
FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

ONLINE AND OFFLINE FEATURE SCREENING AND APPLICATIONS

By

MINGYUAN WANG

A Dissertation submitted to the
Department of Statistics

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

2021

Copyright © 2021 Mingyuan Wang. All Rights Reserved.

Mingyuan Wang defended this dissertation on .
The members of the supervisory committee were:

Adrian Barbu

Professor Directing Dissertation

Piyush Kumar

University Representative

Yiyuan She

Committee Member

Jinfeng Zhang

Committee Member

The Graduate School has verified and approved the above-named committee members, and certifies
that the dissertation has been approved in accordance with university requirements.

ii

Dedicated to 26 years and beyond

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Adrian Barbu for his patient and endless support. He offered not only

academic guidance, but also suggestions for life and career. I will never reach where I am without

his dedication.

I also want to thank my committee members, Dr. Piyush Kumar, Dr. Yiyuan She and Dr.

Jinfeng Zhang for their suggestions and time during the process of this dissertation.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . ix

List of Symbols . x

Abstract . xi

1 Introduction 1
1.1 Outline . 2

2 Empirical Analysis of Offline Screening Methods 3
2.1 Introduction . 3
2.2 Related Work . 4
2.3 Screening Methods for Classification . 6

2.3.1 Mutual Information . 6
2.3.2 Relief and ReliefF . 7
2.3.3 Minimum Redundancy Maximum Relevance 7
2.3.4 T-Score . 8
2.3.5 Chi-square Score . 9
2.3.6 Gini Index . 9
2.3.7 Fisher Score . 10

2.4 Screening Methods for Regression . 10
2.4.1 Correlation . 10
2.4.2 Mutual Information . 11
2.4.3 RReliefF . 11

2.5 Feature Selection With Annealing (FSA) . 12
2.6 Evaluation of Screening Methods . 14
2.7 Construction Tables of Groups . 14
2.8 Construction Comparison Tables . 15
2.9 Real Data Analysis . 15

2.9.1 Data sets . 15
2.9.2 Regression Results . 17
2.9.3 Classification Results . 20

3 Online Screening Methods 27
3.1 Introduction . 27
3.2 Related Work . 28
3.3 Methods . 32

3.3.1 Mean-Variance Based Methods . 32
3.3.2 Bin Count Based Methods . 34
3.3.3 Minibatch . 42

3.4 Evaluation of Online Screening Methods . 42

v

3.4.1 Online-Offline Methods Comparison . 42
3.4.2 Online Screening Methods with Model Adaptation 47
3.4.3 Realistic Performance of Online Screening Methods 51

4 Conclusion and Future Work 55
4.1 Conclusion . 55
4.2 Future Work . 57

Bibliography . 58

Biographical Sketch . 64

vi

LIST OF TABLES

2.1 The datasets used for evaluating the screening methods. The parameter τ controls
the number of selected features as [(4t)τ], t = 1, 30. 16

2.2 Overview of the number of datasets where each feature screening method performed
significantly better than no screening for different learning algorithms and than the
best performing algorithm (larger numbers are better). 18

2.3 Ranking of feature screening methods for regression by number of datasets where
screening method was significantly better than the best performing no screening
method. (larger numbers are better) . 19

2.4 Number of datasets each combination was in the top performing group. 19

2.5 Ranking of feature screening methods for regression by the number of times each was
in the top performing group. (larger numbers are better) 19

2.6 Overview of the number of datasets where each feature screening method performed
significantly better than no screening for different learning algorithms and than the
best performing algorithm (larger numbers are better). 21

2.7 Ranking of feature screening methods for classification by number of datasets where
screening method was significantly better than the best performed no screening method.
(larger numbers are better. * indicates appearance.) 22

2.8 Number of datasets where each combination was in the top performing group. 22

2.9 Ranking of feature screening methods for classification by the number of times each
was in the top performing group. (larger numbers are better) 23

3.1 The datasets used for evaluating the online/offline screening methods. 44

3.2 Influence of minibatch size on computation time for online quantile compared to offline
quantile. 45

3.3 Influence of ε on computation time for online quantile compared to offline quantile. . . 45

3.4 Influence of ε on count differences between online and offline quantiles (results are
reported per feature per bin). 46

3.5 Influence of ε on accuracy (3.19) of online chi-square/gini index/mutual information
scores compared to their offline versions . 47

3.6 Influence of ε on unmatched ranking among top 10% features for chi-square/gini in-
dex/mutual information score according to its offline feature ranking 48

vii

3.7 The datasets for realistic evaluation . 51

3.8 20 News Groups . 53

3.9 URL data . 54

viii

LIST OF FIGURES

2.1 Performance plots of methods with and without feature screening. Left: for each
screening method are shown the maximum R2 value across all learners. Right: R2 of
the screening methods with the best learner for this data (FSA). 17

2.2 Performance plots of methods with and without feature screening. Left: for each
screening method are shown the maximum R2 value across all learners. Right: R2 of
the screening methods with the best learner for this data (ridge). 24

2.3 Performance plots of methods with and without feature screening. Left: for each
screening method are shown the maximum R2 value across all learners. Right: R2 of
the screening methods with the best learner for this data. 25

2.4 Performance plots of methods with and without feature screening. Left: for each
screening method are shown the maximum R2 value across all learners. Right: R2 of
the screening methods with the best learner for this data. 26

3.1 Multi-level summary: The length of sl in the figure represents its coverage of data
points. s0 contains the summary for the most recent data input block. sl consists the
summary of the oldest 2l data blocks. At each level, sl is maintained as an εl-summary. 36

3.2 Top-left: detection rate by methods. Top-right: detection rate vs shifting rate.
Bottom-left: detection rate by shifting rate adjusted by fading factor. Bottom-right:
detection rate by shifting rate vs. fading factor. 49

3.3 Influence of model adaptation on true variable detection rates for different rates of
concept drift. Solid curves denote methods with model adaptation, dashed curves are
methods without model adaptation. 50

ix

LIST OF SYMBOLS

The following short list of symbols are used throughout the document.

n the number of observations
p the number of variables
k the number of true features
S = {(xi, yi) ∈ Rp × R, i = 1, ..., n} the data space
X the n× p data matrix
Xj , j = 1, ..., p the j-th column/feature of X
xi, i = 1, ..., n the i-th observation of X
xij , i = 1, ..., nj = 1, ..., p the j-th column/feature of the i-th observation of X
y the n× 1 target vector
yi, i = 1, ..., n the j-th target value

x

ABSTRACT

Filter or screening methods are often used as a preprocessing step for reducing the number of

variables used by a learning algorithm in obtaining a classification or regression model. While

there are many such filter methods, there is a need for an objective evaluation of these methods.

Such an evaluation is needed to compare them with each other and also to answer whether they

are at all useful, or a learning algorithm could do a better job without them. For this purpose,

many popular screening methods are partnered in this thesis with three regression learners and

five classification learners and evaluated on ten real datasets to obtain accuracy criteria such as

R-square and area under the ROC curve (AUC). The obtained results are compared through curve

plots and comparison tables in order to find out whether screening methods help improve the

performance of learning algorithms and how they fare with each other. Our findings revealed that

the screening methods were useful in improving the prediction of the best learner on two regression

and two classification datasets out of the ten datasets evaluated.

While the screening methods show promising performance in case by case basis, modern data

poses new challenges for existing methods that are designed to handle datasets with a limited mag-

nitude. Nowadays datasets not only have higher dimension and larger sample size, but also have

some unique characteristics that need to be taken into consideration. Signal data of different types,

website information data, and others only exist for a short period of time and methods that only

focus on dealing with high dimension and large sample size are not adequate to handle this type

of data. Therefore a considerable number of online feature selection methods were introduced to

handle these kind of problems in recent years. Online screening methods are one of the categories

of online feature selection methods. They are used to preprocess data that is too large for batch

screening methods to handle or to handle data that comes in sequential order and disappears soon

after being processed. Furthermore due to the useful properties of the criteria of some screen-

ing methods such as mutual information and Gini index, some online screening methods are often

integrated into online learning algorithms. Most online screening methods are concentrated on clas-

sification problems. Our research study focuses on classification as well. Researches are conducted

to investigate whether online screening methods introduced in our research can obtain identical re-

sults as their offline counterparts. We are also interested to know how well our screening methods

xi

with model adaptation can perform when facing data streams that have the concept drifting prop-

erty. Experiments were conducted on real and synthetic classification datasets with binary labels.

Results are summarized and analyzed in the form of comparison tables and comparison plots. We

find that our online screening methods outperform their offline version in both computing time and

space requirements. Furthermore, the results show that online screening methods with integrated

model adaptation have a higher true feature detection rate than without model adaptation on data

streams with the concept drifting property. Among the two large real datasets that potentially have

the concept drifting property, online screening methods with model adaptation show advantages

in either saving computing time and space, reducing model complexity, or improving prediction

accuracy.

xii

CHAPTER 1

INTRODUCTION

For the past few decades, with the rapid development of online social platforms and information

collection technology, the concept of big data grew from a novel terminology in the past to one of

the most powerful resources in present day. Especially in recent years, the sample sizes and feature

dimensions of datasets rose to levels beyond precedent. This development poses great challenges

for machine learning in extracting the relevant variables and in building accurate predictive models

on such large datasets. Moreover, despite the fast development of computer hardware in recent

decade. Big data still brings computation time and storage size issue for low budget setups.

One of the most popular machine learning tasks is feature selection, which consists of identifying

fewer meaningful features (variables) from the original feature space, with the goal of reducing

training speed and model size, as well as obtaining better prediction on unseen data, or obtaining

better insight on the underlying mechanisms driving the target variable.

Feature selection methods have grown into a large family nowadays, with T-scoreDavis and

Sampson [1986], Mutual Information [Lewis, 1992], Relief [Kira and Rendell, 1992], Lasso [Tibshi-

rani, 1996], and MRMR [Han et al., 2005] as some of the more popular examples.

There are three categories of feature selection methods: screening methods (a.k.a. filter meth-

ods), wrapper methods and embedded methods. Screening methods are independent of the model

learned. This makes them less computational complex. However for the same reason, screening

methods tend to ignore more complex feature interaction. Wrapper methods use a learning algo-

rithm (learner) to evaluate feature importance, which often leads to a better performance. But

good performance comes with the possibility of overfitting, and a much higher computational de-

mand. Embedded methods combine the feature selection and the model learning together, which

generally makes them faster than the wrapper methods.

Throughout the years, these methods shined in various application frontiers. Given the expo-

nential growth of data size, we were interested in evaluating the performance of existing screening

1

methods (one of the fastest) on conventional real high dimensional datasets and also going beyond

that to introduce new screening methods to tackle bigger and more complex data.

1.1 Outline

In Chapter 2, we will go over various existing screening feature selection methods and evaluate

their performance on real datasets. The screening methods will be used with different popular

classification and regression learners. The comparison analysis will finally be carried on based on

the performance metrics of each feature selection and learner combination. In Chapter 3, several

online feature screening methods will be introduced to tackle large stream dataset with sparse

inputs and concept drifting property. Experiments were conduct to compare their performance

with their offline version, as well as on real world datasets.

2

CHAPTER 2

EMPIRICAL ANALYSIS OF OFFLINE SCREENING

METHODS

2.1 Introduction

In this study, we focus on existing offline screening feature methods and would like an unbiased

answer to the following questions:

� Do screening methods help to build good predictive models, or comparable models can be

obtained without them?

� How do the existing screening methods compare with each other in terms of predictive capa-

bilities, which one is the best and which one is the worst?

To answer these questions, we evaluated different screening methods (three for regression and

seven for classification) on ten real datasets, five for regression and five for classification. The

screening methods and the datasets will be described in the Methods section, but here we present

our main findings.

The screening methods themselves cannot provide predictive models. For that purpose, different

supervised learning algorithms such as SVM, Feature Selection with Annealing (FSA), Boosted

Trees, and Naive Bayes were employed to construct the predictive models on the features selected

by the screening methods.

For both regression and classification, experiments indicate that the screening methods are

sometimes useful, in the sense they help obtaining better predictive models on some datasets. The

findings are summarized in the comparison tables from the Results section.

Through our comparison study, we intend to provide researchers with a clear understanding

of some of the well known screening (filter) methods and their performance of handling high-

dimensional real data.

3

2.2 Related Work

The focus of this study is to examine the effect of screening (filter) methods on obtaining good

predictive models on high-dimensional datasets. The recent literature contains several works that

compare feature selection methods, including screening methods.

A recent feature selection survey [Li et al., 2017a] from Arizona State University (ASU) shows

a comprehensive feature selection contents, studying feature selection methods from different data

type perspectives. The survey is very broad, examining both supervised and unsupervised learning

using binary and multi-class data, whereas our study focuses on supervised learning on regression

and binary classification problems. The ASU study evaluates many classification datasets, but it

does not have our goal of comparing feature screening methods and testing whether they are useful

in practice or not. In this respect, we found some issues with the ASU study and we corrected them

in this thesis. First, the ASU study uses the misclassification error as a measure of the predictive

capability of a classifier. The misclassification error is sensitive to the choice of threshold, and is

a more noisy measure than the AUC (area under the ROC curve). In our work we used the AUC

instead, and obtained performance curves that have less noise, as it will be seen in experiments.

Second, the ASU study obtains the results with 10-fold cross-validation, and are not averaged over

multiple independent runs. In our work we used 7 independent runs of 7-fold cross-validation to

further increase the power of our statistical tests. Third, we draw our comparisons and conclusions

using statistical methods based on paired t-tests to obtain groups of similarly performing methods.

An earlier version of the ASU report is [Tang et al., 2014], which is an overview of different types

of feature selection methods for classification.

In [Chandrashekar and Sahin, 2014] are evaluated feature selection methods for flat features

including filter methods, wrapper methods and embedded methods. However, tests are only con-

ducted on low-dimensional datasets. In contrast we evaluate the filter methods on high dimensional

datasets with 500-20,000 features and in many instances with more features than observations.

Moreover, our goal is to compare filter methods themselves, not the filter-learning algorithm com-

bination, since different datasets could have different algorithms that are appropriate (e.g. linear

vs nonlinear). We achieve this goal by employing many learning algorithms and choosing the best

one for each filter method and each dataset.

