
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCE

ARTIFICIAL PREDICTION MARKETS FOR CLASSIFICATION, REGRESSION AND

DENSITY ESTIMATION

By

NATHAN LAY

A Dissertation submitted to the
Department of Scientific Computing

in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Degree Awarded:
Spring Semester, 2013

Nathan Lay defended this dissertation on March 29, 2013.

The members of the supervisory committee were:

Adrian Barbu
Professor Directing Thesis

Anke Meyer-Baese
Co-Professor Directing Thesis

Debajyoti Sinha
University Representative

Ye Ming
Committee Member

Xiaoqiang Wang
Committee Member

The Graduate School has verified and approved the above-named committee members,
and certifies that the dissertation has been approved in accordance with the university
requirements.

ii

TABLE OF CONTENTS

List of Tables . v

List of Figures . vi

Abstract . ix

1 Introduction to Prediction Markets 1

1.1 The Iowa Electronic Market . 2
1.2 Related Work . 2
1.3 Overview . 4

1.3.1 Classification . 4
1.3.2 Regression . 5
1.3.3 Density Estimation . 6

2 Random Forest 8

2.1 Decision Trees . 8
2.2 Training . 9
2.3 Classification . 9
2.4 Regression . 11
2.5 Random Tree . 12
2.6 Random Forest . 12

3 Prediction Markets for Classification 17

3.1 Problem Setup . 17
3.2 Solving the Market Price Equations . 21

3.2.1 Two-class Formulation . 22
3.3 Specialization . 22
3.4 Loss Function . 23

3.4.1 Stochastic Gradient . 23
3.4.2 Contraction Mapping . 26
3.4.3 Weighted Updates . 27
3.4.4 Case Study . 29

3.5 Relation with Existing Supervised Learning Methods 29
3.5.1 Constant Market . 30
3.5.2 Logistic Regression . 30
3.5.3 Support Vector Machine . 31

iii

4 Prediction Markets for Regression 33

4.1 Problem Setup . 33
4.1.1 Constant Market for Regression . 36
4.1.2 Delta Updates . 36
4.1.3 Gaussian Updates . 36
4.1.4 Specialized Regression Markets . 37

4.2 Loss Function . 38
4.2.1 Case Study . 38

5 Prediction Markets for Density Estimation 40

5.1 Problem Setup . 40
5.2 Expectation-Maximization Algorithm . 42
5.3 Loss Function . 44

6 Results 45

6.1 Classification Market . 45
6.1.1 Evaluation of the Probability Estimation and Classification Accuracy

on Synthetic Data . 46
6.1.2 Comparison with Random Forest on UCI Datasets 47
6.1.3 Comparison with Implicit Online Learning 49
6.1.4 Comparison with Adaboost for Lymph Node Detection 50

6.2 Regression Market . 52
6.2.1 Comparison with Random Forest Regression 53
6.2.2 Fast Regression using Shallow Trees 54

6.3 Density Market . 55
6.3.1 Fitting 1D Gaussians . 56
6.3.2 Fitting 2D Gaussians . 56

7 Prospective Ideas 61

7.1 Market Transform . 61
7.2 Clustering Market . 63
7.3 Object Detection . 64

7.3.1 Problem Setup . 64
7.3.2 Regression Forest for Object Detection 65
7.3.3 Hough Forest . 65
7.3.4 Hough Market . 66

7.4 Betting Function Learning . 68
7.4.1 Market Prices and Auto Context . 69
7.4.2 Online Random Trees . 69
7.4.3 AutoMarket . 70

8 Conclusion 72

A Proofs 74

Bibliography . 78

Biographical Sketch . 82

iv

LIST OF TABLES

6.1 The misclassification errors for 31 datasets from the UC Irvine Repository are
shown in percentages (%). The markets evaluated are our implementation
of random forest (RF), and markets with Constant (CB), Linear (LB) and
respectively Aggressive (AB) Betting. RFB contains the random forest results
from [9]. 48

6.2 Testing misclassification rates of our implementation of Random Forest (RF),
Implicit Online Learning [32], and Constant Betting (CB). • indicates sta-
tistically significantly better than (RF), † indicates statistically significantly
worse than (RF) and ∗ indicates statistically significantly better than Implicit
Online/Offline Learning. 51

6.3 Table of MSE for forests and markets on UCI and LIAAD data sets. The F
column is the number of inputs, Y is the range of regression, RFB is Breiman’s
reported error, RF is our forest implementation, DM is the Market with delta
updates, and GM is the Market with Gaussian updates. Bullets/daggers rep-
resent pairwise significantly better/worse than RF while +/– represent signif-
icantly better/worse than RFB. 54

6.4 Table of MSE for depth 5 forests and markets on UCI and LIAAD data sets.
The F column is the number of inputs, Y is the range of regression, RFB
is Breiman’s reported error (these errors are from fully grown trees), RF is
our forest implementation, DM is the Market with delta updates, and GM is
the Market with Gaussian updates, and Speedup is the speedup factor of a
depth 5 tree versus a depth 10 tree for evaluation. Bullets/daggers represent
pairwise significantly better/worse than RF while +/– represent significantly
better/worse than RFB. 55

v

LIST OF FIGURES

1.1 2008 US Democratic National Convention market run by the Iowa Electronic
Market. The graph illustrates closing prices for each of the candidates at
points in time between March 2007 and August 2008. 7

2.1 Figure (a) illustrates the definition of parent and child nodes. Figure (b)
illustrates the definition of root and leaf nodes. 9

2.2 These figures are examples of splits on features x and y. Figures (a) and (b)
visually depict the splits while figures (c) and (d) show their corresponding
tree representation respectively. The (n+,m−) notation means that there are
n positives and m negatives in the region. 13

2.3 These figures demonstrate the tree structure (a) and feature partitions (b) if
the training process continued in figure 2.2. The numbered nodes in figure (a)
correspond to the region splits in figure (b). 14

2.4 This figure demonstrates HEntropy(Y) in two class labels as a function of the
frequency of label y = 1. The frequency p(y = 1) = 0.5 implies that predict-
ing the label is equivalent to randomly guessing the label and corresponds to
maximum entropy. 14

2.5 These figures are examples of computing the information gain on features x and
y. There are five positives and five negatives. Figure (a) computes the entropy
over all the labels Entropy(Y) = − 5

10 log
5
10 − 5

10 log
5
10 = log 2. The bottom

two figures split the data in x and y and compute regional entropy and resulting
information gain. For figure (b) Entropy(Y |x < 0) = −5

5 log
5
5 − 0 = 0 and

Entropy(Y |x ≥ 0) = 0− 5
5 log

5
5 = 0 which gives Gain(Y, x) = log 2− 0− 0 =

log 2. For figure (c) Entropy(Y |y < 0) = −3
6 log

3
6 − 3

6 log
3
6 = log 2 and

Entropy(Y |y ≥ 0) = −2
4 log

2
4 − 2

4 log
2
4 = log 2 which gives Gain(Y, y) =

log 2− 6
10 log 2− 4

10 log 2 = 0. Figure (b) divides the labels perfectly and this
corresponds to the larger information gain. 15

2.6 These figures demonstrate the tree structure (a) and feature partitions (b) for
a toy regression problem. The numbered nodes in figure (a) correspond to
the region splits in figure (b). Each leaf stores the mean y value to predict in
its partition. The σ2 values are the sample variances of the y values in each
corresponding partition. 16

vi

3.1 Online learning and aggregation using the artificial prediction market. Given
feature vector x, a set of market participants will establish the market equi-
librium price c, which is an estimator of P (Y = k|x). The equilibrium price
is governed by the Price Equations (4). Online training on an example (x, y)
is achieved through Budget Update (x, y, c) shown with gray arrows. 18

3.2 Betting function examples: a) Constant, b) Linear, c) Aggressive, d) Logistic.
Shown are φ1(x, 1−c) (red), φ2(x, c) (blue), and the total amount bet φ1(x, 1−
c) + φ2(x, c) (black dotted). For (a) through (c), the classifier probability is
h2(x) = 0.2. 19

3.3 A perfect classifier can be constructed for the triangular region above from a
market of six specialized classifiers that only bid on a half-plane determined
by one side of the triangle. Three of these specialized classifiers have 100%
accuracy while the other three have low accuracy. Nevertheless, the market is
capable of obtaining 100% accuracy overall. 23

3.4 This figure is an example of a decision tree leaf (a) and its specialization
domain (b). Decision tree leaves are perfect classifiers of the training data on
their subdomain. However, they may not generalize on unseen data. 24

3.5 Experiments on the satimage dataset for the incremental and batch market
updates. Left: The training error vs. number of epochs. Middle: The test
error vs. number of epochs. Right: The negative log-likelihood function vs.
number of training epochs. The learning rates are η = 100/N for the incre-
mental update and η = 100 for the batch update unless otherwise specified. . 29

3.6 Left: 1000 training examples and learned decision boundary for an RBF kernel-
based market from eq. (3.44) with σ = 0.1. Right: The estimated conditional
probability function. 32

4.1 A conditional density of a clustering regression tree predicting multiple y val-
ues on an Archimedes spiral. The regression tree fits Gaussians to y values
using EM. The splitting criteria is based on the average ℓ2 residuals from the
nearest cluster center. This illustrates how a Regression Market price function
can be used to make predictions for more than just one y value. The distortion
on the left and right sides correspond to the default leaf nodes used to make
predictions beyond the training domain. 34

4.2 Training error, test error and negative log likelihood for three data sets. . . . 39

6.1 Left: Class probability estimation error vs problem difficulty for 5000 100D
problems. Right: Probability estimation errors relative to random forest. The
aggressive and linear betting are shown with box plots. 46

6.2 Left: Misclassification error minus Bayes error vs problem difficulty for 5000
100D problems. Right: Misclassification errors relative to random forest. The

vii

aggressive betting is shown with box plots. 47

6.3 Left: Detection rate at 3 FP/vol vs. number of training epochs for a lymph
node detection problem. Right: ROC curves for adaboost and the constant
betting market with participants as the 2048 adaboost weak classifier bins.
The results are obtained with six-fold cross-validation. 52

6.4 These figures demonstrate specialized Gaussian participants in a regression
tree. The numbered nodes in figure (a) correspond to the region splits in
figure (b). Each leaf stores the mean y value and estimated variance σ2 for its
partition and use these as the Gaussian parameters. 57

6.5 Examples of tree depths. A depth 3 tree may be evaluated from a depth 4
tree by considering only the depth 3 subtree. This serves as an example of
how a depth 5 tree was evaluated from a depth 10 tree for comparison in the
aggregation of shallow regression tree leaves. 58

6.6 These figures illustrate the Density Market fitting Gaussians (red) to a set of
data points sampled from the ground truth (black dashes). 59

6.7 These figures illustrate the Density Market fitting 2D Gaussians inferred by
EM to points sampled along a circle as well as the resulting budgets sorted
(β). Many poorly fit Gaussians are weeded out by the market. 60

7.1 Example of Hough Forest evaluation. Figure (a) illustrates how Hough Forest
predicts foreground (green) and background (red). The foreground patches
predict offsets while the background patches do not. Figure (b) shows the re-
sulting voting map on the image. The horse center prediction is well localized,
although with some noisy predictions far away. 66

7.2 Example of aggregation of Hough tree leaves on a horse image. 66

7.3 ROC curves for horse detection on the Weizmann test set. 68

7.4 Example detections of the Hough Forest. The green box is the ground truth
while the red box is the detection. The first row, or (a)(b)(c)(d), are detections
on positive images while the second row, or (e)(f)(g)(h), are the detections on
negative images. 69

7.5 Example detections of the Hough Market. The green box is the ground truth
while the red box is the detection. The first row, or (a)(b)(c)(d), are detections
on positive images while the second row, or (e)(f)(g)(h), are the detections on
negative images. While the Hough Market can eliminate some of the false
positives and false negatives, it can also introduce them as in (h). 70

viii

ABSTRACT

Prediction markets are forums of trade where contracts on the future outcomes of events
are bought and sold. These contracts reward buyers based on correct predictions and
thus give incentive to make accurate predictions. Prediction markets have successfully
predicted the outcomes of sporting events, elections, scientific hypothesese, foreign affairs,
etc... and have repeatedly demonstrated themselves to be more accurate than individual
experts or polling [2]. Since prediction markets are aggregation mechanisms, they have
garnered interest in the machine learning community. Artificial prediction markets have
been successfully used to solve classification problems [34, 33]. This dissertation explores
the underlying optimization problem in the classification market, as presented in [34, 33],
proves that it is related to maximum log likelihood, relates the classification market to
existing machine learning methods and further extends the idea to regression and density
estimation. In addition, the results of empirical experiments are presented on a variety of
UCI [25], LIAAD [49] and synthetic data to demonstrate the probability accuracy, prediction
accuracy as compared to Random Forest [9] and Implicit Online Learning [32], and the loss
function.

ix

CHAPTER 1

INTRODUCTION TO PREDICTION MARKETS

Prediction markets are forums of trade where contracts on the future outcomes of events are
bought and sold. Each contract is a wager that yields payment if its corresponding outcome
occurs. Each market participant has an incentive to profit and therefore an incentive to
predict accurately. The trading prices of contracts are determined by supply and demand
where highly demanded contracts are more expensive and represent an overall confidence
that a corresponding outcome will be realized. On the other hand, less demanded contracts
are less expensive and represent an overall lack of confidence that a corresponding outcome
will be realized. These trading prices can be interpreted as the market’s prediction of the
outcome. Studies have shown that the trading prices even estimate the true probability of
the outcome [38]. Prediction markets have found use in predicting elections, decision making
in both government and business realms, and even sporting events [2]. Their reported
accuracy and success motivated the development of our Classification Market [34, 33, 3] that
attempts to mimic a real prediction market in a machine learning setting. The Classification
Market has empirically proven to be a competitive classifier aggregation technique and
motivates further investigation.

Since the work presented in [34, 33], the classification market has been further devel-
oped. We relate the classification market to existing machine learning techniques such as
SVM and Logistic Regression, prove that the loss function is the negative log likelihood,
and in addition to Random Forest, compare with an alternative online learning method,
Implicit Online Learning presented in [32] on UCI data sets. We examine the probability
estimation capabilities of the classification market with three different betting strategies on
synthetic data with increasing Bayes error. We also compare the Classification Market to
AdaBoost for a Lymph node detection task and demonstrate improvement over AdaBoost
when aggregating its own weak classifiers. In addition to these developments, we also briefly
explore an alternative offline market update rule that is revealed through the loss function
derivation. We empirically demonstrate the loss function with two update rules and differ-
ent betting functions. These developments have made it possible to extend and understand
the behavior of the market when applied to regression and density estimation tasks.

A related machine learning topic is regression. Where the objective of classification is
to predict a label from a discrete set of labels, the objective of regression is to predict a real
value in the range of a function. We mathematically develop the analog of the Classification
Market, the Regression Market, to deal with real values, or uncountably many “labels”.

1

Regression markets are unusual in that contracts are no longer discrete and finite. Each
contract corresponds to a real value prediction and consequently there are uncountably
many such contracts for trade. We further show results on UCI and LIAAD data sets that
demonstrate that the Regression Market is a viable regressor aggregation technique. We
further describe the Regression Market and find the loss function it optimizes. We review
the Classification Market for completeness and evolve it into the Regression Market.

The mathematical description of the Regression Market further motivates the extension
of prediction markets to density estimation. Where Classification and Regression Markets
aggregate classifiers and regressors, a Density Market aggregates densities to estimate some
unknown distribution. The prediction market interpretation used to develop the classifica-
tion and Regression Markets does not readily apply to the density estimation problem. We
develop a mathematical description of the Density Market and show preliminary results that
the market can effectively fit simple 1D and 2D mixture models. We show that the Density
Market can learn more complicated distributions and can also be used to solve regression
and parameter optimization problems. As with Classification and Regression Markets, we
theoretically describe the Density Market and show the loss function it optimizes.

