
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

ONLINE FEATURE SELECTION WITH ANNEALING AND ITS APPLICATIONS

By

LIZHE SUN

A Dissertation submitted to the
Department of Statistics

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

2019

Copyright c© 2019 Lizhe Sun. All Rights Reserved.

Lizhe Sun defended this dissertation on April 29th, 2019.
The members of the supervisory committee were:

Adrian Barbu

Professor Directing Dissertation

Piyush Kumar

University Representative

Yiyuan She

Committee Member

Antonio Linero

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii

To my family and my friends

iii

ACKNOWLEDGMENTS

First, I would like to give special thanks to my supervisor Professor Adrian Barbu, who always,

on one hand, encouraged me to learn more and explore new algorithms, and on the other hand,

provided valuable and insightful advice during my PhD career. Without his assistance, I would not

be able to complete this dissertation.

Also, I am thankful to my dissertation committee members Professor Yiyuan She, Professor

Antonio Linero, and Professor Piyush Kumar, who have kindly spent their time and efforts on

reading this work.

My experience at the Florida State University has been enjoyable, with many friends and

professors inside and outside the department of Statistics. I am very grateful for their support for

these years. Especially, many thanks to Professor Fred Huffer and Professor Yiyuan She. Professor

Huffer took me into the area of theoretical Statistics. Without his help, I could not have had such

a strong theoretical background in Statistics. Professor Yiyuan She showed me the big picture for

the machine learning. His passion for research motivated me to pursue higher goals. I will never

give up my dream to be a better researcher in the area of machine learning.

Finally, I would like to express the most gratitude to my family who have always been supporting

and encouraging me unconditionally. They gave me great power to pursue this PhD degree and

challenge the hard research problems.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

List of Symbols . ix

Abstract . x

1 Introduction 1
1.1 Related Work . 3

1.1.1 Online Feature Selection . 3
1.1.2 Feature Selection with Annealing . 5

1.2 Setup and Notation . 6

2 Stochastic Feature Selection with Annealing 8
2.1 Stochastic Feature Selection with Annealing . 8
2.2 Truncated Stochastic Gradient Descent . 10
2.3 Theoretical Analysis . 10

3 Running Averages for Online Supervised Learning 15
3.1 Running Averages . 16

3.1.1 Data Standardization . 17
3.2 Algorithms . 18

3.2.1 Preliminaries . 18
3.2.2 Online Least Squares . 19
3.2.3 Online Least Squares with Thresholding . 19
3.2.4 Online Feature Selection with Annealing . 20
3.2.5 Online Regularization Methods . 20
3.2.6 Online Classification Methods . 22
3.2.7 Memory and Computational Complexity . 22
3.2.8 Model Adaptation . 22

3.3 Theoretical Analysis . 23

4 Experiments with Stochastic Feature Selection with Annealing 35
4.1 Experiments for Simulated Data . 35

4.1.1 Experimental Results for Regression . 37
4.1.2 Experimental Results for Classification . 37
4.1.3 Experiments on Large Sparse Datasets . 38

4.2 Large Sparse Real Data Analysis . 39

5 Experiments with Running Averages Algorithms 41
5.1 Experiments for Simulated Data . 41
5.2 Theoretical Upper Bound for OLS-th . 44
5.3 Regret Analysis . 46

v

5.4 Model Adaptation . 47
5.5 Real Data Analysis . 48

6 Future Study 50

Appendices

A All Experimental Results for Regression 52

B The Running Averages Framework in the General Online Learning Case 53
B.1 Model Assumption . 53
B.2 Theoretical Analysis . 54

References . 57

Biographical Sketch . 61

vi

LIST OF TABLES

3.1 Comparison between different online methods . 16

4.1 Simulation experiments for online regression, averaged 20 runs. 36

4.2 Comparison between SFSA, SFSA-AG(AG), SFSA-Adam(Adam), TSGD and other
online algorithms for classification, averaged 20 runs. 37

4.3 The running time for SFSA, SFSA-AG(AG), SFSA-Adam(Adam), TSGD and other
online methods. 38

4.4 Comparison among SFSA, SFSA-AG, TSGD, FOFS, and SOFS for the simulated
sparse dataset . 39

4.5 Comparison between SFSA, SFSA-AG, TSGD, FOFS, and SOFS for the real datasets. 40

5.1 Comparison between running averages method and the other online and offline meth-
ods for regression, averaged 100 runs. 42

5.2 Running time (s) for the different methods, averaged 100 runs. 42

5.3 Comparison between running averages methods and the other online methods for
classification, averaged 100 runs. 43

5.4 Running time (s) for different methods, averaged 100 runs. 43

5.5 RMSE for adapted model and non-adapted model, averaged over 20 independent runs. 47

5.6 Regression results on real data. The average R2 for regression obtained over 20 random
splits. 49

A.1 Comparison between different online and offline algorithms for regression setting, av-
eraged 20-100 runs. 52

vii

LIST OF FIGURES

2.1 Multiple maturity times T for stochastic FSA. 9

3.1 The solution path for online OLS-th (Left) and online Lasso (Right) for the Year
Prediction MSD dataset. 15

3.2 Diagram of the running averages based methods. The running averages are updated
as the data is received. The model is extracted from the running averages only when
desired. 17

5.1 Variable detection rate vs the number of true features k∗. Left: OLSth, Right: OFSA 44

5.2 Theoretical and experimental bounds for the OLS-th method, βmin vs. number of
variables p. 45

5.3 Theoretical and experimental bounds for the OLS-th method. Left: βmin vs sample
size n. Right: log(βmin) vs. log(n). 45

5.4 log(Regret) vs log(n) for TSGD, SADMM and running averages based online al-
gorithms, averaged over 20 runs. Left: strong signal (β = 1), middle: medium
signal(β = 0.1), right: weak signal(β = 0.01). 46

5.5 Model adaptation experiment. From left to right: true signal, parameters without
adaptation, parameter with adaption, RMSE for prediction. 47

5.6 Model adaptation for dynamic pricing with feature selection. From left to right: true
signal, parameters without adaptation, parameter with adaption, RMSE for prediction. 48

viii

LIST OF SYMBOLS

The following short list of symbols are used throughout the document. The symbols represent
quantities that I tried to use consistently.

n the number of observations
p the number of variables
k the number of true features
xi the observation for the data matrix X, i = 1, 2, · · · , n
β the coefficient vector for the linear model
µxj the population mean of random variable Xj , j = 1, 2, · · ·
x̄j the sample mean of random variable Xj , j = 1, 2, · · ·
σj the estimated standard deviation of variable Xj

µx the running averages 1
n

∑n
i=1 xi

µy the running averages 1
n

∑n
i=1 yi

Sxx the running averages 1
nXTX

Sxy the running averages 1
nXTy

Syy the running averages 1
nyTy

‖β‖0 the `0 penalty for the coefficient vector β
‖β‖1 the `1 penalty for the coefficient vector β
‖β‖2 the `2 penalty for the coefficient vector β
∇f the derivative for the function f(·)

ix

ABSTRACT

Feature selection is an important technique for high dimensional statistics and machine learning.

It has many applications in computer vision, natural language processing, bioinformatics, etc.

However, most of the feature selection methods in the literature are proposed for offline learning

while the existing online feature selection methods have limitations in true feature recovery. In

this dissertation, we propose some novel online feature selection methods and a framework. One is

called Stochastic Feature Selection with Annealing, and the other one is the framework of running

averages. Based on the methods and the framework we developed, we can recover the support of

the true features with higher accuracy. We provide a theoretical analysis, and through simulations

and experiments on real sparse datasets, we show that our proposed methods compare favorably

with some state-of-the-art online methods in the literature.

x

CHAPTER 1

INTRODUCTION

Feature selection is a very important topic in high dimensional statistics and machine learning, and

has been studied for many years. In high dimensional statistics, various feature selection methods

were proposed in the literature, such as [7, 38, 52, 48]. By removing the irrelevant and redundant

features, feature selection methods can improve the prediction accuracy, enhance the model inter-

pretability, and reduce the computational complexity. Also, feature selection methods have many

applications, for instance in computer vision, nature language processing and bioinformatics.

However, the existing feature selection methods have some limitations. First, most of existing

feature selection methods are restricted to the offline learning setup, which assumes that all the

features and observations are given in advance. For instance, the classical regularized methods are

designed for the offline learning case, such as the `1 based method [38], `1+`2 based method [52], and

non-convex penalized methods such as [7, 48]. However, in the real world applications, the offline

assumption may not hold when we have to handle the large streaming data, where observations

arrive sequentially with the time period t. Besides, considering the problem of data storage, a very

large dataset cannot fit in the computer memory. Here, we have some examples for the applications

of the large streaming data. Consider the 120-day URL data for malicious website detection [21],

the training instances are collected day by day, and there are about two million observations in total

and the features are more than three millions. In this case, it is natural to consider using regularized-

based approach to solve the problem. However, on such a massive dataset, the classical penalty

based algorithms will be computational expensive and memory demanding. In the click-through

rate (CTR) prediction problem, a very large number of users click the advertisement everyday, so

it is not surprising that the advertisement companies collect millions of observations everyday. For

example, in the Avazu click-through data [14], there are more than 4 million instances collected

in one day, and the number of features is one million. The last example is the credit card fraud

detection. Because there are a very large number of people that use credit cards everyday, the credit

card center will gather many transaction records and the reports of fraud everyday. Actually, it is

1

a typical example for the online imbalanced data classification, since the fraud records are a very

small part of all transaction records. In these cases, we cannot use and deploy the regular batch

learning feature selection techniques timely and sometimes it is impossible to fit such large datasets

in the computer memory.

Moreover, online learning approaches converge slower than offline learning methods. In general,

we use online gradient descent to update the coefficients in the online models. However, online

gradient descent is a sequential method, using one observation or a mini-batch of observations for

acceleration [4] in each time period, so we cannot access the full gradient at each iteration. As a

consequence, online algorithms suffer a lower convergence rate than the traditional offline learning

algorithms, O(1/
√
n) for general convexity [50] and O(log(n)/n) for strongly convex functions [30].

In comparison, offline gradient descent enjoys the convergence rate of O(1/n), which is much faster

than the online gradient descent.

Finally, the existing online feature selection methods have limitations in true features recov-

ery. There are some online feature selection methods in the literature, such as online proximal

gradient (OPG) [5, 6], regularized dual averaging (RDA) [44], and their variants OPG-ADMM and

RDA-ADMM [26, 37]. The above methods use convex-relaxation approaches by replacing the `0-

norm with the `1-norm as a sparsity inducing penalty. Some other feature selection methods were

proposed based on greedy-optimization techniques, such as the truncated gradient [18], diffusion

approximation [8], and the second order methods in [40, 43]. Although these methods will induce

sparse solutions and improve the model interpretability, they cannot recover the support of true

features even under mild assumptions on the data matrix X. Also, it is inefficient to control the

sparsity level through the `1 penalty. In this dissertation, we performed simulations to support

these statements.

Motivated by these concerns, we propose in this dissertation novel online feature selection

methods and a framework. In the paper [40], the authors describe the goal of online feature

selection for supervised learning: developing online methods that involve only a small and fixed

number of features for regression and classification. Based on this goal, we would like to solve

one further important problem: designing methods to recover the support of all true features for

the linear sparse model. In general, most of the online feature selection methods can recover the

support of the true features for datasets in which the features are independent with each other.

2

But, for the data with strongly correlated features, these existing methods cannot perform very

well in the true support recovery. Thus, in this dissertation, we will propose new ideas to solve this

issue. Our contribution can be split into two parts, one is the Stochastic Feature Selection with

Annealing (SFSA) method, which can handle data no matter whether the features are orthogonal

or strongly correlated. And the other one is the running averages framework for online supervised

learning.

The major contributions in this dissertation are: (1) we propose a novel algorithm and a new

framework for online feature selection; (2) compared to the other online feature selection methods,

our methods can simultaneously recover the support of the true features for the data with strongly

correlated features and build a regression or classification model on the selected features; (3) we

provide a theoretical analysis for our methods; (4) we verify the empirical performance of our

methods by conducting numerical experiments on simulated and real data.

1.1 Related Work

In this dissertation, we will present literature review for two important parts related to the our

work for online feature selection. The first part is online learning and online feature selection. In

this part, we will start our introduction from the traditional feature selection methods, then we

will extend them into the online case. After that, we will introduce the variants of some classic

online feature selection. Finally, we talk about the performance of the above methods. It worth to

mention that, in the paper [40], the authors think that the existing feature selection methods can be

grouped into three categories: supervised, unsupervised, and semi-supervised. In this dissertation,

we just focus on supervised learning.

The second part is about greedy algorithms and the feature selection with annealing algorithm

(FSA). Feature selection with annealing, proposed in [1], is the main idea we use to select features.

Also, in this dissertation, we provide theoretical guarantees for FSA and its variants. Thus, we

would like to review the literature related to greedy algorithms and feature selection with annealing.

1.1.1 Online Feature Selection

Nowadays, high dimensional data analysis is very common in the machine learning community.

To handle high dimensional data (e.g. p > n), various feature selection techniques have been

3

developed to exploit the sparse structure of the coefficients in the linear model. The most famous

among these feature selection methods is the regularized method based on the `1 penalty, which we

call Lasso [38] for linear regression. Then, various penalized methods were proposed by researchers.

For instance, as an extension of Lasso, the Elastic net was proposed in [52]. Considering the

limitations of the true feature recovery for Lasso, Zou also proposed the adaptive Lasso in [51],

which can select all true features in the low dimensional case (n > p). The Lasso estimator

is derived from a convex optimization problem, which is convenient for computation. However,

since it is based on the `1 penalty, the Lasso estimator is biased. To solve this problem, Fan

and Li proposed the Smoothly Clipped Absolute Deviation (SCAD) penalty in [7] to replace the

`1 penalty. Later on, Zhang proposed the Minimax Concave Penalty (MCP) in [48]. Both of

these regularized methods will induce a non-convex optimization problem, but they can provide

an unbiased estimator. Besides the `1 penalty and the non-convex penalty, many methods were

proposed in the literature [1, 12, 20, 49] to solve the `0 penalty problem.

In the online learning case, there are two frameworks for online feature selection based on

convex optimization. One is the Forward-Backward-Splitting method [5], building an online feature

selection framework by online proximal gradient (OPG) [6]. Duchi and Singer [5] proposed this

algorithmic framework for the regularized convex optimization problem, which is to minimize the

following sum of two functions:

min
β

1

n

n∑
i=1

`(β; zi) + P(β;λ), (1.1)

in which the first part is the empirical loss, and the second part is the penalty function. The hyper-

parameter λ is a tuning parameter. Although it is very easy to extend the penalty to non-convex

functions, the authors just considered the convex penalty in this paper. The OPG method can be

split into two step: one step uses gradient descent to update the coefficients, the second step is to

solve a convex optimization problem.

The other online feature selection framework is Xiao’s Regularized Dual Averaging method

(RDA) [44], which extended the primal-dual sub-gradient method [23] to the online case. The RDA

algorithmic framework is also used to solve the optimization problem from eq. (1.1). However,

unlike the OPG framework which can be applied for both of online and offline cases, the RDA

method is designed based on online streaming data. In general, we need to solve the following

4

optimization problem in the RDA framework:

β(t+1) = arg min
β

{
〈ḡt,β〉+ P(β;λ) +

γt
t
h(β)

}
,

in which P(·; ·) is a penalty function, and h(β) is an auxiliary strongly convex function, and {γt}t≥1
is a nonnegative and nondecreasing input sequence, which determines the convergence rate of the

algorithm. Besides, we can compute the average of the gradient by using

ḡt =
t− 1

t
ḡt−1 +

1

t
gt.