4

A comprehensive overview of the feature selection work done in recent years is shown in [Jović

et al., 2015]. It covers feature selection methods including filter, wrapper, embedded and hybrid

methods as well as structured and streaming feature selection. The article also discusses exist-

ing application of these feature selection methods in different fields such as text mining, image

processing, industry and bioinformatics.

Recently [Cai et al., 2018] gave another detailed and broad overview of feature selection methods.

The authors conducted their studies of many categories of feature selection methods, including but

not limited to supervised, unsupervised, semi-supervised, online learning and deep learning. An

experiment involving five feature selection methods was conducted on classification data. All five

methods are either filter or wrapper methods. However they conducted their experiments on only

two datasets, and the didn’t consider the performance of the learning algorithms without any

feature selection as a comparison baseline. Therefore the paper fails to show how much the feature

selection methods could improve accuracy or whether they improved accuracy at all.

From a very interesting and unique standing point, [Li et al., 2017b] is an overview that focuses

on the challenges currently facing feature selection research. They propose some solutions while

at the same time reviewing existing feature selection methods. In [Urbanowicz et al., 2018] is

evaluated the existing Relief method and some of its variants. The authors implemented and

expanded these methods in an open source framework called ReBATE (Relief-Based Algorithm

Training Environment). They described these methods in great detail and conducted simulation

experiments with prior knowledge of the true features. They used a very vast simulated data pool

with many varieties. The Relief variants were also compared with three other filter methods, using

as performance measure the rate of detection of the true features. However, the paper didn’t show

if these methods can improve the performance of machine learning algorithms or if the improvement

persists on real data.

Two other studies of feature selection methods are [Alelyani et al., 2013] and [Talavera, 2005].

In contrast to our study, they solely focus on unsupervised learning.

With the development of feature selection research, some well written feature selection software

frameworks were also introduced. FeatureSelect [Masoudi-Sobhanzadeh et al., 2019] is a newly

introduced such framework, which evaluated multiple trending feature selection methods on eight

real datasets. Results were compared using various statistical measures such as accuracy, precision,

5

false positive rate and sensitivity. Their studies also evaluated five filter methods. Because the

experiment didn’t have learning algorithms without feature selection method as a benchmark, it

again fails to show if using feature selection methods is better than not using them on these datasets.

IFeatureChen et al. [2018] is another feature selection software framework dedicated to Python.

Some earlier studies also exist in this field (Guyon and Elisseeff, 2003Guyon and Elisseeff [2003],

Sanchez-Marono et al.,2007 [Sánchez-Maroño et al., 2007], Saeys et al.,2007Saeys et al. [2007]).

Despite the large quantity of survey literature in screening feature selection methods, there

lacks literature on evaluating their performance on real world datasets. We feel the necessity to fill

this gap with a comprehensive performance analysis of screening methods using real world data.

2.3 Screening Methods for Classification

2.3.1 Mutual Information

The mutual information (a.k.a. information gain) method measures the information shared by

two variables of interest, in this case, a feature Xj and the class label y. The mutual information

between variable A, where SA = {A ∈ R} and variable Y , where SY = {Y ∈ R} can be described

as:

I(A, Y) =

∫
SA

∫
SY

p(A, Y) log
p(A, Y)

p(A)p(Y)
dAdY (2.1)

where p(A, Y) is the joint probability density of A and Y , while p(A) and p(Y) are the marginal

p.d.f.s of A and Y .

In practice, given a sample dataset, each feature can be discretized into bins based on the value

range. Here, b = 1, 2, ..., B indicates bin number, c = 1, 2, ..., C indicates class number. Therefore

mutual information between label vector y and feature vector Xj can also be described as:

I(Xj ,y) =

B∑
b=1

C∑
c=1

p(Xjb,yc) log
p(Xjb,yc)

p(Xjb)p(yc)
(2.2)

where p(Xjb,yc) is the joint probability of bin Xjb and label vector yc, while p(Xjb) and p(yc) are

the marginal probabilities. Features that are more related to the classification label tend to have

higher mutual information.

6

2.3.2 Relief and ReliefF

The idea of the Relief algorithm is to measure how well a feature’s values can distinguish

instances that are near each other. For the i-th instance-label pair (xi, yi), denote its nearest

instance neighbor from the same class as the nearest hit (xhiti , yi), and its nearest instance neighbor

from a different class as the nearest miss (xmissi , ymissi). The distance between two instances xi,xj

is calculated using the Euclidean norm ‖xi − xj‖. Then the Relief measure for a certain feature F

can be computed as:

Reliefj =
1

n

n∑
i=1

[diff(F : xi, x
miss
i)− diff(F : xi, x

hit
i)] (2.3)

where the function diff(F : x, y) calculates the difference between the values of feature F for two

instances. For discrete features diff(F : x, y) is defined as:

diff(F : x, y) =

{
0; if x = y

1; otherwise
(2.4)

and for a continuous feature Xj as:

diff(F : x, y) =
|x− y|

max(F)−min(F)
(2.5)

The Relief measure can also be extended to a multi-class version ReliefF, but we are only interested

in binary classification in this thesis.

In summary, higher Relief values indicate better discrimination power of the label by the feature

values.

2.3.3 Minimum Redundancy Maximum Relevance

The minimum redundancy maximum relevance (MRMR) method is set to choose the feature

that has the highest mutual information difference (MID) or mutual information quotient (MIQ).

The MID and MIQ are calculated as :

MIDj = I(Xj ,y)− 1

|Q|
∑
q∈Q

I(Xj , Xq) (2.6)

7

MIQj =
I(Xj ,y)

1
|Q|
∑

q∈Q I(Xj , Xq)
(2.7)

where Q is the set of features already selected, I(Xj ,y) is the mutual information for j-th feature

and the label vector y, and I(Xj , Xq) denotes the mutual information between features j and q.

In the case where the features take continuous values, MIQ and MID can be modified as the

F-test correlation difference (FCD) and F-test correlation quotient (FCQ). FCD and FCQ are

computed as:

FCDj = F (Xj ,y)− 1

|Q|
∑
q∈Q
|c(Xj , Xq)| (2.8)

FCQj =
F (Xj ,y)

1
|Q|
∑

q∈Q |c(Xj , Xq)|
(2.9)

where F (Xj ,y) is the F-statistic for j-th feature and label vector y, and |c(Xj , Xq)| denotes the

absolute correlation coefficient between features j and q. In the case of binary labels the F-statistic

can be replaced by the T-statistic.

2.3.4 T-Score

The T-score method is a feature screening method applied on datasets with binary labels. The

method is based on the calculation of the t-statistic. The basic idea is to divide each feature’s

values into two sample groups based on their labels. Then the t-statistic is calculated to examine

if the two sample groups have statistically significant differences in their means. For each feature

Xj , the values of Xj are divided into two groups based on their labels. Then the means µ1 and

µ2 are calculated as the means of the two groups and σ1 and σ2 are standard deviations of these

two groups respectively. Let n1 and n2 be the number of instances of the two groups. Then the

t-statistic for feature i can be calculated as:

Tj =
|µ1 − µ2|√
σ2
1
n1

+
σ2
2
n2

(2.10)

Generally speaking, the higher the t-statistic, the more separated the two labels are by values of

that feature and therefore the more relevant that feature is for classification.

8

2.3.5 Chi-square Score

The chi-square score method is based on the chi-square statistic. It can test the independence

between two variables, therefore it can also test the relevance of a variable Xj for the label vector y.

If feature Xj has L levels (discretized if necessary) and y has C=2 levels (label categories), let nlc

denote the number of instances with label c and level l for feature j. Let n̂lc denote the estimated

number of instances with label c and having level l, n̂lc = nlnc

n , where n is the total number of

instances, nl is the number of instances having level l, and nc is the number of instances with label

c. The chi-square statistic is then computed as:

χ2
j =

L∑
l=1

C∑
c=1

(nlc − n̂lc)2

n̂lc
(2.11)

Usually, a higher chi-square statistic indicates low independence, in other word, a higher relevance

between that feature and label.

2.3.6 Gini Index

The Gini index method is based on the Gini impurity after splitting a sample set. For a given

feature Xj , let Ah = {i, xij ≤ h} denote the instances whose values of the j-th feature is smaller

than or equal to h and Bh = {i, xij > h}. The Gini impurity for subset Ah or Bh can be expressed

as:

Gini(Ah) = 1−
C∑
c=1

P (Cc|Ah)2 (2.12)

where C is the number of labels and c ∈ {1, 2, ..., C} are the label categories. P (Cc|Ah) is the

conditional probability of instances having label c given that they are in subset Ah. Let ac denote

the number of instances in Ah with label c. Let ah denote the number of instances in Ah. Then

P (Cc|Ah) can be calculated as ac/ah.

Based on these notations, the Gini index after splitting is:

Ginisplit = P (Ah)Gini(Ah) + P (Bh)Gini(Bh) (2.13)

where P (Ah) is the number of instances in subset Ah divided by the number of total instances.

Therefore for each feature, the Gini index can be calculated as:

9

Ginij = P (Ah)(1−
C∑
c=1

P (Cc|Ah)2) + P (Bh)(1−
C∑
c=1

P (Cc|Bh)2) (2.14)

Basically, the Gini index measures the frequency that a randomly chosen instance from the sample

set would be incorrectly labeled. So for all possible thresholds h of one feature, select the minimum

Gini index as this feature’s Gini index. Features with smaller Gini index are preferred.

2.3.7 Fisher Score

The idea of the Fisher score is to choose the feature subset, for which the observations have

the largest possible between class distances and the smallest possible within class distances. This

would be the feature subset that has the largest Fisher score. The Fisher score for any feature set

is computed as:

Fisher = Tr(Db)(Dt + γI)−1 (2.15)

where γ is a regularization term, Db is called between-class scatter matrix, Dt is called total scatter

matrix. Since for a certain feature subset with size d, there are
(
m
d

)
combinations of Fisher scores

to be calculated, this is too computationally expensive. For this reason, a heuristic is to compute

the scores for each feature with respect to the Fisher score criterion. The individual Fisher score

is computed as:

Fisherj =

∑C
c=1 nc(µc − µ)2∑C

c=1 ncσ
2
c

(2.16)

where µ and σ are mean and standard deviation of that feature, and µc is the mean of the feature

values for observations with label c and nc is the number of instances with label c. Features with

larger Fisher scores are preferred.

2.4 Screening Methods for Regression

2.4.1 Correlation

The correlation feature screening method is based on the calculation of correlation coefficient

between response and features. It is evaluated as following:

ρj =
cov(Xj ,y)

σyσXj

(2.17)

where Xj is j-th feature, y is response. Features with larger correlation coefficient are preferred.

10

2.4.2 Mutual Information

To apply mutual information for regression data, we discretized both the feature and the re-

sponse into a numbers of bins. For feature Xj and response y, let xjb and yl indicate values falling

in b-th and l-th bins respectively.

The mutual information for the j-th feature is computed as:

I(Xj , Y) =
B∑
b=1

L∑
l=1

P (xjb, yl) log
P (xjb, yl)

P (xjb)P (yl)
(2.18)

Let n denote the number of instances. Then P (xjb, yl) can be estimated by Njbl/n, where Njkl is

the number of instances falling into feature bin b and response bin l. Also, P (xjb) can be estimated

by Njb/n, where Njb is the number of instances lay in feature bin b, and P (yl) can be estimated

by Nl/n, where Nl is the number of instances lay in response bin l. Features with larger mutual

information have more influence on the response.

2.4.3 RReliefF

RReliefF is a regression version of Relief. It starts from the original weight function. For feature

A the function can be expressed as:

W (A) = P (different value of A|nearest instance from different class)

−P (different value of A|nearest instance from the same class)
(2.19)

Denote

PdiffA = P (different value of A|nearest instances)

PdiffP = P (different response|nearest instances)

PdiffP |diffA = P (different response|different value of A and nearest instances).

(2.20)

Then from (2.19), using Bayes’ rule:

W (A) =
PdiffP |diffAPdiffA

PdiffP
−

(1− PdiffP |diffA)PdiffA

1− PdiffP
, (2.21)

which can be further modified as:

W (A) =
NdP&dA

NdP
− (NdA −NdP&dA)

m−NdP
(2.22)

11

where NdA, NdP and NdP&dA denote different feature value, different response value and different

feature & response value respectively. Denote for instance xi its k-nearest instances as uij , j ∈

{1, ..., k}. Then the expressions for NdA, NdP and NdP&dA are:

NdA =
n∑
i=1

k∑
j=1

diff(A : xi,uij)d(i, j)

NdP =
n∑
i=1

k∑
j=1

diff(y : xi,uij)d(i, j)

NdP&dA =
n∑
i=1

k∑
j=1

diff(y : xi,uij) diff(A : xi,uij)d(i, j)

(2.23)

Where diff(F, x, y) is defined in Eq. (2.4) and (2.5) and d(i, j) is used to take account the distance

between xi and uj :

d(i, j) =
d1(i, j)∑k
l=1 d1(i, l)

(2.24)

and

d1(i, j) = exp(−rank2(xi,uij)/σ
2) (2.25)

where rank(xi,uij) is the rank of the instance uij in a sequence of instances ordered by the distance

from xi, and σ is a user defined parameter. d1(i, j) is calculated in an exponentially decreasing

fashion with the idea that further instances should have lesser influence. Usually, d1(i, j) takes

value 1/k. Features with larger W (·) are preferred.

2.5 Feature Selection With Annealing (FSA)

Feature Selection With Annealing (a.k.a. FSA) is a recent embedded method for feature selec-

tion that can handle high dimensional data. FSA can bring the relevant feature space down to an

acceptable level using an variable removal schedule and obtain a rather accurate and stable model.

The basic algorithm of FSA is:

The value of N iter in step 2 is the total number of iterations. The formula in step 3 uses a

typical gradient descent or an epoch of stochastic gradient descent with momentum and minibatch

towards minimizing the loss L(β). The Me in step 4 is the annealing schedule which gradually

decreases with the iteration number e. It decides how many features to keep in each iteration. Let

12

Algorithm 1 Feature Selection with Annealing (FSA)

Input: Training samples (xi, yi)∈Rp × R, i= 1, 2, ..., N .

Output: Trained model parameter vector β.

1: Initialize β.

2: for e=1 to N iter do

3: Update β ← β − η ∂L(β)∂β

4: Keep the Me features with highest |βj | and renumber them 1, ..., Me.