1.1 The Iowa Electronic Market

The majority of this work is based either directly or indirectly on the Iowa Electronic
Market [53]. The Iowa Electronic Market is a forum where contracts for future outcomes of
interest (e.g. presidential elections) are traded.

Contracts are sold for each of the possible outcomes of the event of interest. The
contract price fluctuates based on supply and demand. In the Iowa electronic market, a
winning contract (that predicted the correct outcome) pays $1 after the outcome is known.
Therefore, the contract price will always be between 0 and 1. An example of this market
can be seen in figure 1.1.

In the case of classification, our market simulates this behavior, with contracts for all
the possible outcomes, paying 1 if that outcome is realized.

1.2 Related Work

This work borrows prediction market ideas from Economics and brings them to Machine
Learning for supervised aggregation of classifiers or features in general.

Related work in Economics. Recent work in Economics [38, 40, 41] investigates the
information fusion of the prediction markets. However, none of these works aims at using
the prediction markets as a tool for learning class probability estimators in a supervised
manner.

Some works [40, 41] focus on parimutuel betting mechanisms for combining classifiers.
In parimutuel betting contracts are sold for all possible outcomes (classes) and the entire
budget (minus fees) is divided between the participants that purchased contracts for the
winning outcome. Parimutuel betting has a different way of fusing information than the
Iowa prediction market.

2

The information based decision fusion [40] is a first version of an artificial prediction
market. It aggregates classifiers through the parimutuel betting mechanism, using a loop
that updates the odds for each outcome and takes updated bets until convergence. This
insures a stronger information fusion than without updating the odds. Our work is different
in many ways. First our work uses the Iowa electronic market instead of parimutuel betting
with odds-updating. Using the Iowa model allowed us to obtain a closed form equation
for the market price in some important cases. It also allowed us to relate the market to
some existing learning methods. Second, our work presents a multi-class formulation of
the prediction markets as opposed to a two-class approach presented in [40]. Third, the
analytical market price formulation allowed us to prove that the constant market performs
maximum likelihood learning. Finally, our work evaluates the prediction market not only
in terms of classification accuracy but also in the accuracy of predicting the exact class
conditional probability given the evidence.

Related work in Machine Learning. Implicit online learning [32] presents a generic
online learning method that balances between a “conservativeness” term that discourages
large changes in the model and a “correctness” term that tries to adapt to the new obser-
vation. Instead of using a linear approximation as other online methods do, this approach
solves an implicit equation for finding the new model. In this regard, the prediction mar-
ket also solves an implicit equation at each step for finding the new model, but does not
balance two criteria like the implicit online learning method. Instead it performs maximum
likelihood estimation, which is consistent and asymptotically optimal. In experiments, we
observed that the prediction market obtains significantly smaller misclassification errors on
many datasets compared to implicit online learning.

Specialization can be viewed as a type of reject rule [16, 50]. However, instead of having
a reject rule for the aggregated classifier, each market participant has his own reject rule to
decide on what observations to contribute to the aggregation. ROC-based reject rules [50]
could be found for each market participant and used for defining its domain of specialization.
Moreover, the market can give an overall reject rule on hopeless instances that fall outside
the specialization domain of all participants. No participant will bet for such an instance
and this can be detected as an overall rejection of that instance.

If the overall reject option is not desired, one could avoid having instances for which no
classifiers bet by including in the market a set of participants that are all the leaves of a
number of random trees. This way, by the design of the random trees, it is guaranteed that
each instance will fall into at least one leaf, i.e. participant, hence the instance will not be
rejected.

A simplified specialization approach is taken in delegated classifiers [24]. A first classifier
would decide on the relatively easy instances and would delegate more difficult examples
to a second classifier. This approach can be seen as a market with two participants that
are not overlapping. The specialization domain of the second participant is defined by the
first participant. The market takes a more generic approach where each classifier decides
independently on which instances to bet.

The same type of leaves of random trees (i.e. rules) were used by [26] for linear ag-
gregation. However, our work presents a more generic aggregation method through the
prediction market, with linear aggregation as a particular case, and we view the rules as
one sort of specialized classifiers that only bid in a subdomain of the feature space.

3

Our earlier work [33] focused only on aggregation of classifiers and did not discuss the
connection between the artificial prediction markets and logistic regression, kernel methods
and maximum likelihood learning. Moreover, it did not include an experimental comparison
with implicit online learning and adaboost.

Two other prediction market mechanisms have been recently proposed in the literature.
The first one [14, 13] has the participants entering the market sequentially. Each participant
is paid by an entity called the market maker according to a predefined scoring rule. The
second prediction market mechanism is the machine learning market [1, 48], dealing with all
participants simultaneously. Each market participant purchases contracts for the possible
outcomes to maximize its own utility function. The equilibrium price of the contracts is
computed by an optimization procedure. Different utility functions result in different forms
of the equilibrium price, such as the mean, median, or geometric mean of the participants’
beliefs.

1.3 Overview

This section briefly reviews the three learning tasks considered throughout this work.
These include, classification, regression and density estimation.

1.3.1 Classification

The objective of the classification problem is to learn a function f(x) on a set of N
labeled examples (xn, yn)

N
n=1 that can accurately predict the label of any given unlabeled

example. Here x ∈ R
d is a tuple of real numbers, generally referred to as features, that

numerically describe known information or some characteristic of the data. The labels y
are discrete values that are used to label a given instance x. These labels may be anything
from integers y ∈ {1, 2, . . . ,K} that describe the number of rings an abalone has, to text
labels such as y ∈ {SPAM,NOTSPAM} for classifying emails as spam or not.

Features are often measurements or computed quantities on an otherwise non-numerical
object. The abalone data set from the UCI repository [25], for example, includes such
features as sex, length, diameter, height, among other physical measurements of an abalone.
In computer vision tasks, the data is usually an image. Features on images are usually
computed on the fly at a given image position rather than pre-recorded as in the case of
the abalone data set. Commonly used features for images include intensity gradients, Haar
wavelets [52] and the Histogram of Oriented Gradients [19]. In e-mail spam classification,
features are also computed on the fly as e-mails are not numerical in nature. A commonly
used feature for this type of problem is the bag-of-words [31]. A bag-of-words feature
simply counts the occurrence of individual words in a document completely ignoring the
ordering. The assumption in these problems is that one or more features are relevant to
the learning problem and can be used to learn a relationship between the features and the
labels. Randomized features, for example, cannot be useful for classifying e-mail as spam
or predicting the number of rings an abalone has.

Examples of learning methods for classification are too numerous to list in entirety, but
include nearest neighbor, Naive Bayes, Support Vector Machine (SVM), Logistic Regression,
Neural Networks, Decision Trees and Forests, and Boosting. A description of these methods

4

may be found in [30]. This work makes extensive use of Decision Trees and Decision Forests
as described in [9].

The performance of these learning methods are generally measured in a couple ways.
The most common measurement is the misclassification rate which is a percentage of the
instances that were mislabeled by the classifier. If f(x) is a classifier and (xn, yn)

N
n=1 are

examples, then the misclassification rate is

1

N

N
∑

n=1

I(f(xn) 6= yn) (1.1)

where I(·) is the indicator function. However, the misclassification rate can be misleading
if the data set includes an overwhelming number of examples with a particular class label.
For example, if the data set has 1000 negative examples and only 10 positive examples and
your classifier correctly labels only negative examples, then your classification rate is ≈ 0.01
which seems low. An alternative is the confusion matrix. A confusion matrix M is a matrix
that counts the number of instances of class label y that are labeled as class label k. That
is, each component of the matrix is computed as

Myk =
∑

x∈Xy

I(f(x) = k) (1.2)

where Xk = {xn : yn = k, n = 1, 2, . . . , N} is the set of examples with label k. A
diagonal confusion matrix is ideal. The confusion matrix is more telling about the per-
label performance than the misclassification rate especially in the case of such large label
disparity.

1.3.2 Regression

Similar to the classification problem, the regression problem is to learn a function f(x)
on a set of N examples (xn, yn)

N
n=1 that can accurately predict the real value associated

with any given example. Here x ∈ R
d is the feature vector and y ∈ R is a real value instead

of a discrete value as in classification. For example, the regression task for the housing

data set from the UCI Machine Learning repository [25] is to estimate the value of a home
based on such features as crime rate, proportion of residential zoning, number of rooms per
dwelling and so forth. In general, a regression task may predict y ∈ R

d instead of just a
single real value. Examples of this include [45][18] where the objective is to predict the
offset vector y ∈ R

3 to an object position.
Examples of learning methods for regression tasks include nearest neighbor, linear regres-

sion, Multivariate Adaptive Regression Splines (MARS), and Regression Trees and Forests.
A description of these methods may be found in [30]. This work makes extensive use of
Regression Trees and Regression Forests as described in [9].

The performance of these learning methods can be measured in a couple ways. One way
is to average the ℓ2 residuals on a data set (xn, yn)

N
n=1

1

N

N
∑

n=1

(f(xn)− yn)
2 (1.3)

5

This is also referred to as the Mean Squared Error (MSE). In fact, many regression methods
aim to minimize this error directly such as ordinary least squares (OLS). However, this error
measurement does not necessarily factor in the noise of the data set. The data itself may
be noisy which increases the ℓ2 residual. Another way to measure the performance of a
regressor is through the R2 coefficient

R2 = 1−
1
N

∑N
n=1(f(xn)− yn)

2

Var(Y)
(1.4)

where Var(Y) = 1
N

∑N
n=1(yn− ȳ)2 is the sample variance and ȳ = 1

N

∑N
n=1 yn is the sample

mean. This error measurement attempts to quantify the percentage reduction in variance
from a constant regressor fconstant(x) = ȳ to the learned regressor f(x). The larger R2 is,
the higher the reduction of variance and the better f(x) fits the data set.

1.3.3 Density Estimation

The density estimation problem is to infer a density p(x) given a set of N points
xn, n = 1, 2, . . . , N . There are two classes of density estimation methods, parametric
and nonparametric. Parametric density estimation methods make assumptions about the
underlying distributions associated with the examples. An example of a parametric den-
sity estimator is a mixture model where each point xn is assumed to be associated with
one of the constituent mixture distributions. Likewise, nonparametric density estimation
makes no underlying assumptions about the distribution of the points. The Kernel Density
Estimator is an exmaple of a nonparametric density estimation method [30].

This work briefly relates the prediction market to density estimation and EM. The
latter is a method used to infer the weights and parameters of the constituent densities in
a mixture model.

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

01-M
ar-07

01-A
p
r-07

01-M
ay
-07

01-J
u
n
-07

01-J
u
l-07

01-A
u
g-07

01-S
ep
-07

01-O
ct-07

01-N
ov
-07

01-D
ec-07

01-J
an

-08

01-F
eb
-08

01-M
ar-08

01-A
p
r-08

01-M
ay
-08

01-J
u
n
-08

01-J
u
l-08

01-A
u
g-08

28-A
u
g-08

C
on

tr
ac
t
P
ri
ce

Date

Iowa Electronic Market: 2008 US Democratic National Convention Market

Clinton
Edwards
Obama

Rest of field

Figure 1.1: 2008 US Democratic National Convention market run by the Iowa
Electronic Market. The graph illustrates closing prices for each of the candidates
at points in time between March 2007 and August 2008.

7

CHAPTER 2

RANDOM FOREST

Market specialization and the decision tree play a major role in the development and success
of artificial prediction markets. This chapter offers a brief introduction of random forests
which are used extensively in this work.

Random Forest is a generic state-of-the-art machine learning framework. It was first
described by [9] as a classification and regression learning method. However, it has since
been extended to density estimation, online learning, and object detection [18, 45, 27]. It
derives its strength and generalization from decision trees and bootstrap aggregation.

2.1 Decision Trees

A decision tree is a generic machine learning framework that describes a model as a tree
graph. A tree graph is best thought of as a hierarchy of vertexes. An example would be
a family tree. Much like a family tree, decision trees inherit similar terminology. A vertex
may have two or more child vertexes. Each child vertex has a parent vertex. A vertex with
no parent is known as the root of the tree. Likewise, a vertex with no children is known as
a leaf. Figure 2.1 illustrates this terminology. In a decision tree, each vertex represents a
question or test and the outcome determines the child vertex to visit. This process begins
at the root vertex and continues until a leaf vertex is reached. In addition to a test, a
vertex in a decision tree typically stores some estimation. This might be a histogram or a
mean value that represents the estimated probability or regression response for a specific
sequence of decisions (though it is not limited to this). Upon reaching a leaf vertex, the
prediction is taken to be the stored estimate in the leaf.

Two common examples of decision trees include the classification and regression trees
(collectively known as CART). The classification tree stores a test and a histogram in
each vertex. The test is used to determine which child vertex is visited and the histogram
describes the subset of the training sample label distribution that was observed during
training. Figure 2.2 illustrates two examples of the test and histogram in each node and
their affect on the feature space. The regression tree is similar except that it typically stores
the sample mean of y of the subset of the training sample in each vertex that was observed.

8

Parent and Child Nodes

parent

child child

(a)

Root and Leaf Nodes

root

leaf leafleaf

(b)

Figure 2.1: Figure (a) illustrates the definition of parent and child nodes. Fig-
ure (b) illustrates the definition of root and leaf nodes.

2.2 Training

Decision tree training is best described as an optimization problem. For some given
vertex and some subset of the training sample, the objective is to determine a partitioning
of the feature space (typically along one dimension, or feature) so that some cost function is
minimized (or maximized) on the training sample. The partitioning then defines the child
vertexes. This process begins with one vertex (the root vertex) and the entire training sam-
ple. Once a partitioning of this sample is determined, then the root grows corresponding
child vertexes. The partitions become the training samples for the child vertexes. The pro-
cess repeats until partitioning can no longer reduce the cost function, reduce it sufficiently,
or if the training sample is too small (among other possible reasons). Figure 2.3 provides
a simple example of this process for classification. The cost function is the entropy of the
class label distribution in each partition. The feature space has been partitioned in such a
way that each partition contains only one class label.

2.3 Classification

Decision trees for classification problems typically aim to partition the feature space so
that the training sample in each partition is pure. A pure partition only contains examples
with one class label. Purity is often measured in terms of the Entropy or Gini index [30]

9

Algorithm 1 Generic decision tree training algorithm.

Given data (X, Y) and features {fi}Fi=1. Denote (X, Y)node to be the node’s subset of data.
The decision tree is trained as follows

1. Create the root node with (X, Y)root = (X, Y)

2. Compute the best splitting feature f∗ ∈ {fi}Fi=1 over (X, Y)node. If the node describes
the data perfectly then growing on the node can cease. Proceed to step 4.

3. (a) if xf∗ is continuous, create two child nodes with

(X, Y)left child = {(x, y) ∈ (X, Y)node : xf∗ ≤ t}
(X, Y)right child = {(x, y) ∈ (X, Y)node : xf∗ > t}

(b) if f∗ is discrete, create K children each with

(X, Y)child k = {(x, y) ∈ (X, Y)node : xf∗ = k}

where K is the number of values f∗ may take.

4. Pick an available node to grow and return to step 2. If all nodes are fully grown, then
the algorithm terminates.

which are given as

HGini(Y) =
K
∑

k=1

|Yk|
|Y |

(

1− |Yk||Y |

)

(2.1)

HEntropy(Y) = −
K
∑

k=1

|Yk|
|Y | log

(|Yk|
|Y |

)

(2.2)

where Y = {y1, y2, . . . , yN} is the set of training labels, Yk is the set of training labels with
label k. When either of these purity functions take their minimum value of 0, the training
labels are pure (they exhibit one class label). Figure 2.4 gives an example of HEntropy(Y).

