5th International Conference on Computer Vision, pages 1071–1076,
1995. 50

[14] J. Costeira and T. Kanade. A multibody factorization method for independently mov-
ing objects. International Journal of Computer Vision, 29(3):159–179, 1998. 42, 50

[15] Liangjing Ding, Adrian Barbu, and Anke Meyer-Baese. Learning a quality-based rank-
ing for feature point trajectories. In Asian Conference on Computer Vision, 2012.

[16] Liangjing Ding, Adrian Barbu, and Anke Meyer-Baese. Motion segmentation by veloc-
ity clustering with estimation of subspace dimension. In Asian Conference on Computer
Vision Workshop on Detection and Tracking in Challenging Environments, 2012. 63,
70, 76, 77, 82, 86

[17] D.L. Donoho and J. Tanner. Counting faces of randomly-projected polytopes when
the projection radically lowers dimension. American Mathematical Society, 22(1):1–53,
2009. 47

[18] E. Elhamifar and R. Vidal. Sparse subspace clustering. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009. 11, 19, 34, 35, 38, 41, 43, 46, 50, 52, 56,
72, 82

[19] Claude L Fennema and William B Thompson. Velocity determination in scenes con-
taining several moving objects. Computer graphics and image processing, 9(4):301–315,
1979. 6

[20] M. A. Fischler and R. C. Bolles. RANSAC random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. Com-
munications of the ACM, 26:381–395, 1981. 42, 73

[21] Michael Fredman and Michael Saks. The cell probe complexity of dynamic data struc-
tures. In Proceedings of the twenty-first annual ACM symposium on Theory of com-
puting, pages 345–354, 1989. 81

[22] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boost-
ing algorithm for combining preferences. The Journal of Machine Learning Research,
4:933–969, 2003. ix, 29, 30, 32, 57, 66

[23] Bernard A Galler and Michael J Fisher. An improved equivalence algorithm. Commu-
nications of the ACM, 7(5):301–303, 1964. 81

93

[24] Hua Gao, Hazım Kemal Ekenel, and Rainer Stiefelhagen. Face alignment using a
ranking model based on regression trees. 57

[25] C. W. Gear. Multibody grouping from motion images. International Journal of Com-
puter Vision, 29(2):133–150, 1998. 42

[26] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, (6):721–741, 1984. 74

[27] A. Goh and R. Vidal. Segmenting motions of different types by unsupervised manifold
clustering. In IEEE Conference on Computer Vision and Pattern Recognition, 2007.
43, 46

[28] A. Gruber and Y. Weiss. Multibody factorization with uncertainty and missing data
using the em algorithm. In IEEE Conference on Computer Vision and Pattern Recog-
nition, volume 1, pages 769–775, 2004.

[29] Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and
clustering. Computer-aided design of integrated circuits and systems, ieee transactions
on, 11(9):1074–1085, 1992. 14

[30] C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings of
the 4th Alvey Vision Conference, pages 147–151, 1988. 3

[31] Richard Hartley and René Vidal. The multibody trifocal tensor: Motion segmentation
from 3 perspective views. In Proceedings of the 2004 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, volume 1, pages I–769. IEEE,
2004. 11

[32] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial intelligence, 17(1-
3):185–203, 1981. 6, 7, 28, 34

[33] Jian Huang, Joel L. Horowitz, and Fengrong Wei. Variable selection in nonparametric
additive models. The Annals of Statistics, 38(4):2282–2313, 2010. 61

[34] K. Kanatani. Motion segmentation by subspace separation and model selection. In
Proceedings of the 8th IEEE International Conference on Computer Vision, volume 2,
pages 586–591, 2001. 13, 50

[35] Q. Ke and T. Kanade. Robust L1-norm factorization in the presence of outliers and
missing data by alternative convex programming. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 739–746, 2005.

[36] Scott Kirkpatrick, MP Vecchi, et al. Optimization by simmulated annealing. Science,
220(4598):671–680, 1983. 80

[37] F. Lauer and C. Schnörr. Spectral clustering of linear subspaces for motion segmen-
tation. In International Conference on Computer Vision, 2009. 11, 19, 34, 35, 41, 43,
46, 47, 50, 52, 56, 63, 70, 72, 76, 77, 82

94

[38] Richard B Lehoucq and Danny C Sorensen. Deflation techniques for an implic-
itly restarted arnoldi iteration. SIAM Journal on Matrix Analysis and Applications,
17(4):789–821, 1996. 87

[39] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide:
solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods,
volume 6. Siam, 1998. 87

[40] Fuxin Li, Joao Carreira, and Cristian Sminchisescu. Object recognition as ranking
holistic figure-ground hypotheses. In Conference on Computer Vision and Pattern
Recognition, pages 1712–1719, 2010.

[41] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation.
In International Conference on Machine Learning, 2010. 11, 19, 43, 46, 56, 72

[42] B.D. Lucas, T. Kanade, et al. An iterative image registration technique with an ap-
plication to stereo vision. In International joint conference on artificial intelligence,
volume 3, pages 674–679. Citeseer, 1981. 9

[43] Y. Ma, H. Derksen, W. Hong, and J. Wright. Segmentation of multivariate mixed
data via lossy coding and compression. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(9), 2007. 73

[44] Lukas Meier, Sara van de Geer, and Peter Bühlmann. High-dimensional additive mod-
eling. The Annals of Statistics, 37(6B):3779–3821, 2009. 61

[45] Hans-Hellmut Nagel. Displacement vectors derived from second-order intensity varia-
tions in image sequences. Computer Vision, Graphics, and Image Processing, 21(1):85–
117, 1983. 7

[46] Hans-Hellmut Nagel. On the estimation of optical flow: Relations between different
approaches and some new results. Artificial intelligence, 33(3):299–324, 1987. 7