5: end for

k be a user defined parameter controlling how many features to keep in the end. The Me can be

computed as:

Me = k + (p− k) max(0,
N iter − 2e

2eµ+N iter
), e = 1, ..., N iter (2.26)

where p is the feature dimension of the original input data and µ is the annealing parameter

which can be tuned using cross validation. FSA has good computational efficiency and theoretical

guarantees of consistency. The user defined parameter k denoting how many features to select is

more intuitive than the penalty parameter in the penalized methods (e.g. L1 penalized regression)

and makes the procedure more controllable. Experiments were conducted separately for regression

and classification. For regression, the screening methods were Correlation, Mutual Information

[Lewis, 1992], and RReliefF [Robnik-Šikonja and Kononenko, 1997]. These screening methods were

combined with learners including Feature Selection with Annealing (FSA) [Barbu et al., 2017],

Ridge Regression, and Boosted Regression Trees.

For classification, the screening methods were T-score [Davis and Sampson, 1986], Mutual Infor-

mation [Lewis, 1992], Relief [Kira and Rendell, 1992], Minimum Redundancy Maximum Relevance

(MRMR) [Han et al., 2005], Chi-square score [Liu and Setiono, 1995], Fisher score [Duda et al.,

2012], and Gini index [Gini, 1912]. They were combined with learners including FSA [Barbu et al.,

2017], Logistic Regression, Naive Bayes, SVM, and Boosted Decision Trees.

Among these screening methods, Mutual information, Correlation, Gini index, Fisher-score,

Chi-square score and T-score select features individually. In contrast, MRMR requires to calculate

the redundancy between the already selected features and the current feature, and Relief requires

to calculate the distance between two observations using Euclidean norm so that one can determine

the nearest neighbor with the same label and with different labels. The calculation of Euclidean

13

norm involves all the feature value. Consequently, these two methods select features in combination

and are slower than the other methods.

2.6 Evaluation of Screening Methods

The predictors of all datasets were normalized to zero mean and standard deviation 1 in a

pre-processing step. For each dataset, experimental results were obtained as the average of 7

independent runs of 7-fold cross-validation. For each run, a random permutation of the dataset

was generated and the data was split into seven approximately equal subsets according to the

permutation. Then a standard full 7-fold cross-validation was performed as follows. Each fold

consists of testing on one of the subsets after training on the other six. This procedure was run

with each of the seven subsets as the test set and the other six as the training set. For each fold,

each one of the screening methods mentioned above was used to reduce the dimension of the feature

space to the desired size, then a learning algorithm using preset parameter values was applied on the

selected features to obtain the model. The predictions of the model on the test subset for each fold

were combined to obtain a vector of test predictions on the entire dataset, which was used to obtain

performance measures (R2 for regression and AUC (Area under the ROC curve) for classification).

To increase accuracy, these performance measures were averaged over seven independent runs on

different permutations of the data.

To insure the consistency of the comparison, the number of features that were selected by each

screening method was kept the same for each dataset. For each dataset (except Wikiface), 30

different values of the number of selected features were assigned. Plots were used to compare the

average performance over the 7 cross-validated runs of different combinations of screening method

and learner. Also for each combination, the optimal number of selected features was selected based

on the maximum average test performance over the 7 cross-validated runs. Pairwise t-tests at the

significance level α=0.05 were used to compare between different combinations to see if they are

significantly different.

2.7 Construction Tables of Groups

Groups of screening method-learner combinations that are not significantly different from each

other were constructed as follows (we use paired t-tests to obtain p-values when comparing differ-

14

ent methods combinations and set 0.05 as the significance level in our experiment). The screening

method-learner combinations are first sorted in descending order of their peak performance. Then

starting from the first combination F downward, the last combination in the sequence that is not

statistically significantly different from combination F is marked as combination L. All combi-

nations between F and L are put into the same group. The same procedure was used for other

combinations along the sequence. All these tables of groups are provided in the Supporting infor-

mation section.

2.8 Construction Comparison Tables

Comparison tables were established based on how many times each screening method - learner

combination appeared of in the group tables. Three kinds of counting methods were applied.

1) The number of datasets where the screening method performed significantly better than no screen-

ing for different learning algorithms. For each learning algorithm, it is the number of datasets on

which the screening method appeared in higher group tiers than the same learning algorithm with-

out screening. This counting method is used to construct Table 2.2 and Table 2.6 except the “Best”

column.

2) The number of datasets where the screening method was significantly better than the best per-

forming algorithm with no screening (usefulness per dataset). For each dataset, we checked for each

screening method whether it appeared with a learning algorithm in a higher group tier than the

best learning algorithm without screening. This counting method is used to construct Table 2.3

and Table 2.7 and the “Best” column of Tables 2.2 and 2.6. Column with name “Total Count” is

generated from the summation of counts across all datasets for each screening methods.

3) The number of datasets where each filter-learning algorithm combination was in the top perform-

ing group (top performing). This counting method is used in Table 2.4 and Table 2.8.

2.9 Real Data Analysis

2.9.1 Data sets

Five datasets were used for regression and five datasets for classification, with the specific

dataset details given in Table 2.1.

15

Table 2.1: The datasets used for evaluating the screening methods. The parameter τ
controls the number of selected features as [(4t)τ], t = 1, 30.

Dataset Learning type Feature type
Number of
features

Number of
observations

τ

Mouse BMI [Wang et al., 2006] Regression Continuous 21575 294 1.825

Tumor [Grossman et al., 2016] Regression Continuous 16790 1750 1.825

Indoorloc [Torres-Sospedra et al., 2014] Regression Continuous 520 20294 1.25

Wikiface [Rothe et al., 2016] Regression Continuous 4096 53040 1.65

CoEPrA2006 [Ivanciuc, 2006] Regression Continuous 5787 133 1.68

Gisette [Guyon et al., 2005] Binary Classification Continuous 5000 7000 1.73

Dexter [Guyon et al., 2005] Binary Classification Continuous 20000 600 1.78

Madelon [Guyon et al., 2005] Binary Classification Continuous 500 2600 1.25

SMK CAN 187 [Spira et al., 2007] Binary Classification Continuous 19993 187 1.78

GLI 85 [Freije et al., 2004] Binary Classification Continuous 22283 85 1.78

The regression dataset Indoorloc is available on the UCI Machine Learning Repository [Lichman,

2013]. The original dataset has eight indicator columns including longitude, latitude and so on.

In our study, we only used the latitude as response. We combined the training and validation

data files and deleted all duplicated observations due to the removing of the other seven indicator

columns. The dataset Tumor was extracted from TCGA (The Cancer Genome Atlas). The

response of this dataset is the survival time(in days) of the patient, and the predictors represent

gene expression levels. The classification datasets Gisette, Dexter, Madelon are part of the NIPS

2003 Feature selection challenge [Guyon et al., 2005] and are also available on the UCI Machine

Learning Repository.

The dataset Wikiface is a regression problem of predicting the age of a person based on the

person’s face image, and was obtained from the Wikiface images [Rothe et al., 2016]. A CNN

(Convolutional Neural Network) vgg-face [Parkhi et al., 2015] pre-trained for face recognition was

applied to each face and the output of the 34-th layer was used to generate a 4096 feature vector

for each face. This 4096 dimensional vector was used as the feature vector for age regression, with

the age value from the original Wikiface data as the response.

16

https://ani.stat.fsu.edu/~abarbu/Research/MouseBMI.zip
https://ani.stat.fsu.edu/~abarbu/Research/tumor.zip
https://archive.ics.uci.edu/ml/datasets/ujiindoorloc
https://ani.stat.fsu.edu/~abarbu/Research/WikiFace.zip
http://www.coepra.org/CoEPrA-2006/CoEPrA-2006_Regression_003.zip
http://featureselection.asu.edu/datasets.php
https://archive.ics.uci.edu/ml/datasets/dexter
http://featureselection.asu.edu/datasets.php
http://featureselection.asu.edu/datasets.php
http://featureselection.asu.edu/datasets.php

2.9.2 Regression Results

The following results are based on the output generated using Matlab 2016b [Mat, 2016]. For

RReliefF, correlation score, ridge regression and boosted regression trees we used their Matlab

2016b implementation. Mutual information for regression was implemented by ourselves. For FSA

we used the Github1 implementation from its original authors.

Figure 2.1: Performance plots of methods with and without feature screening. Left: for
each screening method are shown the maximum R2 value across all learners. Right: R2

of the screening methods with the best learner for this data (FSA).

Performance Plots. For the regression datasets, the plots from Fig. 2.1 and 2.2 show the

R2 value vs. the number Mi of selected features, where Mi = [(4i)τ], i = 1, ..., 30. The value of τ

for each dataset is given in Table 2.1.

In Fig 2.1, left, are shown the R2 of the best learning algorithm vs. the number of features

selected by a screening method for the BMI and tumor datasets. Observe that these datasets are

both gene expression datasets with many features and few observations. In Fig 2.1, right, are

shown the R2 of FSA (the best overall learning algorithm) vs. the number of features selected by

a screening method. Except a slightly higher value given by RReliefF on the BMI data, overall the

1https://github.com/barbua/FSA

17

https://github.com/barbua/FSA

screening methods did not show higher scores than that of the optimal regression learners for the

BMI and Tumor datasets. The plots on the right show that the screening methods even needed to

select more features to obtain similar performance to FSA without screening.

In Fig 2.2, left, are shown the R2 of the best learning algorithm vs. the number of features

selected by a screening method for the other three regression datasets. In Fig 2.2, right, are shown

the R2 of the best overall learning algorithm in each case (ridge for CoEPrA and Wikiface, boosted

trees for Indoorloc) vs. the number of features selected by a screening method. From the plots we

observe that screening methods give slightly better results than the learning algorithms without

screening on the Indoorloc and Wikiface datasets. The statistical significance of the improvement

can be seen in the table of groups from the supporting information or in the comparison tables

below.

Comparison Tables. The counts in the comparison table are based on the table of groups

from the supporting information.

Table 2.2: Overview of the number of datasets where each feature screening method
performed significantly better than no screening for different learning algorithms and than
the best performing algorithm (larger numbers are better).

Screening Method FSA Ridge Boost Tree Best algorithm

RReliefF [Robnik-Šikonja and Kononenko, 1997] 0 4 3 2

Mutual Information [Lewis, 1992] 0 3 3 2

Correlation 0 4 3 1

In Table 2.2 is shown the number of datasets where a filter method helps an algorithm perform

significantly better, and the number of datasets where a screening method significantly improves

a learning algorithm compared to the best performing learning algorithm without screening. It is

shown that screening methods have relatively good performance with ridge regression and boosted

regression trees on datasets tested. They work on 3-4 out of 5 datasets. RReliefF method and

Mutual information method have slightly better performance than Correlation method when only

comparing with the best learner without screening methods.

In Table 2.3 is shown a “*” for each dataset and each screening method when it has a learning

algorithm that obtains significantly better performance than the best learning algorithm without

screening. An “=” sign shows for each dataset when the screening method is in the same per-

formance group as the best learning algorithm without screening method (so it does no harm).

18

Table 2.3: Ranking of feature screening methods for regression by number of datasets
where screening method was significantly better than the best performing no screening
method. (larger numbers are better)

Screening Method BMI Tumor CoEPrA Indoorloc Wikiface Total Count

RReliefF = = = * * 2

Mutual Information. = * * 2

Correlation = = = * 1

We can see that Mutual Information and RReliefF worked on the Indoorloc dataset and all three

screening methods worked on the Wikiface data. However, the screening methods didn’t provide

performance improvement on the other three regression datasets. It is also shown that only in few

occasions that screening methods harm the best learning algorithm. This is shown by the blank

cells in table.

Table 2.4: Number of datasets each combination was in the top performing group.

Filter
Learners

FSA Ridge Boost Tree

RReliefF 3 0 1

Mutual Information 1 1 1

Correlation 2 1 0

— 3 0 0

In Table 2.4 is shown the counts of screening method-learner combinations that are in the top

group. The combination of FSA with screening methods worked on more regression datasets than

the other screening-learner combinations. However it was not a significant improvement compared

to FSA without screening, which also worked on 3 out of 5 datasets.

Table 2.5: Ranking of feature screening methods for regression by the number of times
each was in the top performing group. (larger numbers are better)

Top performing
Screening Method Method-Algorithm Method

RReliefF 4 4

Mutual Information 3 3

Correlation 3 2

No Screening 3 3

19

In Table 2.5 is shown the number of times each screening method was in the top performing

group. In the first column, these methods were counted together with the learning algorithms they

were applied. So there can be at most 15 counts (For each screening method there are three learning

algorithms and five datasets total) in each cells. The second column shows the counts withe the best

learning algorithm for each method, so there can be at most 5 counts in each cell. The table shows

that RReliefF has the best performance, which is larger that the worst performance (correlation)

by 2. Among the three screening methods only RReliefF has a higher count than non screening.

2.9.3 Classification Results

The following results are based on the output generated by Matlab 2016b. For the methods

Relief, T-score, chi-square score, logistic regression, naive Bayes, SVM, boosted decision trees

we used their Matlab 2016b implementation. For MRMR, Fisher score, and Gini index we used

the ASU repository implementation2. Mutual information for classification was implemented by

ourselves. Some of the implementations only accept discrete predictors, so the quantile-based

discretization method [Nguyen, 2014] was used.

Performance Plots. In Fig 2.3, left are shown the AUC of the best learning algorithm vs.

the number of features selected by a screening method for four of the classification datasets. In

Fig 2.3, right, are shown the AUC of the best overall learning algorithm in each case (SVM for

SMK CAN 187, Boosted trees for Madelon and Dexter, FSA for Gisette) vs. the number of features

selected by a screening method.

The plots show that all screening methods help obtain better results on the Gisette and Madelon

datasets and most screening methods help obtain better results on the SMK CAN 187 data. It

can be observed that on the SMK CAN 187 and Madelon, although some screening methods show

better results, they select a higher number of selected features than FSA when they reach their

optimal values. The right side figure of the SMK CAN 187 plots shows that Relief doesn’t work

well with the best learner for this dataset. Only three out of the seven methods help obtain a better

result on the Dexter dataset.