When partitioning, the objective is to determine a test I(x) = {0, 1, . . . ,K − 1} that
minimizes the weighted average of the purities in each partition. Here the test function
I(x) assign an instance x to a partition. When a feature is a real value, the test is often
taken to be a threshold test admitting only two results I(x) = {0, 1} and therefore two
partitions. When features are nominal, they can have more than two distinct values and
the test function I(x) = {0, 1, . . . ,K − 1} can produce more than two values. However,
multiple threshold tests can be used to partition the training sample in the same way. The
remainder of this chapter deals exclusively with binary tests and therefore binary decision
trees. When considering only binary tests, the objective is to minimize the weighted average
of the purities in each of thw two partitions

|YI(X)=0|
|Y | H(YI(X)=0) +

|YI(X)=1|
|Y | H(YI(X)=1) (2.3)

10

where YI(X)=0 = {y : (x, y) ∈ (X,Y) ∧ I(x) = 0} and YI(X)=1 is similarly defined.
Typically, the binary test I(x) is taken to be a threshold test on a single feature I(x) =
I(xf > t) where f denotes the component index in the feature vector x. To account for the
purity of the entire training sample, the above is often recasted as a maximization of the
information gain, given as

IG(Y) = H(Y)−
|YI(X)=0|
|Y | H(YI(X)=0)−

|YI(X)=1|
|Y | H(YI(X)=1) (2.4)

If the training sample (X,Y) is already pure, then any partitioning of this training sample
minimizes the purities in each partition which is not very useful. The information gain is
useful in such extreme cases as it implicitly compares the purities of the partitions to the
purity of the entire training sample. If there is no average reduction of purity, then there
is little to gain in partitioning the training sample. Figure 2.5 provides an example of two
different splits and their corresponding information gain.

2.4 Regression

In regression trees, the estimator is typically chosen to be the sample mean of the
responses. The objective in partitioning the training sample is to minimize the average
residual (for example ℓ2 residual) in each partition between the estimated response and
the sample responses. Figure 2.6 illustrates a simple regression tree and its partitions with
simple x axis features.

ℓ(Y) =
|YI(X)=0|
|Y |

1

|YI(X)=0|
∑

y∈YI(X)=0

(y − ȳ0)
2 +
|YI(X)=1|
|Y |

1

|YI(X)=1|
∑

y∈YI(X)=1

(y − ȳ1)
2 (2.5)

where ȳ0 =
1

|YI(X)=0|
∑

y∈YI(X)=0
y and ȳ1 is similarly defined. This is equivalent to minimiz-

ing the average of the partition variances

ℓ(Y) =
|YI(X)=0|
|Y | Var(YI(X)=0) +

|YI(X)=1|
|Y | Var(YI(X)=1) (2.6)

As with information gain, the variance of the entire training sample should be considered.
If, for example, the variance is 0 on the training sample, then any partitioning of the training
sample gives an average variance of 0. One measure that factors in the training sample
variance is the R2 coefficient, given as

R2 = 1−
|YI(X)=0|

|Y | Var(YI(X)=0) +
|YI(X)=1|

|Y | Var(YI(X)=1)

Var(Y)
(2.7)

This describes the amount of reduction of the partition variance to the variance on the
entire training sample. A partitioning that results in only a small reduction of variance
is not very useful even though the partitioning may already be optimal (e.g. an average
partition variance of 0).

11

2.5 Random Tree

Much of the success of random forest derives from bootstrap aggregation of unstable
learners. [11]. Decision trees are stable learners in the sense that they change little, if at
all, for small changes in the training set. Random trees are unstable variants of decision
trees. Random tree learning is nearly identical to decision tree learning except that at each
vertex, only a random subset of the binary tests are considered for the splitting criteria.
For even the same training set, two random trees are different hypotheses of the learning
problem.

2.6 Random Forest

The Random Forest is merely a collection of random trees. However, these random trees
are trained on bootstrap samples, as in bootstrap aggregation [11]. Bootstrap aggregation
of unstable learners can improve the overall accuracy over any individual learner. The
aggregation of these trees, for at least CART, amounts to an average of these trees.

12

x-axis Split

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

++
++

++
+
+

+

+

+

+

–

–

–

–
–

–
–

–
–

–
–

–

–

–

–

–

–

–

––
––

––
–
–

–

–

–

–

(a)

y-axis Split

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

++
++

++
+
+

+

+

+

+

–

–

–

–
–

–
–

–
–

–
–

–

–

–

–

–

–

–

––
––

––
–
–

–

–

–

–

(b)

x-axis Split Tree

(30+,30-)

(15+,30-) (15+,0-)

x

x < 1 x ≥ 1

(c)

y-axis Split Tree

(30+,30-)

(10+,15-) (20+,15-)

y

y < 1 y ≥ 1

(d)

Figure 2.2: These figures are examples of splits on features x and y. Figures (a)
and (b) visually depict the splits while figures (c) and (d) show their corresponding
tree representation respectively. The (n+,m−) notation means that there are n
positives and m negatives in the region.

13

Complete Tree

1

2

3

+

–

– +

(a)

2

3 1

Complete Tree Split

+

+

+

+
+

+
+

+
+

+

+

+

+

+

+

+

+

+

++
++

++ +
+

+

+
+

+

–

–

–

–
–

–
–

–
–

–
–

–

–

–

–

–

–

–

––
––

–– –
–

–

–
–

–

(b)

Figure 2.3: These figures demonstrate the tree structure (a) and feature parti-
tions (b) if the training process continued in figure 2.2. The numbered nodes in
figure (a) correspond to the region splits in figure (b).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

E
n
tr
op

y

p(y = 1)

Entropy of Two Class Labels

Figure 2.4: This figure demonstrates HEntropy(Y) in two class labels as a function
of the frequency of label y = 1. The frequency p(y = 1) = 0.5 implies that
predicting the label is equivalent to randomly guessing the label and corresponds
to maximum entropy.

14

Entropy of Labels

+

+

+

+

+

–

–

–

–
–

Entropy(Y) = log 2

(a)

Information Gain of x

+

+

+

+

+

–

–

–

–
–

Gain(Y, x) = log 2

Entropy(Y |x < 0) = 0

Entropy(Y |x ≥ 0) = 0

(b)

Information Gain of y

+

+

+

+

+

–

–

–

–
–

Gain(Y, y) = 0

Entropy(Y |y < 0) = log 2

Entropy(Y |y ≥ 0) = log 2

(c)

Figure 2.5: These figures are examples of computing the information gain on
features x and y. There are five positives and five negatives. Figure (a) computes
the entropy over all the labels Entropy(Y) = − 5

10 log
5
10 − 5

10 log
5
10 = log 2. The

bottom two figures split the data in x and y and compute regional entropy and
resulting information gain. For figure (b) Entropy(Y |x < 0) = −5

5 log
5
5 − 0 = 0

and Entropy(Y |x ≥ 0) = 0 − 5
5 log

5
5 = 0 which gives Gain(Y, x) = log 2 −

0 − 0 = log 2. For figure (c) Entropy(Y |y < 0) = −3
6 log

3
6 − 3

6 log
3
6 = log 2

and Entropy(Y |y ≥ 0) = −2
4 log

2
4 − 2

4 log
2
4 = log 2 which gives Gain(Y, y) =

log 2 − 6
10 log 2 − 4

10 log 2 = 0. Figure (b) divides the labels perfectly and this
corresponds to the larger information gain.

15

Complete Tree

1

µ = 0.88 2

µ = 5.02 µ = 3.51

(a)

µ = 0.88

µ = 5.02

µ = 3.51

1 2

Complete Tree Splits

σ2 = 0.783 σ2 = 0.081 σ2 = 0.0096

+

++

+

+

+

+

+

+

+

+

+

+++

+ +

+
+

+
+ +

+ +
+++

+
++

+
++++ +++++ ++ +++++ ++ +

(b)

Figure 2.6: These figures demonstrate the tree structure (a) and feature parti-
tions (b) for a toy regression problem. The numbered nodes in figure (a) cor-
respond to the region splits in figure (b). Each leaf stores the mean y value to
predict in its partition. The σ2 values are the sample variances of the y values in
each corresponding partition.

16

CHAPTER 3

PREDICTION MARKETS FOR

CLASSIFICATION

Prediction markets are forums of trade where contracts on the future outcomes of events are
bought and sold. An event might be an election or sporting event and an outcome might
be the result of the election or winning team respectively. Each contract pays some value
if its outcome is realized. The incentive to profit drives the incentive to predict accurately
and as a consequence, all information publicly and privately known by market constituents
influences the trading prices through demand.

Real prediction markets have been used in the US Department of Defense [43], health-
care [42], to predict the outcomes of presidential elections [53], sporting events (Trade-
Sports), and in large corporations to make informed decisions [17]. They have even been
demonstrated to be more accurate than polling methods or individual experts [2]. Some
examples include the Iowa Electronic Market and intrade. The Iowa Electronic Market is
a research prediction market run by the University of Iowa. In this market, contracts sell
for a price $0 < c < $1 and pay $1 for correct predictions. This market serves as the model
for this work.

From a machine learning perspective, prediction markets are a type of classifier aggre-
gation. The market participants are analogous to classifiers, the event is analogous to the
instance, the available information is analogous to the instance features, the outcomes are
analogous to the class labels and the trading prices for each outcome are similar to the
conditional probabilities for the class labels. It has even been shown that the trading prices
of real prediction markets estimate the ground truth conditional probabilities [38, 28]. The
claimed accuracy of real prediction markets motivated the development of the classification
market [34, 33].

3.1 Problem Setup

Given instances {(xn, yn)}Nn=1} with xn ∈ X ⊆ R
F , yn ∈ {1, 2, . . . ,K} and trained

classifiers {hm(x)}Mm=1 with corresponding budgets βm where

hm(x) = [pm(y = 1|x) pm(y = 2|x) . . . pm(y = K|x)]T

the objective is to compute the trading prices c ∈ R
K
≥0 for each instance and to update

the budget βm of each participant. Since the artificial market is modeled after the Iowa

17

Equilibrium

price c

from Price Equations

...

...

Market participants

h
m

(x) β
m

Betting function BudgetClassifier

h
M
(x) β

M
Betting function BudgetClassifier

h
1
(x) β

1
Betting function BudgetClassifier

In
p

u
t

(x
,y

)

Prediction

Market

Estimated probability

p(y|x)=c

Figure 3.1: Online learning and aggregation using the artificial prediction market.
Given feature vector x, a set of market participants will establish the market
equilibrium price c, which is an estimator of P (Y = k|x). The equilibrium price
is governed by the Price Equations (4). Online training on an example (x, y) is
achieved through Budget Update (x, y, c) shown with gray arrows.

Electronic Market, the contracts for label k trade at 0 ≤ ck ≤ 1 and pay 1 for correct
predictions. We additionally constrain

∑K
k=1 ck = 1 so that ck may be interpreted as a

probability for class label k.
Since classifiers do not actually bet, we introduce the concept of a betting function (also

known as a buying function). While classification is a function of the instance, betting
is additionally a function of risk and incentive. For example, even with a relatively high
predicted probability of an outcome, a high priced contract may still prove too risky to
purchase. Betting functions are defined as follows

φ(x, c) ∈ [0, 1]K (3.1)

K
∑

k=1

φk(x, c) ≤ 1 (3.2)

where φk(x, c) represents the proportion of the budget to allocate for contracts on class
label k. In other words, the amount bet for class label k is βφk(x, c). Based on real-world
behavior, we assume betting functions should have the following properties

φk(x, ck = 0) ≥ 0 (3.3)

φk(x, ck = 1) = 0 (3.4)

φk(x, ck +∆ck) ≤ φk(x, ck) ∆ck > 0 (3.5)

These properties stem from the following interpretation of betting behavior

18

• Whenever contracts are free (ck = 0), there is no risk and so market participants bet
some non-zero quantity for such contracts.

• Whenever contracts are full price (ck = 1), there is no possible gain and so market
participants bet zero for such contracts.

• If contracts are slightly more expensive for label k, then a participant will bet no more
for label k than when it is cheaper.

Betting functions may be backed by trained classifiers. In this sense, the trained classifier
is the experience aspect of the betting function. Some examples of betting functions that
follow these properties include [34, 33, 3]

φk
linear(x, ck) = (1− ck)h

k(x) (3.6)

φk
aggressive(x, ck) =

hk(x) 0 ≤ ck ≤ hk(x)− ǫ

−hk(x)
ǫ

(ck − hk(x)) hk(x)− ǫ ≤ ck < hk(x)

0 hk(x) ≤ ck < 1

(3.7)

where ǫ > 0. Others types of betting functions have been explored such as

φk
constant(x, ck) = hk(x) (3.8)

φk
logistic(x, ck) =

{

c1(x
+
m − ln(c1)/B) k = 1

c2(x
−
m − ln(c2)/B) k = 2

(3.9)

where x+ = xI(x > 0), x− = xI(x < 0) and B =
∑M

m=1 βm. These functions, however,
violate (3.3)(3.4)(3.5). Examples of these betting functions can be seen in figure 3.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Cost c

P
er

ce
nt

 b
et

phi1(x,1−c)
phi2(x,c)
total bet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Cost c

P
er

ce
nt

 b
et

phi1(x,1−c)
phi2(x,c)
total bet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Cost c

P
er

ce
nt

 b
et

phi1(x,1−c)
phi2(x,c)
total bet

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Cost c

P
er

ce
nt

 b
et

phi1(x,1−c)
phi2(x,c)
total bet

Figure 3.2: Betting function examples: a) Constant, b) Linear, c) Aggressive, d)
Logistic. Shown are φ1(x, 1 − c) (red), φ2(x, c) (blue), and the total amount bet
φ1(x, 1− c)+φ2(x, c) (black dotted). For (a) through (c), the classifier probability
is h2(x) = 0.2.

The notion of betting functions also defines the budget update rule and subsequently
the equilibrium equation to determine c. The total bet and winnings for a given participant
φm(x, c) are given as follows

Total bet = βm

K
∑

k=1

φk
m(x, c) (3.10)

Winnings = βm
φy
m(x, c)

cy
= Number of contracts purchased for label y (3.11)

19

where y is the ground truth class label for instance x. The profit defines the budget update
rule for βm where profit is Winnings− Total bet or

βm ← βm − βm

k
∑

k=1

φk
m(x, c) + βm

φy
m(x, c)

cy
(3.12)

The update rule can be sensitive to incorrect predictions. For example, if φm(x, c) = hm(x)
and h

y
m(x) = 0 then the participant becomes immediately bankrupt (βm = 0). As a

safeguard, the maximum proportion of the budget can be capped to be ηβm where 0 < η ≤ 1.
This gives the modified update rule

βm ← βm − ηβm

k
∑

k=1

φk
m(x, c) + ηβm

φy
m(x, c)

cy
(3.13)

This effectively prevents instantaneous bankrupticies.