[47] Chris Needham and Roger Boyle. Performance evaluation metrics and statistics for
positional tracker evaluation. In Computer Vision Systems, volume 2626, pages 278–
289. 2003. 24

[48] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clustering: Analysis
and an algorithm. Advances in neural information processing systems, 2:849–856, 2002.
ix, 15, 46

[49] J.H. Park, H. Zha, and R. Kasturi. Spectral clustering for robust motion segmentation.
In European Conference on Computer Vision, pages 390–401, 2004. 46

[50] S. Rao, R. Tron, R. Vidal, and Y. Ma. Motion segmentation in the presence of outlying,
incomplete, or corrupted trajectories. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(10):1832–1845, 2010. 19, 41, 42, 47, 50, 52, 76, 77, 82

95

[51] Lafferty J. Liu H. Ravikumar, P. and L. Wasserman. Spam: Sparse additive models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71:1009–
1030, 2009.

[52] Konrad Schindler, Hanzi Wang, et al. Perspective n-view multibody structure-and-
motion through model selection. In European Conference on Computer Vision, 2006.
11

[53] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8), August 2000. 14, 46

[54] J. Shi and C. Tomasi. Good features to track. In Computer Vision and Pattern
Recognition, pages 593–600. IEEE, 1993. 2, 6

[55] J. Shi and C. Tomasi. Good features to track. In Conference on Computer Vision and
Pattern Recognition, pages 593–600, 1994. 34

[56] Danny C Sorensen. Implicit application of polynomial filters in ak-step arnoldi method.
SIAM Journal on Matrix Analysis and Applications, 13(1):357–385, 1992. 87

[57] Y. Sugaya and K. Kanatani. Geometric structure of degeneracy for multi-body motion
segmentation. In Workshop on statistical methods in video processing, 2004. 13, 42, 50

[58] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of optical flow estimation and
their principles. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2432–2439, 2010. 8, 28, 34, 84

[59] Robert H Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in monte
carlo simulations. Physical Review Letters, 58(2):86, 1987. 73

[60] R. Szeliski. Computer vision: algorithms and applications. Springer-Verlag New York
Inc, 2010. 6

[61] Michael E Tipping and Christopher M Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3):611–622, 1999. 73

[62] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical report,
Tech. Rept. CMU-CS-91132, Carnegie Mellon University, 1991. 9, 24, 28, 34

[63] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
a factorization method. International Journal of Computer Vision, 9(2):137–154, 1992.
12, 26, 41, 48

[64] Philip HS Torr. Geometric motion segmentation and model selection. Philosophical
Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, 356(1740):1321–1340, 1998. 11

[65] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Number 50. 1997. 76

96

[66] R. Tron and R. Vidal. A benchmark for the comparison of 3-d motion segmentation
algorithms. In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2007. 17, 19, 26, 34, 44, 66, 81

[67] Emanuele Trucco and Konstantinos Plakas. Video tracking: a concise survey. Oceanic
Engineering, IEEE Journal of, 31(2):520–529, 2006. 2

[68] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(12):1945–1959, 2005.
41, 42, 47, 50

[69] R. Vidal, R. Tron, and R. Hartley. Multiframe motion segmentation with missing
data using powerfactorizatin and GPCA. International Journal of Computer Vision,
79:85–105, 2008. 19

[70] René Vidal and Richard Hartley. Motion segmentation with missing data using power-
factorization and gpca. In IEEE Conference on Computer Vision and Pattern Recog-
nition, volume 2, pages II–310, 2004. 56, 72, 76

[71] René Vidal, Yi Ma, Stefano Soatto, and Shankar Sastry. Two-view multibody structure
from motion. International Journal of Computer Vision, 68(1):7–25, 2006. 11

[72] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, 2007. 79

[73] H. Wang and P.F. Culverhouse. Robust motion segmentation by spectral clustering.
In Proc. of the British Machine Vision Conference, pages 639–648, 2003. 46

[74] J. Yan and M. Pollefeys. A factorization approach to articulated motion recovery. In
IEEE conference on computer vision and pattern recognition, volume II, pages 815–821,
2005. 13

[75] J. Yan and M. Pollefeys. A general framework for motion segmentation: Independent,
articulated, rigid, non-rigid, degenerate and non-degenerate. In European Conference
on Computer Vision, pages 94–106, 2006. 41, 43, 46, 56, 72

[76] F. Yin, D. Makris, S.A. Velastin, and J. Orwell. Quantitative evaluation of different as-
pects of motion trackers under various challenges. British Machine Vision Association
(5), pages 1–11, 2010. 24

[77] Jingdan Zhang, Shaohua Zhou, Dorin Comaniciu, and Leonard McMillan. Discrimi-
native learning for deformable shape segmentation: A comparative study. European
Conference on Computer Vision, pages 711–724, 2008. 57

[78] T. Zhang, A. Szlam, Y. Wang, and G. Lerman. Hybrid linear modeling via local best-
fit flats. In IEEE Conference on Computer Vision and Pattern Recognition, pages
1927–1934, 2010. 19, 43, 46

97

BIOGRAPHICAL SKETCH

Liangjing Ding completed his Bachelor’s degree in Electronic Information Science and Tech-

nology at the University of Science and Technology of China. He obtained his Master’s

degree in Biomedical Engineering at the University of Science and Technology of China in

2008. His work was mainly involved in electrocardiography signal analysis and ultrasound

imaging. He enrolled in the doctoral program of the Department of Scientific Computing

at Florida State University in the fall of 2008. Mentored by Prof. Adrian Barbu and Prof.

Anke Meyer-Baese. he worked on object tracking and motion segmentation.

Liangjing’s research interests include computer vision, machine learning and data min-

ing.

98