In Fig 2.4, left are shown the AUC of the best learning algorithm vs. the number of features

selected by a screening method on the GLI 85 dataset. In Fig 2.4, right, are shown the AUC of

2http://featureselection.asu.edu/old/software.php

20

http://featureselection.asu.edu/old/software.php

FSA (for GLI 85) vs. the number of features selected by a screening method. We can observe that

only one screening method (mutual information) helps obtain better results than the best learning

algorithm without screening.

Table 2.6: Overview of the number of datasets where each feature screening method
performed significantly better than no screening for different learning algorithms and than
the best performing algorithm (larger numbers are better).

Screening Method Boost Tree FSA SVM NB Logistic Best algorithm

Mutual Information 2 1 3 5 5 2

Fisher Score [Duda et al., 2012] 3 1 2 5 5 2

Chi-square Score [Liu and Setiono, 1995] 2 1 2 5 4 2

Gini Index [Gini, 1912] 2 1 2 5 4 2

Relief [Kira and Rendell, 1992] 3 2 1 5 4 1

T-score [Davis and Sampson, 1986] 2 1 2 5 5 2

MRMR [Han et al., 2005] 2 1 2 5 4 2

Comparison Tables. In Table 2.6 is shown the number of datasets on which a filter method

helps an algorithm perform significantly better, and the number of datasets on which the filter

method helps the best performing learning algorithm perform even better. We see that for each

learner there is at least one dataset on which a screening method can improve the performance.

Mutual information, Relief and Fisher score have best performance among all methods. It is also

clear that the screening methods can generally improve the performance of logistic regression and

Naive Bayes on 4 to 5 out of the 5 datasets. When compared to best leaner without screening

methods, Relief shows to be slightly weaker than the others.

In Table 2.7 is shown a “*” for each dataset and each screening method if it has a learning

algorithm that obtains significantly better performance than the best learning algorithm without

screening. An “=” sign shows for each dataset whether a screening method is in the same per-

formance group as the best learning algorithm without screening. We observe that Relief only

worked on the Madelon dataset. The other screening methods worked on both Gisette and Made-

lon datasets. It is also shown that only in a few occasions the screening methods harm the best

learning algorithm. This is shown by the blank cells in the table. Overall, except Relief, the

screening methods have similar performance on the five classification datasets.

In Table 2.8 is shown for each screening method-learning algorithm combination the number of

datasets for which it was in the top performing group. We can observe that the screening methods

21

Table 2.7: Ranking of feature screening methods for classification by number of datasets
where screening method was significantly better than the best performed no screening
method. (larger numbers are better. * indicates appearance.)

Screening Method Dexter Gisette SMK CAN 187 MadelonGLI 85 Total count

Chi-square Score = * = * 2

Gini Index = * = * = 2

Relief = = * = 1

Mutual Information = * = * = 2

T-score = * = * 2

Fisher Score = * = * = 2

MRMR = * = * 2

Table 2.8: Number of datasets where each combination was in the top performing group.

Filter
Learners

Boost Tree FSA SVM NB Logistic

Mutual Information 2 2 2 0 1

Gini Index 2 2 1 0 1

Chi-square Score 2 2 0 0 1

Relief 2 2 0 0 1

T-score 1 1 1 0 0

MRMR 1 1 1 0 0

Fisher Score 1 1 1 0 0

— 1 1 1 0 0

with boosted trees and FSA have the overall best performance. Among them, boosted trees and

FSA with four screening methods (Chi-square Score, Gini Index, Relief and Mutual Information)

have a slight advantage compared to the algorithms without screening. SVM worked well with

Mutual Information. The above named four screening methods also helped Logistic regression on

one dataset. Naive Bayes didn’t perform well on these five datasets.

In Table 2.9, are shown the number of times each screening method was in the top performing

group. In the first column, these methods were counted with respect to the learning algorithms they

were applied. So there can be at most 25 counts (for each screening method there are five learning

algorithms and five datasets) in each cell. The second column shows the counts with the best

learning algorithm, so there can be at most 5 counts in each cell. The Mutual Information has the

highest counts. It’s significantly higher than no screening. Gini Index, Relief and Chi-square score

also have relative higher counts when considering them together with a learning algorithm. Mutual

22

Table 2.9: Ranking of feature screening methods for classification by the number of times
each was in the top performing group. (larger numbers are better)

Top performing
Screening Method Method-Algorithm Method

Mutual Information 7 4

Gini Index 6 4

Chi-square Score 5 3

Relief 5 3

T-score 3 2

MRMR 3 2

Fisher Score 3 2

No Screening 3 3

Information and Gini Index have good performance on more datasets than using no screening, when

considering only the best learning algorithm for each method and each dataset.

23

Figure 2.2: Performance plots of methods with and without feature screening. Left: for
each screening method are shown the maximum R2 value across all learners. Right: R2

of the screening methods with the best learner for this data (ridge).

24

Figure 2.3: Performance plots of methods with and without feature screening. Left: for
each screening method are shown the maximum R2 value across all learners. Right: R2

of the screening methods with the best learner for this data.

25

Figure 2.4: Performance plots of methods with and without feature screening. Left: for
each screening method are shown the maximum R2 value across all learners. Right: R2

of the screening methods with the best learner for this data.

26

CHAPTER 3

ONLINE SCREENING METHODS

3.1 Introduction

With the explosive growth in amount of data available in recent years, the efficiency of data

processing stays a heated topic in both hardware and software fields. Various approaches were

emerged to tackle this challenge, such as cloud computing, batch learning, online learning, more

powerful hardware and so on. These approaches mainly focus on how to increasing the loading

capacity of the systems. On the other hand, the screening (filter) feature selection methods, which

shows impressive performance in reducing feature dimensions of large high dimensional data and

improving overall model performance, especially with ad-hoc implementations, focus on how to scale

down the data before considering the loading capacity of the learning system. Screening feature

selection methods are independent of the learning algorithms, which gives them a fast execution

speed. They can be ideal add-ons when it comes to improving efficiency without losing performance.

Built on the foundation of our previous survey on the performance of screening feature selection

methods on real large datasets, we dedicate this article to introduce several novel online feature

screening methods as extensions of existing offline screening methods to tackle datasets that come

from a more modern environment.

In this study, five screening methods are selected from our previous survey [Wang and Barbu,

2019] to be extended to their online versions, sparse versions, and addressing model adaptation

issues. Among them, T-scoreDavis and Sampson [1986] and Fisher Score [Duda et al., 2012] are

mean-variance based methods, while Gini index [Gini, 1912], Chi-square score [Liu and Setiono,

1995], and Mutual Information [Lewis, 1992] are quantile-based methods. Comparative evaluations

are then conducted on these methods between their online and offline versions using synthetic

and real datasets. The model adaptation will also be tested against synthetic data with time-

varying features. Finally we will evaluate the performance of these extended methods by showing

experimental results on real datasets. Given the fact that we don’t know which are the true

27

features in real datasets, we will show the performance of these methods by comparing the learners’

predictive ability before and after applying screening methods.

3.2 Related Work

The study of feature selection on streaming data has a long history. Even before the big data

boom, there already existed applications that generate and require to process streaming data under

computation and memory constraints. One such field is text mining and language processing in

topic recognition and spam email identification. In cooperating with the well know SpamHunting

system, J.R. Méndez et al. introduced a new term selection scheme in [Méndez et al., 2007] based

on Amount of Information (AI). AI is calculated from the appearance of certain terms in the

text corpora. It can also be extended as a feature selection method for other types of binary

categorical features. This is a method with online criteria calculation and concept adaptation

capability. Concept adaptation is an essential issue online algorithms need to deal with when

processing data streams over a large, possibly infinite, amount of time. The fundamental idea is

that the relation between the prediction target and its features usually changes over time either

gradually or drastically. The subset selected by the feature selection methods needs to be adjust to

this change as well. Concept adaptation is also called concept drifting, model adaptation depending

on the focus of the dynamic connection between target and features.

Feature selection methods can be divided into three categories based on their interaction with

the learning algorithm: filters, wrappers and hybrids. Filters, also known as screening methods,

compute a criterion for each feature and select features according to some selection scheme. They

don’t involve learner. The aforementioned AI method is a filter method. Wrappers wrap feature

selection with any learner. They use a feature importance measure calculated by the learner to

decide what features to keep. Hybrids, also known as embedded methods, rely on a sparsity

inducing built-in regularizer of the learner to drop irrelevant features. One such example is the

LassoTibshirani [1996].

Screening methods have the advantage of fast processing and easy integration with other system.

The framework introduced in this article also fall into this category. Considering the large number

of streaming high dimensional applications, we feel its advantages make it an appropriate direction

to pursue.

28

Outside the scope of screening methods, there are other online feature selection methods in the

literature. In [Carvalho and Cohen, 2006] an online learner Modified Balanced Winnow(MBW) was

introduced. The authors use the absolute value between the positive weights and negative weights

calculated by MBW to rank the features by their importance. This is a typical setting for the

wrapper methods. Importing the idea of the trade-off between exploration and exploitation, [Wang

et al., 2013] proposed a method that periodically updates feature weights, and selects feature using

an arbitrary classifier.

Throughout the years, online screening methods have achieved steady development. Some of

them are introduced to solely handle large data streaming without considering the drifting problem.

Katakis et al. [Katakis et al., 2005] proposed a two stage mechanism for feature selection and data

classification. They employed a incremental criterion calculation method. Features are selected

according their rank based on the criterion such as chi-squared score and mutual information.

Their incremental method is formulated for discrete features, therefore their method can not handle

continuous feature. In response to the issue of concept drift for streaming data, different strategies

were introduced.

One of the popular methods is sliding window. Its idea is to only consider the most recent data,

making it a natural adaptation to the drifting problem. In [Masud et al., 2010] a chunk structure

similar to the sliding window was used by author. Deviation weight was introduced in this article

as a feature importance measurement and indicator. The feature selection is them perform based

on each feature’s deviation weight. However the deviation weight is only applicable to categorical

features. Similarly in [Gomes et al., 2013], an contingency table is maintained for each feature from

the sliding window. The tables are then used to calculate the criterion such as Mutual information

and Chi-squared score and so on. The criterion mentioned in their study are only suitable for

processing discrete features. They also introduced a dynamic threshold to avoid naive selection

roles such as top-k features and fixed threshold.

Another popular strategy widely adapted to handle the drifting problem is the fading factor.

In [Sovdat, 2014], both sliding window and fading factor are used. In the fading factor variation,

feature measures such as the Gini index and entropy are calculated incrementally over the entire

data stream. However the criterion they use also works with discrete data only. An interesting

attempt was presented inHenke et al. [2015], which uses a month as the specific window size for

29

the sliding window to calculate mutual information from categorical features. This is very practical

the the cases where the drift information is known.

In some studies, an estimator of criteria is used instead of exact computed criteria mentioned

above. Keller et al. [Keller et al., 2015] used a k-nearest neighborhood mutual information estimator

introduced by Kraskov el. [Kraskov et al., 2004] under the sliding window frame. The features are

then selected based on their mutual information estimators. Instead of calculating some criterion

for each feature all the way, in [Hammoodi et al., 2018] a concept drift detector detects which

features drift first using Feature Velocity and Inter Quartile Range. Once a drift is detected, all

features that relate to the drift will have their mutual information updated using data in a recent

window. Then a ranking and selection procedure is carried among all features based on their mutual

information.

Despite various situations in which the aforementioned methods can be applied, to our best

knowledge, none of the existing online screening methods applies to continues features. In order

to calculate an appearance based criterion such as mutual information and chi-squared score from

continuous features, one needs to be able to discretize the continuous features in an online fashion.

Many efforts have been put into this area. It has been proven in [Munro and Paterson, 1980]

that O(N) space is required for an algorithm to compute the exact quantiles in a single pass of

streaming data. In order to describe a one pass data stream in a reduced space, approximate

quantile calculation methods are needed. Some earlier works are [Jain and Chlamtac, 1985] and

[Agrawal and Swami, 1995]. Their algorithms are used to calculate uniform quantiles in a single

pass. In [Gama and Pinto, 2006] a two-stage framework was proposed to obtain discrete binned

data from continuous data. The suggested method first constructs many equal width intervals to

capture and update the partition of incoming sample points. At query time, it aggregates the

collected intervals to generate equal-width histograms or equal-frequency histograms. As intuitive

as it is, this is a non-deterministic method, in the sense that there are no deterministic guarantees

on the estimation error.

Manku et al. introduced a single pass algorithm in [Manku et al., 1998] to compute a determin-

istic ε-approximate uniform quantile summary. It requires prior knowledge of the sample size N

and has a space complexity of O(1ε log2 εN). Another algorithm that does not require prior knowl-

edge of N was also proposed by Manku et al. in [Manku et al., 1999]. The space complexity for

30

this algorithm is O(1ε (log2 1
ε + log2 log 1

δ)) with a failure probability of δ. A more recent approach

(the GK algorithm) to compute a deterministic ε-approximate quantile summary on a single pass of

streaming data without the prior knowledge of N was introduced by Greenwald et al. in [Greenwald

et al., 2001]. This method imposed a tree structure. It is an improvement of Manku’s algorithm

with a space bound of O(1ε log εN). In [Zhang and Wang, 2007], an improvement was made on the

GK algorithm to significantly reduce the computational cost. The computational cost of this multi-

level quantile summary algorithm is O(N log 1
ε log εN). It is shown in their experiments that it can

achieve about 200 - 300 × speedup over the GK algorithm. Its storage requirement of O(1ε log2 εN)

is higher than the GK algorithm.

Recent work in XgboostChen and Guestrin [2016] extended [Greenwald et al., 2001] and [Zhang

and Wang, 2007] with a focus on processing weighted data. This saves space and improves the

summary accuracy when dealing data streams containing duplicate values. The algorithm intro-

duced in their article has the same guarantee as the GK algorithm. It can be plugged into all GK

frameworks and its extensions.

There also exists works that focus on other aspects of calculating quantile summaries. In

[Lin et al., 2004] was introduced an algorithms to compute uniform quantiles over sliding windows.

Cormode et al. [Cormode et al., 2006] proposed an algorithm to handle the biased quantile problem.

It has a storage bound of O(logUε log εN) and time complexity of O(log logU) where N is the sample

stream size and U is the size of the domain from which the sample points are drawn. Efforts were also

made to compute approximate quantiles for distributed streams and sensor networks. Greenwald et

al. [Greenwald and Khanna, 2004] proposed an algorithm for calculating ε-approximate quantiles

for sensor network applications. In [Shrivastava et al., 2004] an algorithm with space complexity

of O(1ε logU) was proposed to compute medians and other quantiles in sensor networks.