Algorithm 2 Budget Update (x, y, c)

Input: Training example (x, y), price c

for m = 1 to M do

Update participant m’s budget as

βm ← βm − η

K
∑

k=1

βmφk
m(x, c) + η

βm
cy

φy
m(x, c) (3.14)

end for

However, this budget update rule assumes that the equilibrium price c is already known.
Since participants in this artificial market can only trade within the market, the total sum
of budgets should remain constant after every update. In other words, the budget sum
before and after the update should equate

M
∑

m=1

βm =

M
∑

m=1

βm − βm

K
∑

j=1

φj
m(x, c) + βm

φk
m(x, c)

ck

 ∀k = 1, 2, . . . ,K (3.15)

Since the ground truth label k isn’t necessarily known in advance, conservation should be
satisfied for all possible labels k. This gives a system of equations whose solution defines
the equilibrium price. This can also be rewritten as a fixed-point equation

c =
1

n

M
∑

m=1

βmφm(x, c) (3.16)

n =
M
∑

m=1

βm

K
∑

k=1

φk
m(x, c) (3.17)

where n can be interpreted as both a normalizer (ensuring that
∑K

k=1 ck = 1) as well as the
total bet among all participants. This can be shown to conserve the budget sum

20

Theorem 3.1.1. Price Equations. The total budget
∑M

m=1 βm is conserved after the
Budget Update(x, y, c), independent of the outcome y, if and only if ck > 0, k = 1, ...,K
and

M
∑

m=1

βmφk
m(x, c) = ckB(x, c), ∀k = 1, ...,K (3.18)

where n = B(x, c from (3.17). The proof is given in the Appendix.
This equilibrium is unique whenever φk(x, ck) is monotonically decreasing in ck and

satisfies Assumption 1. The proof is given in the appendix.

Remark 3.1.2. Denoting fk(ck) = 1
ck

∑M
m=1 βmφk

m(x, ck), k = 1, 2, . . . ,K, if all fk(ck)
are continuous and strictly decreasing in ck as long as fk(ck) > 0, then for every n > 0,
n ≥ nk = fk(1) there is a unique ck = ck(n) that satisfies fk(ck) = n.

Assumption 1. The total bet of participant (βm, φm(x, c)) is positive inside the simplex
∆, i.e.

K
∑

j=1

φj
m(x, cj) > 0, ∀c ∈ (0, 1)K ,

K
∑

j=1

cj = 1. (3.19)

Theorem 3.1.3. Assume all betting functions φk
m(x, ck),m = 1, ...,M, k = 1, ...,K are

continuous, with φk(x, 0) > 0 and φk
m(x, c)/c is strictly decreasing in c as long as φk

m(x, c) >
0. If the betting function φm(x, c) of least one participant with βm > 0 satisfies Assumption
1, then for the Budget Update(x, y, c) there is a unique price c = (c1, ..., cK) ∈ (0, 1)K∩∆
such that the total budget

∑M
m=1 βm is conserved.

Algorithm 3 Prediction Market Training

Input: Training examples (xi, yi), i = 1, ..., N
Initialize all budgets βm = β0,m = 1, ...,M .
for each training example (xi, yi) do
Compute equilibrium price ci using Eq. 3.18
Run Budget Update (xi, yi, ci)

end for

3.2 Solving the Market Price Equations

In practice, a double bisection algorithm could be used to find the equilibrium price,
computing each ck(n) by the bisection method, and employing another bisection algorithm
to find n such that the price condition

∑K
k=1 ck(n) = 1 holds. Observe that the n satisfying

∑K
k=1 ck(n) = 1 can be bounded from above by

n = n

K
∑

k=1

ck(n) =

K
∑

k=1

ck(n)fk(ck(n)) =

K
∑

k=1

M
∑

m=1

βmφk
m(x, c) ≤

M
∑

m=1

βm

because for each m,
∑K

k=1 φ
k
m(x, c) ≤ 1.

21

A potentially faster alternative to the double bisection method is the Mann Iteration
[37] described in Algorithm 4. The price equations can be viewed as fixed point equation
F (c) = c, where F (c) = 1

n
(f1(c), ..., fK(c)) with fk(c) =

∑m
m=1 βmφk

m(x, ck). The Mann
iteration is a fixed point algorithm, which makes weighted update steps

ct+1 = (1− 1

t
)ct +

1

t
F (ct)

The Mann iteration is guaranteed to converge for contractions or pseudo-contractions.
However, we observed experimentally that it usually converges in only a few (up to 10)
steps, making it about 100-1000 times faster than the double bisection algorithm. If, after a
small number of steps, the Mann iteration has not converged, the double bisection algorithm
is used on that instance to compute the equilibrium price. However, this happens on less
than 0.1% of the instances.

Algorithm 4 Market Price by Mann Iteration

Initialize i = 1, ck = 1
K
, k = 1, ...,K

repeat

fk =
∑

m βmφk
m(x, c)

n =
∑

k fk
if n 6= 0 then

fk ← fk
n

rk = fk − ck
ck ← (i−1)ck+fk

i

end if

i← i+ 1
until

∑

k |rk| ≤ ǫ or n = 0 or i > imax

3.2.1 Two-class Formulation

For the two-class problem, i.e. K = 2, the budget equation can be simplified by writing
c = (1− c, c) and obtaining the two-class market price equation

(1− c)
M
∑

m=1

βmφ2
m(x, c)− c

M
∑

m=1

βmφ1
m(x, 1− c) = 0 (3.20)

This can be solved numerically directly in c using the bisection method. Again, the solution
is unique if φk

m(x, ck),m = 1, ...,M, k = 1, 2 are continuous, monotonically non-increasing
and

∑K
k=1 φ

k
m(x, ck) > 0, ∀c ∈ (0, 1)K ,

∑K
k=1 ck = 1. Moreover, the solution is guaranteed

to exist if there exist m,m′ with βm > 0, βm′ > 0 and such that φ2
m(x, 0) > 0, φ1

m′(x, 1) > 0.

3.3 Specialization

In real world prediction markets, participants bid on events that pertain to their exper-
tise. In a classification market, this amounts to participants that bid only on a subset of

22

the feature space. See figure 3.3 for a simple example. This idea was explored in [34, 33, 3]
and showed promising results when aggregating the leaves of decision trees. For example, in
figure 3.3, each partition of the domain corresponds to a market participant. Since decision
tree leaves describe disjoint partitions, the market participants are taken from the leaves of
several random trees.

_

_ _

_
_

_ _ __

_

_

_
_

_

__

+

+

+
+

Figure 3.3: A perfect classifier can be constructed for the triangular region above
from a market of six specialized classifiers that only bid on a half-plane determined
by one side of the triangle. Three of these specialized classifiers have 100% accuracy
while the other three have low accuracy. Nevertheless, the market is capable of
obtaining 100% accuracy overall.

3.4 Loss Function

In the general market, the artificial prediction market can be shown to maximize log
likelihood. The loss function is then the negative log likelihood

ℓ(β) = −
∑

(x,y)∈(X,Y)

log(cy(x;β)) (3.21)

This can be shown with either stochastic gradient descent or as recasting the problem in
terms of the KL divergence.

3.4.1 Stochastic Gradient

Consider the reparametrization γ = (γ1, ..., γM) = (
√
β1, ...,

√
βM). The market price

c(x) = (c1(x), ..., cK(x) is an estimate of the class probability p(y = k|x) for each instance
x ∈ Ω. Thus a set of training observations (xi, yi), i = 1, ..., N , since p̂(y = yi|xi) = cyi(xi),
the (normalized) log-likelihood function is

L(γ) =
1

N

N
∑

i=1

ln p̂(y = yi|xi) =
1

N

N
∑

i=1

ln cyi(xi) (3.22)

We will again use the total amount bet B(x, c) =
∑M

m=1

∑K
k=1 βmφk

m(x, c) for observa-
tion x at market price c.

23

Leaf of a Decision Tree

Leaf

1

2

3

(a)

2

3 1

Leaf Specialization

Leaf Domain

+

+

+

+
+

+
+

+
+

+

+

+

+

+

+

+
+

+

++
++

++ +
+

+

+
+

+

–

–

–

––

–
–

–
–

–
–

–

–

–

–

–
–

–

––
––

–– –
–

–

–
–

–

(b)

Figure 3.4: This figure is an example of a decision tree leaf (a) and its specialization
domain (b). Decision tree leaves are perfect classifiers of the training data on their
subdomain. However, they may not generalize on unseen data.

We will first focus on the constant market φk
m(x, c) = φk

m(x), in which case B(x, c) =
B(x) =

∑M
m=1

∑K
k=1 βmφk

m(x). We introduce a batch update on all the training examples
(xi, yi), i = 1, ..., N :

βm ← βm + βm
η

N

N
∑

i=1

1

B(xi)

(

φyi
m(xi)

cyi(xi)
−

K
∑

k=1

φk
m(xi)

)

. (3.23)

Equation (3.23) can be viewed as presenting all observations (xi, yi) to the market simul-
taneously instead of sequentially. The following statement is proved in the Appendix

Theorem 3.4.1. ML for constant market. The update (3.23) for the constant market
maximizes the likelihood (3.22) by gradient ascent on γ subject to the constraint

∑M
m=1 γ

2
m =

1. The incremental update

βm ← βm + βm
η

B(xi)

(

φyi
m(xi)

cyi(xi)
−

K
∑

k=1

φk
m(xi)

)

. (3.24)

maximizes the likelihood (3.22) by constrained stochastic gradient ascent.

In the general case of non-constant betting functions, the log-likelihood is

L(γ) =
N
∑

i=1

log cyi(xi) =
N
∑

i=1

log
M
∑

m=1

γ2mφyi
m(xi, c(xi))−

N
∑

i=1

log
K
∑

k=1

M
∑

m=1

γ2mφk
m(xi, c(xi))

(3.25)
If we ignore the dependence of φk

m(xi, c(xi)) on γ in (3.25), and approximate the gradient
as:

24

∂L(γ)

∂γj
≈

N
∑

i=1

(

γjφ
yi
j (xi, c(xi))

∑M
m=1 γ

2
mφyi

m(xi, c(xi))
−

γj
∑K

k=1 φ
k
j (xi, c(xi))

∑K
k=1

∑M
m=1 γ

2
mφk

m(xi, c(xi))

)

then the proof of Theorem 3.4.1 follows through and we obtain the following market update

βm ← βm + βm
η

B(x, c)

[

φy
m(x, c)

cy
−

K
∑

k=1

φk
m(x, c)

]

, m = 1, ...,M (3.26)

This way we obtain only an approximate statement in the general case

Remark 3.4.2. Maximum Likelihood. The prediction market update (3.26) finds an
approximate maximum of the likelihood (3.22) subject to the constraint

∑M
m=1 γ

2
m = 1 by an

approximate constrained stochastic gradient ascent.

Observe that the updates from (3.24) and (3.26) differ from the update (3.12) by using
an adaptive step size η/B(x, c) instead of the fixed step size 1.

It is easy to check that maximizing the likelihood is equivalent to minimizing an ap-
proximation of the expected KL divergence to the true distribution

EΩ[KL (p(y|x), cy(x))] =
∫

Ω
p(x)

∫

Y

p(y|x) log p(y|x)
cy(x)

dydx

obtained using the training set as Monte Carlo samples from p(x, y).
In many cases the number of negative examples is much larger than the positive exam-

ples, and is desired to maximize a weighted log-likelihood

L(γ) =
1

N

N
∑

i=1

w(xi) ln cyi(xi)

This can be achieved (exactly for constant betting and approximately in general) using the
weighted update rule

βm ← βm + ηw(x)
βm

B(x, c)

[

φy
m(x, c)

cy
−

K
∑

k=1

φk
m(x, c)

]

, m = 1, ...,M (3.27)

The parameter η and the number of training epochs can be used to control how close
the budgets β are to the ML optimum, and this way avoid overfitting the training data.

An important issue for the real prediction markets is the efficient market hypothesis,
which states that the market price fuses in an optimal way the information available to the
market participants [23, 5, 35]. From Theorem 3.4.1 we can draw the following conclusions
for the artificial prediction market with constant betting:

1. In general, an untrained market (in which the budgets have not been updated based
on training data) will not satisfy the efficient market hypothesis.

2. The market trained with a large amount of representative training data and small η
satisfies the efficient market hypothesis.

25

3.4.2 Contraction Mapping

The Constant Market minimizes the expected KL divergence given by

EΩ[KL (p(y|x), cy(x))] =
∫

Ω
p(x)

K
∑

k=1

p(k|x) log p(k|x)
ck(x)

dx (3.28)

This can be shown directly by posing this problem as a fixed point problem. First denote
the equilibrium price as

cy(x;β) =
M
∑

m=1

βmhym(x)

then the loss function is defined in terms of β as

ℓ(β) =

∫

Ω
p(x)KL(p(y|x), cy(x;β))dx (3.29)

The loss function is strictly convex whenever β ∈ R
M
≥0\{0}

Theorem 3.4.3. Strict Convexity ℓ(β) is strictly convex whenever β ∈ R
M
≥0\{0}.

Now reparameterize β in terms of u,v ∈ R
M ,

∑M
m=1 um = 1 and Z ∈ R

M×M

β = u+ Zv

where Z is defined as

Z =
1

M
(I − 11T)

Observe that Z is symmetric and subtracts the mean off any vector it projects, such that
Zx = x− x̄. More importantly, any y = Zx has a component sum of 0 so that β is always
guaranteed to sum to 1. Taking the gradient with respect to v then gives

∇vE[KL(p(y|x), cy(x;β))] = −
∫

Ω
p(x)

K
∑

k=1

p(k|x) 1

ck(x;β)
∇vck(x;β)dx

= −
∫

Ω
p(x)

K
∑

k=1

p(k|x) 1

ck(x;β)
ZT∇βck(x;β)dx

= −ZT

∫

Ω
p(x)

K
∑

k=1

p(k|x) hk(x)

ck(x;β)
dx

where hk(x) = [hk1(x), h
k
2(x), . . . h

k
M (x)] denotes the vector of classifiers. We want to solve

∇vE[KL(p(y|x), cy(x;β))] = −ZT

∫

Ω
p(x)

K
∑

k=1

p(k|x) hk(x)

ck(x;β)
dx = 0

Since rows of Z sum to zero, it follows that the only solutions to the above system is a
scaled 1 vector

∫

Ω
p(x)

K
∑

k=1

p(k|x) hk(x)

ck(x;β)
dx = C1 C ∈ R

26

The constant C is determined by hitting both sides with βT

∫

Ω
p(x)

K
∑

k=1

p(k|x)β
Thk(x)

ck(x;β)
dx = CβT1 =⇒ C = 1

where ck(x;β) = βThk(x) =
∑M

m=1 βmhkm(x). So to the solve the system

∫

Ω
p(x)

K
∑

k=1

p(k|x) hk(x)

ck(x;β)
dx = 1

consider solving the fixed point problem

gm(βm) = βmfm(β) = βm∀m = 1, 2, . . . ,M (3.30)

where

f(β) =

∫

Ω
p(x)

K
∑

k=1

p(k|x) hk(x)

ck(x;β)
dx

with the iterative method
βt+1 = g(βt) (3.31)

It is easy to check that (3.31) is equivalent to (3.23) by using the training set as Monte
Carlo samples in Monte Carlo quadrture to estimate the integral. It is therefore a map

g : BM → BM

where BM = {β ∈ [0, 1]M : ‖β‖1 = 1} is the set of all admissible budget configurations.
The fixed point method (3.31) will converge for some β0 ∈ BM if the Jacobian matrix
Jg(β

∗) has eigenvalues with magnitude strictly less than 1.

Theorem 3.4.4. Eigenvalues of Jacobian The eigenvalues of Jg(β
∗), where β∗ ∈ BM

is the minimizer of (3.29), have magnitude strictly less than 1.