This is why this method is called the dual averaging method.

Within the both of frameworks, some variants have been developed. For instance, the stochastic

ADMM algorithm can be designed in both frameworks as OPG-ADMM and RDA-ADMM [37].

Independently, Ouyang also proposed the stochastic ADMM algorithm in [26], the same algorithm

as OPG-ADMM.

Another line of research are the greedy-based online feature selection methods such as diffusion

approximation [8], truncated gradient [18], FOFS/SOFS [40, 43], as the first order/second order

online feature selection method.

There is a third line of research called online streaming feature selection [42, 45]. In this scenario,

features arrive one at a time while all the training examples are available before the learning process

starts, and the goal is to select a subset of features and build an appropriate model at each time.

Unlike the traditional online learning, the disadvantage of this new online scenario is that we

cannot select all true features and train a model for prediction until all features are disclosed. In

this dissertation, we assume that observations arrive sequentially in time, so we will not consider

algorithms such as [42] or [45] for comparison.

Finally, the online Newton method [11] uses a similar idea with our running averages idea to

update the inverse of the Hessian matrix. This method enjoys the computational complexity O(p2),

but they did not address the issues of variable standardization and feature selection.

1.1.2 Feature Selection with Annealing

The Feature Selection with Annealing (FSA) algorithm is designed by Barbu, She, and their

co-workers in the paper [1]. FSA is used for the constrained optimization problem

min
‖β‖0≤k

1

n

n∑
i=1

`(β; zi),

5

in which zi = (xi, yi) and `(β; zi) is the loss function. The FSA algorithm will be applied in all the

dissertation. Also, we will introduce the main idea of the FSA algorithm in Chapter 2 and Chapter

3. In this part, we will review the literature related to the FSA algorithm.

The FSA algorithm belongs to the class of greedy algorithms. Usually, greedy algorithms are

used to solve the `0 constrained optimization problem. In the paper [49], Zhang proposed a forward

backward greedy algorithm to study the feature selection problem in the linear regression model.

Then, in the paper [20], the authors extended this method for the general convex optimization

problem. Besides, Iterative Hard Thresholding (IHT) [12] and Hard Thresholding Pursuit (HTP)

[9] are also classical algorithms for `0 constrained problems.

In this dissertation, the main idea for the theoretical analysis of FSA comes from the HTP

algorithm. In the literature, there are some papers deal with the problem of support recovery by

HTP algorithm. In the paper [46], the authors proved that, when the restricted isometry property

(RIP) condition holds, the HTP algorithm can recover the support of the true features. However,

Shen and Li [32] provided the proof of the same conclusion without using the RIP condition. Here,

our proof use the similar technique with the paper [46]. We prove that, with the RIP condition,

our FSA algorithm can recovery the support of true features with a high probability.

1.2 Setup and Notation

In this dissertation, we consider the sparse learning problem for the regularized linear regression

and classification model. Let zi = (xi, yi) be a sequence of i.i.d training instances, arriving one at

a time. Our goal is to minimize the constrained optimization problem

min
‖β‖0≤k

1

n

n∑
i=1

`(β; zi) + P(β;λ), (1.2)

in which `(·; zi) : Rp → R is a per-example loss function, P(·; ·) is the penalty function, and λ is

a tuning parameter for the linear model. The coefficient vector β is estimated sequentially, one

example at a time, from β1,β2, · · · ,βi−1 we obtain the coefficient vector βi. For instance, in

Chapter 2, we will optimize the loss function of the linear regression model:

L(β) =
1

n

n∑
i=1

(yi − xTi β)2 +
λ

2
‖β‖22, (1.3)

and the loss of the logistic regression model for classification

6

L(β) =
1

n

n∑
i=1

log(1 + e−yix
T
i β) +

λ

2
‖β‖22, (1.4)

with yi ∈ {−1,+1}. In the theoretical analysis of online learning, it is of interest to obtain an

upper bound of the regret,

Rn =
1

n

n∑
i=1

[`(βi; zi) + P(βi;λ)]−min
β

[
1

n

n∑
i=1

`(β; zi) + P(β;λ)

]
(1.5)

which measures what is lost in terms of loss compared to their offline versions, and in a way

measuring the speed of convergence of the online algorithms.

Here, we establish the notation formally. Vectors are lower case bold letters, such as x ∈ Rd,

and scalars are lower case letters, e.g. x ∈ R. A sequence of vectors is denoted by subscripts,

i.e. w1,w2, · · · , and the entries in a vector are denoted by non-bold subscripts, like wj . Matrices

are upper case bold letters, such as M ∈ Rd×d, and random variables are upper case letters, such

as Z. Given a vector γ = (γ1, γ2, · · · , γn)T ∈ Rn, we define vector norms: ‖γ‖1 =
∑n

i=1 |γi|,

‖γ‖ =
√∑n

i=1 γ
2
i and ‖γ‖0 = #{j : γj 6= 0}. Finally, ∇Sf(x) is the gradient vector of f restricted

to the variables indexed by S.

7

CHAPTER 2

STOCHASTIC FEATURE SELECTION WITH

ANNEALING

2.1 Stochastic Feature Selection with Annealing

The new online feature selection method we proposed here is motivated by the feature selection

with annealing (FSA) algorithm [1]. Similar to the FSA algorithm for offline learning, the SFSA

algorithm can simultaneously solve the feature selection problem and train a model for prediction.

According to the description in [1], the key ideas in this feature selection algorithm design are:

(1) use an annealing procedure to lessen the greediness in reducing the dimensionality from p to k,

(2) gradually remove the most irrelevant variables to facilitate computation. The algorithm starts

with an initialized parameter vector β, generally β = 0, and then alternates two basic steps: one

step updating the parameters to minimize the per-example loss `(β; zi) by gradient descent

β = β − η∂fi
∂β

,

in which fi(β) = `(β; zi) + λ
2‖β‖

2
2, and the other step is a feature selection step that removes some

variables based on the ranking of |βj |, j = 1, 2, · · · , p.

The difference between our stochastic feature selection with annealing and the offline counter-

part is that one approximates the gradient by using a mini-batch of observations, and the other

one uses all data to construct the gradient. It also differs on how it handles non-normalized data,

since in the offline FSA one can directly normalize the data, while in the proposed algorithm one

uses estimated variances for the variables, as described in Remark 1. The algorithm is summarized

in Algorithm 1.

In general, we will input a mini-batch of observations rather than one at a time, but the one

at a time situation can be always recovered by setting the mini-batch size to 1. Also, we design an

annealing schedule Mt, the number of features to keep at time t:

Mt = k + (p− k) max{0, T − t
tµ+ T

}, t = 1, 2, · · · , T,

8

in which k is the desired sparsity level, µ is the annealing parameter in this model and T is the

maturity time for this schedule, when exactly k features have been selected.

Algorithm 1 Stochastic Feature Selection with Annealing

Input: Training data zt = (xt, yt) arriving one at a time, learning rate η, sparsity level k,

annealing parameter µ, maturity time T .

Output: Trained regression parameter vector β with ‖β‖0 ≤ k.

Initialize β = 0.

for t = 1 to ∞ do

Receive an observation xt.

Predict ŷt.

Receive the true yt.

Update β ← β − η ∂f(β,zt)∂β

Keep only the Mt variables with highest |βj | and renumber them 1, ...,Mt.

end for

A longer maturity time uses more observations, therefore it has better feature selection capa-

bilities. In practice, we use multiple maturity times as illustrated in Figure 2.1 so that we always

have a “current” set of selected features of a desired sparsity while building a better one as more

data is available.

Figure 2.1: Multiple maturity times T for stochastic FSA.

Finally, we would like to emphasize that the Algorithm 1 is just based on simple stochastic

gradient descent. However, we also can combine SFSA algorithm with momentum, Nesterov accel-

9

erated gradient [35] and Adam [17]. Some of these techniques will be evaluated in the experimental

section.

2.2 Truncated Stochastic Gradient Descent

From the stochastic feature selection with annealing algorithm, we can see that using online

gradient descent we can select features by keeping the largest k coefficient magnitudes. Now we

consider a special case for online feature selection where we don’t use an annealing procedure with

online gradient descent, but select the largest k coefficient magnitudes at time T . The prototype

algorithm is described in Algorithm 2.

In the literature, somewhat similar truncated stochastic gradient descent algorithms were also

proposed in [8], [18] and [40], based on different loss functions. However, their methods will truncate

the coefficient magnitudes at each time t. This will mislead the algorithms to select irrelevant

features, especially when the features have strong correlation. Our Algorithm 2 will select the

subset of features according to the largest values of the coefficient magnitudes after T iterations,

which will improve the accuracy for feature selection.

Algorithm 2 Truncated Stochastic Gradient Descent

Input: Training data zt = (xt, yt) arriving one at a time, learning rate η, sparsity level k,

maturity time T .

Output: Trained regression parameter vector β with ‖β‖0 ≤ k.

Initialize β = 0.

for t = 1 to ∞ do

Receive an observations xt.

Predict ŷt.

Receive the true yt.

Update β ← β − η ∂f(β,zt)∂β

end for

Keep only the k variables with highest |βj |.

2.3 Theoretical Analysis

In this section, we will prove that the SFSA algorithm will converge to the true β∗ when the

loss function is strongly convex. Our proof follows the OPG framework [6] and is inspired by [47].

10

The SFSA Algorithm 1 consists of the following two steps at each iteration:

β̃t+1 = βt − η
∂f(βt, zt)

∂β
,

βt+1 = ΘMt(β̃t+1),

in which Θs(·) is the hard thresholding operator that keeps s features. In this paper, we define β∗

as the true coefficient vector, and assume ‖β∗‖0 = k∗. Before we start to prove our main theorem,

we give a definition of the Restricted Strong Convexity/Smoothness(RSC/RSS) property.

Definition 1. (Restricted Strong Convexity/Smoothness) For any integer s > 0, we say that

a differentiable function f(x) is restricted strongly convex (RSC) with parameter ms and restricted

strongly smooth (RSS) with parameter Ms if there exist ms,Ms > 0 such that

ms

2
‖β − β′‖2≤f(β)−f(β′)− 〈∇f(β′),β − β′〉≤Ms

2
‖β − β′‖2

for ∀‖β − β′‖0 ≤ s.

In this dissertation, we consider the regularized linear model, using the `2 penalized loss func-

tions (1.3) and (1.4). Thus the loss function for each observation is strongly convex and the Hessian

matrix ∇2f(β) must be positive definite. As a result, there exist M,m > 0 satisfying

0 < m < λmin(∇2f(β)) < λmax(∇2f(β)) < M.

where λmin(·) and λmax(·) are the smallest and largest eigenvalues. It is also easy to verify that

there exist Ms,ms > 0 satisfying the RSC/RSS conditions for the per-example loss function at any

sparsity level (0 < s ≤ p).

Now, we introduce the two basic Lemmas for our theoretical analysis. Lemma 1 is a classical

result of gradient descent method, and Lemma 2 shows the upper bound of hard thresholding

function. We can find the proof of Lemma 1 in [24], and Lemma 2 is a main theorem in [33].

Lemma 1. Assume that a differentiable function f is restricted strongly convex/smooth with param-

eter ms/Ms for some s ≤ p. For any β, β′ with |Sβ∪Sβ′ | ≤ s, if the learning rate η ∈ (0, 2ms/M
2
s),

then

‖β − β′ − η∇f(β) + η∇f(β′)‖≤
√

1−2ηms+η2M2
s ‖β − β′‖

in which
√

1− 2ηms + η2M2
s < 1.

11

Lemma 2. Let y ∈ Rd be an arbitrary d-dimensional vector, and x ∈ Rd be any k∗-sparse vector,

thus ‖x‖0 = k∗ ≤ k. Then, we have the following bound

‖Θk(y)− x‖ ≤
√
ν‖y − x‖, ν = 1 +

γ +
√

(4 + γ)γ

2
,

in which γ =
min{k∗, d− k}

k − k∗ + min{k∗, d− k}
and Θk(y) is the hard thresholding operator that keeps the k

largest magnitudes |yi|. Because γ ≤ 1, it is easy to verify that
√
νmin ≤ 1.62.

We start to build our main theorem now. The proofs of the following proposition and theorem

are inspired from the proof in [47]. In Proposition 1, we build the relationship between β(t+1) and

β(t) and disclose how the β(t) converge to the true β∗. And in the Theorem 1, we prove that, under

some conditions, and after t iterations, the SFSA algorithm will converge to the true coefficients

β∗.

Proposition 1. Let β∗ be an arbitrary k∗-sparse vector, so ‖β∗‖0 = k∗, β(t) be the SFSA coefficient

vector at iteration t, Sβ(t) be its support, and k = |Sβ(t) | ≥ k∗. Let s = |Sβ(t) ∪ Sβ∗ | ≤ k + k∗,

and if f is a differentiable function which is ms-convex and Ms-smooth, then for any learning rate

0 < η < 2ms/M
2
s , we have

‖β(t+1) − β∗‖ ≤ 1.62ρ‖β(t) − β∗‖+ 1.62η
√
s‖∇ft(β∗)‖∞, (2.1)

where ρ =
√

1− 2ηms + η2M2
s < 1.

Proof. Let S be the index set S = Sβ(t) ∪ Sβ∗ , thus we must have |S| ≤ k + k∗. Consider the

following vector

β̃
(t+1)

= β(t) − η∇Sft(β(t)),

where ∇S has been defined in Section 1.2. By using the triangle inequality, we have

‖ β̃(t+1) − β∗‖ = ‖β(t) − η∇Sft(β(t))− β∗‖

≤‖β(t)−β∗−η∇Sft(β(t))−η∇Sft(β∗)‖+η‖∇Sft(β∗)‖

≤ρ‖β(t) − β∗‖+ η
√
s‖∇ft(β∗)‖∞,

where the last inequality follows from Lemma 1 and the fact that ‖∇Sft(β∗)‖ ≤
√
s‖∇Sft(β∗)‖∞.

Then because we have β(t+1) = Θk(β̃
(t+1)

), by using Lemma 2, we have that (2.1) follows.

12

Theorem 1. Let β(0) = 0 and Sβ(0) = {1, 2, · · · , p}. With the same notations and settings as

Proposition 1, assume that Ms/ms < 1.26 and there exists a constant G > 0, s.t. ‖∇ft(β)‖∞ <

G, ∀β ∈ Rp. Then the SFSA coefficient vector β(t), satisfies

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β∗‖+
1.62η

√
p

1− 1.62ρ
G.

Proof. Based on our conditions and settings, for any k∗ ≤ k ≤ p, we have s = k + k∗, η ∈

(0, 2ms/M
2
s), and Ms/ms < 1.26. Thus, ρ < 0.62 and 1.62ρ < 1. By using Proposition 1 recursively

with decreasing k from p to k∗, for instance, at the time period t, we have

‖β(t) − β∗‖ ≤ 1.62ρ‖β(t−1) − β∗‖+ 1.62η
√
s‖∇ft(β)‖∞,

and at the time period t− 1, we have

‖β(t−1) − β∗‖ ≤ 1.62ρ‖β(t−2) − β∗‖+ 1.62η
√
s′‖∇ft(β)‖∞,

in which s and s′ are the number of selected features at time period t and t−1, respective. Because

‖∇ft(β)‖∞ < G, and s = k + k∗ ≤ s′ ≤ p, then we have

β(t) − β∗‖ ≤ (1.62ρ)2‖β(t−2) − β∗‖+ 1.622ρη
√
s′‖∇ft(β)‖∞ + 1.62η

√
s‖∇ft(β)‖∞

≤ (1.62ρ)2‖β(t−2) − β∗‖+ 1.622ρη
√
pG+ 1.62η

√
pG,

By applying the above inequality repeatedly all the way to t = 0 we can get

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β(0) − β∗‖+ [(1.62ρ)t−1 + ...+ 1]1.62η
√
pG.

which implies the conclusion since β(0) = 0.