In this study, we implemented mean-variance based feature screening methods using moving

averages. We will also introduce quantile based methods based on the weighted quantile summary.

We extended work in [Chen and Guestrin, 2016] to generate accurate live bin counts on demand.

Our proposed algorithm also integrates ways to handle sparse streaming data as well as streaming

data featuring concept drift, as an adaptation to the needs of modern applications.

31

3.3 Methods

The online screening methods we studied are divided into two categories based on their funda-

mental principles. The T-score [Davis and Sampson, 1986] and Fisher score [Duda et al., 2012] are

based on moving averages. Mutual Information [Lewis, 1992], Chi-square score [Liu and Setiono,

1995] and Gini index [Gini, 1912] are based on quantile summaries.

3.3.1 Mean-Variance Based Methods

T-score. For a feature xj , its T-score is calculated as:

Tj =
|µ1 − µ2|√
σ2
1
n1

+
σ2
2
n2

(3.1)

where µc, nc, and σc denote the mean, sample count, and standard deviation of the values of

observations belonging to class c. The higher the score, the more relevant the feature is to the

target variable.

Fisher Score. Similarly, the Fisher score of feature xj is defined as:

Fisherj =

∑C
c=1 nc(µc − µ)2∑C

c=1 ncσ
2
c

(3.2)

where µ is the mean of the feature, and µc, nc, and σc have been defined above.

It is clear that equation (3.1) and (3.2) are calculated from basic components such as means

and variances. To generalize them to a streaming data setting is quite straightforward.

Without losing generality, we assume that a sample arrives at each time step t = 1, 2, 3, ..., n.

At time n, the running average µnj and running mean of squared MSnj of the j-th feature that

form the sufficient statistics are:

µ1j = x1j

µ2j =
µ1j
2

+
x2j
2

...

µnj =
n− 1

n
µ(n−1)j +

1

n
xnj

32

And:

MS1j = x21j

MS2j =
MS1j

2
+
x21j
2

...

MSnj =
n− 1

n
MS(n−1)j +

1

n
x2nj

Consequently the variance of j-th feature at time n can be written as:

σ2nj = MSnj − µ2nj (3.3)

Therefore T-score and Fisher Score can incrementally maintain exact calculation as new samples

arrive.

In the scenario of sparse input, since the zero values are no-shown in data stream, one only

need to accumulate the running average and running mean of squared with showed value and keep

the record of sample count.

In order to adapt concept drifting, a fading factor strategy is used as a penalty on the history

incremented statistics:

µnj = α ∗ µ(n−1)j + xnj

MSnj = α ∗MS(n−1)j + x2nj

Where α is a fading factor that takes a user set value in (0, 1). When adaptation is required

with sparse input, a time anchor is employed for each feature in every class to recording the last

appearance of non-zero values nlast. It is equal to current sample count. Accumulated statistics

then updated the next time a non-zero value appears:

µupdate,j = α(n−nlast−1) ∗ µlast,j

µnj = α ∗ µupdate,j + xnj

MSupdate,j = α(n−nlast−1) ∗MSlast,j

33

MSnj = α ∗MSupdate,j + x2nj

Where µlast,j and MSlast,j is the penalized running average and running mean of squared at last

appearance of a non-zero value.

3.3.2 Bin Count Based Methods

Criteria. Mutual Information. For a feature xj , its mutual information can be calculated

as:

I(Xj ,y) =

B∑
b=1

C∑
c=1

P (xj ∈ binb,y = c) log
P (xj ∈ binb,y = c)

P (xj ∈ binb)P (y = c)
(3.4)

where P (xj ∈ binb,y = c) is the joint probability of having feature values fall into binb and label

value equal to c. P (xj ∈ binb) and P (y = c) are the marginal probabilities.

In the case of samples with discrete feature values, the probability can be expressed as:

P (xj ∈ binb,y = c) =
nxj∈binb,y=c

n

P (xj ∈ binb) =
nxj∈binb

n

P (y = c) =
ny=c
n

where n, nxj∈binb,y=c, nxj∈binb
, ny=c denote the sample count that fall into respective value groups.

Chi-squared Score. With a similar definition of n’s, the chi-squared score of a feature xj can be

defined as:

χ2
j =

B∑
b=1

C∑
c=1

(nxj∈binb,y=c − n̂xj∈binb,y=c)
2

n̂xj∈binb,y=c
(3.5)

where:

n̂xj∈binb,y=c =
nxj∈binb

ny=c

n

Gini Index. For a given feature xj , let Ah = {i, xij 6 h} denote the number of samples whose

values of the j-th feature is smaller than or equal to h and Bh = {i, xij > h}. Its Gini Index can

be expressed as:

34

Ginij = P (Ah)(1−
C∑
c=1

P (Cc|Ah)2) + P (Bh)(1−
C∑
c=1

P (Cc|Bh)2) (3.6)

where P (Ah) is the number of samples in subset Ah divided by the number of total samples.

P (Cc|Ah) is the conditional probability of samples having label c given that they are in subset Ah.

Let nxj∈Ah,y=c denote the number of samples in Ah with label c. Let nxj∈Ah
denote the number of

samples in Ah. Then P (Cc|Ah) can be calculated as nxj∈Ah,y=c/nxj∈Ah
. The same goes for P (Bh)

and P (Cc|Bh). h is chosen to give the minimum Gini Index for each feature.

In order to compute aforementioned criterion from data stream with continuous values. A

proper online discretization method must be applied. Therefore based on the ε-approximate quantile

summary structure in [Greenwald et al., 2001], [Zhang and Wang, 2007] [Chen and Guestrin, 2016],

we introduce an improved implementation algorithm to generate an on demand bin count from

data stream with continuous values. Furthermore, we extend our algorithm to adapt to sparse

input and concept drifting scenario. In the following segment we will first present an overview of

ε-approximate quantile summary structure and its operation. Then we will illustrate our extended

methods in detail.

Quantile Summary. The basic idea is to use several container like sub-summaries s to store

approximated ranking information of partial data stream. In turn, an aggregated summary S of

sub-summaries can describe the entire data stream. Various operation are conducted periodically

to maintain the estimations in these containers such that at any time n, the summary S(n) can

answer any r-quantile query with εn precision.

A sub-summary consists of several tuples s = {T1, T2, ..., Tb}. Each tuple in the form of

T=(v, r̃−, r̃+, w̃) describes a number of similar data points from the data stream. v denotes the

data value estimation this tuple represents. r̃− and r̃+ are the lowest and highest estimated ranks

of this value in the current sub-summary. w̃ is the accumulated weight value which represents how

many data points this tuple covers. The sub-summary s is sorted by the values v. Given a small

input stream Q = {(x1, w1), (x2, w2), ..., (xn, wn)}, where (xi, wi) is a data point. xi denotes its

value and wi is its weight. Usually data weights are set to 1. For each tuples, two rank functions

and a weight function are defined.

r−(v) =
∑

(x,w)∈Q,x<v

w (3.7)

35

r+(v) =
∑

(x,w)∈Q,x6v

w (3.8)

w(v) = r+(v)− r−(v) =
∑

(x,w)∈Q,x=v

w (3.9)

The weight of the entire sub-summary is defined as:

w(s) = w(Q) =
∑

(x,w)∈Q

w (3.10)

Without loss of generality, in the rest of this article, weight will be used to refer to the calculated

weight value of w(v). Rank will be used to refer to the calculated rank value of r+(v) or r−(v).

Summary S is consist of a multi-level sub-summary structure, shown in Figure 3.1, when it is

not queried. It is used to maintain the desired precision as well as speed up the calculation. L is

the total number of levels. sl denotes the sub-summary at level l, l = 0, 1, ..., L. The whole data

stream is divided into consecutive segments of size b =

⌈
L
ε

⌉
, where L is the largest integer that

makes b2(L−1) 6 N .

Figure 3.1: Multi-level summary: The length of sl in the figure represents its coverage of
data points. s0 contains the summary for the most recent data input block. sl consists the
summary of the oldest 2l data blocks. At each level, sl is maintained as an εl-summary.

At the lowest level, s0 is defined to hold all recently arrived points until it researches size b.

The tuples in s0 are constructed with

v = xi, r̃
−(xi) = r−(xi), r̃

−(xi) = r−(xi), w̃(xi) = w(xi) (3.11)

Therefore s0 is a 0-approximate summary. It can answer all query questions exactly. Algorithm 2

shows the basic procedures of summarizing when a new data point xi in the data stream arrives. In

the algorithm, stemp denotes a temporary sub-summary. sl denotes the lth level in the multi-level

summary structure mentioned above.

PRUNE(s, k2) is an operation that converts a sub-summary s with size k and precision ε0 into

a sub-summary with size k
2 + 1 and precision ε0 + 1

k . It is shown in [Zhang and Wang, 2007] that

each level in the summary can maintain an error less than ε.

36

Algorithm 2 General Procedure for Quantile Summary

Input: xi, where i=1, ..., t

1: push xi into s0

2: if size(s0) < b then

3: go back to line 1

4: else

5: stemp=PRUNE(s0,
size(s0)

2)

6: clear s0

7: for l = 1, ..., L do

8: if size(sl) is 0 then

9: sl = stemp

10: clear stemp; break

11: else

12: stemp=MERGE(stemp, sl)

13: stemp=PRUNE(stemp,
size(stemp)

2)

14: if size(stemp) < b then

15: sl = stemp; clear stemp; break

16: else

17: clear sl

18: end if

19: end if

20: end for

21: end if

22: Output: S=MERGE(s0, s1, ..., sL)

In the PRUNE operation, maximum g tuples are chosen from the input sub-summary according

to position indicator d = i−1
g w(s), i = 1, 2, ..., b + 1. Algorithm 3 shows how to use the query

operation Q(s, d) to choose tuples to form the new sub-summary. r̃−(xi), r̃
−(xi), w̃(xi) of the

selected tuples are copied from the original sub-summary.

Another operation is MERGE. MERGE(s1,s2) combines two sub-summaries into one sub-

summary. Tuples from two sub-summaries s1 and s2 are sorted together by their value v. For

each unique value v from s1 and s2, r̃
−(xi), r̃

−(xi), w̃(xi) are updated as follows

r̃−(v) = r̃s1
−(v) + r̃s2

−(v) (3.12)

r̃+(v) = r̃s1
+(v) + r̃s2

+(v) (3.13)

37

Algorithm 3 Query Function Q(s,d)

Input: d: 0 6 d 6 w(s), s is a sub-summary with tuple value vi = xi, i = 1, 2, ..., k

1: if d < 1
2 [r̃s

−(x1) + r̃s
+(x1)] then

2: return x1

3: end if

4: if d > 1
2 [r̃s

−(xk) + r̃s
+(xk)] then

5: return xk

6: end if

7: Find i such that

8: 1
2 [r̃s

−(xi) + r̃s
+(xi)] 6 d < 1

2 [r̃s
−(xi+1) + r̃s

+(xi+1)]

9: if 2d < r̃s
−(xi) + w̃s(xi) + r̃s

+(xi+1)− w̃s(xi+1)] then

10: return xi

11: else

12: return xi+1

13: end if

w̃(v) = w̃s1(v) + w̃s2(v) (3.14)

Let the precisions of two sub-summaries before merging to be εa and εb. The precision of merged

sub-summary stemp is max(εa, εb) [Chen and Guestrin, 2016]. MERGE operation can also be apply

to more than two sub-summaries. It is shown, at the end of Algorithm 2, the aggregated summary

S is the out come of MERGE operation over all sub-summaries. Therefore, S in its result form has

the same structure as s.

It is shown in [Zhang and Wang, 2007] that the outcome summary S is an ε-approximate

summary of the entire stream.

According to Algorithm 2, whether to perform a PRUNE or MERGE operation is based on the

segment size b which is determined by the stream size N . In order to obtain a summary from a

data stream with stream size N unknown, the input data stream is divided into pieces of disjoint

sub-streams Bi, i = 0, 1, ...,m. Bi has size of 2i

ε and covers data arriving in the time interval

[2
i−1
ε , 2

i+1−1
ε). With fixed sub-stream size aggregated summaries can be obtained. Due to the

fact that the output of S and s have the same structure, S can too perform PRUNE and MERGE

operation with other S. Therefore after obtaining Si for each sub-stream Bi, a multi-level summary

structure [S] now can be constructed from the summary of each sub-stream Si. The procedure is

illustrated below.

38

1. The summary Sc of current sub-stream Bc is updated and maintained until the last data

point in Bc has arrived. ε′ = ε
2 is used to set size limit.

2. A ε
2 -approximate summary is obtained as an output of Sc. The output is then set to PRUNE

with the desired size of 2
ε and assigned to Si.

3. A set of summaries of all sub-streams S̃ = {S0, S1, ..., Sm} is computed. [S] is obtained by

MERGE summaries in S̃.

Exact Weight Update. When used as a query algorithm, only the rank r and value v

of the tuple will be used to answer the question. According to the original PRUNE operation in

section 3.3.2, the selected tuples along with their stored elements are directly moved to the resulting

summary. Although this behavior causes the lost of half of the elements that store weight values.

It still guarantees the ε maximum error as shown in [Chen and Guestrin, 2016] [Greenwald et al.,

2001] [Zhang and Wang, 2007]. However, to the end of providing accurate bin count as inputs to

these bin count based criteria, each tuple is treated as a mini-bin. The weight w of each tuple will

be used to calculate the final bin count. Therefore, the preservation of the complete weight values

is required.

In the PRUNE operation, after each selection, instead of carrying elements directly from original

tuples to tuples in new summary, different procedures are taken. Let the value of each tuple

associate with original summary be vk, k = 1, 2, 3, ..., i, ..., j, ..., b. i is the index for last selected

tuple. j is the index of currently selected tuple. Let the value of each tuple associate with output

summary be uh, h = 1, 2, 3, ..., q, ..., b/2. uq is the corresponding tuple derived from vj . Following

adjustments are made:

uq = vj

r̃−(uq) = r̃−(vi+1)

r̃+(uq) = r̃+(vj)

w̃(uq) =

j∑
k=i+1

w̃(vk)

The definition of ε-approximate quantile summary states that let Q be the set of all data points

covered by the summary, if for any x ∈ Q

r̃+(x)− r̃−(x)− w̃+(x) 6 εw(Q) (3.15)

39

The above adjustment leads the left hand side of the inequality to zero which satisfied the

requirement of a ε-approximate quantile summary.