3.4.3 Weighted Updates

In many real world problems, the number of training instances with a particular label
y greatly outnumbers training instances with other training labels, in other words Nk ≪
Ny, k 6= y. In such cases, it is trivial to minimize the misclassification rate by always
classifying the dominant label. Thus, the market update rule (3.13) will tend to favor
those participants that bet on the dominant label. To prevent this, consider varying η
based on the class label. That is, those training instances with less frequent label ought to
be weighted more than those training instances with more frequent labels, or in this case
ηy < ηk, k 6= y. This gives the modified update rule

βm ← βm − ηyβm

k
∑

k=1

φk
m(x, c) + ηyβm

φy
m(x, c)

cy
(3.32)

27

In the case of the constant market, φk
m(x, c) = hkm(x), the KL loss (3.28) can be rewritten

to reveal a regularization mechanism that relates directly back to ηy in (3.32). By using
Bayes rule we have

EΩ[KL (p(y|x), cy(x))] =
∫

Ω
p(x)

K
∑

k=1

p(k|x) log p(k|x)
ck(x)

dx (3.33)

=
K
∑

k=1

p(k)

∫

Ω
p(x|k) log p(k|x)

ck(x)
dx (3.34)

Parameterizing β, as in 3.4.2
β = u+ Zv

and differentiating with respect to components of v then leads to a similar problem

K
∑

k=1

p(k)

∫

Ω
p(x|k) hk(x)

ck(x;β)
dx = 1

and through the same means, can be rewritten as a fixed point problem

K
∑

k=1

p(k)

∫

Ω
p(x|k)βmhkm(x)

ck(x;β)
dx = βm m = 1, 2, . . . ,M

The same approach used to show (3.31) is a contraction can also be used to show that this
mapping is a contraction and therefore this gives the update rule

βt+1
m =

K
∑

k=1

p(k)

∫

Ω
p(x|k)β

t
mhkm(x)

ck(x;β
t)
dx

Since p(x|k) is not normally known, the integral can be estimated by taking the training
instances as Monte Carlo quadrature points, giving

βt+1
m =

K
∑

k=1

p(k)
1

|Xk|
∑

x∈Xk

βt
mhkm(x)

ck(x;β
t)

(3.35)

whereXk is the set of training instances with label k. Loosely using the relationship between
the batch update rule (3.23) and the incremental update rule (3.24), this gives the following
weighted update rule

βm ← βm +
p(y)

|Xy|
βm

(

hym(x)

cy(x;β)
− 1

)

(3.36)

which suggests that

ηy =
p(y)

|Xy|
(3.37)

This weighted update rule (3.36) is empirically demonstrated in section 6.1.4 where the
number of negative samples greatly outnumbers the number of positive samples. Without
this modification, the market would favor the participants that bet on negatives and never
classify positive for any instance.

28

3.4.4 Case Study

We first investigate the behavior of three markets on a dataset in terms of training and
test error as well as loss function. For that, we chose the satimage dataset from the UCI
repository [7] since it has a supplied test set. The satimage dataset has a training set of
size 4435 and a test set of size 2000.

The markets investigated are the constant market with both incremental and batch
updates, given in eq. (3.24) and (3.23) respectively, the linear and aggressive markets with
incremental updates given in (3.26). Observe that the η in eq. (3.24) is not divided by N
(the number of observations) while the η in (3.23) is divided by N . Thus to obtain the same
behavior the η in (3.24) should be the η from (3.23) divided by N . We used η = 100/N for
the incremental update and η = 100 for the batch update unless otherwise specified.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
x 10

−3

Number of Epochs

M
is

cl
as

si
fic

at
io

n
E

rr
or

Linear incremental
Aggressive inc.
Constant inc.
Constant batch
Random Forest

0 5 10 15 20 25 30 35 40 45 50
0.086

0.087

0.088

0.089

0.09

0.091

0.092

0.093

0.094

Number of Epochs

M
is

cl
as

si
fic

at
io

n
E

rr
or

Linear incremental
Aggressive incremental
Constant incremental
Constant batch
Random Forest

0 5 10 15 20 25 30 35 40 45 50
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Epochs

−
 L

og
 L

ik
el

ih
oo

d

Linear incremental
Constant inc.,eta=10/N
Constant batch,eta=10
Aggressive inc.
Constant incremental
Constant batch

Figure 3.5: Experiments on the satimage dataset for the incremental and batch
market updates. Left: The training error vs. number of epochs. Middle: The
test error vs. number of epochs. Right: The negative log-likelihood function vs.
number of training epochs. The learning rates are η = 100/N for the incremental
update and η = 100 for the batch update unless otherwise specified.

In Figure 3.5 are plotted the misclassification errors on the training and test sets and the
negative log-likelihood function vs. the number of training epochs, averaged over 10 runs.
From Figure 3.5 one could see that the incremental and batch updates perform similarly in
terms of the likelihood function, training and test errors. However, the incremental update
is preferred since it is requires less memory and can handle an arbitrarily large amount of
training data. The aggressive and constant markets achieve similar values of the negative
log likelihood and similar training errors, but the aggressive market seems to overfit more
since the test error is larger than the constant incremental (p-value< 0.05). The linear
market has worse values of the log-likelihood, training and test errors (p-value< 0.05).

3.5 Relation with Existing Supervised Learning Methods

Aside of general linear aggregation techniques, artificial prediction markets for classifica-
tion can also mimic logistic regression and support vector machines. While not necessarily
identical, it demonstrates the potential of prediction markets as a learning framework for
classification tasks.

29

3.5.1 Constant Market

One specific and successful example of a classification market is the so-called Constant
Market. In the constant market, betting functions are taken to be the classifiers themselves

φ(x, c) = h(x) (3.38)

Participants bet entirely on experience and the price is completely ignored. This violates
some of the properties previously described.

The equilibrium price in this market is given as a linear combination of classifiers

c(x) =
M
∑

m=1

βmhm(x) (3.39)

where
∑M

m=1 βm = 1. This type of market is an example of linear aggregation which include
methods such as Boosting [26] and Random Forest [9].

3.5.2 Logistic Regression

By taking the following betting functions

φ1
m(x, 1− c) = (1− c)

(

x+
m −

1

B
ln(1− c)

)

(3.40)

φ2
m(x, c) = c

(

−x−m −
1

B
ln c

)

(3.41)

with x+ = xI(x > 0), x− = xI(x < 0) where I(·) is the indicator function, and B =
∑M

m=1 βm. The binary class equilibrium equations then become

M
∑

m=1

βmc(1− c)

(

xm −
1

B
ln(1− c) +

1

B
ln(c)

)

= 0

and so ln 1−c
c

=
∑M

m=1 βmxm, which gives the logistic regression model

c =
1

1 + exp(
∑M

m=1 βmxm)

This gives the update rule βm ← βm − ηβm[(1− c)x+
m + cx−

m −H(c)/B] + ηβmuy(c), where
u1(c) = x+

m − ln(1− c)/B, u2(c) = −x−
m − ln(c)/B.

Writing xβ =
∑M

m=1 βmxm, the budget update can be rearranged to

βm ← βm − ηβm

(

xm −
xβ

B

)(

y − 1

1 + exp(xβ)

)

(3.42)

This equation resembles the standard per-observation update equation for online logistic
regression:

βm ← βm − ηxm

(

y − 1

1 + exp(xβ)

)

(3.43)

30

with two differences. The term xβ/B ensures the budgets always sum to B while the βm
ensures that βm ≥ 0.

The update from eq. (3.42), like eq. (3.43), tries to increase |xβ|, but it does that
subject to constraints that βm ≥ 0, m = 1, . . . ,M and

∑M
m=1 βm = B. Also observe that

multiplying β by a constant does not change the decision line of the logistic regression.

3.5.3 Support Vector Machine

If each training instance (xm, ym), m = 1, 2, . . . ,M is taken to be associated with a
participant in the market, with betting function φm(x) defined in terms of

um(x) =
xT
mx

‖xm‖‖x‖

and

φym
m (x) = um(x)+ =

{

um(x) um(x) ≥ 0

0 otherwise

φ2−ym
m (x) = −um(x)− =

{

0 um(x) ≥ 0

−um(x) otherwise

(3.44)

This gives a constant market with two-class price equations

c =

∑M
m=1 βmφ2

m(x)
∑M

m=1 βm (φ1
m(x) + φ2

m(x))
=

∑M
m=1 βm [ymum(x)− um(x)−]

∑M
m=1 βm|um(x)|

since φ2
m(x) = ymum(x) − um(x)− and φ1

m + φ2
m = |um(x)|. The decision rule c > 0.5

then becomes
∑M

m=1 βmφ2
m(x) >

∑M
m=1 βmφ1

m or
∑M

m=1 βm
(

φ2
m(x)− φ1

m(x)
)

> 0. Since

φ2
m(x) − φ1

m(x) = (2ym − 2)um(x) = (2ym − 2) xT
mxm

‖xm‖‖x‖ (where ym ∈ {1, 2}), we obtain
something like the SVM

h(x) = sgn

(

M
∑

m=1

αm(2ym − 3)xT
mx

)

where αm = βm/‖xm‖. In this case, the budget update becomes

βm ← βm − ηβm|um(x)|+ ηβm
φy
m(x)

cy

The same reasoning holds for um(x) = K(xm,x) with the RBF kernel K(xm,x) =
exp(−‖xm − x‖2/σ2). In figure 3.6 left, is shown an example of the decision boundary of a
market trained online with an RBF kernel with σ = 0.2 on 1000 examples uniformly sampled
in the [−1, 1] × [−1, 1] domain. In Figure 3.6 right, is shown the estimated probability
p̂(y = 1|x).

31

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.6: Left: 1000 training examples and learned decision boundary for an
RBF kernel-based market from eq. (3.44) with σ = 0.1. Right: The estimated
conditional probability function.

32

CHAPTER 4

PREDICTION MARKETS FOR REGRESSION

Described in the previous chapter, the classification market is defined by a betting function
φk(x, c) that describes the proportion of the budget β to allot for label k for a given instance
x and trading prices for all labels c. The equilibrium price c is defined such that the for
any label, the sum of profits equaled the sum of losses

M
∑

m=1

βm
φy
m(x, c)

cy
=

M
∑

m=1

βm

K
∑

k=1

φk
m(x, c) y = 1, 2, . . . ,K

This equilibrium system corresponds to the update rule for the classification market

βm ← βm − βm

K
∑

k=1

φk
m(x, c) + βm

φy
m(x, c)

cy

for m = 1, 2, . . . ,M . This is the profit. With a little reworking, the above equilibrium is
equivalent to solving the following fixed point problem

ck =
M
∑

m=1

βmφk
m(x, c) k = 1, 2, . . . ,K

The trading price c is considered to be an estimate of the conditional mass. In fact, [3]
demonstrates that the classification market maximizes log likelihood.

4.1 Problem Setup

The extension of prediction markets to the regression problem proves to be counterintu-
itive. In classification, the goal is to predict the one correct label for a given instance. What
can be said about regression? Assume, for the time being that the classification market
framework generalizes. For the sake of consistency with probability notation φ(y|x, c) will
denote a betting functional that allots a proportion of the budget for response y ∈ R. This
implies that

φ(y|x, c) ≥ 0 (4.1)
∫

Y

φ(y|x, c)dy ≤ 1 (4.2)

33

since no participant may bet more than the whole of their budget in this market. A curious
consequence of this constraint is that it is possible for φ(y|x, c) > 1 for some y. Likewise,
the trading prices for y are denoted as the price function c(y|x). The trading price is a
conditional density on the possible responses y. The prediction for y can be computed
from, for example, expectation

y =

∫

Y

tc(t|x)dt (4.3)

However, the price function can also model ambiguous responses. For example, points
along a circle could result in a bimodal price function. An example of multi-modal price
functions can be seen in figure 4.1 where a regression tree learns a conditional density on
an Archimedes spiral.

Figure 4.1: A conditional density of a clustering regression tree predicting multiple
y values on an Archimedes spiral. The regression tree fits Gaussians to y values
using EM. The splitting criteria is based on the average ℓ2 residuals from the
nearest cluster center. This illustrates how a Regression Market price function
can be used to make predictions for more than just one y value. The distortion
on the left and right sides correspond to the default leaf nodes used to make
predictions beyond the training domain.

The equilibrium price function c(y|x) receives similar treatment as the classification
market. The objective is to find a c(y|x) that gives conservation of budget. In other words,
that the total winnings match the total losses. In the classification market, the winnings are

34

determined on the one true class label y = k. However, in regression, predictions need only
be accurate within some tolerance. Rewarding market participants based on their bet on
the exact value of y may be too strict. This issue is resolved by introducing a reward kernel
K(t; y). The reward kernel is a density with a single mode centered about the ground truth
y. The winnings are subsequently defined as

winnings =

∫

Y

K(t; y)
φ(t|x, c)
c(t|x) dt (4.4)

This has the effect of partially rewarding participants for nearby predictions. Likewise, the
total expenditures for contracts are given as

bet =

∫

Y

φ(t|x, c)dt (4.5)

These forms are similar to (3.11) (3.10) except with integrals instead of sums. This gives
the general budget update in terms of profit

βm ← βm − βm

∫

Y

φm(t|x, c)dt+ βm

∫

Y

Ky(t)
φm(t|x, c)
c(t|x) dt

and can also be written like (3.12)

βm ← βm − ηβm

∫

Y

φm(t|x, c)dt+ ηβm

∫

Y

Ky(t)
φm(t|x, c)
c(t|x) dt (4.6)

However, these rules assume c(y|x) is already known. Similar to the classification market,
the equilibrium price function c(y|x) is defined such that gains match the losses

M
∑

m=1

βm

∫

Y

K(t; y)
φm(t|x, c)
c(t|x) dt =

M
∑

m=1

βm

∫

Y

φm(t|x, c)dt (4.7)

At the time of this writing, there is no known general solution to (4.7). If φm(t|x, c) =
hm(t|x) where hm(t|x) is a conditional density, then the solution is trivial and reduces to
the Constant Regression Market. The general problem may be approximately solvable by
considering an expansion of the price function of the form

c(t) =
N
∑

i=1

ωiki(t)

where ωi are weights and ki(t) are basis functions. Then the price function could be solved
by solving for the weights ωi. Another possibility is to consider solving for the price function
value at discrete points ti. In the update rule (4.13), these discrete points ti would be the
Hermite-Gauss nodal points.

35

4.1.1 Constant Market for Regression

For simplicity and the reported empirical performance of the constant classification mar-
ket, the remainder of this chapter assumes φ(y|x, c) = h(y|x) where h(y|x) is a conditional
density with mean f(x). Here f(x) is a regressor. This defines the constant market for
regression with

c(y|x) =
M
∑

m=1

βmhm(y|x) (4.8)

y =

∫

Y

tc(t|x)dt =
M
∑

m=1

βmfm(x) (4.9)

The update rule is similar to that of the classification market in exception to the additional
reward kernel

βm ← βm + ηβm

(
∫

Y

K(t; y)
hm(t|x)
c(t|x) dt− 1

)

(4.10)

where η is the learning rate and also serves to prevent instanaeous bankruptcy (i.e. β = 0).
The price function c(y|x) satisfies (4.7) since

M
∑

m=1

[

βm

∫

Y

K(t;x)
hm(t|x)
c(t|x) dt− βm

∫

Y

hm(t|x)dt
]

=

∫

Y

K(t;x)

∑M
m=1 βmhm(t|x)

c(t|x) dt− 1 =

∫

Y

K(t;x)dt− 1 = 0

The choice of K(t; y) gives different update rules. We examine K(t; y) = δ(t−y) where δ(t)

is the Dirac delta function and K(t; y) = 1√
2πσ

e
−(t−y)2

2σ2

4.1.2 Delta Updates

When K(t; y) = δ(t−y) this gives an analogous update rule as the classification market

βm ← βm + ηβm

(

hm(y|x)
c(y|x) − 1

)

(4.11)

Even though this reward kernel is exacting, it will be shown empirically to work relatively
well.