Remark 1. The above proposition and theorem assume that the data is normalized. If that is not the

case, we can maintain the running averages µ̂x = 1
n

∑n
i=1 xi ∈ Rp and Sx = diag{ 1n

∑n
i=1 xix

T
i } ∈

Rp by updating them one example at a time. Then we can use σ̂x = Sx − µ̂2
x ∈ Rp to perform

SFSA on non-normalized data using the thresholding Θk(σ̂xβ) instead of Θk(β).

In Theorem 1, the non-vanishing term in the error bound shows that the estimation error in

SFSA is controlled by the upper bound of ‖∇ft(β)‖∞, ∀t > 0. Here we defined it as a constant

G > 0. Thus, by using Theorem 1, we can provide the following theoretical guarantee that the

true support recovery is possible for SFSA when β∗min is significant larger than the upper bound of
√
p‖∇ft(β)‖∞, ∀t > 0.

13

Corollary 1. Assume that the conditions in Proposition 1 and Theorem 1 hold, and also assume

that ‖β̂‖0 = k∗. With the condition

β∗min := min
j∈Sβ∗

|β∗j | >
2η
√
p

1− 1.62ρ
G,

after t = [1
1.62ρ log(2‖β

∗‖
βmin

)] + 1 iterations, the SFSA algorithm will output a β(t) satisfying Sβ(t) =

Sβ∗.

Proof. When t > [1
1.62ρ log(2‖β

∗‖
βmin

)] + 1, we have

(1.62ρ)t‖β∗‖ < 1

2
βmin.

Then, we can imply that

‖β(t) − β∗‖ < βmin.

Thus, Sβ∗ = Sβ(t) must hold.

14

CHAPTER 3

RUNNING AVERAGES FOR ONLINE

SUPERVISED LEARNING

In Chapter 2, we proposed the stochastic feature selection with annealing (SFSA) method for

online feature selection, and provide theoretical guarantees for it. However, SFSA method is still

in the traditional framework, the online proximal gradient (OPG). In this chapter, we will develop

a new framework to solve online feature selection problem. The new framework we proposed here

for online learning is based on the statistical query model [3, 15], and we call our framework the

running averages framework.

Figure 3.1: The solution path for online OLS-th (Left) and online Lasso (Right) for the
Year Prediction MSD dataset.

Many of the methods proposed in our framework enjoy a fast convergence rate and can recover

the support of the true signal. Moreover, the proposed methods can address the issue of model

selection, which is to obtain models with different sparsity levels and decide on the best model,

e.g. using an AIC/BIC criterion. For example in Figure 3.1 are shown the solution paths obtained

by the proposed online least squares with thresholding method, as well as the proposed online

15

Table 3.1: Comparison between different online methods

Memory Computation Convergence Feature True Feature
Algorithm Running Avgs. Algorithms Coefficients Regret Selection Recovery

SGD O(p) - O(np) O(n−1/2) Slow No No

SADMM[26] O(p) - O(np) O(n−1/2) Slow Yes No

SIHT[8] O(p) - O(np) O(log(n)/n) Slow Yes No

OFSA O(p2) O(np2) O(p2) O(n−1) Fast Yes Yes

OLS-th O(p2) O(np2) O(p3) O(n−1) O(nα−1) Yes Yes

OMCP O(p2) O(np2) O(p2) O(n−1) Fast Yes Yes

OElnet O(p2) O(np2) O(p2) O(n−1) Fast Yes No

Lasso method. A brief summary of the convergence rates and computational complexity of various

methods including the proposed methods are shown in Table 3.1.

Here, we summarize the advantages and disadvantages of the proposed running averages algo-

rithms: although the proposed online methods based on running averages sacrifice computational

complexity and memory compared with classical online methods, they enjoy a fast convergence

rate and high estimation accuracy. More importantly, the proposed methods can select features

and recover the support of true features with high accuracy and they can obtain models with any

desired sparsity level for model selection at any time.

3.1 Running Averages

The idea of running averages comes from the statistical query model and the issues of standard

online methods. In mathematical statistics, given a distribution with unknown parameters θ and

the i.i.d random variables X1, X2, · · · , Xn, a sufficient statistic T (X1, X2, · · · , Xn) contains all the

information necessary for estimating the model parameters.

In big data learning, the large datasets cannot fit in memory, and the online methods in the

literature cannot recover the support of the true features. Motivated by these concerns, we propose

the running averages framework, which contains two modules, a running averages module that is

updated online as new data is available, and a model extraction module that can build different

types of models with any desired sparsity from the running averages. A diagram of the framework

is shown in Figure 3.2.

Let (xi, yi), i = 1, n be observations with xi = (xi1, xi2, · · · , xip)T ∈ Rp and yi ∈ R, and we

denote data matrix X = (xT1 ,x
T
2 , · · · ,xTn)T , y = (y1, y2, · · · , yn)T . The running averages are the

16

Figure 3.2: Diagram of the running averages based methods. The running averages are
updated as the data is received. The model is extracted from the running averages only
when desired.

cumulative averages over the observations. They are

µx =
1

n

n∑
i=1

xi, µy =
1

n

n∑
i=1

yi,

Sxx =
1

n

n∑
i=1

xix
T
i , Sxy =

1

n

n∑
i=1

yixi, Syy =
1

n

n∑
i=1

y2i

and the sample size n. The running averages can be updated in an incremental manner, for example

µ(n+1)
x =

n

n+ 1
µ(n)
x +

1

n+ 1
xn+1, (3.1)

similar to the procedure from Chapter 2.5 in [36].

The running averages have the following advantages: a) they cover all necessary sample in-

formation for model estimation, b) the dimension of the running averages will not increase with

sample size n, c) they can be used in the online learning setting because they can be updated one

example at one time.

3.1.1 Data Standardization

Data standardization is an important procedure in real data analysis, especially for feature

selection, because a feature could have an arbitrary scale (unit of measure) and the scale should

not influence its importance in the model. For this purpose, the data matrix X and the response

vector y are usually standardized by removing the mean, and X is further standardized by making

17

all columns on the same scale. However, because we discard the data and only use the running

averages, we will need to standardize the running averages.

Denote 1n = [1, 1, · · · , 1]T ∈ Rn, and by σxj the sample standard deviation for the random

variable Xj . By running averages, we can estimate the standard deviation of variable j as:

σxj =
√

(Sxx)j − (µx)2j ,

in which (Sxx)j is the j-th diagonal entry for p×pmatrix Sxx. Then, denote by Π = diag(σx1 , ..., σxp)
−1

the p× p diagonal matrix containing the inverse of standard deviations σxj on the diagonal. De-

noting by X̃ the standardized data matrix X, and ỹ as the centralized y, we can standardize data

as

X̃ = (X− 1nµ
T
x)Π, ỹ = (y − µy1n)

From these equations we obtain the running averages of the standardized dataset:

Sx̃ỹ =
1

n
X̃T ỹ =

1

n
ΠXTy − µyΠµx = ΠSxy − µyΠµx (3.2)

Sx̃x̃ =
1

n
X̃T X̃ = Π(

XTX

n
− µxµ

T
x)Π = Π(Sxx − µxµ

T
x)Π (3.3)

For convenience, hereinafter, we will still use Sxx and Sxy to represent the running averages after

standardization.

3.2 Algorithms

In this section, we propose several running averages-based online algorithms. First, we design

online least squares based on running averages, which can be used for feature selection by thresh-

olding. We also propose the online feature selection with annealing (OFSA) to solve the constrained

least squares problem. Then we consider some regularization models, such as Lasso, Elastic Net,

and Minimax Concave Penalty. To simplify notation, we denote OLS to represent online least

squares, OLSth for online least squares with thresholding, OLasso for online Lasso, OElnet for

online elastic net, and OMCP for online minimax concave penalty.

3.2.1 Preliminaries

Before we start introducing the running averages-based algorithms, we prove that these online

algorithms are equivalent to their offline counterparts. Actually, in our running averages framework,

18

we share the same objective loss function with offline learning, which is the key point to prove their

equivalence.

Proposition 2. Consider the following penalized regression problem:

min
β

1

2n
‖y −Xβ‖2 + P(β;λ), (3.4)

in which β is the coefficient vector and P(β;λ) =
∑p

j=1 P(βj ;λ) is a penalty function. It is

equivalent to the online optimization problem based on running averages.

min
β

1

2
βTSxxβ − βTSxy + P(β;λ), (3.5)

Proof. The loss function (3.4) can be rewritten as

1

2n
‖y −Xβ‖2 + P(β;λ) =

1

2n
(y −Xβ)T(y −Xβ) + P(β;λ)

=
yTy

2n
− βTXTy

n
+ βT

XTX

2n
β +

p∑
j=1

P(βj ;λ),

in which Syy = yTy/n, Sxy = XTy/n, and Sxx = XTX/n are running averages. Thus, the offline

learning problem is equivalent to our running averages online learning problem.

3.2.2 Online Least Squares

In OLS, we need to find the solution for the equations XTX
n β = XTy

n . Since XTX
n and XTy

n can

be computed by using running averages, we obtain:

Sxxβ = Sxy. (3.6)

Thus, online least squares is equivalent to offline least squares.

3.2.3 Online Least Squares with Thresholding

The OLSth is aimed at solving the following constrained minimization problem:

min
‖β‖0≤k

1

2n
‖y −Xβ‖2. (3.7)

It is a non-convex and NP-hard problem because of the sparsity constraint. Here, we propose a

three step procedure to solve it: first, we use the online least squares to estimate β̂, then we remove

unimportant variables according to the coefficient magnitudes |βj |, j = 1, 2, · · · , p. Finally, we

use least squares to refit the model on the subset of selected features. The prototype algorithm is

described in Algorithm 3. In the high dimensional case (p > n), we can use the ridge regression

estimator in the first step.

19

Algorithm 3 OLS with Thresholding

Input: Training running averages Sxx,Sxy and sample size n, sparsity level k.

Output: Trained regression parameter vector β with ‖β‖0 ≤ k.

1: Find β̂ by OLS.

2: Keep only the k variables with largest |β̂j |.
3: Fit the model on the selected features by OLS.

3.2.4 Online Feature Selection with Annealing

Unlike OLSth, OFSA is an iterative thresholding algorithm. The OFSA algorithm can simulta-

neously solve the coefficient estimation problem and the feature selection problem. The main ideas

in OFSA are: 1) uses an annealing plan to lessen the greediness in reducing the dimensionality

from p to k, 2) removes irrelevant variables to facilitate computation. The algorithm starts with

an initialized parameter β, generally β = 0, and then alternates two basic steps: one is updating

the parameters to minimize the loss L(β) by gradient descent

β = β − η∂L
∂β

,

and the other one is a feature selection step that removes some variables based on the ranking of

|βj |, j = 1, 2, · · · , p. In the second step, we design an annealing schedule to decide the number of

features Mt we keep in each time period t,

Mt = k + (p− k) max{0, T − t
tµ+ T

}, t = 1, 2, · · · , T.

More details are shown in [1] about the offline FSA algorithm, such as applications and theoretical

analysis. For the square loss, the computation of

∂L

∂β
= −XTy

n
+

XTXβ

n
= Sxxβ − Sxy, (3.8)

falls into our running averages framework. Thus, we derive the OFSA which is equivalent to the

offline FSA in [1]. The algorithm is summarized in Algorithm 4.

3.2.5 Online Regularization Methods

Penalized methods can also be used to select features, and we can map them into our running

averages framework. A popular one is the Lasso estimator [38], it solves the convex optimization

20

Algorithm 4 Online FSA

Input: Training running averages Sxx,Sxy, sample size n, learning rate η, hyper-parameter µ,

and sparsity level k.

Output: Trained regression parameter vector β with ‖β‖0 ≤ k.

Initialize β = 0.

for t = 1 to niter do

Update β ← β − η(Sxxβ − Sxy)

Keep only the Mt variables with highest |βj | and renumber them 1, ...,Mt.

end for

Fit the model on the selected features by OLS.

problem

arg min
β

1

2n
‖y −Xβ‖2 + λ

p∑
j=1

|βj |, (3.9)

in which λ > 0 is a tuning parameter.

Besides Lasso, the SCAD [7], the Elastic Net [52] and the MCP [48] were proposed to deal

with the variable selection and estimation problem. Here, we use the gradient-based method with a

thresholding operator Θ(t;λ) to solve the regularized loss minimization problems [31]. For instance,

in Lasso and Elastic net, Θ is the soft thresholding operator, and in MCP,

Θ(t;λ) =


0 if 0 ≤ |t| ≤ λ,
t−λ sign(t)

1−1/b if λ < |t| ≤ bλ,
t if |t| > bλ,

(3.10)

in which b is a constant. The general algorithm is given in Algorithm 5.

Algorithm 5 Online Regularized Methods by GD

Input: Training running averages Sxx,Sxy, sample size n, learning rate η, penalty parameter λ.

Output: Trained sparse regression parameter vector β.

Initialize β = 0.

for t = 1 to niter do

Update β ← β − η(Sxxβ − Sxy)

Update β ← Θ(β; ηλ)

end for

Fit the model on the selected features by OLS.

21

3.2.6 Online Classification Methods

The aforementioned algorithms not only can select features for regression, but can also be used

for classification, even though these algorithms are based on the `2 loss. In fact, for the two class

problem with labels +1 and −1, the coefficient vector for classification from linear least squares is

proportional to the coefficient vector by linear discriminant analysis without intercept [10]. Besides,

one can use the Lasso method to select variable for classification under some assumptions [25]. We

will give the theoretical guarantees in Section 3.3.

3.2.7 Memory and Computational Complexity

In general, the memory complexity for the running averages is O(p2) because Sxx is a p × p

matrix. The computational complexity of maintaining the running averages is O(np2). Except

for OLSth, the computational complexity for obtaining the model using the running average-based

algorithms is O(p2) based on the limited number of iterations, each taking O(p2) time. As for

OLSth, it is O(p3) if done by Gaussian elimination or O(p2) if done using an iterative method

such as conjugate gradient that takes much fewer iterations than p. We can conclude that the

running averages storage does not depend on the sample size n, and the computation is linear in

n. Hence, when n >> p, compared to the batch learning algorithms, the running averages based

methods need less memory and have less computational complexity. And they can achieve the same

convergence rate as the batch learning algorithms.

3.2.8 Model Adaptation

Detecting changes in the underlying model and rapidly adapting to the changes are common

problems in online learning, and some applications are based on varying-coefficient models [13].

Our running averages online methods can adapt to coefficients change for large scale data streams.

For that the update equation (3.1) can be regarded in a more general form as

µ(n+1)
x = (1− αn)µ(n)

x + αnxn+1 (3.11)

where we only show one of the running averages for illustration but the same type of updates are

used for all of them.

The original running averages use αn = 1/(n+ 1), which gives all observations equal weight in

the running average. For the coefficients-varying models, we use a larger value of αn that gives more

22

weight to the recent observations. However, too much adaptation is also not good because then

the model will not be able to recover weak coefficients that can only be recovered given sufficiently

many observations. More details about simulation and application will be covered in Chapter 5.