Quantile Binning. With the weight of each data point set to 1, the weight element in a tuple

can represent the number of data points this tuple covered. Using procedure in last two sections,

a final summary [S] consists of m tuples is generated. [S] is then further aggregated into smaller

number of denser bins. For the purpose of comparability with our offline method survey [Wang and

Barbu, 2019], procedures that mimic the discretization in [Nguyen, 2014] are introduced. Details

are shown in Algorithm 4. dinter denotes the interval length when data points are equally divided

into K segments. Bink denotes the bin count in kth Bin. pi is the position index of ith cutoff

point. Tj .w represents the weight of the jth tuple.

Algorithm 4 Bin Aggregation Procedure

Input: [S] = T1, T2, ..., Tm, N : number of total data so far, K: user defined number of final

bins.

1: dinter =
⌊
N
K

⌋
, h = 0

2: for i = 1, ...,K − 1 do

3: pi = i ∗ dinter
4: end for

5: for k = 1, ...,K do

6: Bink = 0

7: end for

8: for j = 1, ...,m do

9: Binh = Binh + Tj .w

10: if |Binh| > ph then

11: htemp = h

12: h = h + 1

13: while |Binhtemp | > ph do

14: h = h + 1

15: end while

16: else

17: continue

18: end if

19: end for

20: Output: Bink, k = 1, 2, ...,K

40

Criteria score in section3.3.2 can then be calculated using Bink

Sparse Input. Different from using running sum for mean-variance based methods, the zero

values are assigned weight one. Therefore in the scenario of sparse input, zero values need to be

processed through the summary. Processing zero values every time one shows up will be computa-

tionally inefficient. We take the advantage of the fact that sparse data has enormous zero values and

quantile summary directly stacks the weights of identical data values together. The total number

of zero values are recorded. When the algorithm is called to provide feature importance score, a

single data point (x,w), with x equals to 0 and w equals to the recorded number, is pushed through

the algorithm before aggregating the summary.

Model adaptation. In the situation of concept drifting, a fading factor strategy is still

adopted. Let α denote the fading factor, wi be the weight value of data point at i time and Wi be

the weight values in the multi-level quantile summary at i time.

Wi = αWi−1 + wi (3.16)

Notice in equation 3.16, the weight in Wi−1 needs to be updated every time a new data point

arrive. This includes all the tuples on all the levels in the summary. Such high frequency repeatedly

calculation is very time consuming. Therefore we split update process into two parts. The first part,

we conduct update only on most recently established tuples in s0(see Fig 3.1 to refresh memory

of s0). The second part, based on the number of data points covered in s0, we only penalize

the weights in multi-level structure whenever a PRUNE and MERGE operation initialized by s0

happens. Let the number of data points in s0 be k and the weights in multi-level summary be Wi.

The update for part two become:

Wi = αkWi−1 (3.17)

Sparse Inputs When sparse inputs are received in a model adaptation setting, since the weight

of each data point is penalized according to the order that it arrives, injecting the weights of all

zero value data points at the end can not provide the correct penalized weight. In order to keep

weight accumulation matching with data point order for the zero value data points, time anchors

and universal weight maps are employed. The universal weight map is a vector that store the

accumulated penalized weight at each timestamp for each class. These maps are used across all

features. The time anchors are designed to record the timestamp of the last non-zero data point.

41

When incoming data stream has greater or equal to two class. Simply recording the class label

and recover the penalized weight for zero values by repeatedly penalizing the weights in summary

so far is extremely time consuming. On the contrary, universal weight map and time anchor can

achieve the same purpose with very small extra storage space and faster computing speed without

trigger inter-class penalization complex. Given universal weight map recorded up until now for each

class. The weight for all zero values between last non-zero data point and current non-zero data

point can be calculated. Let time indices for last non-zero data point be a and current non-zero

data point be b.

wc = Mb,c −Ma,c ∗ α(b−a) (3.18)

wc denotes the recovered weight for zero values. Mb,c indicates the recorded weight value for c class

at time index b. When a non-zero value arrives, wc is calculated and added to summary before any

other procedures.

3.3.3 Minibatch

It is noticed during our experiments that for non-spare inputs, the summaries of all features

are required to be visited. This behavior builds increased computing time. Therefore within a

reasonable storage budget, batch data handling are integrated with the algorithm, as it gives a

considerably acceleration to the algorithm by reducing the visit frequency. This batch procedure

is denoted by minibatch in the rest of the text.

3.4 Evaluation of Online Screening Methods

3.4.1 Online-Offline Methods Comparison

To perform the experiments, each dataset is processed in a one-pass fashion by both online and

offline version of screening methods respectively. Each dataset is passed through each algorithm

and parameter setting once and the weight scores for all features are calculated. For quantile

summary based methods, we use K = 5 quantile bins throughout all our experiments. We test

the computation time by fixing either the minibatch size or the precision parameter ε and varying

the other parameter. When testing the approximation accuracy, we only fix the minibatch size.

The fixed values are 250 for the minibatch and 0.001 for ε. The varying ranges are ε = 1
f , where

f ∈ {5, 50, 100, 500, 1000, 1500, 2000} and minibatch= 2k, where k ∈ {0, 1, 2, ..., 11}. The feature

42

rank is calculated by sorting the feature weights monotonically according to importance score

obtained by the corresponding screening method. Features that have low rank value are more

important (i.e. feature with rank value 1 is the most important). For Gini index, the feature that

has smaller weight has lower (better) rank value. On the contrary, for the other methods, the

feature that has larger weight has lower rank value. Feature weights and feature ranks were used

to construct different kinds of tables to evaluate the performance of online methods compared to

offline methods.

Construction of Comparison Tables. Five types of tables are constructed according to

minibatch size, feature weights and feature rank.

1) The influence of minibatch size on computation time. This table shows the computation time

(in milliseconds) of the online quantile compared to the offline quantile when varying the minibatch

size. A minibatch size of one is equivalent to an online method without minibatch processing.

2) The influence of the precision parameter ε on computation time. This table shows the compu-

tation time (in milliseconds) of the online quantile compared to the offline quantile when varying

the value of ε.

3) The influence of ε on count differences per feature per bin. This table shows the average count

differences between online quantile and offline quantile when varying the value of ε. Each cell gives

the average count difference per feature per bin.

4) The influence of ε on score accuracy. This table shows the mean score difference ratio between

online methods and offline methods when varying the value of ε. The mean score difference ratio

is calculated by

DR =
1

p

p∑
j=1

|wjon − wjoff |
max(Woff)−min(Woff)

, (3.19)

where p is the total number of features. Won and Woff are the score vectors of all features generated

from online and offline methods. wjoff and wjoff are the scores of the j-th feature from online and

offline methods.

5) The influence of ε on the rank accuracy among top 10% most important features. This table

shows the average unmatched ranking ratio of online methods with respect to corresponding offline

methods when varying the value of ε. Only the top 10% of features ranked by offline scores are

involved. The average mis-rank ratio is calculated as
∑p

j=1 r
j
on 6=rjoff
p , where rjoff and rjoff are the

rank values of the j-th feature from online and offline methods.

43

Table 3.1: The datasets used for evaluating the online/offline screening methods.

Dataset Learning type Feature type
Number of
features

Number of
observations

Dorothea [Guyon et al., 2005] Classification Continuous 100,000 1,150

Url [Ma et al., 2009] Classification Continuous 74,110 16,000

Kdd12 [Juan et al., 2016] Classification Continuous 48,957 16,000

Data sets. Apart from the classification datasets from Table 2.1, three more datasets were

used. Specific dataset details are given in Table 3.1.

Dorothea is part of the NIPS 2003 Feature selection challenge and is also available on the UCI

Machine Learning Repository. We combined the training set and validation set in order to get a

larger sample body. The Url dataset contains a total of 121 data files, one for each monitored day.

We only used data from Day0 in our experiments. The Kdd12 dataset originates from the second

track of the KDD Cup 2012. The raw version can be found on kaggle.com, made available by the

organizers and Tencent Inc. The data we use comes from LIBSVM [Chang and Lin, 2011]: a library

for support vector machines. Only the first 16000 samples were used in our experiments.

Results. The following results are based on the output generated using Matlab 2018b [Mat,

2018]. For the offline screening methods we used the same Matlab 2018b implementations as those

in Chapter 2. The online screening methods were implemented by ourselves.

Comparison of the Moving Average Based Methods. It is shown in Section 3.3.1 that

the moving average based online screening methods can achieve exactly the same result as their

offline version. Therefore we don’t provide any real data analysis here.

Comparison of the Online Quantile Based Methods. First we conducted a study of

the computation time of the online quantile based methods. Here we only evaluate the time from

when the data was input data to when the sample points counts in each bin were returned. We first

conducted an experiment to evaluate the relation between computation time and minibatch size to

estimate the minibatch size that we were going to use to obtain an acceptable speed in our following

experiments. In this experiment, the ε was fixed at 0.001. The minibatch size was varied as 2k,

where k = 0, 1, 2, ..., 11. The result is shown in Table 3.2, where the time is measured in milliseconds.

Compared across all datasets, it can be seen that the computation times are gradually stable for

44

https://archive.ics.uci.edu/ml/datasets/dorothea
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Table 3.2: Influence of minibatch size on computation time for online quantile compared
to offline quantile.

minibatch url SMK CAN 187 dexter dorothea gisette kdd12 madelon

offline 135,878 538 872 12,927 4,260 93,163 181

1 303,490 1,198 969 27,917 3,448 191,194 109

2 220,596 811 756 20,562 2,509 124,219 86

4 150,464 749 542 14,560 2,269 75,610 83

8 97,157 671 358 11,829 1,968 52,788 84

16 67,665 583 248 10,590 1,472 40,366 68

32 51,140 628 217 10,458 1,367 32,890 71

64 43,186 605 194 9,569 1,520 27,870 68

128 37,937 572 182 9,875 1,329 25,511 66

256 35,712 589 174 11,146 1,296 24,427 65

512 36,117 578 157 10,628 1,421 22,987 64

1024 36,061 586 160 10,970 1,251 22,694 73

2048 35,636 566 197 11,060 1,245 22,093 76

minibatch sizes lager than 128, with an acceptable fluctuation. For most datsets, the computation

speed of the online quantile outperforms that of the offline quantile long before the minibatch size

reaches 128. SMK CAN 187 has only 187 observations. There the minibatch doesn’t improve

computation time after minibatch size 128. As a result 250 was selected as minibatch size in all of

the following studies.

Table 3.3: Influence of ε on computation time for online quantile compared to offline quantile.

epsilon url SMK CAN 187 dexter dorothea gisette kdd12 madelon

offline 130,177 517 735 11,961 4,018 87,891 185

0.2 15,451 489 144 1,797 935 8,443 92

0.02 13,117 374 151 1,847 889 8,433 72

0.01 13,490 319 127 1,925 860 8,581 66

0.002 16,314 481 177 2,621 913 10,557 59

0.001 19,094 758 280 4,285 1,176 12,371 65

0.00066667 487,828 1,303 337 5,461 1,024 250,470 64

0.0005 934,553 1,458 565 6,409 1,439 235,280 60

The next experiment was conducted to verify that in a real data scenario, computation time

increases as ε decreases. In Table 3.3 is shown that it is certainly the relation between computation

speed and ε. Furthermore, in some case where the datasets have large sample size e.g. url and

kdd12, a low ε value can cause the online methods to use more computation time than offline

45

Table 3.4: Influence of ε on count differences between online and offline quantiles (results
are reported per feature per bin).

epsilon url SMK CAN 187 dexter dorothea gisette kdd12 madelon

0.2 0.086 4.06 0.012 0 8.21 0 76.09

0.02 0.0079 0 0.0011 0 0.7 0 7.57

0.01 0.00045 0 0.00047 0 0.17 0 1.18

0.002 3.80E-05 0 0 0 0 0 0

0.001 1.60E-05 0 0 0 0 0 0

0.00066667 0 0 0 0 0 0 0

0.0005 0 0 0 0 0 0 0

methods. To improve the computation speed, larger minibatch size ought to be used. Here in order

to maintain the consistency, we still use 250 as minibatch size.

The following experiments are regarding accuracy. In Table 3.4 is shown the count differences

between online and offline quantile methods when the ε value was varied. The results are reported

as sample count differences per bin per feature. Although different datasets have different schedule,

all differences were annihilated after ε decreases below 0.001. The online quantile method can in

practice achieve the same counts per bin as the offline quantile when ε is lower than a certain level.

Cross checking with Table 3.3 and Table 3.2, we can see that online methods can still achieve speed

advantage with little to no error in bin count estimation.

Table 3.5 shows the accuracy measure from Eq. (3.19) of the scores calculated by three online

methods compared to their offline counterparts when the ε value was varied. The scores were

computed using the Chi-square score, Gini index and Mutual information respectively. Among the

three methods Gini index provides slightly better accuracy than the other two methods. All of

them can achieve zero error when ε is smaller than 0.001. The results shown here align with the

count accuracy shown in Table 3.4.

Finally, we check the ranking accuracy of each of the three online methods with respect to their

offline version. In Table 3.6 is shown that the ranking error can be eliminated when using ε smaller

than 0.01, even for the most difficult datasets. The features compared here are top 10% ranked

features according to scores calculated by the offline methods. 10 percent of all features is usually

the zone where most important features reside. Therefore, for the sole purpose of screening feature

selection, using online methods with an relative large ε is enough to assure that we can get identical

feature ranking results as the offline methods.