4.1.3 Gaussian Updates

When K(t; y) = 1√
2πσ

e
−(t−y)2

2σ2 , this gives an update involving an integral

βm ← βm + ηβm

(
∫ ∞

−∞

1√
2πσ

e−
−(t−y)2

2σ2
hm(t|x)
c(t|x) dt− 1

)

(4.13)

36

Algorithm 5 Delta Budget Update (x, y, c)

Input: Training example (x, y), price function c(y|x)
for m = 1 to M do

Update participant m’s budget as

βm ← (1− η)βm + η
βm

c(y|x)hm(y|x) (4.12)

end for

One way to approximate this integral is with Hermite-Gauss quadrature [44]. A change of
variables is required to apply the quadrature rule

∫ ∞

−∞

1√
2πσ

e−
−(t−y)2

2σ2
hm(t|x)
c(t|x) dt (4.14)

=
1√
π

∫ ∞

−∞
e−t2 hm(y +

√
2σt|x)

c(y +
√
2σt|x)

dt (4.15)

≈ 1√
π

n
∑

i=1

ωi
hm(y +

√
2σti|x)

c(y +
√
2σti|x)

(4.16)

where ωi, ti are the n-point Hermite-Gauss weights and nodal points.
Intuitively, the choice of σ should reflect the noise variance of the training data (assuming

Gaussian noise). If σ is too small, the market is more prone to overfitting. This σ can

be chosen with cross validation by discretizing α ∈ (0, 1] and trying σ = α
√

1
N

∑N
n=1 y

2
n

(assuming the noise has mean 0).

Algorithm 6 Gaussian Budget Update (x, y, c)

Input: Training example (x, y), price function c(y|x)
for m = 1 to M do

Update participant m’s budget as

βm ← (1− η)βm + ηβm
1√
π

n
∑

i=1

ωi
hm(y +

√
2σti|x)

c(y +
√
2σti|x)

(4.17)

end for

4.1.4 Specialized Regression Markets

Introduced in [33], specialized markets are markets with participants which have local
support in the feature space. This type of participant is assumed to perform relatively well
in its domain. An example of a specialized market is a market with random tree leaves
as participants. These types of markets have been demonstrated to be competitive with
random forest. The specialized regression market of tree leaves is similar except that leaves
are Gaussian instead of histograms. Each regression tree stores the sample mean ȳ and
variance σ2 of instances that fall in each leaf.

37

4.2 Loss Function

Like the classification market, the regression market maximizes the log likelihood. The
loss function is then the negative log likelihood, given by

ℓ(β) = −
∑

(x,y)∈(X,Y)

log(p(y|x)) (4.18)

Similar approaches as in the previous chapter can be used to show this. Particularly, the
contraction mapping approach in section 3.4.2 readily generalizes to the regression market.
However, this minimizes the expected KL divergence given by

EX [KL(p(y|x), c(y|x;β))] =
∫

X

p(x)

∫

Y

p(y|x) log p(y|x)
c(y|x;β)dydx (4.19)

In particular, this loss function suggests that the optimal reward kernel is the ground truth
conditional K(t) = p(t|x). With this interpretation, the reward kernel can serve as either a
prior or as a means to regularize the regression market training.

4.2.1 Case Study

To empirically demonstrate the loss function, we considered the evolution of the Regres-
sion Market over three data sets: housing, cpu-performance, californiahousing using the
incremental update (4.11). The evolution of housing and cpu-performance was recorded
over 50 epochs and averaged over 100 runs while the evolution for californiahousing was
only recorded over 10 epochs because it overfits in relatively few epochs.

In all examples in figure 4.2, the Regression Market is maximizing the log likelihood.
However, it is worth mentioning from the results, that maximizing the log likelihood does
not necessarily imply that the training error decreases. The Regression Market is inferring
the true unknown conditional density and not the regressor itself.

38

0 10 20 30 40 50
1.9

1.92

1.94

1.96

1.98

2

2.02

2.04

Epochs

ho
us

in
g

Training Error

Market Training RMSD
Forest Training RMSD

0 10 20 30 40 50
3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.3

3.31

3.32

Epochs

Test Error

Market Test RMSD
Forest Test RMSD

0 10 20 30 40 50
1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

1.61

Epochs

Loss

Market Training Loss

(a) Training error, test error, and negative log likelihood for the housing data set.

0 10 20 30 40 50
14

16

18

20

22

24

26

28

30

32

Epochs

cp
u−

pe
rf

or
m

an
ce

Training Error

Market Training RMSD
Forest Training RMSD

0 10 20 30 40 50
29

29.5

30

30.5

31

31.5

32

Epochs

Test Error

Market Test RMSD
Forest Test RMSD

0 10 20 30 40 50
0.9

1

1.1

1.2

1.3

1.4

1.5

Epochs

Loss

Market Training Loss

(b) Training error, test error, and negative log likelihood for the cpu-performance data set.

1 2 3 4 5 6 7 8 9 10
2.3

2.4

2.5

2.6

2.7

2.8

2.9
x 10

4

Epochs

ca
lif

or
ni

ah
ou

si
ng

Training Error

Market Training RMSD
Forest Training RMSD

1 2 3 4 5 6 7 8 9 10
5.1

5.11

5.12

5.13

5.14

5.15

5.16

5.17
x 10

4

Epochs

Test Error

Market Test RMSD
Forest Test RMSD

1 2 3 4 5 6 7 8 9 10
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Epochs

Loss

Market Training Loss

(c) Training error, test error, and negative log likelihood for the californiahousing data set.

Figure 4.2: Training error, test error and negative log likelihood for three data sets.

39

CHAPTER 5

PREDICTION MARKETS FOR DENSITY

ESTIMATION

In real prediction markets, participants bid on the future outcome of an event. In the
Classification Market, the event was an instance x ∈ X ⊆ R

F and the outcome y was an
element from a discrete and finite set y ∈ Y = {1, 2, . . . ,K}. This, in turn, generalized to
regression only that the outcome y was an element from an uncountable set y ∈ Y ⊆ R.
In both cases, there was an analog of an event and outcome. However, depending on your
perspective, density estimation either has no analog of an event or an outcome. Hence,
it is not immediately clear how prediction markets solve the density estimation problem.
However, the Regression Market update (4.6) provides a clue of how the prediction market
can be made to solve the density estimation problem and ultimately how prediction markets
work in general.

5.1 Problem Setup

As with classification and Regression Markets, the density estimation problem is solved
by aggregating a given set of densities {hm(x)}Mm=1 that estimate the true distribution of
a given set of instances {xn}Nn=1 with xn ∈ X ⊆ R

F . Each density has a corresponding
budget βm. The general objective is to compute the price function c(x) with c(x) ≥ 0
and to update the budget βm of each participant. The price function c(x) has no intuitive
interpretation as there is notion of outcome and therefore no contract to price. However,
the price function is intended to estimate the true distribution and therefore we constrain
∫

X
c(x)dx = 1.
For reasons mentioned in previous paragraphs, the notion of betting does not readily

apply. However, for now we suppose that betting generalizes to density aggregation. That
is, these betting functions are defined analogously to (4.1) and (4.2)

φ(x, c) ≥ 0 (5.1)
∫

X

φ(x, c)dx ≤ 1 (5.2)

And as with the Regression Market, there are no intuitive properties for these functions

40

and we only suppose the following betting function

φconstant(x, c) = h(x) (5.3)

The notion of betting defines both the budget update and market equilibrium. Like the
Classification and Regression Markets, the budget update is given in terms of the profit
which is defined in terms of total spent and winnings. The total spent is a generalization
of (4.5) and is given as

bet = βm

∫

X

φm(x, c)dx (5.4)

Likewise, we suppose the winnings are a generalization of (4.4)

winnings = βm

∫

X

K(x)
φm(x, c)

c(x)
dx (5.5)

where K(x) is similar to the reward kernel from the Regression Market update. This gives
the general budget update rule as

βm ← βm − ηβm

∫

X

φm(x, c)dx+ ηβm

∫

X

K(x)
φm(x, c)

c(x)
dx (5.6)

It can be shown that the derivation of the Classification Market equilibrium (3.16) gener-
alizes for the Density Market and is given as

c(x) =
M
∑

m=1

βmφm(x, c) (5.7)

Now assuming the prediction market really does generalize to density aggregation in this
way, the reward kernel should distribute more winnings to those participants that best
describe characteristics of the true distribution p(x). In other words, if a participant ap-
proximately shares a common mode with p(x), then the participant ought to win more than
a participant that does not share a common mode with p(x). Hence, it is reasonable to
suppose that K(x) = p(x). Additionally, if the betting function is (5.3) then the update
simplifies to

βm ← (1− η)βm + ηβm

∫

X

p(x)
hm(x)

c(x)
dx (5.8)

Now, since xn ∼ p(x) then the integral in (5.8) can be approximated with Monte Carlo
quadrature, or

∫

X

p(x)
hm(x)

c(x)
dx ≈ 1

N

N
∑

n=1

hm(xn)

c(xn)

which gives a suspiciously similar update as the Classification Market (3.12) and Regression
Market (4.11)

βm ← (1− η)βm + ηβm
1

N

N
∑

n=1

hm(xn)

c(xn)
(5.9)

41

This update appears to be well approximated with the analog of the Classification and
Regression Market updates

βm ← (1− η)βm + ηβm
hm(x)

c(x)
(5.10)

Algorithm 7 Density Market Budget Update (x, c)

Input: Training example x, price function c(x)
for m = 1 to M do

Update participant m’s budget as

βm ← (1− η)βm + η
βm
c(x)

hm(x) (5.11)

end for

5.2 Expectation-Maximization Algorithm

The constant Density Market can be related to the Expectation Maximization (EM) [30]
algorithm in the context of mixture models. In this context, the objective is to associate
instances xn, n = 1, 2, . . . , N to a single distribution from pm(x), m = 1, 2, . . . ,M in the
mixture. For each xn we associate a zn ∈ {1, 2, . . . ,M} so that

xn ∼
M
∑

m=1

I(zn = m)pm(x)

where I(·) denotes the indicator function. Then the density of this mixture model is given
as

p(x) =
M
∑

m=1

πmpm(x)

where πm = Pr(z = m). Since the true form of pm(x) is often not known, it is chosen
to be some prior model with parameters θm, or pm(x; θm). A popular choice for pm(x)
is a Gaussian with θm = (µm,Σm) as the mean and covariance matrix respectively. To
determine the weights πm and parameters θm, the problem is posed as a maximum log
likelihood problem given as

max
π,θ

N
∑

n=1

log
M
∑

m=1

πmpm(xn; θm)

However, this is difficult to maximize directly. If instead the log likelihood is written in
terms of the latent variables zn, then the problem becomes

max
π,θ

N
∑

n=1

log
M
∑

m=1

I(zn = m)pm(xn; θm)

42

And this has the effect of decoupling the problem so that

N
∑

n=1

log
M
∑

m=1

I(zn = m)pm(xn; θm) =
M
∑

m=1

∑

x∈Xm

log pm(xm; θm)

whereXm = {xn : zn = m}. Now each set of parmeters θm can be optimized independently
(e.g. with gradient descent, or prior knowledge), greatly simplifying the problem. However,
the latent variables zn are not actually known. Instead, the indicator I(zn = m) can be
replaced by an estimate of Pr(zn = m) where

Pr(zn = m) =
πmpm(xn; θm)

∑M
m=1 πmpm(xn; θm)

Thus, the algorithm proceeds iteratively in two steps, colloquially labeled the E-step and
M-step respectively

1. The E-step
Compute

tm,n = Pr(zn = m) =
πmpm(xn; θm)

∑M
m=1 πmpm(xn; θm)

2. The M-step
Estimate πm based on the latent variable probabilities

πm ←
1

N

N
∑

n=1

tm,n (5.12)

and maximize over θ

θm ← argmax
θ

N
∑

n=1

log tm,npm(xn; θ)

3. Repeat steps 1 and 2 until convergence.

The constant Density Market update rule is identical to part of the EM M-step up-
date (5.12). Writing the Density Market update in terms of batch update (3.23) with η = 1
gives

βm ←
1

N

N
∑

n=1

βmhm(xn)

c(xn)

=
1

N

N
∑

n=1

βmhm(xn)
∑M

m=1 βmhm(xn)

=
1

N

N
∑

n=1

tm,n

43

5.3 Loss Function

The Constant Density Market maximizes log likelihood. The loss function is then the
negative log likelihood given by

ℓ(β) = −
∑

x∈X
log c(x;β)

Since the constant density market is a particular form of the EM, proofs that EM maximizes
log likelihood automatically apply to the constant density market. However, the contraction
approach discussed in 3.4.2 readily generalizes to the constant density market.

44

CHAPTER 6

RESULTS

In this chapter, we consider a set of experiments for the three types of markets: the classifi-
cation market, the regression market, and the density market. In the classification market,
we consider benchmarks on probability estimation, random splits and cross validation. We
first evaluate the probability estimation capabilities of the classification market when using
three types of betting functions. We then consider and compare three types of betting
functions used in the leaves of random trees to the raw random forest output for both our
implementation of random forest and Implicit Online Learning and those results (when
available) reported by Breiman. Similarly, for the regression task, we consider and compare
two updates rules aggregating the leaves of regression trees to the raw regression forest
output for both our implementation and those results reported by Breiman. We further
investigate the learning power of the regression market using two update rules on shallow
trees. For density estimation, we demonstrate preliminary results of the constant market
fitting a Gaussian mixture model.

6.1 Classification Market

The Classification Market was first tested on synthetic data to evaluate its accuracy for
probability estimation. The synthetic data was crafted in such a way so that it would exhibit
50 different levels of Bayes error. The market was trained on these data sets to determine
how well it would approximate the probability for increasingly difficult problems (increasing
Bayes error). Then the market was tested on 30 real data sets provided by the UCI machine
learning repository [25]. Two experiments were carried out to compare the Classification
Market with Random Forest and Implicit Online Learning. The first experiment was a
comparison of the Classification Market with three betting strategies, our implementation
of Random Forest and Breiman’s Random Forest results [9] on randomly split sets. The
second experiment was a comparison of the Classification Market with the constant betting
strategy (3.12), our implementation of the Random Forest, and Implicit Online Learning
on 10-fold cross validation sets. In both experiments, the Classification Market participants
were branches of each of the random trees of our implementation of random forest. Each
experiment was run on 100 samples and averaged. The comparisons are given in terms of
misclassification rates and statistical significance for both mean misclassification rate and
pair-wise misclassification rates (α < 0.01).

45

6.1.1 Evaluation of the Probability Estimation and Classification

Accuracy on Synthetic Data

We perform a series of experiments on synthetic datasets to evaluate the market’s ability
to predict class conditional probabilities P (Y |x). The experiments are performed on 5000
binary datasets with 50 levels of Bayes error

E =

∫

min{p(x, Y = 0), p(x, Y = 1)}dx,

ranging from 0.01 to 0.5 with equal increments. For each dataset, the two classes have
equal frequency. Both p(x|Y = k), k = 0, 1 are normal distributions N (µk, σ

2I), with
µ0 = 0, σ2 = 1 and µ1 chosen in some random direction at such a distance to obtain the
desired Bayes error.

For each of the 50 Bayes error levels, 100 datasets of size 200 were generated using
the bisection method to find an appropriate µ1 in a random direction. Training of the
participant budgets is done with η = 0.1.