3.3 Theoretical Analysis

In this section we will give the theoretical analysis for our methods. First, because of Proposition

2, we have the equivalence of the online penalized models including Lasso, Elastic Net, SCAD and

MCP with their offline counterparts, and thus all their theoretical guarantees of consistency, oracle

inequalities, etc., carry over to their online counterparts.

Here, we start by showing that the OLSth and OFSA method can recover the support of the

true features with high probability. The main idea of our proof comes from [47]. After that, we

will prove an upper bound for the regret of the OLSth method. In the end of theoretical part, we

will give a theoretical justification for the support recovery of our method in classification.

We start building our theory from two lemmas. The proof of Lemma 3 and 4 can be found in

the textbook [39].

Lemma 3. If X is a Gaussian random variable X ∼ N(0, σ2), then for all t > 0,

P(|X| ≥ t) ≤ 2 exp{−t2/2σ2}

Lemma 4. Let X ∈ Rn×p be a data matrix drawn from N (0,Σ). Then when n > p, for all t > 0,

the minimum singular value satisfies the lower deviation inequality

P
(λmin(X)√

n
≤ λmin(

√
Σ)(1− t)−

√
tr(Σ)

n

)
≤ e−nt2/2,

in which λmin(X) is the smallest singular value of matrix X.

Here, we start to present our first result, when the sample size n is large enough, OLSth

can recover the support of true features with a high probability. Also, we will cover the data

normalization in our theoretical analysis. Although the intercept β0 is necessary in the real data

applications, we will not cover it here.

Proposition 3. Suppose we have the linear model

y = Xβ∗ + ε, ε ∼ N(0, σ2I),

23

where X = [xT1 ,x
T
2 , · · · ,xTn]T is the data matrix, in which xi ∈ Rp, i = 1, 2, · · · , are independently

drawn from N (0,Σ). Let α ∈ (0, 1] and Sβ∗ = {j, β∗j 6= 0}, |Sβ∗ | = k∗ and

min
j∈Sβ∗

|β∗j | >
2σ

λ

√
log(p)

nα
, for some λ satisfying 0 < λ ≤ λmin(

1

n
XTX). (3.12)

Then with probability 1− 2p1−C1n1−α
, where C1 > 1 is a constant, the index set of top k∗ values of

|β̂j | is exactly Sβ∗.

Proof. According to the assumptions, we have β̂ = β∗ + (XTX)−1XT ε with ε ∼ N(0, σ2I). It is

equivalent to that

|β̂| = |β∗ +

(
XTX

n

)−1
XT ε

n
|.

Then by the Lemma 3, for ∀j = 1, 2, · · · , p and ∀t > 0 we have

P

(
|
xTj ε

n
| ≥ t

)
≤ 2 exp{− n2t2

2σ2‖xj‖22
},

in which
xTj ε

n has the normal distribution N (0, σ
2

n ·
‖xj‖22
n) for the given xj . In general case, we can

assume that ‖xj‖22/n, ∀j = 1, 2, · · · , p, is bounded by a constant C > 0. Here we can assume that

0 < C < 2, and it is easy to verify that C = 1 when we standardize the data matrix X. Then, let

t = 2σ

√
log(p)
nα , so we have

P

(
|
xTj ε

n
| ≥ 2σ

√
log(p)

nα

)
≤ 2 exp{−2n2−α log(p)

‖xj‖22
} ≤ 2 exp{−2n1−α log(p)

C
}, for ∀j = 1, 2, · · · , p.

Let C1 = 2
C , so C1 > 1, and we use the union bound of the above inequality,

P

(
‖X

T ε

n
‖∞ ≤ 2σ

√
log(p)

nα

)
≥ 1− 2p exp{−C1n

1−α log(p)} = 1− 2p1−C1n1−α
.

Therefore, with probability 1− 2p1−C1n1−α
, for ∀j 6∈ Sβ∗ we have

|β̂j | ≤
1

λmin(1
nXTX)

‖X
T ε

n
‖∞ ≤

2σ

λmin(1
nXTX)

√
log(p)

nα
≤ 2σ

λ

√
log(p)

nα
.

where we used the fact 1
λ ≥

1
λmin(

1
n
XTX)

. And by the smallest β∗ condition, we get our conclusion.

24

Corollary 2. With the same conditions as in the Proposition 3, let α = 1, so we have the condition

for the minimum β∗:

min
j∈Sβ∗

|β∗j | >
2σ

λ

√
log(p)

n
, for some λ satisfying 0 < λ ≤ λmin(

1

n
XTX). (3.13)

Then with probability 1− 2p1−C1, where C1 > 1 is a constant, the index set of top k∗ values of |β̂j |

is exactly Sβ∗.

Proof. Let α = 1 in Proposition 3 and then we can get the conclusion.

The Proposition 3 shows the theoretical guarantee of true feature recovery for OLSth. We

can observe that the probability of true feature recovery does not depend on the true sparsity k∗.

We will verify it by numerical experiments in Chapter 5. Here, we also provide the theoretical

guarantees for the standardization case.

Remark 2. Denote Π = diag{σx1 , σx2 , · · · , σxp}−1, Π̂ = diag{σ̂x1 , σ̂x2 , · · · , σ̂xp}−1. Given the

conditions minj∈Sβ∗ |σxjβ∗j | >
2σ
λ

√
log(p)
n , for some λ satisfying 0 < λ ≤ λmin(1

nΠXTXΠ), then

with high probability the index set of top k∗ values of |σxj β̂j | is exactly Sβ∗.

In the following theorem, we will consider the relationship of the smallest eigenvalue between

the true covariance matrix Σ and the sample covariance matrix 1
nXTX.

Theorem 2. (True feature recovery for OLS-th) With the same notations as Proposition 3,

if

min
j∈Sβ∗

|β∗j | >
2σ

λ

√
log(p)

nα
, for some λ s.t.

√
λ ≤ 0.8λmin(

√
Σ)− ρ(Σ)

√
p

n
, (3.14)

where ρ(Σ) is the largest diagonal value in Σ, then with probability 1 − 2p1−C1n1−α − e−n/50 the

index set of top k∗ values of |β̂j | is exactly Sβ∗.

Proof. According to Lemma 3, we have

P

(
λmin(X)√

n
≥ λmin(

√
Σ)(1− δ)−

√
tr(Σ)

n

)
> 1− exp{−nδ2/2},

From here since tr(Σ) ≤ pρ2(Σ) we obtain

P(
λmin(X)√

n
≥ λmin(

√
Σ)(1− δ)− ρ(Σ)

√
p

n
) > 1− exp{−nδ2/2}.

25

Taking δ = 1/5 and since 0 <
√
λ ≤ λmin(

√
Σ)(1− δ)− ρ(Σ)

√
p
n , we have

P(
λmin(X)√

n
≥
√
λ) > 1− exp{−n/50}

Because (λmin(X)/
√
n)2 = λmin(XTX)/n, thus we have

P(
λmin(XTX)

n
≥ λ) > 1− exp{−n/50}.

Thus, combining with Proposition 3 and Lemma 3, we complete the proof.

Then we consider the theoretical guarantees of true feature recovery for OFSA algorithms.

Here, we need to use the definition of restricted strong convexity/smoothness (RSC/RSS), which

we used in Chapter 2. In the linear regression case, the RSC/RSS conditions are equivalent to the

restricted isometric property (RIP):

ms‖β − β′‖2 ≤ 1

n
‖X(β − β′)‖2 ≤Ms‖β − β′‖2, ∀‖β − β′‖0 ≤ s. (3.15)

And when n > p, the RIP condition will degenerate to

0 < m < λmin(
XTX

n
) < λmax(

XTX

n
) < M.

Proposition 4. With the same conditions as Proposition 3, let β∗ be an arbitrary k∗-sparse vector,

so ‖β∗‖0 = k∗. Let β(t) be the OFSA coefficient vector at iteration t, Sβ(t) be its support, k =

|Sβ(t) | ≥ k∗ and s = k + k∗. If f is a differentiable function which is ms-convex and Ms-smooth,

then for any learning rate 0 < η < 2ms/M
2
s , we have

‖β(t+1) − β∗‖ ≤ 1.62ρ‖β(t) − β∗‖+ 1.62η
√
s‖∇f(β∗)‖∞,

where ρ =
√

1− 2ηms + η2M2
s < 1.

Proof. Let S = Sβ(t) ∪ Sβ∗ . Consider the following vector

β̃
(t+1)

= β(t) − η∇Sf(β(t)),

By using the triangle inequality, we have

‖β̃(t+1) − β∗‖ = ‖β(t) − η∇Sf(β(t))− β∗‖

≤ ‖β(t) − β∗ − η∇Sf(β(t))− η∇Sf(β∗)‖+ η‖∇Sf(β∗)‖

≤ ρ‖β(t) − β∗‖+ η
√
s‖∇f(β∗)‖∞,

26

where the last inequality follows from lemma 1 and the fact ‖∇Sf(β∗)‖ ≤
√
s‖∇Sf(β∗)‖∞. Then

we also have β(t+1) = Θk(β̃
(t+1)

), thus by following Lemma 2, we can get

‖β(t+1) − β∗‖ ≤ 1.62ρ‖β(t) − β∗‖+ 1.62η
√
s‖∇f(β∗)‖∞.

Theorem 3. (Convergence of OFSA) With the same assumptions as Proposition 4, let β(0) = 0

and Sβ(0) = {1, 2, · · · , p}.Assume we have Ms/ms < 1.26 for any k∗ ≤ s ≤ p. Then, with the

probability 1− 2p1−C1, where C1 > 1 is a constant, the OFSA coefficient vector β(t) satisfies

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β∗‖+
3.24ση

1− 1.62ρ

√
p log(p)

n
.

Proof. Because for any k∗ ≤ s ≤ p and η ∈ (0, 2ms/M
2
s), we have Ms/ms < 1.26. Thus, we can

get that ρ < 0.62 and 1.62ρ < 1. Then, by using Proposition 4 recursively, we can get the upper

bound of the ‖β(t) − β∗‖ when the dimension of β(t) decrease from p to k∗. At the time period t,

we have

‖β(t) − β∗‖ ≤ 1.62ρ‖β(t−1) − β∗‖+ 1.62η
√
s‖∇f(β∗)‖∞,

and at the time period t− 1, we also have

‖β(t−1) − β∗‖ ≤ 1.62ρ‖β(t−2) − β∗‖+ 1.62η
√
s′‖∇f(β∗)‖∞,

in which s and s′ are the number of selected features at time period t and t− 1, respective. Thus,

we have

‖β(t) − β∗‖ ≤ (1.62ρ)2‖β(t−2) − β∗‖+ 1.622ρη
√
s′‖∇f(β∗)‖∞ + 1.62η

√
s‖∇f(β∗)‖∞.

Because we have p ≥ s′ ≥ s, and 1.62ρ < 1, we get

‖β(t) − β∗‖ ≤ (1.62ρ)2‖β(t−2) − β∗‖+ (1.62ρ+ 1)1.62η
√
p‖∇f(β∗)‖∞.

Applying the same idea repeatedly all the way to t = 0 we get

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β(0) − β∗‖+ [(1.62ρ)t−1 + ...+ 1]1.62η
√
p‖∇f(β∗)‖∞.

And because ∇f(β∗) = 1
nXT (y−XTβ∗) = XT ε

n , then we can use the inequality proved in the proof

of Proposition 2

27

P(‖X
T ε

n
‖∞ ≤ 2σ

√
log(p)

n
) ≥ 1− 2p1−C1 .

So, with the probability 1− 2p1−C1 , we have

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β∗‖+
3.24ση

1− 1.62ρ

√
p log(p)

n
.

Please note that the dimension of the vector β(t) will reduce from p to k∗ with the iteration t,

thus we follow the Proposition 4 recursively with varying k ≥ k∗. Here, we assume that ‖β(t)‖0 = k∗,

and the OFSA algorithm stops at the time period t. Then we will show that the OFSA algorithm

can recover the support of true features with high probability.

Corollary 3. (True feature recovery for OFSA) With the same conditions and assumptions

as Theorem 3, and define the smallest true β∗ as

βmin := min
j∈Sβ∗

|β∗j | >
4ση

1− 1.62ρ

√
p log(p)

n
.

Then after t = [1
1.62ρ log(10‖β

∗‖
βmin

)] + 1 iterations, the OFSA algorithm will output β(t) satisfying

Sβ∗ = Sβ(t) with probability 1− 2p1−C1, where C1 > 1 is a constant.

Proof. From Theorem 3 we have the following result

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β∗‖+
1.62η

√
p

1− 1.62ρ
‖∇f(β∗)‖∞.

And we know that ∇f(β∗) = 1
nXT (y−XTβ∗) = XT ε

n . Then by using the inequality proved in the

proof of Proposition 2

P(‖X
T ε

n
‖∞ ≤ 2σ

√
log(p)

n
) ≥ 1− 2p1−C1 ,

and then with probability 1− 2p1−C1 , we have

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β∗‖+
3.24ση

√
p

1− 1.62ρ

√
log(p)

n
.

After t = [1
1.62ρ log(10‖β

∗‖
βmin

)] + 1 iterations, we can show that (1.62ρ)t‖β∗‖ < 1
10βmin. Thus, with

probability 1− 2p1−C1 , we have

‖β(t) − β∗‖ < βmin.

And the conclusion that Sβ∗ = Sβ(t) must hold.

28

Finally, we consider the upper bound of the regret for the OLS and OLSth algorithms. In fact,

all the feature selection algorithms we mentioned will degenerate to OLS if the true features are

selected. First, we define the regret for a sparse model with sparsity levels ‖β‖0 ≤ k∗:

Rn =
1

n

n∑
i=1

f(βi; zi)− min
β,‖β‖0≤k∗

1

n

n∑
i=1

f(β; zi), (3.16)

in which βi is the sparse coefficient vector at step i and zi = (xi, yi).

Observe that for ∀i > 0, the loss functions f from (3.16) are twice continuously differentiable.

We denote βn+1 = arg minβ
1
n

∑n
i=1 f(β) and (XTX)n =

∑n
i=1 xix

T
i . Then, we will need the

following assumptions:

Assumption 1. Given n > p, then we have 0 < m < M satisfy

0 < m < λmin(
1

n
(XTX)n) < λmax(

1

n
(XTX)n) < M.

Assumption 2. Given n > p, there exist constants D and G such that ‖βi − βj‖ < D, ∀i, j > n

and ‖∇f(βi)‖ ≤ G,∀i ≥ n.

Proposition 5. Given n > p, under Assumptions 1, 2, the regret of OLS satisfies:

Rn =
1

n

n∑
i=1

(yi − xTi βi)
2 −min

β

1

n

n∑
i=1

(yi − xTi β)2 ≤ O(
log(n)

n
).

Proof. According to our OLS algorithm, we have the following equations:

n−1∑
i=1

xix
T
i βn =

n−1∑
i=1

yixi, (3.17)

n∑
i=1

xix
T
i βn+1 =

n∑
i=1

yixi, (3.18)

Here we have β1 = 0.