46

Table 3.5: Influence of ε on accuracy (3.19) of online chi-square/gini index/mutual infor-
mation scores compared to their offline versions

epsilon url SMK CAN 187 dexter dorothea gisette kdd12 madelon

Chi-square

0.2 6.60E-06 0.065 4.20E-05 0 0.001 0 0.18

0.02 2.90E-07 0 6.60E-07 0 4.30E-05 0 0.0042

0.01 4.90E-08 0 4.70E-07 0 1.00E-05 0 0.00089

0.002 8.30E-09 0 0 0 0 0 0

0.001 2.00E-09 0 0 0 0 0 0

0.00066667 0 0 0 0 0 0 0

0.0005 0 0 0 0 0 0 0

Gini index

0.2 5.40E-06 0.064 3.40E-05 0 0.00037 0 0.12

0.02 1.20E-07 0 1.40E-06 0 2.40E-05 0 0.0029

0.01 4.30E-08 0 2.20E-07 0 3.20E-06 0 0.00055

0.002 9.00E-09 0 0 0 0 0 0

0.001 0 0 0 0 0 0 0

0.00066667 0 0 0 0 0 0 0

0.0005 0 0 0 0 0 0 0

Mutual information

0.2 6.40E-06 0.061 4.50E-05 0 0.00099 0 0.17

0.02 2.70E-07 0 7.70E-07 0 4.30E-05 0 0.0042

0.01 4.50E-08 0 4.00E-07 0 1.10E-05 0 0.00088

0.002 8.40E-09 0 0 0 0 0 0

0.001 2.00E-09 0 0 0 0 0 0

0.00066667 0 0 0 0 0 0 0

0.0005 0 0 0 0 0 0 0

3.4.2 Online Screening Methods with Model Adaptation

In his section, online screening methods with model adaptation capability are evaluated for their

performance in handling data with the concept drifting property. Synthetic datasets are generated

to provide a measurable reference.

Synthetic data generation. The ground truth is assume to have linear relationship with

the features. For the i-th observation, let yi denote target value and xi denote the feature vector

associated with each target.

yi = βi · xTi + c+ ei (3.20)

47

Table 3.6: Influence of ε on unmatched ranking among top 10% features for chi-square/gini
index/mutual information score according to its offline feature ranking

epsilon url SMK CAN 187 dexter dorothea gisette kdd12 madelon

Chi-square

0.2 0.017 1 0.89 0 0.81 0 1

0.02 0.0019 0 0 0 0.36 0 0.8

0.01 0 0 0 0 0.12 0 0.42

0.002 0 0 0 0 0 0 0

0.001 0 0 0 0 0 0 0

0.00066667 0 0 0 0 0 0 0

0.0005 0 0 0 0 0 0 0

Gini index

0.2 0.044 1 0.88 0 0.66 0 0.92

0.02 0.00054 0 0 0 0.28 0 0.68

0.01 0.00027 0 0 0 0.028 0 0.28

0.002 0 0 0 0 0 0 0

0.001 0 0 0 0 0 0 0

0.00066667 0 0 0 0 0 0 0

0.0005 0 0 0 0 0 0 0

Mutual information

0.2 0.018 1 0.92 0 0.8 0 1

0.02 0.0026 0 0 0 0.39 0 0.8

0.01 0.0004 0 0 0 0.12 0 0.44

0.002 0 0 0 0 0 0 0

0.001 0 0 0 0 0 0 0

0.00066667 0 0 0 0 0 0 0

0.0005 0 0 0 0 0 0 0

Equation 3.20 illustrates the relation between the target and the features. Here βi is a coefficient

vector with each of its elements corresponding to the elements in xi, c is a constant, ei is a random

noise ei ∼ N(0, 1). The feature vector xi is generated as follow:

xi = νzio + ε̃i (3.21)

Where zi ∼ N(0, 1), o is a vector of the same length as xi and all its entries equal to 1, ν is a

parameter to control the correlation between features, and ε̃i is a noise vector with its j-th element

ẽij ∼ N(0, 1). In this setup, the correlation between any two features is ν2/(1 + ν2). In our

experiment ν is set to ν = 0.5, so any two variables have correlation 0.2.

48

Figure 3.2: Top-left: detection rate by methods. Top-right: detection rate vs shifting
rate. Bottom-left: detection rate by shifting rate adjusted by fading factor. Bottom-right:
detection rate by shifting rate vs. fading factor.

Let j denote the element index in βi and k denote the number of non-zero coefficients. The

indices of non-zero coefficients are shifted every l observations. Let b denote the non-zero signal

value. Then βi is constructed as:

βij =

{
b if j ∈ (

⌊
i
l

⌋
:
⌊
i
l

⌋
+ k)

0 otherwise
(3.22)

In our experiments, we choose feature space to be 1000D, thus xi ∈ R1000. The number of true

features k is set to 100. The coefficient signal value is set to b = 1. A total of 100,000 samples are

generated. We change the value of l (number of samples until shift) to control the concept drifting

level.

49

Figure 3.3: Influence of model adaptation on true variable detection rates for different
rates of concept drift. Solid curves denote methods with model adaptation, dashed curves
are methods without model adaptation.

Results. In this section, we use detection rate @k to measure how well the algorithm per-

formed. Given a set of k selected feature indices FS and a set of true feature indices TU , the

detection rate @k is defined as.

DetRate@k =
|FS ∩ TU |
|TU |

(3.23)

All k-s in this section are set to 500.

Performance Plots. Fig 3.2 visualizes the performance of online screening methods han-

dling data with concept drifting property. Top-left graph shows the overall performance of different

screening methods. The shifting rate l is fixed to 2000, and the fading factor α is fixed to α = 0.9.

The five screening methods show very similar performance. However compared to the others, the

Gini Index requires more samples to establish a good performance at the beginning. The graph on

the top-right shows how shifting rate affects the variable detection rate. The fading factor α is still

50

fixed to α = 0.9. It is obvious that a fast shifting rate has a negative impact on the performance

of the algorithm. On the bottom-left graph, it can be observed that by adjusting the fading factor

α, the detection rate can be improved even for data with a faster shifting rate. The heatmap on

the bottom-right shows the impact of fading factor on detection rate in detail.

In Fig 3.3, it is shown in detail how the detection rate changes when different number of features

are selected by online screening methods, as well as whether model adaptation helps improve the

performance of the screening methods. Across all four shift rates that are tested, the screening

methods with model adaptation outperform those without model adaptation. Generally, the slower

the shift the fewer features need to be selected to provide a full detection. Even in the fastest shift

rate that is tested (shift every 250 samples), the screening methods with model adaptation still

manage to detect all true features with fewer selected features and consistently detect more true

features than the methods without model adaptation.

3.4.3 Realistic Performance of Online Screening Methods

This section provides an insight of the performance of online screening methods on real world

large datasets. Different learners and screening methods are combined to generate prediction. The

misclassification error rate is used in this section to measure the performance of the algorithm. For

learners, Sparse FSA and SGD (stochastic gradient decent with log loss) are chosen.

Table 3.7: The datasets for realistic evaluation

Dataset Learning type Feature type
Number of
features

Number of
observations

20NewsGroups [Keerthi et al., 2005] Classification Binary 723,066 11,862

Url [Ma et al., 2009] Classification Continuous, Binary 3.2million 2million

Data sets. Among the datasets showed in Table 3.7, Url data already be introduced in Section

3.4.1. Here Url data from day 0 to 99 is used to train the model. The 20NewsGroups is an email

content data that is generated according to [Keerthi et al., 2005]. The data originates from the

UCI repository [Dua and Graff, 2017]. We also extracted the timestamp for each email and sorted

the data in time order.

Results. For all tables in this section, the cell value ”random select” indicates that a specified

number of features are randomly selected as input for the learner. The first two rows in each table

51

https://www.jmlr.org/papers/v6/keerthi05a.html

show the computing time for online screening methods. The ”Run Time” column contains the

training time only.

In Table 3.8 is shown that for the 20NewsGroup data, some screening methods such as Mutual

Information provide improvement to Sparse FSA. Moreover, in most cases, the screening methods

with model adaptation give better performance than without model adaptation. For SGD, there is

slight improvement given by bin-count based screening methods.

In Table 3.9, it is shown that there is no improvement by applying screening methods on Sparse

FSA. The training time is reduced due to smaller feature space caused by screening methods. When

combined with SGD, the mean-variance based screening methods with model adaptation provide

significant improvement on performance.

52

Table 3.8: 20 News Groups

Selected Learner Run Time
Adaptation Screening Method Features Learner Selected Seconds Error Rate

1 Quantile based 7.21

1 Moving average 3.75

0 sparseFSA 35k 37.86 0.064

0 random select 70k sparseFSA 35k 13.42 0.144

1 T-score 70k sparseFSA 35k 39.38 0.062

0 T-score 70k sparseFSA 35k 40.3 0.062

1 Fisher 70k sparseFSA 35k 48.31 0.063

0 Fisher 70k sparseFSA 35k 47.87 0.062

1 MI 70k sparseFSA 35k 39.42 0.061

0 MI 70k sparseFSA 35k 39.51 0.062

1 Chi2 70k sparseFSA 35k 40.27 0.063

0 Chi2 70k sparseFSA 35k 41.05 0.062

1 Gini 70k sparseFSA 35k 40.63 0.062

0 Gini 70k sparseFSA 35k 40.87 0.062

0 SGD 0.299 0.063

0 random select 35k SGD 0.324 0.172

1 T-score 35k SGD 0.333 0.064

0 T-score 35k SGD 0.349 0.064

1 Fisher 35k SGD 0.174 0.066

0 Fisher 35k SGD 0.146 0.065

1 MI 35k SGD 0.306 0.062

0 MI 35k SGD 0.344 0.064

1 Chi2 35k SGD 0.33 0.062

0 Chi2 35k SGD 0.385 0.062

1 Gini 35k SGD 0.335 0.063

0 Gini 35k SGD 0.351 0.062

53

Table 3.9: URL data

Selected Learner Run Time
Adaptation Screening Method Features Learner Selected Seconds Error Rate

1 Quantile based 205

1 Moving average 142

0 SparseFSA 50K 12484 0.0091

0 Random Index 1000K SparseFSA 50K 0.0155

1 MI 1000K SparseFSA 50K 7055 0.0097

0 MI 1000K SparseFSA 50K 7173 0.0104

1 Chi2 1000K SparseFSA 50K 7674 0.0106

0 Chi2 1000K SparseFSA 50K 7813 0.0122

1 Gini 1000K SparseFSA 50K 6612 0.0101

0 Gini 1000K SparseFSA 50K 7250 0.0122

1 Fisher 1000K SparseFSA 50K 7938 0.012

0 Fisher 1000K SparseFSA 50K 7842 0.0122

1 T-score 1000K SparseFSA 50K 7887 0.0102

0 T-score 1000K SparseFSA 50K 7819 0.013

0 SGD 147 0.008

0 Random Index 2000K SGD 0.0085

1 T-score 2000K SGD 102 0.0073

0 T-score 2000K SGD 112 0.0097

1 Fisher 2000K SGD 102 0.0072

0 Fisher 2000K SGD 118 0.0092

1 MI 2000K SGD 63 0.0093

0 MI 2000K SGD 64 0.0095

1 Chi2 2000K SGD 63 0.0093

0 Chi2 2000K SGD 65 0.0092

1 Gini 2000K SGD 64 0.0093

0 Gini 2000K SGD 64 0.0092

54

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

Since we are interested in evaluating screening methods on real datasets, we don’t have infor-

mation about the true features that are relevant in connection with the response, so we can only

look at prediction performance. In this respect, there are at least two ways to see whether the

screening methods are useful for real datasets.

If we ask whether they are helpful in improving the prediction performance of the best learning

algorithm from our arsenal, then the answer is “Some of them are sometimes useful, on two datasets

out of five, in both regression and classification”. Indeed, for regression we see from Table 2.3 that

Mutual Information and RReliefF were helpful in improving the prediction of the best learning

algorithm on two datasets out of five, while the other two screening methods were only helpful on

one dataset. For classification, we see from Table 2.7 that most screening methods were helpful in

improving the prediction of the best learning algorithm on two datasets out of five, except Relief,

which was only helpful on one dataset.

If however we are interested in using a screening method to reduce the dataset size, then we

might ask whether we lose any prediction performance this way. In this case our answer would be

“Usually not, for the right screening method, especially in classification”. In Table 2.3 and Table

2.7 are shown that only in very few occasions do the screening methods harm the performance of

best learning algorithm. For regression, we see from Table 2.5 that RReliefF is the best in this

respect, remaining in the top performing group (with the right algorithm and number of selected

features) on 4 out of 5 regression datasets. For classification, from Table 2.9 we see that Mutual

Information and Gini index are the best, remaining in the top performing group (with the right

algorithm and number of selected features) on 4 out of 5 classification datasets.

If we had to select one screening method that is most successful at both of these tasks, this

method would be Mutual Information. We see that it is the only method that is helpful in improving

55

performance in both regression and classification, and stays in the top performing group on most

datasets, for both regression and classification.

Some of the screening methods that were evaluated in Chapter 2 bring an improvement in

prediction for some datasets, in both regression and classification. In the classification tasks, the

screening methods with boosted trees give the best overall results. All the seven classification

screening methods evaluated helped improve the performance of the learner to a certain degree.

The Mutual Information, Gini Index, Chi-square score and Relief work slightly better than the

other methods. It also can be seen from the tables that the screening methods work well especially

on learning algorithms that give poor results on their own. Compared to classification, there

are fewer screening methods for regression problems. Of the three regression screening methods

evaluated, RReliefF and Mutual Information work better than correlation, and improve the best

learning algorithm performance on two datasets out of five.

In our studies of online screening methods, the moving average based online screening methods

can be proved to have the same performance as their offline version and have the advantage of

a faster speed and lower storage requirement. The experiments in Section 3.4.1 show that the

bin-count based online screening methods can also achieve the same results as their offline version

given the right ε. Moreover, they can obtain faster or about the same computation speed compared

to their offline versions with the right combination of ε and minibatch size.

The results in Section 3.4.2 give empirical evidences that adding model adaptation utility to

screening methods can help improve their performance when data have concept drifting property. It

is shown that to some degree, adjusting fading factor can assist screening method to tackle datasets

with high concept drifting rate. The real data analysis in Section 3.4.3 further demonstrates the

capability of online screening methods in dealing with real life large datasets with sparsity and

possible concept drifting.

Our results show that online screening methods with model adaptation is computationally

efficient. They are useful in improving the model performance of complex data learning, especially

when sample size and feature space are extremely large.

56

4.2 Future Work

Some criteria used by screening methods such as mutual information and Gini index are also

applied in learning algorithms such as decision tree as a component to judge impurity. It triggers our

interests to study whether online quantile based methods can improve the speed or even performance

of decision trees.