For each observation x, the class conditional probability can be computed analytically
using the Bayes rule

p∗(Y = 1|x) = p(x|Y = 1)p(Y = 1)

p(x, Y = 0) + p(x, Y = 1)

An estimation p̂(y = 1|x) obtained with one of the markets is compared to the true

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Bayes Error Rate

E
st

im
at

io
n

E
rr

or

Aggressive bet
Constant bet
Random Forest
Linear bet

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
E

rr
or

Bayes Error Rate

Aggressive bet
Constant bet
Random Forest
Linear bet

Figure 6.1: Left: Class probability estimation error vs problem difficulty for 5000
100D problems. Right: Probability estimation errors relative to random forest.
The aggressive and linear betting are shown with box plots.

probability p∗(Y = 1|x) using the L2 norm

E(p̂, p∗) =
∫

(p̂(y = 1|x)− p∗(y = 1|x))2p(x)dx

where p(x) = p(x, Y = 0) + p(x, Y = 1).
In practice, this error is approximated using a sample of size 1000. The errors of the

probability estimates obtained by the four markets are shown in Figure 6.1 for a 100D

46

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.02

0.04

0.06

0.08

0.1

0.12

Bayes Error Rate

M
is

cl
as

si
fic

at
io

n
E

rr
or

Aggressive bet
Constant bet
Random Forest
Linear bet

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

R
el

at
iv

e
M

is
cl

as
si

fic
at

io
n

E
rr

or

Bayes Error Rate

Aggressive bet
Constant bet
Random Forest
Linear bet

Figure 6.2: Left: Misclassification error minus Bayes error vs problem difficulty
for 5000 100D problems. Right: Misclassification errors relative to random forest.
The aggressive betting is shown with box plots.

problem setup. Also shown on the right are the errors relative to the random forest, ob-
tained by dividing each error to the corresponding random forest error. As one could see,
the aggressive and constant betting markets obtain significantly better (p-value < 0.01)
probability estimators than the random forest, for Bayes errors up to 0.28. On the other
hand, the linear betting market obtains probability estimators significantly better (p-value
< 0.01) than the random forest for Bayes error from 0.34 to 0.5.

We also evaluated the misclassification errors of the four markets in predicting the correct
class, for the same 5000 datasets. The difference between these misclassification errors and
the Bayes error are shown in Figure 6.2, left. The difference between these misclassification
errors and the random forest error are shown in Figure 6.2, right. We see that all markets
with trained participants predict significantly better (p-value < 0.01) than random forest
for Bayes errors up to 0.3, and behave similar to random forest for the remaining datasets.

6.1.2 Comparison with Random Forest on UCI Datasets

In this section we conduct an evaluation on 31 datasets from the UCI machine learning
repository [7]. The optimal number of training epochs and η are meta-parameters that need
to be chosen appropriately for each dataset. We observed experimentally that η can take
any value up to a maximum that depends on the dataset. In these experiments we took
η = 10/Ntrain. The best number of epochs was chosen by ten fold cross-validation.

In order to compare with the results in [9], the training and test sets were randomly
subsampled from the available data, with 90% for training and 10% for testing. The ex-
ceptions are the satimage, zipcode, hill-valley and pokerdatasets with test sets of size
2000, 2007, 606, 106 respectively. All results were averaged over 100 runs.

We present two random forest results. In the column named RFB are presented the
random forest results from [9]where each tree node is split based on a random feature. In
the column named RF we present the results of our own RF implementation with splits
based on random features. The leaf nodes of the random trees from our RF implementation
are used as specialized participants for all the markets evaluated.

47

Table 6.1: The misclassification errors for 31 datasets from the UC Irvine Reposi-
tory are shown in percentages (%). The markets evaluated are our implementation
of random forest (RF), and markets with Constant (CB), Linear (LB) and respec-
tively Aggressive (AB) Betting. RFB contains the random forest results from
[9].

Data Ntrain Ntest F K ADB RFB RF CB LB AB
breast-cancer 683 – 9 2 3.2 2.9 2.7 2.7 2.7 2.7
sonar 208 – 60 2 15.6 15.9 18.1 17 17.4 17
vowel 990 – 10 11 4.1 3.4 4.2 3.6 • 3.9 • 3.4 •
ecoli 336 – 7 8 14.8 12.8 14.5 14.3 14.4 14.3
german 1000 – 24 2 23.5 24.4 23.7 23.3 23.3 23.3

glass 214 – 9 6 22 20.6 22 21.9 21.9 21.8
image 2310 – 19 7 1.6 2.1 2.1 1.8 • 1.8 • 1.8 •
ionosphere 351 – 34 2 6.4 7.1 6.5 6.2 6.4 6.3
letter-recognition 20000 – 16 26 3.4 3.5 3.3 3.2 • 3.2 • 3.2 •
liver-disorders 345 – 6 2 30.7 25.1 26.5 26.5 26.5 26.6
pima-diabetes 768 – 8 2 26.6 24.2 24.4 24.3 24.2 24.3
satimage 4435 2000 36 6 8.8 8.6 9.1 8.8 • 8.9 • 8.8 •
vehicle 846 – 18 4 23.2 25.8 24.3 23.6 24.2 23.6

voting-records 232 – 16 2 4.8 4.1 4.1 4.1 4.1 4.1
zipcode 7291 2007 256 10 6.2 6.3 6.1 6.2 † 6.1 6.1

abalone 4177 – 8 3 – – 44.7 44.7 44.6 44.7
balance-scale 625 – 4 3 – – 14 14.1 14.1 14.5 †
car 1728 – 6 4 – – 2.5 0.9 • 1.2 • 0.9 •
connect-4 67557 – 42 3 – – 19.9 16.7 • 16.9 • 16.7 •
cylinder-bands 277 – 33 2 – – 22.5 22.7 22.5 22.5
hill-valley 606 606 100 2 – – 45.1 44.4 • 44.8 • 44.5 •
isolet 1559 – 617 26 – – 7.6 7.4 7.5 7.4 •
king-rk-vs-king 28056 – 6 18 – – 21.6 11.0 • 11.8 • 11.0 •
king-rk-vs-k-pawn 3196 – 36 2 – – 1.2 0.4 • 0.5 • 0.4 •
magic 19020 – 10 2 – – 12.0 11.7 • 11.8 • 11.8 •
madelon 2000 – 500 2 – – 31.2 23 • 23.1 • 23 •
musk 6598 – 166 2 – – 2.2 1.1 • 1.2 • 1.1 •
splice-junction-gene 3190 – 59 3 – – 4.6 4.1 • 4.2 • 4.1 •
SAheart 462 – 9 2 – – 31.2 31.3 31.3 31.3
yeast 1484 – 8 10 – – 37.8 37.9 37.9 37.7

48

The CB, LB and AB columns are the performances of the constant, linear and respec-
tively aggressive markets on these datasets.

Significant mean differences (α < 0.01) from RFB are shown with +,− for when RFB
is worse respectively better. Significant paired t-tests [20] (α < 0.01) that compare the
markets with our RF implementation are shown with •, † for when RF is worse respectively
better.

The constant, linear and aggressive markets significantly outperformed our RF imple-
mentation on 22, 19 respectively 22 datasets out of the 31 evaluated. They were not
significantly outperformed by our RF implementation on any of the 31 datasets.

Compared to the RF results from [9] (RFB), CB, LB and AB significantly outperformed
RFB on 6,5,6 datasets respectively, and were not significantly outperformed on any dataset.

6.1.3 Comparison with Implicit Online Learning

We implemented the implicit online learning [32] algorithm for classification with linear
aggregation. The objective of implicit online learning is to minimize the loss ℓ(β) in a con-
servative way. The conservativeness of the update is determined by a Bregman divergence

D(β, βt) = φ(β)− φ(βt)− 〈∇φ(βt), β − βt〉

where φ(β) are real-valued strictly convex functions. Rather than minimize the loss function
itself, the function

ft(β) = D(β, βt) + ηtℓ(β)

is minimized instead. Here ηt is the learning rate. The Bregman divergence ensures that
the optimal β is not too far from βt. The algorithm for implicit online learning is as follows

β̃t+1 = argmin
β∈RM

ft(β)

βt+1 = argmin
β∈S

D(β, β̃t+1)

The first step solves the unconstrained version of the problem while the second step finds the
nearest feasible solution to the unconstrained minimizer subject to the Bregman divergence.

For our problem we use
ℓ(β) = − log(cy(β))

where cy(β) is the constant market equilibrium price for ground truth label y. We chose the
squared Euclidean distance D(β, βt) = ‖β − βt‖22 as our Bregman divergence and learning
rate ηt = 1/

√
t. To ensure that c =

∑M
m=1 hmβm = Hβ is a valid probability vector, the

feasible solution set is therefore S = {β ∈ [0, 1]M :
∑M

m=1 βm = 1}. This gives the following
update scheme

β̃t+1 = βt + ηt
1

p
(Hy)T

βt+1 = argmin
β∈S

{

‖β − β̃t+1‖22
}

49

where Hy =
(

hy1, hy2, . . . , hyM
)

is the vector of classifier outputs for the true label y,

q = Hyβt, r = Hy(Hy)T and p = 1
2

(

q +
√

q2 + 4ηtr
)

.

The results presented in Table 6.2 are obtained by 10 fold cross-validation. The cross-
validation errors were averaged over 10 different permutations of the data in the cross-
validation folds.

The results from CB online and implicit online are obtained in one epoch. The results
from the CB offline and implicit offline columns are obtained in an off-line fashion using an
appropriate number of epochs (up to 10) to obtain the smallest cross-validated error on a
random permutation of the data that is different from the 10 permutations used to obtain
the results.

The comparisons are done with paired t-tests and shown with ∗ and ‡ when the con-
stant betting market is significantly (α < 0.01) better or worse than the corresponding
implicit online learning. We also performed a comparison with our RF implementation,
and significant differences are shown with • and †.

Compared to RF, implicit online learning won 5-0, CB online won in 9-1 and CB offline
won 12-0.

Compared to implicit online, which performed identical with implicit offline, both CB
online and CB offline won 9-0.

The offline constant market performs best in many cases and is significantly better than
Implicit Online Learning and random forest.

6.1.4 Comparison with Adaboost for Lymph Node Detection

Finally, we compared the linear aggregation capability of the artificial prediction market
with adaboost for a lymph node detection problem. The system is setup as described in
[4], namely a set of lymph node candidate positions (x, y, z) are obtained using a trained
detector. Each candidate is segmented using gradient descent optimization and about 17000
features are extracted from the segmentation result. Using these features, adaboost con-
structed 32 weak classifiers. Each weak classifier is associated with one feature, splits the
feature range into 64 bins and returns a predefined value (1 or −1), for each bin.

Thus, one can consider there are M = 32 × 64 = 2048 specialized participants, each
betting for one class (1 or −1) for any observation that falls in its domain. The participants
are given budgets βij , i = 1, .., 32, j = 1, .., 64 where i is the feature index and j is the bin
index. The participant budgets βij , j = 1, ..., 64 corresponding to the same feature i are
initialized the same value βi, namely the adaboost coefficient. For each bin, the return class
1 or −1 is the outcome for which the participant will bet its budget.

The constant betting market of the 2048 participants is initialized with these budgets
and trained with the same training examples that were used to train the adaboost classifier.

The obtained constant market probability for an observation x = (x1, ..., x32) is based
on the bin indexes b = (b1(x1), ..., b32(x32):

p(y = 1|b) =
∑32

i=1 βi,bihi(bi)
∑32

i=1 βi,bi
(6.1)

An important issue is that the number Npos of positive examples is much smaller than
the number Nneg of negatives. Similar to adaboost, the sum of the weights of the positive

50

Table 6.2: Testing misclassification rates of our implementation of Random For-
est (RF), Implicit Online Learning [32], and Constant Betting (CB). • indicates
statistically significantly better than (RF), † indicates statistically significantly
worse than (RF) and ∗ indicates statistically significantly better than Implicit
Online/Offline Learning.

Implicit CB Implicit CB
Dataset Ntrain Ntest F K RF

Online Online Offline Offline
breast-cancer 683 – 9 2 3.1 3.1 3 3.1 3
sonar 208 – 60 2 15.1 15.2 15.3 15.1 14.6
vowel 990 – 10 11 3.2 3.2 3.2 3.2 2.9 •∗
ecoli 336 – 7 8 13.7 13.7 13.6 13.7 13.6
german 1000 – 24 2 23.6 23.5 23.5 23.5 23.4
glass 214 – 9 6 21.4 21.4 21.3 21.4 21
image 2310 – 19 7 1.9 1.9 1.9 1.9 1.8 •
ionosphere 351 – 34 2 6.4 6.5 6.5 6.5 6.5
letter-recognition 20000 – 16 26 3.3 3.3 3.3 •∗ 3.3 3.3
liver-disorders 345 – 6 2 26.4 26.4 26.4 26.4 26.4
pima-diabetes 768 – 8 2 23.2 23.2 23.2 23.2 23.2
satimage 4435 2000 36 6 8.8 8.8 8.8 8.8 8.7 •
vehicle 846 – 18 4 24.8 24.7 24.9 24.7 24.9
voting-records 232 – 16 2 3.5 3.5 3.5 3.5 3.5
zipcode 7291 2007 256 10 6.1 6.1 6.2 6.1 6.2
abalone 4177 – 8 3 45.5 45.5 45.6 † 45.5 45.5
balance-scale 625 – 4 3 17.7 17.7 17.7 17.7 17.7
car 1728 – 6 4 2.3 2.3 1.8 •∗ 2.3 1.1 •∗
connect-4 67557 – 42 3 19.9 19.9 • 19.5 •∗ 19.9 • 18.2 •∗
cylinder-bands 277 – 33 2 21.4 21.3 21.2 21.3 20.8 •
hill-valley 606 606 100 2 43.8 43.7 43.7 43.7 43.7
isolet 1559 – 617 26 6.9 6.9 6.9 6.9 6.9
king-rk-vs-king 28056 – 6 18 21.6 21.6 • 19.6 •∗ 21.5 • 15.7 •∗
king-rk-vs-k-pawn 3196 – 36 2 1 1 0.7 •∗ 1 0.5 •∗
magic 19020 – 10 2 11.9 11.9 • 11.8 •∗ 11.9 • 11.7 •∗
madelon 2000 – 500 2 26.8 26.5 • 25.6 •∗ 26.4 • 21.6 •∗
musk 6598 – 166 2 1.7 1.7 • 1.6 •∗ 1.7 • 1 •∗
splice-junction-gene 3190 – 59 3 4.3 4.3 4.2 •∗ 4.3 4.1 •∗
SAheart 462 – 9 2 31.5 31.5 31.6 31.5 31.6
yeast 1484 – 8 10 37.3 37.3 37.3 37.3 37.3

examples should be the same as the sum of weights of the negatives. To accomplish this in
the market, we use the weighted update rule Eq. (3.27), with wpos =

1
Npos

for each positive

example and wneg = 1
Nneg

for each negative.
The adaboost classifier and the constant market were evaluated for a lymph node detec-

tion application on a dataset containing 54 CT scans of the pelvic and abdominal region,
with a total of 569 lymph nodes, with six-fold cross-validation. The evaluation criterion is
the same for all methods, as specified in [4]. A lymph node detection is considered correct if
its center is inside a manual solid lymph node segmentation and is incorrect if it not inside
any lymph node segmentation (solid or non-solid).