Add xnx
T
nβn to both sides of (3.17), obtaining

(XTX)nβn =
n−1∑
i=1

yixi + xnx
T
nβn. (3.19)

where again we denoted by (XTX)n =
∑n

i=1 xix
T
i . Subtracting (3.19) from (3.18) we obtain:

(XTX)n(βn+1 − βn) = ynxn − xnx
T
nβn = −∇fn(βn),

in which we denote fn(βn) = 1
2(yn−xTnβn)2. Hence we have the iterative formula in n-th (n ≥ n0)

iteration:

29

βn+1 = βn − (XTX)−1n ∇fn(βn). (3.20)

For ∀β̄ ∈ Rp, we have:

βn+1 − β̄ = βn − β̄ − (XTX)−1n ∇fn(βn),

thus we have the following equation:

(XTX)n(βn+1 − β̄) = (XTX)n(βn − β̄)−∇fn(βn) (3.21)

Multiplying by the transpose of βn+1 − β̄ on both sides of (3.21) we get

(βn+1 − β̄)T (XTX)n(βn+1 − β̄) = (βn+1 − β̄)T (XTX)n(βn − β̄)− (βn+1 − β̄)T∇fn(βn) (3.22)

We plug (3.20) into (3.22):

(βn+1 − β̄)T (XTX)n(βn+1 − β̄)

= (βn − β̄ − (XTX)−1n ∇fn(βn))T (XTX)n(βn − β̄)− (βn − β̄ − (XTX)−1n ∇fn(βn))T∇fn(βn)

= (βn − β̄)T (XTX)n(βn − β̄)− 2∇fn(βn)T (βn − β̄) +∇fn(βn)T (XTX)−1n ∇fn(βn)

Rearranging terms, we have for ∀n ≥ n0:

2∇fn(βn)T (βn − β̄) = (βn − β̄)T (XTX)n(βn − β̄)−

(βn+1 − β̄)T (XTX)n(βn+1 − β̄) +∇fn(βn)T (XTX)−1n ∇fn(βn)
(3.23)

For ∀n > n0, we sum equation (3.23) from (n0 + 1) to n on both sides,

2

n∑
i=n0+1

∇fi(βi)T (βi − β̄) =

n∑
i=n0+1

(βi − β̄)T (XTX)i(βi − β̄)−
n∑

i=n0+1

(βi+1 − β̄)T (XTX)i(βi+1 − β̄)

+

n∑
i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi)

30

After rearranging the formula, we get

2

n∑
i=n0+1

∇fi(βi)T (βi − β̄)

=

n∑
i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi) + (βn0+1 − β̄)T (XTX)n0+1(βn0+1 − β̄)

+

n∑
i=n0+2

(βi − β̄)T ((XTX)i − (XTX)i−1)(βi − β̄)− (βn+1 − β̄)T (XTX)n(βn+1 − β̄)

≤
n∑

i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi) + (βn0+1 − β̄)T (XTX)n0+1(βn0+1 − β̄)

+

n∑
i=n0+2

(βi − β̄)T ((XTX)i − (XTX)i−1)(βi − β̄)

=

n∑
i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi) + (βn0+1 − β̄)T (XTX)n0+1(βn0+1 − β̄)

+

n∑
i=n0+2

(βi − β̄)T (xix
T
i)(βi − β̄)

The inequality holds because (XTX)n is positive definite, hence we have:

(βn+1 − β̄)T (XTX)n(βn+1 − β̄) ≥ 0.

Then we denote

Qi = ∇fi(βi)T (βi − β̄)− 1

2
(βi − β̄)T (xix

T
i)(βi − β̄)

By rearranging the formula and taking β̄ = βn+1, we get

n∑
i=n0+1

Qi ≤
1

2

n∑
i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi) +
1

2
(βn0
− β̄)T (XTX)n0(βn0

− β̄)

≤ 1

2

n∑
i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi) +
1

2
λmax(XTX)n0‖βn0

− β̄‖22

≤ 1

2

n∑
i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi) +
1

2
Mn0D

2

where in the last inequality we used Assumptions 1 and 2. Because fi(β) = 1
2(yi−xTi β)2 is second

order differentiable, according to its Taylor expression, we have

fi(β̄) = fi(βi) +∇fi(βi)T (β̄ − βi) +
1

2
(β̄ − βi)

T∇2fi(ζ)(β̄ − βi)

= fi(βi) +∇fi(βi)T (β̄ − βi) +
1

2
(β̄ − βi)

Txix
T
i (β̄ − βi)

31

Thus we have
∑n

i=n0+1(fi(βi)− fi(β̄)) =
∑n

i=n0+1Qi and we get

n∑
i=n0+1

(fi(βi)− fi(β̄)) ≤ 1

2

n∑
i=n0+1

∇fi(βi)T (XTX)−1i ∇fi(βi) +Mn0D
2

Based on Assumptions 1 and 2, we have 0 < m < λmin(1i (X
TX)i) and ‖∇fi(βi)‖2 ≤ G, so we have

1

2

n∑
i=n0+1

∇fi(βi)T ((XTX)i)
−1∇fi(βi) ≤

n∑
i=n0+1

1

2mi
G2 =

G2

2m

n∑
i=n0+1

1

i
≤ G2

2m
log(n)

So we get
1

n

n∑
i=n0+1

(fi(βi)− fi(β̄)) ≤ G2

2m

log(n)

n
+
Mn0D

2

2n

Then, we consider the regret bound for the first n0 observations.

For i = 1 to n0, we use online ridge regression to replace online least squares, considering the

equations for any λ > 0:

n−1∑
i=1

xix
T
i βn + λβn =

n−1∑
i=1

yixi, (3.24)

n∑
i=1

xix
T
i βn+1 + λβn+1 =

n∑
i=1

yixi, (3.25)

Add xnx
T
nβn to both sides of (3.24), we obtain

n∑
i=1

xix
T
i βn + λβn =

n−1∑
i=1

yixi + xnx
T
nβn. (3.26)

Then we use (3.25) substract (3.26), and we have:

n∑
i=1

xix
T
i (βn+1 − βn) + λ(βn+1 − βn) = ynxn − xnx

T
nβn (3.27)

Thus, we can get

βn+1 = βn − (
n∑
i=1

xnx
T
n + λI)−1∇fn(βn)

Because it is easy to find real values m0 and M0 satisfy

0 < m0 < λmin(

n∑
i=1

xnx
T
n + λI) < λmax(

n∑
i=1

xnx
T
n + λI) < M0 <∞,

using the similar technique by replacing
∑n

i=1 xix
T
i to

∑n
i=1 xix

T
i + λI and considering that n0 is

a given scalar, we obtain that there is a constant C > 0 satisfying

32

n0∑
i=1

(fi(βi)− fi(β̄)) ≤ Cn0

Consequently,

1

n

n∑
i=1

(fi(βi)− fi(β̄)) ≤ Cn0
n

+
G2

2m

log(n)

n
+
MD2n0

2n
= O(

log(n)

n
)

Theorem 4. (Regret of OLS-th) With the Assumptions 1, 2 holding for XSβ∗ , there exists a

constant C1 > 1 such that if the true β∗ satisfies

min
j∈Sβ∗

|β∗j | >
2σ

λ

√
log(p)√

n
, for some λ > 0 satisfying

√
λ < 0.8λmin(

√
Σ)−

√
p

n0
. (3.28)

where n0 = max(p+ 1, 100 log(n), 1
C2

1

(
2 log(n)
log(p) + 1

)2
) > p, then with probability at least 1− 3/n the

regret of OLSth satisfies:

Rn=
1

n

n∑
i=1

(yi − xTi βi)
2−min
‖β‖0≤k

1

n

n∑
i=1

(yi − xTi β)2 ≤ O(
log2(n)

n
).

Proof. According to Theorem 2 with α = 1/2, the probability for true feature selection for sample

size i ≥ n0 is greater than

1− 2p1−C1

√
i − e−i/50 ≥ 1− 2p1−C1

√
n0 − e−n0/50.

Using the union bound we get that the true features are selected for all sample sizes i, with

n0 ≤ i ≤ n with probability at least

1− 2np1−C1
√
n0 − ne−n0/50 ≤ 1− 2npe−C1

√
n0 log(p) − ne−2 log(n)

≤ 1− 2/n− n−1 = 1− 3/n

where we used that (
√
n0C1 − 1) log(p) > 2 log(n) and n0 ≥ 100 log(n).

Thus with this probability the true features are selected for all sample sizes i with n ≥ i ≥ n0,

and the OLSth algorithm degenerates to the OLS algorithm on the features from Sβ∗ . Assumption

1 is

0 < m < λmin(
1

n
(XTX)Sβ∗) < λmax(

1

n
(XTX)Sβ∗) < M.

Following the proof of Proposition 5, we obtain

1

n

n∑
i=1

(fi(βi)− fi(β̄)) ≤ Cn0
n

+
G2

2m

log(n)

n
+
Mn0D

2

2n
. (3.29)

33

From (3.29) since n0 = O(log2(n)) we have

1

n

n∑
i=1

(fi(βi)− fi(β̄)) ≤ O(
log2(n)

n
)

Thus we get the conclusion.

Theoretical guarantees for feature selection in classification. Proposition 2.3.6 and

Remark 2.3.7 from [25] show that the least squares Lasso algorithm (therefore the Online Lasso)

can recover the support of true variables for the discrete Y under some assumptions.

Theorem 5. (True support recovery) Consider the special case of a single index model, y =

G{h(Xβ∗) + ε}, in which X ∼ N (0,Σ) and Σ satisfies the irrepresentable condition. If G, h

are known strictly increasing continuous functions and under the assumptions from [25], the least

squares Lasso algorithm can recover the support of true features correctly for discrete response y.

The proof and more mathematical details can be found in [25]. Based on Theorem 5, we

have theoretical guarantees for support recovery for some of our running averages-based online

classification methods.

34

CHAPTER 4

EXPERIMENTS WITH STOCHASTIC FEATURE

SELECTION WITH ANNEALING

In this chapter, we conduct numerical experiments and real data analysis to evaluate the perfor-

mance of the proposed stochastic feature selection with annealing algorithm from Chapter 2. First,

we present experiments on large sparse simulated datasets to compare the performance of SFSA

with other state-of-the-art methods in the literature for the linear regression and classification.

Then we conduct experiments on large sparse real datasets to compare the performance of various

online feature selection algorithms. All experiments are replicated 20 times on a desktop computer

with Core i5 - 4460S CPU and 16Gb memory. And we present the averages of the experiments

times.

4.1 Experiments for Simulated Data

In this experiment we use uniformly correlated data generated as follows: given a scalar α, we

generate zi ∼ N (0, 1), then we generate an observation xi:

xi = αzi1p×1 + ui, with ui ∼ N (0, Ip).

We generate i.i.d. observations this way to obtain the data matrix X = [xT1 ,x
T
2 , · · · ,xTn]T . It is

easy to verify that the correlation between any pair of predictors is α2/(1 + α2). We set α = 1 in

our simulation, thus the correlation between any two features is 0.5. Then, the dependent response

y is generated from the following linear regression model:

y = Xβ∗ + η, with η ∼ N (0, In), (4.1)

and for classification:

y = sign(Xβ∗ + η), with η ∼ N (0, In), (4.2)

where β∗ is a p-dimensional sparse parameter vector. The true coefficients are β∗j = 0 except

β∗10j∗ 6= 0, j∗ = 1, 2, · · · , k. Please note that the classification data cannot be perfectly separated

by a linear model. The simulation is based on the following data parameter setting: p = 10, 000

35

Table 4.1: Simulation experiments for online regression, averaged 20 runs.
Variable Detection Rate DR (%) RMSE Time(s)

SFSA SFSA-AG TSGD OPG RDA SFSA SFSA-AG TSGD OPG RDA SFSA SFSA-AG TSGD OPG RDA

p = 10000, k = 100, strong signal β = 1, mini-batch = 25

5× 103 56.75 43.80 98.05 1.30 0.80 60.07 62.61 97.14 100.0 100.1 0.065 0.066 0.034 250.4 464.1
104 84.30 73.10 100 1.20 1.25 48.74 50.90 96.05 100.9 100.9 0.124 0.132 0.067 500.7 917.2

2× 104 100 100 100 1.30 1.10 39.93 41.54 91.80 100.3 100.4 0.219 0.238 0.132 751.6 1822

p = 10000, k = 100, weak signal β increase from 0.05 to 1, mini-batch = 25

104 67.95 59.80 84.55 1.05 0.95 25.68 26.81 50.44 53.06 53.07 0.124 0.124 0.069 504.8 603.5
3× 104 91.35 90.60 93.40 1.05 1.40 16.37 16.95 46.54 52.99 53.00 0.343 0.339 0.198 1260 1774

105 98.30 98.20 98.25 0.95 1.30 7.89 8.098 34.84 52.44 52.46 1.002 1.002 0.663 3026 5758
3× 105 100 100 100 0.85 1.35 2.06 2.602 2.475 52.83 52.86 3.002 2.970 1.759 9085 17057

and k∗ = 100. We consider the signal strength β∗10j∗ = 1 for strong signal and β∗10j∗ ∈ [0.05, 1]

increase linearly from 0.05 to 1 for weak signal. The sample size n varies from 5× 103 to 3× 105.

For both of regression and classification experiments, we cover two classical online feature

selection methods for comparison: the OPG [5] and RDA [44] methods. In both frameworks, we

consider `1 regularization for regression and `1+`2 regularization for classification. For classification,

apart from the OPG and RDA, our simulation include the first order online feature selection (FOFS)

and the second order online feature selection (SOFS) methods [40, 43].

In the simulation, the sparsity controlling parameters are tuned to obtain k = k∗ variables. This

can be done directly for SFSA, FOFS and SOFS methods, and indirectly through the regularization

parameter for the OPG and RDA methods. In OPG and RDA, we use 200 values of λ on an

exponential grid and choose the λ that induces the k̂ non-zero features, where k̂ is the largest

number of non-zeros features smaller than or equal to k∗, the number of true features. The following

criteria are used in the numerical experiments: the true variable detection rate (DR), the root mean

square error (RMSE) on the test data for regression, the area under ROC curve (AUC) on the test

data for classification, and the running time (Time) of the algorithms. The variable detection rate

DR is defined as the average number of true variables that are correctly detected by an algorithm

is divided by the number of true variables. So when Sβ is the set of selected variables and Sβ∗ is

the set of the true variables, then we have

DR =
E(|Sβ ∩ Sβ∗ |)
|Sβ∗ |

.

36

Table 4.2: Comparison between SFSA, SFSA-AG(AG), SFSA-Adam(Adam), TSGD and
other online algorithms for classification, averaged 20 runs.

Variable Detection Rate DR(%) AUC

SFSA AG Adam TSGD FOFS SOFS OPG RDA SFSA AG Adam TSGD FOFS SOFS OPG RDA

p = 10000, k = 100, strong signal β = 1, mini-batch = 25

104 40.20 40.15 40.45 49.25 0.7 1.0 1.05 1.50 0.996 0.996 0.997 0.997 0.994 0.994 0.986 0.991
3× 104 91.85 93.40 92.30 92.40 0.7 1.2 0.75 1.45 0.999 1.0 1.0 1.0 0.994 0.993 0.986 0.990

105 100 100 100 100 0.7 1.0 0.75 1.80 1.0 1.0 1.0 1.0 0.993 0.993 0.954 0.989

p = 10000, k = 100, weak signal β increase from 0.05 to 1, mini-batch = 25

104 39.30 38.95 40.50 46.25 0.8 1.0 1.40 1.45 0.997 0.996 0.997 0.997 0.993 0.993 0.981 0.990
3× 104 67.80 67.85 68.50 68.45 0.8 1.2 0.55 1.60 0.999 0.999 0.999 0.999 0.992 0.992 0.985 0.989

105 86.10 85.94 84.35 84.25 0.8 1.0 0.85 1.70 1.0 1.0 1.0 1.0 0.992 0.992 0.925 0.988
3× 105 93.55 93.60 89.10 90.95 0.8 0.9 1.10 3.65 1.0 1.0 1.0 1.0 0.993 0.993 0.981 0.986

4.1.1 Experimental Results for Regression

In this subsection, we introduce the empirical performance of SFSA for the regression task.