Throughout the years some works were done to describe the reconstruction and transformation

from decision trees to neural network. Several mapping methods were mentioned in [Sethi, 1990]

[Sethi, 1991] [Kontschieder et al., 2015] and [Ioannou et al., 2016]. A new framework Neural

Rule Ensembles (NRE) introduced in recent literature [Dawer et al., 2020] also focused on such

a mapping strategy. It shows that any decision tree can be mapped into a set of neural rules,

and the ensemble of neural rules can subsequently be trained using back-propagation. Therefore

the expected improvement of training speed on decision trees can hopefully also reflect on neural

network training.

57

BIBLIOGRAPHY

John C Davis and Robert J Sampson. Statistics and data analysis in geology, volume 646. Wiley
New York et al., 1986.

David D Lewis. Feature selection and feature extraction for text categorization. In Proceedings of
the workshop on Speech and Natural Language, pages 212–217. Association for Computational
Linguistics, 1992.

Kenji Kira and Larry A Rendell. The feature selection problem: Traditional methods and a new
algorithm. In AAAI, volume 2, pages 129–134, 1992.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), pages 267–288, 1996.

CP Han, D Chris, and HL Fu. Minimum redundancy maximum relevance feature selection [j].
IEEE Intelligent Systems, 20(6):70–71, 2005.

Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and
Huan Liu. Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):
94, 2017a.

Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification: A review. Data
Classification: Algorithms and Applications, page 37, 2014.

Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Computers &
Electrical Engineering, 40(1):16–28, 2014.

Alan Jović, Karla Brkić, and Nikola Bogunović. A review of feature selection methods with applica-
tions. In 2015 38th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages 1200–1205. IEEE, 2015.

Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine learning: A new
perspective. Neurocomputing, 300:70–79, 2018.

Yun Li, Tao Li, and Huan Liu. Recent advances in feature selection and its applications. Knowledge
and Information Systems, 53(3):551–577, 2017b.

Ryan J Urbanowicz, Randal S Olson, Peter Schmitt, Melissa Meeker, and Jason H Moore. Bench-
marking relief-based feature selection methods for bioinformatics data mining. Journal of
biomedical informatics, 85:168–188, 2018.

58

Salem Alelyani, Jiliang Tang, and Huan Liu. Feature selection for clustering: A review. Data
Clustering: Algorithms and Applications, 29:110–121, 2013.

Luis Talavera. An evaluation of filter and wrapper methods for feature selection in categorical
clustering. Advances in Intelligent Data Analysis VI, pages 742–742, 2005.

Yosef Masoudi-Sobhanzadeh, Habib Motieghader, and Ali Masoudi-Nejad. Featureselect: a software
for feature selection based on machine learning approaches. BMC bioinformatics, 20(1):170,
2019.

Zhen Chen, Pei Zhao, Fuyi Li, André Leier, Tatiana T Marquez-Lago, Yanan Wang, Geoffrey I
Webb, A Ian Smith, Roger J Daly, Kuo-Chen Chou, et al. ifeature: a python package
and web server for features extraction and selection from protein and peptide sequences.
Bioinformatics, 34(14):2499–2502, 2018.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of
machine learning research, 3(Mar):1157–1182, 2003.

Noelia Sánchez-Maroño, Amparo Alonso-Betanzos, and Maŕıa Tombilla-Sanromán. Filter meth-
ods for feature selection–a comparative study. Intelligent Data Engineering and Automated
Learning-IDEAL 2007, pages 178–187, 2007.

Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in bioinfor-
matics. bioinformatics, 23(19):2507–2517, 2007.

Marko Robnik-Šikonja and Igor Kononenko. An adaptation of relief for attribute estimation in
regression. In Machine Learning: Proceedings of the Fourteenth International Conference
(ICML’97), pages 296–304, 1997.

Adrian Barbu, Yiyuan She, Liangjing Ding, and Gary Gramajo. Feature selection with annealing
for computer vision and big data learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(2):272–286, 2017.

Huan Liu and Rudy Setiono. Chi2: Feature selection and discretization of numeric attributes.
In Tools with artificial intelligence, 1995. proceedings., seventh international conference on,
pages 388–391. IEEE, 1995.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley & Sons,
2012.

CW Gini. Variability and mutability, contribution to the study of statistical distribution and
relaitons. Studi Economico-Giuricici della R, 1912.

59

Susanna Wang, Nadir Yehya, Eric E Schadt, Hui Wang, Thomas A Drake, and Aldons J Lusis.
Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex
specificity. PLoS genetics, 2(2):e15, 2006.

Robert L. Grossman, Allison P. Heath, Vincent Ferretti, Harold E. Varmus, Warren A. Lowy,
Douglas R.and Kibbe, and Louis M. Staudt. Toward a shared vision for cancer genomic data.
New England Journal of Medicine, 375(12):1109–1112, 2016.

Joaqúın Torres-Sospedra, Raúl Montoliu, Adolfo Mart́ınez-Usó, Joan P Avariento, Tomás J Ar-
nau, Mauri Benedito-Bordonau, and Joaqúın Huerta. Ujiindoorloc: A new multi-building
and multi-floor database for wlan fingerprint-based indoor localization problems. In Indoor
Positioning and Indoor Navigation (IPIN), 2014 International Conference on, pages 261–270.
IEEE, 2014.

Rasmus Rothe, Radu Timofte, and Luc Van Gool. Deep expectation of real and apparent age from
a single image without facial landmarks. International Journal of Computer Vision (IJCV),
July 2016.

Ovidiu Ivanciuc. CoEPrA 2006 Round 3 comparative evaluation of prediction algorithms, 2006.
URL http://www.coepra.org/.

Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Result analysis of the nips 2003
feature selection challenge. In Advances in neural information processing systems, pages 545–
552, 2005.

Avrum Spira, Jennifer E Beane, Vishal Shah, Katrina Steiling, Gang Liu, Frank Schembri, Sean
Gilman, Yves-Martine Dumas, Paul Calner, Paola Sebastiani, et al. Airway epithelial gene
expression in the diagnostic evaluation of smokers with suspect lung cancer. Nature medicine,
13(3):361, 2007.

William A Freije, F Edmundo Castro-Vargas, Zixing Fang, Steve Horvath, Timothy Cloughesy,
Linda M Liau, Paul S Mischel, and Stanley F Nelson. Gene expression profiling of gliomas
strongly predicts survival. Cancer research, 64(18):6503–6510, 2004.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. Deep face recognition. In BMVC,
volume 1, page 6, 2015.

Matlab release 2016b, 2016. The MathWorks, Inc., Natick, MA, USA.

Xuan Vinh Nguyen(2014). Information theoretic feature selection, version 1.1, Updated 07 Jul 2014.
URL https://www.mathworks.com/matlabcentral/fileexchange/47129-information-theoretic-
feature-selection.

60

Mingyuan Wang and Adrian Barbu. Are screening methods useful in feature selection? an empirical
study. PloS one, 14(9):e0220842, 2019.

José Ramon Méndez, Florentino Fdez-Riverola, Daniel Glez-Peña, Fernando Dı́az, and Juan M
Corchado. Relaxing feature selection in spam filtering by using case-based reasoning systems.
In Portuguese Conference on Artificial Intelligence, pages 53–62. Springer, 2007.

Vitor R Carvalho and William W Cohen. Single-pass online learning: Performance, voting schemes
and online feature selection. In Proceedings of the 12th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 548–553, 2006.

Jialei Wang, Peilin Zhao, Steven CH Hoi, and Rong Jin. Online feature selection and its applica-
tions. IEEE Transactions on Knowledge and Data Engineering, 26(3):698–710, 2013.

Ioannis Katakis, Grigorios Tsoumakas, and Ioannis P Vlahavas. On the utility of incremental
feature selection for the classification of textual data streams. In Panhellenic Conference on
Informatics, volume 5, pages 338–348. Citeseer, 2005.

Mohammad M Masud, Qing Chen, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani Thuraising-
ham. Classification and novel class detection of data streams in a dynamic feature space. In
Joint European conference on machine learning and knowledge discovery in databases, pages
337–352. Springer, 2010.

Joao Bartolo Gomes, Mohamed Medhat Gaber, Pedro AC Sousa, and Ernestina Menasalvas. Mining
recurring concepts in a dynamic feature space. IEEE Transactions on Neural Networks and
Learning Systems, 25(1):95–110, 2013.

Blaz Sovdat. Updating formulas and algorithms for computing entropy and gini index from time-
changing data streams. arXiv preprint arXiv:1403.6348, 2014.

Márcia Henke, Eduardo Souto, and Eulanda M dos Santos. Analysis of the evolution of features in
classification problems with concept drift: Application to spam detection. In 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM), pages 874–877. IEEE,
2015.

Fabian Keller, Emmanuel Müller, and Klemens Böhm. Estimating mutual information on data
streams. In Proceedings of the 27th International Conference on Scientific and Statistical
Database Management, pages 1–12, 2015.

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
Physical review E, 69(6):066138, 2004.

Mahmood Shakir Hammoodi, Frederic Stahl, and Atta Badii. Real-time feature selection technique
with concept drift detection using adaptive micro-clusters for data stream mining. Knowledge-
Based Systems, 161:205–239, 2018.

61

J Ian Munro and Mike S Paterson. Selection and sorting with limited storage. Theoretical computer
science, 12(3):315–323, 1980.

Raj Jain and Imrich Chlamtac. The p 2 algorithm for dynamic calculation of quantiles and his-
tograms without storing observations. Communications of the ACM, 28(10):1076–1085, 1985.

Rakesh Agrawal and Arun N. Swami. A one-pass space-efficient algorithm for finding quantiles. In
COMAD, 1995.

Joao Gama and Carlos Pinto. Discretization from data streams: applications to histograms and
data mining. In Proceedings of the 2006 ACM symposium on Applied computing, pages 662–
667, 2006.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Approximate medians and
other quantiles in one pass and with limited memory. ACM SIGMOD Record, 27(2):426–435,
1998.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G Lindsay. Random sampling techniques
for space efficient online computation of order statistics of large datasets. In ACM SIGMOD
Record, volume 28, pages 251–262. ACM, 1999.

Michael Greenwald, Sanjeev Khanna, et al. Space-efficient online computation of quantile sum-
maries. ACM SIGMOD Record, 30(2):58–66, 2001.

Qi Zhang and Wei Wang. A fast algorithm for approximate quantiles in high speed data streams. In
19th International Conference on Scientific and Statistical Database Management (SSDBM
2007), pages 29–29. IEEE, 2007.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages
785–794. ACM, 2016.

Xuemin Lin, Hongjun Lu, Jian Xu, and Jeffrey Xu Yu. Continuously maintaining quantile sum-
maries of the most recent n elements over a data stream. In Proceedings. 20th International
Conference on Data Engineering, pages 362–373. IEEE, 2004.

Graham Cormode, Flip Korn, Shan Muthukrishnan, and Divesh Srivastava. Space-and time-efficient
deterministic algorithms for biased quantiles over data streams. In Proceedings of the twenty-
fifth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
263–272. ACM, 2006.

Michael B Greenwald and Sanjeev Khanna. Power-conserving computation of order-statistics over
sensor networks. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 275–285. ACM, 2004.

62

Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash Suri. Medians
and beyond: new aggregation techniques for sensor networks. In Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 239–249. ACM, 2004.

Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. Identifying suspicious urls:
an application of large-scale online learning. In Proceedings of the 26th annual international
conference on machine learning, pages 681–688. ACM, 2009.

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware factorization machines
for ctr prediction. In Proceedings of the 10th ACM Conference on Recommender Systems,
pages 43–50. ACM, 2016.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available
at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Matlab release 2018b, 2018. The MathWorks, Inc., Natick, MA, USA.

S Sathiya Keerthi, Dennis DeCoste, and Thorsten Joachims. A modified finite newton method for
fast solution of large scale linear svms. Journal of Machine Learning Research, 6(3), 2005.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL
http://archive.ics.uci.edu/ml.

Ishwar Krishnan Sethi. Entropy nets: from decision trees to neural networks. Proceedings of the
IEEE, 78(10):1605–1613, 1990.

Ishwar K Sethi. Decision tree performance enhancement using an artificial neural network im-
plementation. In Machine Intelligence and Pattern Recognition, volume 11, pages 71–88.
Elsevier, 1991.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE international conference on computer vision,
pages 1467–1475, 2015.

Yani Ioannou, Duncan Robertson, Darko Zikic, Peter Kontschieder, Jamie Shotton, Matthew
Brown, and Antonio Criminisi. Decision forests, convolutional networks and the models
in-between. arXiv preprint arXiv:1603.01250, 2016.

Gitesh Dawer, Yangzi Guo, Sida Liu, and Adrian Barbu. Neural rule ensembles: Encoding sparse
feature interactions into neural networks. In 2020 International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2020.

63

BIOGRAPHICAL SKETCH

Mingyuan Wang received his Bachelor’s degree in Software Engineering in 2013. In 2014, after he

obtained his M.A. degree in Financial Economics from University of Detroit Mercy. He started

his education in statistics at Florida State University and obtained his M.S. degree in Statistics in

2017.

He started his PhD program in Statistics at Florida State University the same year under the

supervision of Dr. Adrian Barbu. He worked on researches related to conventional screening feature

selection method and online feature screening method which tackles the stream processing of huge

sparse data. He also worked on projects in medical image/video processing and electrical signal

processing.

64

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	Abstract

	Introduction
	Outline

	Empirical Analysis of Offline Screening Methods
	Introduction
	Related Work
	Screening Methods for Classification
	Mutual Information
	Relief and ReliefF
	Minimum Redundancy Maximum Relevance
	T-Score
	Chi-square Score
	Gini Index
	Fisher Score

	Screening Methods for Regression
	Correlation
	Mutual Information
	RReliefF

	Feature Selection With Annealing (FSA)
	Evaluation of Screening Methods
	Construction Tables of Groups
	Construction Comparison Tables
	Real Data Analysis
	Data sets
	Regression Results
	Classification Results

	Online Screening Methods
	Introduction
	Related Work
	Methods
	Mean-Variance Based Methods
	Bin Count Based Methods
	Minibatch

	Evaluation of Online Screening Methods
	Online-Offline Methods Comparison
	Online Screening Methods with Model Adaptation
	Realistic Performance of Online Screening Methods

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Biographical Sketch