The performance of various algorithms is shown in Table 4.1. In terms of detection rate (DR),

SFSA, SFSA-AG and TSGD algorithms are much better than RDA and OPG. When the sample

size n increases, our proposed methods can select all true features. Also, our algorithms have a

less computation time because they can directly control the desired sparsity level. In contrast, the

OPG and RDA methods cannot recover the support of the true features, and because of the need

to vary the regularization parameter in order to control the sparsity level, these algorithms are

computationally expensive. Considering the test RMSE, we can observe that if the sample size n

is large, the RMSE will converge for SFSA, SFSA-AG and TSGD methods.

4.1.2 Experimental Results for Classification

Similarly, we evaluate the empirical performance of SFSA and the variants for the classification

task in this subsection. The experimental results are shown in Table 4.2 and Table 4.3.

First, we analyze the variable detection rate. In the binary classification, it is more challenging

to select the true features than in regression. In order to recover all true features, we need more

training instances in classification than regression. Then, for weaker signal strength, given the

largest sample size n = 3 × 105, our SFSA algorithms and the variants cannot select all true

features, even though their performance is much better than the regularized based methods and

standard online feature selection methods, FOFS and SOFS. Similar to the regression problem,

the regularized based methods OPG and RDA cannot recover the support of true features for the

37

Table 4.3: The running time for SFSA, SFSA-AG(AG), SFSA-Adam(Adam), TSGD and
other online methods.

Time(s)

SFSA AG Adam TSGD FOFS SOFS OPG RDA

p = 10000, k = 100, strong signal β = 1

104 0.163 0.171 0.201 0.075 0.396 0.029 505.8 1123
3× 104 0.441 0.427 0.525 0.218 1.131 0.085 1521 3333

105 1.251 1.368 1.706 0.730 3.685 0.284 5063 10994

p = 10000, k = 100, weak signal β increase from 0.05 to 1

104 0.162 0.171 0.196 0.075 0.396 0.028 504.9 1121
3× 104 0.439 0.470 0.527 0.222 1.142 0.085 1514 3344

105 1.261 1.377 1.706 0.747 3.735 0.284 5051 11012
3× 105 3.773 4.104 5.107 2.210 11.129 0.851 15065 32699

dataset with strong correlated features. As for the state-of-the-art algorithms FOFS and SFOS [40]

and [43] from the literature, they cannot detect the true features either.

Then we consider the test AUC (Area under the ROC curve). Because our SFSA algorithms

and the variants cover most of true features in the processing of modeling, it is easy to see that

the results of AUC for SFSA and the variants are better. However, while the variable detection

rate results show a significant difference between the family of SFSA and the others, the results of

AUC for the other methods are very close to the SFSA variants. It looks like that building a good

prediction model does not depend on true feature recovery.

The analysis of time complexity is the same as in regression. Because of the parameter tuning

problem, regularized based methods are computationally expensive. By contrast, greedy-based

methods have huge advantage in computational time.

4.1.3 Experiments on Large Sparse Datasets

In order to verify that we implemented the FOFS, SOFS, OPG and RDA algorithms correctly,

we also performed similar numerical experiments on large sparse data to the ones described in [43].

First, we introduce the data generation. We generate three large sparse datasets X1, X2 and

X3, with each observation being a sparse vector with 200, 400, and respectively 500 nonzero entries

at random locations. Each nonzero entry is generated from the i.i.d Gaussian distribution N (0, 1).

The label y ∈ {−1,+1} is generated from the following noiseless linear model:

y = sign(Xβ∗),

38

Table 4.4: Comparison among SFSA, SFSA-AG, TSGD, FOFS, and SOFS for the simu-
lated sparse dataset

Variable Detection Rate DR (%) AUC

Dataset n p k noise SFSA SFSA-AG TSGD FOFS SOFS OPG RDA SFSA SFSA-AG TSGD FOFS SOFS OPG RDA

X1 105 104 100 200 100 100 100 99.95 97 70.45 83.30 0.923 0.923 0.918 0.917 0.768 0.712 0.814

X2 105 2× 104 200 400 100 100 100 99.70 97.15 67.75 86.88 0.919 0.919 0.913 0.910 0.758 0.671 0.818

X3 105 105 500 500 100 100 100 99.87 98.47 71.74 - 0.916 0.916 0.902 0.899 0.749 0.642 -

where the true parameter vector β∗ is sparse with 100, 200, and 500 nonzero entries, respectively.

The nonzero entries are sampled from the uniform distribution U(0, 1).

In this large sparse data simulation, we just evaluate the algorithms in terms of the true variable

detection rate (DR) and the area under ROC curve (AUC) on test data. Based on the previous

experiment, we remove the SFSA-Adam algorithm from the large sparse data simulation because

it has a similar performance to SFSA-AG. The results of the simulation are shown in Table 4.4.

These experimental results verify that all the tested algorithms can detect the true features quite

well if the features are independent. However, compared to the greedy algorithms, regularized based

methods, OPG and RDA, still suffer lower variable detection rate and lower prediction accuracy. As

to the greedy-based methods, our SFSA based methods and TSGD outperform the other methods

in true feature recovery and parameter estimation. The experimental results for the large sparse

datasets prove our proposed SFSA methods can handle various type of datasets and that our

implementation of the competing algorithms has similar performance to that reported in [43].

4.2 Large Sparse Real Data Analysis

In this section, we apply our SFSA algorithms and the variants to three large real datasets.

The first dataset is the URL dataset [21], also analyzed using SOFS in [43]. The URL dataset

is a large scale and high dimensional dataset about predicting whether a website is malicious or

not based on a number of features. It has more than 3 million features and 2 million observations.

However, because the URL instances are obtained day by day from from a large web server, it

makes sense to apply online learning models to this dataset. Following [21], we used the data from

day 0 to day 99 as the training data, and the data in day 100 to evaluate the performance of the

models we trained. Hence we report the prediction accuracy for the data in day 100. We select

about 0.5% features in this dataset.

39

Table 4.5: Comparison between SFSA, SFSA-AG, TSGD, FOFS, and SOFS for the real datasets.

Prediction Accuracy (%)

Dataset n p SFSA SFSAAG TSGD FOFS SOFS

URL 2,396,130 3,231,961 98.21 98.13 97.38 97.27 95.39

Webspam 350,000 16,609,143 93.66 93.69 90.44 90.41 96.63

News 19,996 1,355,191 69.04 66.42 54.71 54.45 68.47

The second one is the web spam dataset [41], with 350,000 observations and 16,609,143 features.

We use the first 200,000 observations for training, and the following 50,000 as the validation data.

We train the online models by using this training data and predict the accuracy for validation data.

The SFSA and SFSA-AG methods are trained using the hinge loss and TSGD is trained by the

logistic loss. The FOFS method is also based on the hinge loss. We selected about 0.1% of features

in the dataset.

The last one is the news dataset [16], with 19,996 observations and 1,355,191 features. Here, we

random select 18,000 observations as the training observations, and the others are the validation

data. We train the online models by using the training data and predict the accuracy for the

validation data. And we select about 1% features in this dataset.

The results are shown in Table 4.5. On the URL dataset, we can observe that SFSA method

based on hinge loss performs better than the other methods. Especially, based on the same loss

function, we can find the SFSA is better than FOFS on all three of datasets. Besides, the SFSA-AG

also performs very well in the real data analysis. On the web spam dataset, although the SOFS

provide the best AUC result, SFSA and the variant still perform very well. On the news dataset,

the SFSA algorithm shows the best result among the all of the methods.

40

CHAPTER 5

EXPERIMENTS WITH RUNNING AVERAGES

ALGORITHMS

In this chapter, we evaluate the performance of our proposed online running averages algorithms

introduced in Chapter 3, and compare them with offline learning methods and some standard

stochastic algorithms. First, we present the results of numerical experiments on synthetic data,

comparing the performance on feature selection and prediction. We also provide regret plots for

the running averages based algorithms and compare them with classical online algorithms. Finally,

we present an evaluation on real data. All simulation experiments are run on a desktop computer

with Core i5 - 4460S CPU and 16Gb memory.

5.1 Experiments for Simulated Data

Here, we use the same method to generate the data as Section 4.1. Our simulation is based

on the following data parameter setting: p = 1000 and k = 100. We consider the signal strength

β ∈ {0.01, 1} (weak and strong signals). The sample size n varies from 1000 to 106 for both

regression and classification settings. For regression, we compare with our algorithms with SADMM

[26] and the offline Lasso [38]. We also implement the following truncated stochastic gradient

descent (TSGD) [8, 43]:

β̃
(n)

= Truncate
(
β(n−1) + η(yn − xTnβ

(n−1))xn, k
)
,

where the operator ”Truncate” keeps the k largest |β̃(n)
j |.

For classification, we cover four methods for comparison: the OPG [5] and RDA [44] frameworks

for elastic net, the first order online feature selection (FOFS) method [43] and the second order

online feature selection (SOFS) method [43].

For each method, the sparsity controlling parameters are tuned to obtain k variables. This can

be done directly for OFSA and OLSth, and indirectly through the penalty parameter for the other

methods. In RDA, OPG and SADMM, we use 200 values of λ on an exponential grid and chose the

41

Table 5.1: Comparison between running averages method and the other online and offline
methods for regression, averaged 100 runs.

Variable Detection Rate (%) RMSE

n Lasso TSGD SADMM OLSth OFSA OMCP OElnet Lasso TSGD SADMM OLSth OFSA OMCP OElnet

p = 1000, k = 100, strong signal β = 1

103 32.14 11.22 18.10 77.40 99.81 73.71 32.12 11.63 23.15 95.05 5.592 1.136 6.282 11.61
3 · 103 46.05 11.22 41.23 100 100 98.02 45.19 9.464 13.45 93.50 1.017 1.017 1.745 9.557

104 72.40 11.22 65.78 100 100 100 72.42 6.07 13.34 94.92 1.003 1.003 1.003 6.042

p = 1000, k = 100, weak signal β = 0.01

103 14.09 10.89 13.53 10.11 12.40 15.55 14.08 1.128 1.027 1.363 1.069 1.169 1.049 1.124
104 31.58 10.89 19.80 22.48 32.47 32.32 31.54 1.009 1.007 1.370 1.025 1.006 1.005 1.006
105 81.93 10.89 11.30 80.55 85.14 84.86 81.80 1.001 1.010 1.382 1.003 1.003 1.003 1.003

3 · 105 98.66 10.89 10.80 98.94 99.27 99.26 98.71 0.999 1.008 1.383 0.998 0.998 0.998 0.998
106 - 10.89 - 100 100 100 100 - 1.005 - 0.996 0.996 0.996 0.996

Table 5.2: Running time (s) for the different methods, averaged 100 runs.

p = 1000, k = 100, strong signal β = 1

n Lasso TSGD SADMM OLSth OFSA OMCP OElnet RAVE

103 4.332 0.007 5.326 0.052 0.289 15.49 9.648 0.026
3 · 103 26.91 0.019 15.73 0.051 0.288 13.86 7.113 0.076

104 47.32 0.065 51.80 0.051 0.288 6.508 5.885 0.246

p = 1000, k = 100, weak signal β = 0.01

103 5.353 0.006 6.703 0.052 0.288 13.20 9.741 0.026
104 48.13 0.067 67.82 0.051 0.287 14.98 4.961 0.249
105 452.2 0.672 679.7 0.051 0.287 15.93 5.120 2.458

3 · 105 1172 2.001 2044 0.051 0.287 13.96 3.749 7.326
106 - 6.651 - 0.051 0.288 7.352 1.726 24.36

λ that induces the k̂ non-zero features, where k̂ is the largest number of non-zeros features smaller

than or equal to k, the number of true features.

The following criteria are used in the numerical experiments: the true variable detection rate

(DR), the root of mean square error (RMSE) on the test data for regression, the area under ROC

curve (AUC) on the test data in classification setting, and running time (Time) of the algorithms.

The details of these criteria have been introduced in the Chapter 4.

The results are presented in Tables 5.1 and 5.3. We replicate the experiments 100 times and

present the average results. Compared to the batch learning method Lasso, in regression, the

running averages online methods enjoy lower memory complexity. Also, the larger datasets cannot

fit in memory, hence we cannot obtain the experimental results for Lasso for the large datasets. In

42

our methods, we input the running averages rather than data matrix. The memory complexity for

running averages is O(p2), which is better than O(np) for batch learning in the setting of n > p.

Table 5.3: Comparison between running averages methods and the other online methods
for classification, averaged 100 runs.

Variable Detection Rate (%) AUC

FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP

p = 1000, k = 100, strong signal β = 1

104 10.64 10.19 10.46 10.97 38.89 30.30 34.70 41.54 0.995 0.992 0.992 0.990 0.995 0.990 0.996 0.996
3× 104 10.64 9.95 10.42 10.34 67.67 59.32 56.18 67.52 0.994 0.992 0.992 0.989 0.998 0.996 0.997 0.998

105 10.64 9.95 10.43 11.08 94.95 93.21 86.90 94.77 0.994 0.992 0.992 0.990 1.000 1.000 0.999 1.000

p = 1000, k = 100, weak signal β = 0.01

104 13.40 10.19 10.00 10.37 19.41 15.93 22.55 23.81 0.827 0.829 0.828 0.828 0.824 0.815 0.829 0.830
3× 104 15.86 9.95 10.23 10.34 34.46 27.35 35.14 37.70 0.827 0.829 0.829 0.829 0.831 0.827 0.832 0.832

105 17.36 9.95 10.32 10.91 64.84 56.42 61.07 64.95 0.830 0.831 0.831 0.830 0.834 0.833 0.834 0.834
3× 105 17.13 9.23 10.32 10.37 91.55 88.91 88.69 91.58 0.826 0.828 0.828 0.827 0.833 0.833 0.833 0.833

106 17.72 9.91 - - 99.97 99.94 99.88 99.97 0.828 0.829 - - 0.834 0.834 0.834 0.834

Table 5.4: Running time (s) for different methods, averaged 100 runs.

n FOFS SOFS OPG RDA OFSA OLSth OLasso OMCP RAVE

p = 1000, k = 100, strong signal β = 1

104 0.001 0.001 0.490 0.848 0.005 0.001 0.080 0.160 0.247
3× 104 0.003 0.004 1.471 2.210 0.005 0.001 0.083 0.158 0.742

105 0.010 0.015 4.900 6.118 0.005 0.001 0.079 0.159 2.478

p = 1000, k = 100, strong signal β = 0.01

104 0.001 0.001 0.494 0.815 0.005 0.001 0.073 0.148 0.249
3× 104 0.003 0.004 1.481 2.093 0.005 0.001 0.074 0.152 0.743

105 0.010 0.015 4.935 5.827 0.005 0.001 0.078 0.161 2.472
3× 105 0.030 0.044 14.81 17.31 0.005 0.001 0.073 0.164 7.446

106 0.100 0.146 - - 0.005 0.001 0.039 0.110 24.85

From the numerical experiments, we can draw the conclusion that none of the online methods

we tested (RDA, OPG, SADMM, FOFS and SOFS) performs well in true feature recovery. Only

the offline Lasso and the proposed running averages based online methods can recover the true

signal with high probability. When the signal is weak (β = 0.01), although the running averages

methods need a large sample size n to recover the weak true signal, they outperform the batch

learning methods and the other online methods in our experiment.

In prediction, most methods do well except in regression the existing methods (Lasso, TSGD

and SADMM) do not work well when the signal is strong. In contrast, the proposed running

43

Figure 5.1: Variable detection rate vs the number of true features k∗. Left: OLSth, Right: OFSA

averages perform very well in prediction regardless whether the signal is weak or strong, in both

regression and classification.

In Figure 5.1, we can observe that the true feature detection rate (DR) is irrelevant with the

number of true features k∗, when the sample size n is fixed. The results in the figures follow our

theoretical analysis in Proposition 3.

Finally, we know that the computational complexity for obtaining the model from the running

averages does not depend on the sample size n, but the time to update the running averages, shown

as RAVE in Tables 5.1 and 5.3, does increase linearly with n. Indeed, we observe in Tables 5.2

and 5.4 that the running time of OFSA and OLSth does not have significant changes. However,

because of the need to tune the penalty parameters in OLasso, OElnet, and OMCP, it takes more

time to run these algorithms. The computational complexity for traditional online algorithms will

increase with sample size n. This is especially true for OPG, RDA, and SADMM, which take a

large amount of time to tune the parameters to select k features. When the sample size n is very

large, running these algorithms takes more than a day.

5.2 Theoretical Upper Bound for OLS-th

In this section, we compare the theoretical upper bound of OLS-th method from Eq. (3.12) and

(3.14). In Eq. (3.12), we derived our upper bound based on the design data matrix X. However, in

Eq. (3.14), we assumed the observations xi, i = 1, 2, · · · , are drawn from the multivariate normal

44

distribution with covariance matrix Σ. Thus, we can introduce theoretical upper bound by using

the minimum eigenvalue of the covariance Σ.

We also compute the experimental bound as the baseline. The experimental bound is based on

numerical experiments and shows the actual true feature recovery capability of the OLS-th method.

We find it as the smallest βmin that achieves a 100% variable detection rate. To do that, we search

on an exponential grid βi = β0 · 0.9k, k = 0, 1, 2, ..., where β0 is the theoretical bound from Eq.

(3.14), and find the last βi that still has 100% variable detection rate out of 100 runs.

Figure 5.2: Theoretical and experimental bounds for the OLS-th method, βmin vs. number
of variables p.

Figure 5.3: Theoretical and experimental bounds for the OLS-th method. Left: βmin vs
sample size n. Right: log(βmin) vs. log(n).

The two theoretical bounds and the experimental bound are shown in Figures 5.2 and 5.3. In

Figure 5.2, we can see that our theoretical upper bound based on Theorem 2 increases rapidly with

45

the number of variables p. Comparing with the upper bound based on Theorem 2, the upper bound

based on the Proposition 3 is closer to the experimental one. And in Figure 5.3, we can see that

theoretical upper bound based on Theorem 2 decreases drastically when the sample size increases,

and it enjoys the highest decrease rate among the three bounds. And the upper bound based on

the Proposition 3 is very close to the experimental one.

5.3 Regret Analysis

In this section, we present results about the regret of the different online methods in regression

settings. In traditional online learning, the theoretical analysis of upper bound for the regret was

studied in [11] and [50]. Here, we focus on comparing the regret of the running averages-based

online algorithms with the state of the art online algorithms.

Figure 5.4: log(Regret) vs log(n) for TSGD, SADMM and running averages based on-
line algorithms, averaged over 20 runs. Left: strong signal (β = 1), middle: medium
signal(β = 0.1), right: weak signal(β = 0.01).

Figure 5.4 shows the curve of the regret for β = 1(left), β = 0.1(middle), β = 0.01(right).

The sample size n varies from 1000 to 106. The regret of the stochastic ADMM method does not

converge when we control the number of selected features to be at most k. We compare slopes to

see the difference in convergence rates. The convergence rate for the running averages methods is

close to O(n−1). TSGD seems to also have the same convergence rate but starts off with a plateau

where the regret does not converge. The SADMM does not converge at all in our experiments.

46

5.4 Model Adaptation

In this section we present two simulations for linear regression models where the coefficients

drift in time. In the first one, we follow the data generation method in the simulation part to

generate data and we used the parameter setting: p = 100 and k = 10. But here we assume each

nonzero βj is varying with t:

βtj = a sin{2π (t− 100j)

T
}+ b, j = 1, 2, · · · , k, t = 1, 2, · · · , T, (5.1)

in which T is an unknown period. In our simulation, we have a = 0.4, b = 0.6 and T = 1000.

In each time period, we generate 1000 observations. We use model adaptation based on equation

(3.11) with the model adaptation rate αn = 0.01. According to Figure 5.5, our model adaptation

Figure 5.5: Model adaptation experiment. From left to right: true signal, parameters
without adaptation, parameter with adaption, RMSE for prediction.

method can track the varying coefficients and perform better in prediction than without model

adaptation. In Table 5.5 are shown the RMSE for the last few hundred time steps, averaged over

20 independent runs. One can see that the RMSE with model adaptation is close to the best RMSE

possible (1.0) and without model adaptation the prediction is quite poor.

Table 5.5: RMSE for adapted model and non-adapted model, averaged over 20 independent runs.

With model adaptation Without adaptation

RMSE 1.028 2.280

In the second numerical experiment, we simulate a high dimensional dynamic pricing and de-

mand problem [27]. Here we assume the demand Dt follows a linear combination of price and other

covariates. Hence we consider a simple model as

Dt = β0 + γpt + xtβt + εt, t = 1, 2, · · · , (5.2)

47

Figure 5.6: Model adaptation for dynamic pricing with feature selection. From left to
right: true signal, parameters without adaptation, parameter with adaption, RMSE for
prediction.

in which γ ∈ R is coefficient for price at time period t, βt ∈ Rp−1 is parameter vector for the other

covariates, and we have γ < 0 in the model. The parameter γ, β0, β are unknown to the seller and

need to be estimated. Here we assume βt is sparse and varying with time. The above model is

commonly used in the economic community to disclose the relationship between the demand and

the price. More details about the model of demand and price are given in [27].

For the true price parameter we have γ = −0.5, and pt ∼ U [10, 20]. For the other covariates

(βjt, j = 2, 3, · · · , k), we still use the equation (5.1), with a = 0.2, b = 0.4, T = 2000. For each time

period t, we generate 200 observations and the model adaptation rate was also αn = 0.01. Our

simulation discloses the relationship between demand and price in a varying marketplace. Here

we assume that the marketplace varies slowly in a very long period. Our simulation setting is

better than [27] because we consider continuous varying-coefficients and true feature recovery in

our setting, which is more complex. However, we will not discuss the theoretical analysis here,

which is left for a future study.

The results of our dynamic pricing simulation are shown in Figure 5.6. One can see again

that the model adaptation works quite well in following the drifting coefficients, and the RMSE is

much smaller than without adaptation. Here we also see the model selection power of the running

averages in practice. In the plot of the coefficients with adaptation, the smallest non-zero coefficient

(blue line) oscillates between being in the model and being zero until sufficient data is available,

then it is permanently added to the model.

5.5 Real Data Analysis

In real data analysis, we apply the running averages based methods to some real world datasets.

The first dataset is about age estimation from a single image. Age estimation is a regression

48

problem, as the age has a continuous range of values. The dataset is called Wikiface [28, 29],

containing 53,040 face images of actors from Wikipedia and their age. The faces are cropped and

resized to 224 × 224 pixels. From each face image a 4096 dimensional feature vector is extracted

using the pre-trained VGG-16 [34] convolutional neural network (CNN). A linear regression model

is used to estimate the age from the 4096 dimensional feature vector.

The second dataset is the Year Prediction MSD dataset, from the UCI Machine Learning

Repository [19]. This dataset, with 90 features and 463,715 observations, is about the prediction

of the release year of a song from audio features. In this dataset, we show how to extend the linear

model to a polynomial model by using running averages: we generate new features as products of

all pairs of the 90 features, obtaining a 4185 dimensional feature vector. Then we compute the

running averages and input them into OLSth or OFSA. Here, we will compare the R2 of the linear

model with the nonlinear model.

The results are shown as the average of 20 random splits of 87.5% training and 12.5% test data

for the first dataset, 80% training and 20% test data for the second dataset. For each method,

multiple models are trained using various values of the tuning parameters and sparsity levels k.

Then the parameter combination with the largest average test R2 over 20 random splits is reported

in Table 5.6.

Table 5.6: Regression results on real data. The average R2 for regression obtained over
20 random splits.

Dataset n p OLSth OFSA Lasso TSGD SADMM

Regression data

WIKIFace 53040 4096 0.547 0.545 0.503 0.400 0.487
Year Prediction MSD (nonlinear) 463715 4185 0.303 0.298 - 0 0
Year Prediction MSD 463715 90 0.237 0.237 0.237 0.157 0.183

In the real data analysis, we can see that offline Lasso cannot handle the large size of the Year

Prediction MSD data with pairwise interactions, and some online methods obtain an R2 of 0. In

contrast, our running averages based methods not only can be used to build the non-linear model,

but also they have better performance than the linear model.

49

CHAPTER 6

FUTURE STUDY

In this dissertation, we proposed a new online feature selection method, stochastic feature selection

with annealing, and a new framework of online learning, running averages framework. Compared

with the existing online feature selection methods, the SFSA method and its variants can recover

the support of the true features for datasets that have strong correlation between features. Besides,

they can select features and estimate the parameters simultaneously. In the theoretical analysis, we

provided an analysis of the convergence and consistency to the true coefficients. Then, we evaluated

the empirical performance of our proposed method and compared it with other state-of-the-art

methods. From our experiments, we can conclude that our methods have excellent performance on

different types of datasets, both real and simulated.

However, further study is needed for the proposed stochastic feature selection with annealing

method. First, we do not consider the model drift problem of SFSA, a common issue in the online

learning. Second, it is worth mentioning that the stochastic feature selection with annealing can

also be used in offline learning. One can subsample the data and approximate the gradient using

a mini-batch, then select the Mt features by the higher |βj | at each epoch t. Finally, the proposed

stochastic feature selection method can be used for feature selection in deep learning. In general,

the neural networks are usually trained by stochastic gradient descent (SGD) and its variants. Thus

it would be an interesting topic to study if the SGD was replaced by SFSA for training the model,

especially for non-vision data.

In the running averages framework, we defined the running averages to replace the data matrix,

and we showed how to normalize the data in the running averages and designed a series of feature

selection algorithms based on them. In contrast to the standard online methods, the proposed

framework can be used for model selection, in the sense that different models with different sparsity

levels can be built at the same time, without seeing the data again. This is especially useful when

the number of observations increases and more complex models can be extracted from the data.

50

The running averages based methods enjoy good convergence rate and a low computation com-

plexity. More importantly, they can recover the support of the true signal with high probability.

We give theoretical guarantees for OLSth and OFSA that they can recover the support of the true

signal in the setting of n >> p.

In numerical experiments, we have demonstrated that the running averages based methods

outperform traditional stochastic learning algorithms and batch learning methods in prediction

and feature selection. Moreover, the regret of the running averages methods diminishes faster than

the traditional online algorithms.

The running averages based methods could have a wide variety of applications. For instance,

in the problem of multi-armed bandit with high-dimensional covariates [2], we can put the multi-

armed bandit with linear regression and Lasso into our running averages framework. Also, we

could consider to use our online FSA and OLS-th for feature selection in the online decision-making

problem.

However, we also need to pay attention to the weaknesses of the running averages-based meth-

ods, as they cannot address ultra-high dimensional datasets, the case of p >> n, or p → ∞ as

n→∞. The memory complexity and computational complexity for the running averages methods

both are O(p2). A very large p will be an issue since the running averages would not fit in the

computer memory in this case.

51

APPENDIX A

ALL EXPERIMENTAL RESULTS FOR

REGRESSION

In this part, we present the all numerical experiments of the regression for running averages based

methods. The simulation is based on two settings: (1): p = 1000 and k = 100; (2): p = 10000 and

k = 1000. In each data parameter setting, we consider the signal strength β ∈ {0.01, 0.1, 1} (weak,

medium and strong signals). The sample size n varies from 103 to 106 for both parameter settings.

Stochastic ADMM [26] and TSGD [8] are used to compare with our algorithms. Besides, we cover

Lasso [38] as a offline learning method for the comparison.

Table A.1: Comparison between different online and offline algorithms for regression set-
ting, averaged 20-100 runs.

Variable Detection Rate (%) test RMSE Time (s)

n Lasso TSGD SADMM OLSth OFSA OMCP OElnet Lasso TSGD SADMM OLSth OFSA OMCP OElnet Lasso TSGD SADMM OLSth OFSA OMCP OElnet RAve

p = 1000, k = 100, strong signal β = 1

103 32.14 11.22 18.10 77.40 99.81 73.71 32.12 11.63 23.15 95.05 5.592 1.136 6.282 11.61 4.332 0.007 5.326 0.052 0.289 15.49 9.648 0.026
3 · 103 46.05 11.22 41.23 100 100 98.02 45.19 9.464 13.45 93.50 1.017 1.017 1.745 9.557 26.91 0.019 15.73 0.051 0.288 13.86 7.113 0.076

104 72.40 11.22 65.78 100 100 100 72.42 6.07 13.34 94.92 1.003 1.003 1.003 6.042 47.32 0.065 51.80 0.051 0.288 6.508 5.885 0.246

p = 1000, k = 100, weak signal β = 0.1

103 31.33 10.89 17.53 11.92 76.92 60.78 31.33 1.557 2.522 9.560 1.728 1.201 1.311 1.555 3.989 0.006 5.387 0.051 0.288 15.32 7.706 0.027
3 · 103 44.85 10.89 40.11 95.57 98.43 89.96 44.11 1.389 1.674 9.392 1.044 1.026 1.075 1.403 27.82 0.018 15.98 0.052 0.288 15.84 6.332 0.076

104 70.53 10.89 62.48 100 100 99.98 71.10 1.183 1.663 9.541 1.003 1.003 1.003 1.176 54.50 0.066 53.01 0.051 0.288 10.05 5.814 0.251

p = 1000, k = 100, weak signal β = 0.01

103 14.09 10.89 13.53 10.11 12.40 15.55 14.08 1.128 1.027 1.363 1.069 1.169 1.049 1.124 5.353 0.006 6.703 0.052 0.288 13.20 9.741 0.026
104 31.58 10.89 19.80 22.48 32.47 32.32 31.54 1.009 1.007 1.370 1.025 1.006 1.005 1.006 48.13 0.067 67.82 0.051 0.287 14.98 4.961 0.249
105 81.93 10.89 11.30 80.55 85.14 84.86 81.80 1.001 1.010 1.382 1.003 1.003 1.003 1.003 452.2 0.672 679.7 0.051 0.287 15.93 5.120 2.458

3 · 105 98.66 10.89 10.80 98.94 99.27 99.26 98.71 0.999 1.008 1.383 0.998 0.998 0.998 0.998 1172 2.001 2044 0.051 0.287 13.96 3.749 7.326
106 - 10.89 - 100 100 100 100 - 1.005 - 0.996 0.996 0.996 0.996 - 6.651 - 0.051 0.288 7.352 1.726 24.36

p = 10000, k = 1000, strong signal β = 1

104 22.79 10.20 24.01 98.09 99.09 24.84 22.76 40.38 42.21 916.7 4.606 3.341 40.09 40.72 759.8 0.773 563.5 18.88 28.40 468.4 1451 12.54
3 · 104 26.64 10.20 10.22 100 100 39.73 26.48 37.01 42.01 921.7 1.017 1.017 32.19 36.99 2049 2.319 1687 18.81 28.59 462.9 1092 37.62

105 - 10.20 8.89 100 100 68.76 34.65 - 41.75 865.4 1.006 1.006 20.44 33.35 - 7.739 5633 19.00 28.49 456.7 983.9 124.8

p = 10000, k = 1000, weak signal β = 0.1

104 22.69 10.22 21.03 14.51 97.65 24.96 22.91 4.188 4.326 92.82 4.351 1.178 4.133 4.194 788.1 0.770 564.3 18.89 28.34 429.9 1241 12.48
3 · 104 26.69 10.22 8.76 100 100 39.78 26.46 3.833 4.321 93.23 1.017 1.017 3.373 3.838 1887 2.320 1689 18.92 28.64 435.4 859.1 37.41

105 - 10.22 8.87 100 100 68.81 34.60 - 4.291 86.55 1.006 1.006 2.272 3.485 - 7.747 5632 18.91 28.64 411.6 884.1 124.5

p = 10000, k = 1000, weak signal β = 0.01

104 21.89 10.21 17.03 10.07 31.16 21.32 21.83 1.104 1.089 9.140 1.144 1.076 1.109 1.105 827.4 0.773 564.6 18.91 28.54 442.1 965.3 12.49
3 · 104 25.87 10.21 9.30 35.02 52.44 33.22 26.12 1.070 1.086 9.199 1.108 1.046 1.069 1.079 1973 2.327 1693 18.89 28.58 439.6 759.9 37.32

105 - 10.21 10.19 77.32 83.73 57.38 33.37 - 1.083 8.423 1.025 1.016 1.035 1.061 - 7.742 5662 18.81 28.55 449.9 681.9 124.8
3 · 105 - 10.21 9.92 98.53 98.95 85.95 45.66 - 1.082 7.479 1.002 1.001 1.009 1.043 - 23.21 16989 18.98 28.54 440.6 741.6 373.0

106 - 10.21 - 100 100 99.55 72.54 - 1.079 - 1.000 1.000 1.000 1.017 - 77.40 - 19.02 28.48 341.3 686.2. 1242

52

APPENDIX B

THE RUNNING AVERAGES FRAMEWORK IN

THE GENERAL ONLINE LEARNING CASE

In general case of online learning, the observations are not arriving as i.i.d. Actually, the online

algorithms do not need any distributional assumption and sometimes we assume an adversarial

scenario in the online learning for theoretical analysis [22]. In this section, we will prove that our

online running averages framework can work in the non-i.i.d case of online learning. In detail, we

will prove that OLS-th algorithm and OFSA algorithm can work under this assumption.

B.1 Model Assumption

Here, we still consider the linear regression model from Proposition 3:

y = Xβ∗ + ε,

in where X = [xT1 ,x
T
2 , · · · ,xTn]T are designed data matrix, and xt ∈ Rp is a random vector drawn

from an unknown distribution at the time period t. ε = [ε1, ε2, · · · , εn]T is a random error vector

with i.i.d assumption. In this linear model, xt and εt are assumed independent. β∗ is the true

coefficients in the linear regression model.

However, in this case, we do not assume the observations xt, t = 1, 2, · · · are independent with

each other. Instead, we assume that the xt depend on the past predictor and response {xi, yi}t−1i=1.

Also, we assume that for all t = 1, 2, · · · , we have ‖xt‖∞ < M , where M is a constant upper bound

of the observations xt.

According to the model assumption and the paper [2], for each feature Xj , j = 1, 2, · · · , p,

we define Dtj = εtXtj , in which Xtj represent the random variable for the t-th observation and

j-th feature. As a consequence, we have the sequence D1j , D2j , · · · , Dtj as a martingale difference.

Here, we use the background of measure theory to describe this fact.

Let the σ-algebra Ft generated by the random variables X1, X2, · · · , Xt−1 and Y1, Y2, · · · , Yt−1,

and we have the filtration

F1 ⊂ F2 · · · ⊂ Ft.

53

Because of the fact E[εtXtj |Ft] = 0, and based on the definition of martingale difference, we can

conclude that the sequence D1j , D2j , · · · , Dtj is a martingale difference sequence adapted to the

σ-field F1 ⊂ F2 · · · ⊂ Ft.

B.2 Theoretical Analysis

We start to prove the probabilistic upper bound for our OLS-th algorithm and OFSA algorithm.

In the beginning, we present the Azuma inequality for the martingale difference as a Lemma. The

proof of this Lemma can be found in [39].

Lemma 5. Let the {(Di,Fi)}∞i=1 be the martingale difference sequence, and we assume that Di is

σi-subgaussian for every i > 0, i.e., for all λ ∈ R, E(exp{λDi}|Fi−1) ≤ exp{λ2σ2i /2} almost surely.

Then, for every t > 0, we have

P
(
|
n∑
i=1

Di| ≥ t
)
≤ 2 exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Now we will extend our conclusion of Proposition 3 to the non-i.i.d case. Here, let α = 1, which

appears in Proposition 3 and so we can have a simple proof and a beautiful conclusion.

Proposition 6. Suppose we have the linear model

y = Xβ∗ + ε,

where X = [xT1 ,x
T
2 , · · · ,xTn]T is the design matrix, in which xi ∈ Rp, i = 1, 2, · · · , are drawn from

an unknown distribution. We also assume there exists a constant M > 0 such that ‖xi‖∞ <
√
M ,

for every i > 0. Also assume that the random variable Xtj · εt is a (
√
Mσ)-subgaussian random

variable. Let Sβ∗ = {j, β∗j 6= 0}, |Sβ∗ | = k∗ and assume

min
j∈Sβ∗

|β∗j | >
2σ

λ

√
log(p)

n
, for some λ satisfying 0 < λ ≤ λmin(

1

n
XTX). (B.1)

Then with probability 1− 2p1−
2
M , the index set of top k∗ values of |β̂j | is exactly Sβ∗.

Proof. According to the assumptions, we have β̂ = β∗ + (XTX)−1XT ε. It is equivalent to that

|β̂| = |β∗ +

(
XTX

n

)−1
XT ε

n
|.

54

Because Xij ·εi is a sequence of martingale difference for every i > 0, and each Xij ·εi is sub-gaussian

random variable bounded by Mσ2, then by the Lemma 5, for ∀j = 1, 2, · · · , p and for every t > 0

we have

P

(
|
XT
·jε

n
| ≥ t

)
≤ 2 exp{− nt2

2Mσ2
}.

Then, let t = 2σ

√
log(p)
n , so we have

P

(
|
XT
·jε

n
| ≥ 2σ

√
log(p)

n

)
≤ 2 exp{−2 log(p)

M
} ≤ 2 exp{−2 log(p)

M
}, for ∀j = 1, 2, · · · , p.

Then we use the union bound of the above inequality,

P

(
‖X

T ε

n
‖∞ ≤ 2σ

√
log(p)

n

)
≥ 1− 2p exp{−2 log(p)

M
} = 1− 2p1−

2
M .

Therefore, with probability 1− 2p1−
2
M , for ∀j 6∈ Sβ∗ we have

|β̂j | ≤
1

λmin(1
nXTX)

‖X
T ε

n
‖∞ ≤

2σ

λmin(1
nXTX)

√
log(p)

n
≤ 2σ

λ

√
log(p)

n
.

where we used the fact 1
λ ≥

1
λmin(

1
n
XTX)

. And by the smallest β∗ condition, we get our conclusion.

We have finished the proof of true feature recovery property of OLS-th algorithm in the non-

i.i.d case. With the mild conditions, we still can recover the true support of β∗ even though the

observations are non-i.i.d. Now, we will extend the property of true support recovery for the OFSA

algorithm to the non-i.i.d case.

Proposition 7. (True feature recovery for OFSA) With the same conditions and assumptions

as Proposition 6, and define the smallest true β∗ as

βmin := min
j∈Sβ∗

|βj | >
4ση

1− 1.62ρ

√
p log(p)

n
.

Then after t = [1
1.62ρ log(10‖β

∗‖
βmin

)] + 1 iterations, the OFSA algorithm will output β(t) satisfying

Sβ∗ = Sβ(t) with probability 1− 2p1−
2
M , where M > 0 satisfy ‖xi‖∞ <

√
M, i = 1, 2, · · · , n.

Proof. In Theorem 3 we have the following result

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β∗‖+
1.62η

√
p

1− 1.62ρ
‖∇f(β∗)‖∞.

55

And we know that ∇f(β∗) = 1
nXT (y−XTβ∗) = XT ε

n . Then by using the inequality proved in the

proof of Proposition 6

P(‖X
T ε

n
‖∞ ≤ 2σ

√
log(p)

n
) ≥ 1− 2p1−

2
M ,

and then with probability 1− 2p1−
2
M , we have

‖β(t) − β∗‖ ≤ (1.62ρ)t‖β∗‖+
3.24ση

√
p

1− 1.62ρ

√
log(p)

n
.

After t = [1
1.62ρ log(10‖β

∗‖
βmin

)] + 1 iterations, we can show that (1.62ρ)t‖β∗‖ < 1
10βmin. Thus, with

probability 1− 2p1−
2
M , we have

‖β(t) − β∗‖ < βmin.

And the conclusion that Sβ∗ = Sβ(t) must hold.

56

REFERENCES

[1] Adrian Barbu, Yiyuan She, Liangjing Ding, and Gary Gramajo. Feature selection with an-
nealing for computer vision and big data learning. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(2):272–286, 2017.

[2] Hamsa Bastani and Mohsen Bayati. Online decision-making with high-dimensional covariates.
2015.

[3] Cheng-Tao Chu, Sang K Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Kunle Olukotun, and
Andrew Y Ng. Map-reduce for machine learning on multicore. In NIPS, pages 281–288, 2007.

[4] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algo-
rithms via accelerated gradient methods. In NIPS, pages 1647–1655, 2011.

[5] John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10(Dec):2899–2934, 2009.

[6] John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective
mirror descent. In COLT, pages 14–26, 2010.

[7] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle prop-
erties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

[8] Jianqing Fan, Wenyan Gong, Chris Junchi Li, and Qiang Sun. Statistical sparse online regres-
sion: A diffusion approximation perspective. In AISTATS, pages 1017–1026, 2018.

[9] Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM
Journal on Numerical Analysis, 49(6):2543–2563, 2011.

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning,
volume 1. Springer series in statistics New York, NY, USA:, 2001.

[11] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2):169–192, 2007.

[12] Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods
for high-dimensional m-estimation. In Advances in Neural Information Processing Systems,
pages 685–693, 2014.

[13] Adel Javanmard. Perishability of data: dynamic pricing under varying-coefficient models. The
Journal of Machine Learning Research, 18(1):1714–1744, 2017.

57

[14] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factorization
machines for ctr prediction. In Proceedings of the 10th ACM Conference on Recommender
Systems, pages 43–50. ACM, 2016.

[15] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

[16] S Sathiya Keerthi and Dennis DeCoste. A modified finite newton method for fast solution of
large scale linear svms. Journal of Machine Learning Research, 6(Mar):341–361, 2005.

[17] D Kinga and J Ba Adam. A method for stochastic optimization. In ICLR, volume 5, 2015.

[18] John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient.
Journal of Machine Learning Research, 10(Mar):777–801, 2009.

[19] M. Lichman. UCI machine learning repository, 2013.

[20] Ji Liu, Jieping Ye, and Ryohei Fujimaki. Forward-backward greedy algorithms for general
convex smooth functions over a cardinality constraint. In International Conference on Machine
Learning, pages 503–511, 2014.

[21] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Identifying suspicious
urls: an application of large-scale online learning. In ICML, pages 681–688, 2009.

[22] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
2018.

[23] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical program-
ming, 120(1):221–259, 2009.

[24] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[25] Matey Neykov, Jun S Liu, and Tianxi Cai. L1-regularized least squares for support recovery
of high dimensional single index models with gaussian designs. Journal of Machine Learning
Research, 17(87):1–37, 2016.

[26] Hua Ouyang, Niao He, Long Tran, and Alexander Gray. Stochastic alternating direction
method of multipliers. In ICML, pages 80–88, 2013.

[27] Sheng Qiang and Mohsen Bayati. Dynamic pricing with demand covariates. 2016.

[28] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Dex: Deep expectation of apparent age
from a single image. In ICCV Workshops, pages 10–15, 2015.

58

[29] Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent
age from a single image without facial landmarks. International Journal of Computer Vision,
pages 1–14, 2016.

[30] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge University Press, 2014.

[31] Yiyuan She et al. Thresholding-based iterative selection procedures for model selection and
shrinkage. Electronic Journal of statistics, 3:384–415, 2009.

[32] Jie Shen and Ping Li. On the iteration complexity of support recovery via hard thresholding
pursuit. In ICML, pages 3115–3124, 2017.

[33] Jie Shen and Ping Li. A tight bound of hard thresholding. The Journal of Machine Learning
Research, 18(1):7650–7691, 2017.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[35] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In ICML, pages 1139–1147, 2013.

[36] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[37] Taiji Suzuki. Dual averaging and proximal gradient descent for online alternating direction
multiplier method. In ICML, pages 392–400, 2013.

[38] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

[39] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

[40] Jialei Wang, Peilin Zhao, Steven CH Hoi, and Rong Jin. Online feature selection and its
applications. IEEE Transactions on Knowledge and Data Engineering, 26(3):698–710, 2014.

[41] Steve Webb, James Caverlee, and Calton Pu. Introducing the webb spam corpus: Using email
spam to identify web spam automatically. In CEAS, 2006.

[42] Xindong Wu, Kui Yu, Hao Wang, and Wei Ding. Online streaming feature selection. In ICML,
pages 1159–1166, 2010.

59

[43] Yue Wu, Steven CH Hoi, Tao Mei, and Nenghai Yu. Large-scale online feature selection for
ultra-high dimensional sparse data. ACM Transactions on Knowledge Discovery from Data
(TKDD), 11(4):48, 2017.

[44] Lin Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11(Oct):2543–2596, 2010.

[45] Haichuan Yang, Ryohei Fujimaki, Yukitaka Kusumura, and Ji Liu. Online feature selection: A
limited-memory substitution algorithm and its asynchronous parallel variation. In SIGKDD,
pages 1945–1954. ACM, 2016.

[46] Xiao-Tong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit. 2018.

[47] Xiaotong Yuan, Ping Li, and Tong Zhang. Gradient hard thresholding pursuit for sparsity-
constrained optimization. In International Conference on Machine Learning, pages 127–135,
2014.

[48] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals
of Statistics, pages 894–942, 2010.

[49] Tong Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations.
IEEE transactions on information theory, 57(7):4689–4708, 2011.

[50] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In ICML, pages 928–936, 2003.

[51] Hui Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

[52] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

60

BIOGRAPHICAL SKETCH

Lizhe Sun received his Bachelor of Science degree in Applied Mathematics from Wuhan University,

Hubei, China in 2013. In 2014 Lizhe started his PhD degree in Statistics in Florida State University.

Due to his interests in machine learning, Lizhe worked on his PhD thesis under the supervision of

Prof. Adrian Barbu. Lizhe’s research topic is feature selection in online learning. He has finished a

number of projects on this topic, such as the online running averages framework and the stochastic

feature selection with annealing. Besides these topics, he is interested in reinforcement learning

and robust regression.

61