In Figure 6.3, left, is shown the training and testing detection rate at 3 false positives
per volume (a clinically acceptable false positive rate) vs the number of training epochs. We
see the detection rate increases to about 81% for epochs 6 to 16 epochs and then gradually
decreases. In Figure 6.3, right, are shown the training and test ROC curves of adaboost
and the constant market trained with 7 epochs. In this case the detection rate at 3 false

51

0 5 10 15 20 25 30
0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Epoch

D
et

ec
tio

n
R

at
e

at
 3

 F
P

/V
ol

Train Market
Train Adaboost
Test Market
Test Adaboost

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

False positives per volume

D
et

ec
tio

n
ra

te

Train Market 7 Epochs
Train Adaboost
Test Market 7 Epochs
Test Adaboost

Figure 6.3: Left: Detection rate at 3 FP/vol vs. number of training epochs for a
lymph node detection problem. Right: ROC curves for adaboost and the constant
betting market with participants as the 2048 adaboost weak classifier bins. The
results are obtained with six-fold cross-validation.

positives per volume improved from 79.6% for adaboost to 81.2% for the constant market.
The p-value for this difference was 0.0276 based on paired t-test.

6.2 Regression Market

The Regression Market was tested on real and synthetic data sets provided by the UCI
machine learning repository and LIAAD [49]. The experimental setup was similar to that
of section 6.1. The Regression Market participants were branches of trained regression trees
and compared with regression forest using the same regression trees. The regression tree
branches themselves do not produce a probability estimate but an estimate for y and a local
estimate of the variance σ2. To make these compatible with the Regression Market, the
estimate y and sample variance σ2 were wrapped in a Gaussian density

p(y|x) = 1√
2πσ

e−
(y−f(x))2

2σ2

See figure 6.4 for an example of Gaussians in tree leaves.
The regression tree branches participate in the Regression Market by way of a Gaus-

sian. The Regression Market estimates for y were computed as an expected value of the
equilibrium price

Ec[y] =

∫

Y

yc(y|x)dy =
M
∑

m=1

βmfm(x) (6.2)

where fm(x) are each participant’s estimate of the ground truth y.
We performed two types of experiments with both updates (4.11), (4.13) and compared

with Breiman’s original regression results [9] as well as additional data sets from UCI and
LIAAD [49]. To be consistent with Breiman, nearly all experiments were conducted over

52

100 random splits where each split randomly sets aside 10% of the data set for testing. For
abalone, only 10 random splits with 25% of the data set aside for testing were considered.
Data sets with provided test sets were not randomly split. Instead, the forest and markets
were trained 100 times on the entire training set and tested on the provided test set. These
results vary due to the randomness of the regression forest.

All experiments were run on Windows 7 with 8GB of RAM and Core i7-2630QM proces-
sor (max 2.9GHz, 6MB L3 cache). On each training set 100 regression trees were trained.
Each regression tree node considered 25 randomized features, each a linear combination
of 2 random inputs. Each coefficient of the linear combination was uniformly picked from
[−1, 1]. In our implementation, 1000 of these random features were generated in advance
rather than at each node. The split criteria for each node is based on the weighted sample
variance. The rule “don’t split if the sample size is < 5” was enforced. Additionally, our
implementation treats categoricals as numeric inputs which differs from Breiman’s imple-
mentation. However, most data sets are comprised of numeric inputs.

Both market types were trained and evaluated over 50 epochs. Each epoch is one
complete pass through the training set. The reported errors are those that minimize the
MSE of the test set over the 50 epochs (averaged over the 100 runs).

MSE =
1

N

N
∑

n=1

(f(xn)− yn)
2 (6.3)

The learning rate η = 10
Ntrain

was used as in [3]. On the first run (random split or full training
set), the parameter σ for the Gaussian Market reward kernel was estimated using 2-fold
cross validation on the training set. This σ remained constant for the other 99 runs (9 runs
for abalone). The prediction for y was computed with expectation

y =

∫

Y

tc(t|x)dt =
M
∑

m=1

βmfm(x) (6.4)

In every result, significance is measured with significance level α = 0.01 in two ways:
pairwise t-test [20] and t-test on the means. The pairwise t-test was used to compare the
100 market runs with the 100 forest runs while the t-test on the means were compared with
Breiman’s reported results.

6.2.1 Comparison with Random Forest Regression

The first experiment considers aggregation of tree leaves of forests with fully grown
trees on UCI and LIAAD data sets. The results of seven of the data sets are compared with
Breiman’s reported results. The missing data set Robot Arm is private.

From table 6.3 our RF doesn’t perform identically with RFB. This can be attributed to
the synthetic nature of some data sets such as friedman1, friedman2, and friedman3 and/or
the fact that our implementation of regression forest does not treat categorical inputs the
same way. Of the Breiman comparisons, only GM is legitimately significantly better than
Breiman’s results for friedman2. Out of all the data sets, DM is significantly better than
RF for 12 data sets (in a pairwise sense) while GM is only significantly better than RF

53

for 11 data sets. However, DM is significantly worse than RF for 3 data sets while GM is
only significantly worse on 2 data sets. The significantly worse results can be attributed to
overfitting and/or poorly tuned reward kernel in the case of GM.

Table 6.3: Table of MSE for forests and markets on UCI and LIAAD data sets. The
F column is the number of inputs, Y is the range of regression, RFB is Breiman’s
reported error, RF is our forest implementation, DM is the Market with delta
updates, and GM is the Market with Gaussian updates. Bullets/daggers repre-
sent pairwise significantly better/worse than RF while +/– represent significantly
better/worse than RFB.

Data Ntrain Ntest F Y RFB RF DM GM
abalone 4177 – 8 [1.00, 29.00] 4.600 4.571 4.571 4.571

friedman1 200 2000 10 [4.30, 26.03] 5.700 4.343+ 4.335•+ 4.193•+
friedman2 200 2000 4 [−167.99, 1633.87] 19600.0 19431.852 19232.482• 18369.546•+
friedman3 200 2000 4 [0.13, 1.73] 0.022 0.028– 0.028•– 0.026•–
housing 506 – 13 [5.00, 50.00] 10.200 10.471 10.130• 10.128•
ozone 330 – 8 [1.00, 38.00] 16.300 16.916 16.925 16.917
servo 167 – 4 [0.13, 7.10] 0.246 0.336 0.295 0.322

ailerons 7154 6596 40 [−0.00,−0.00] – 2.814e-008 2.814e-008• 2.814e-008•
auto-mpg 392 – 7 [9.00, 46.60] – 6.469 6.444 6.405•
auto-price 159 – 15 [5118.00, 35056.00] – 3823550.43 3723413.430 3815863.98

bank 4500 3693 32 [0.00, 0.67] – 7.238e-003 7.212e-003• 7.210e-003•
breast cancer 194 – 32 [1.00, 125.00] – 1112.270 1112.509 1108.325
cartexample 40768 – 10 [−12.69, 12.20] – 1.233 1.233† 1.232•

computeractivity 8192 – 21 [0.00, 99.00] – 5.414 5.398• 5.414†
diabetes 43 – 2 [3.00, 6.60] – 0.415 0.426† 0.415
elevators 8752 7847 18 [0.01, 0.08] – 9.319e-006 9.288e-006• 9.225e-006•
forestfires 517 – 12 [0.00, 1090.84] – 5834.819 5844.493† 5680.131•
kinematics 8192 – 8 [0.04, 1.46] – 0.013 0.013• 0.013•
machine 209 – 6 [6.00, 1150.00] – 3154.521 2991.798• 3042.336

poletelecomm 5000 10000 48 [0.00, 100.00] – 29.813 28.855• 29.863†
pumadyn 4499 3693 32 [−0.09, 0.09] – 9.237e-005 8.917e-005• 8.888e-005•

pyrimidines 74 – 27 [0.10, 0.90] – 0.013 0.013 0.012
triazines 186 – 60 [0.10, 0.90] – 0.015 0.015 0.015

The Regression Market is almost always significantly better than our implementation of
regression forest. It is significantly worse on cart, forestfires, and pima. This may be due to
too large a value of the learning rate η. Neither Regression Market nor our implementation
of regression forest match Breiman’s regression forest. This may be due to differences in
our implementation and/or the fact that Breiman considers random linear combinations of
two features while we consider

√
F features.

6.2.2 Fast Regression using Shallow Trees

This experiment examined the aggregation capabilities of the regression market with
shallow trees. In many problems, it is prohibitively expensive to train and even evaluate
deep trees. In practice this is mitigated by enforcing a maximum tree depth. For example
in [18] and [45] the regression trees were constrained to depth 7. However, this strict
constraint on tree depth is prone to introduce leaves that do not generalize well due to
prematurely halting tree growth. The specialized regression market of tree leaves can be
used to weight the leaves. Poorly performing leaves will tend to have less weight thus
improving the overall prediction accuracy.

54

In addition to the previously mentioned experiment details, regression trees were grown
with a maximum depth of 10. Using the same depth 10 trees, MSE errors were computed
for leaves no deeper than depth 5. Figure 6.5 serves as an example of how a depth 5 tree
was evaluated from a depth 10 tree. Both depth 5 and depth 10 evaluations for training
and test sets were recorded. The timings for the larger of the two sets were averaged over
the 100 runs and used to compute the speedup. The markets were applied to the depth
5 leaves only. Since the market is just a linear aggregation of 100 leaves per instance, the
reported speedup for forest is similar to the speedup of the market.

From table 6.4 it can be seen that the depth 5 forest is roughly twice the speed of the
depth 10 forest. On diabetes, the small data set, features and forest likely fit in cache giving
the strange 0.7 speedup. DM performs significantly better than RF on seven data sets (in
a pairwise set) while DM only performs significantly better on six data sets. However, DM
performs significantly worse on two data sets while GM performs significantly worse on
one. No method legitimately performs significantly better than RFB since RF is already
better than RFB on those two data sets. The significantly worse results can be attributed
to overfitting and/or poorly tuned reward kernel in the case of GM.

Table 6.4: Table of MSE for depth 5 forests and markets on UCI and LIAAD data
sets. The F column is the number of inputs, Y is the range of regression, RFB is
Breiman’s reported error (these errors are from fully grown trees), RF is our forest
implementation, DM is the Market with delta updates, and GM is the Market
with Gaussian updates, and Speedup is the speedup factor of a depth 5 tree versus
a depth 10 tree for evaluation. Bullets/daggers represent pairwise significantly
better/worse than RF while +/– represent significantly better/worse than RFB.

Data Ntrain Ntest F Y RFB RF DM GM Speedup
abalone 4177 – 8 [1.00, 29.00] 4.600 4.438 4.318•+ 4.438 3.3

friedman1 200 2000 10 [4.30, 26.03] 5.700 5.076+ 4.701•+ 4.429•+ 1.8
friedman2 200 2000 4 [−167.99, 1633.87] 19600.0 29343.562– 23200.438•– 21183.421•– 1.9
friedman3 200 2000 4 [0.13, 1.73] 0.022 0.034– 0.029•– 0.028•– 2.0
housing 506 – 13 [5.00, 50.00] 10.200 12.869– 12.056•– 11.947•– 2.2
ozone 330 – 8 [1.00, 38.00] 16.300 16.976 16.964 16.932 2.1
servo 167 – 4 [0.13, 7.10] 0.246 0.248 0.241 0.254 1.6

auto-mpg 392 – 7 [9.00, 46.60] – 8.248 7.817• 7.750• 2.1
auto-price 159 – 15 [5118.00, 35056.00] – 4699789.7 4524741.81 4431992.3 1.4

breast cancer 194 – 32 [1.00, 125.00] – 1073.319 1071.820 1072.126 2.1
diabetes 43 – 2 [3.00, 6.60] – 0.400 0.426† 0.393 0.7
forestfires 517 – 12 [0.00, 1090.84] – 4945.630 5445.001† 5196.451† 2.2
machine 209 – 6 [6.00, 1150.00] – 3137.001 3127.932 2930.506 1.8
triazines 186 – 60 [0.10, 0.90] – 0.016 0.015• 0.015• 2.0

6.3 Density Market

To test whether the Density Market can really fit distributions, we consider mixture
models of Gaussians in both one and two dimensions. In one dimension, we generate a
random mixture model and sample 1000 points with which to train the Density Market. In
two dimensions, we consider EM clustering on a cloud of 1000 points describing a circle to
infer Gaussian participants for the Density Market. Even though EM does not cluster this

55

type of data very well, the objective was to generate participants for the Density Market.

6.3.1 Fitting 1D Gaussians

In this experiment, we considered four randomized mixture models composed of 10
Gaussians with randomized mean and variance. For each mixture, we considered fitting the
true mixture model with 100 Gaussians including the 10 mixture Gaussians, 5 Gaussians of
which 5 are from the 10 mixture Gaussians, 100 randomized Gaussians, and 5 randomized
Gaussians. The Density Market was trained on a sample of size 1000 over four epochs. The
evolution of the market over the four epochs in all four cases have been plotted in figure 6.6.
The Density Market converges in just a few epochs. The performance depends on the how
well the participants approximate the ground truth constituents. For example in 6.6(b), the
participants are the ground truth constituents and the Density Market can fit the mixture
relatively well.

6.3.2 Fitting 2D Gaussians

In this experiment, we considered 2D Gaussians inferred by EM clustering on a cloud
of points describing a circle. We repeatedly inferred 10 Gaussians initialized randomly for
a total of 100 Gaussians. We then trained a Density Market with these 100 Gaussians
to describe the distribution of points on the circle. Figure 6.7 illustrate the data points,
cluster centers and resulting trained Density Market. The Gaussians inferred by EM will not
necessarily fit the points well since points sampled along a circle do not behave like points
sampled from Gaussian distributions. However, the Density Market can be used to weed
out the poorly fit Gaussians. The budget configuration shown in figure 6.7(b) illustrates
that a large proportion of the participants have gone bankrupt (i.e. βm = 0).

56

Complete Tree

1

µ = 0.88 2

µ = 5.02 µ = 3.51

(a)

µ = 0.88

µ = 5.02

µ = 3.51

1 2

Complete Tree Splits

σ2 = 0.783 σ2 = 0.081 σ2 = 0.0096

+

++

+

+

+

+

+

+

+

+

+

+++

+ +

+
+

+
+ +

+ +
+++

+
++

+
++++ +++++ ++ +++++ ++ +

(b)

Figure 6.4: These figures demonstrate specialized Gaussian participants in a re-
gression tree. The numbered nodes in figure (a) correspond to the region splits
in figure (b). Each leaf stores the mean y value and estimated variance σ2 for its
partition and use these as the Gaussian parameters.

57

Depth 4 Tree

Depth 3 Tree

Figure 6.5: Examples of tree depths. A depth 3 tree may be evaluated from a
depth 4 tree by considering only the depth 3 subtree. This serves as an example
of how a depth 5 tree was evaluated from a depth 10 tree for comparison in the
aggregation of shallow regression tree leaves.

58

Epoch = 0 Epoch = 1 Epoch = 2 Epoch = 3

(a) Density Market evolution with 5 Gaussians, all of which are 5 of the true Gaussians fitting a mixture
of 10 Gaussians.

Epoch = 0 Epoch = 1 Epoch = 2 Epoch = 3

(b) Density Market evolution with 100 Gaussians with the 10 true Gaussians fitting a mixture of 10 Gaus-
sians.

Epoch = 0 Epoch = 1 Epoch = 2 Epoch = 3

(c) Density Market evolution with 5 randomized Gaussians fitting a mixture of 10 Gaussians.

Epoch = 0 Epoch = 1 Epoch = 2 Epoch = 3

(d) Density Market evolution with 100 randomized Gaussians fitting a mixture of 10 Gaussians.

Figure 6.6: These figures illustrate the Density Market fitting Gaussians (red) to
a set of data points sampled from the ground truth (black dashes).

59

Data
EM Mean

(a) The circle data with corre-
sponding inferred EM Gaussian
means.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Budget

(b) The sorted budget configuration
of the trained Density Market.

(c) An intensity plot of the trained
Density Market viewed from above.

(d) A 3D view of the trained Den-
sity Market.

Figure 6.7: These figures illustrate the Density Market fitting 2D Gaussians in-
ferred by EM to points sampled along a circle as well as the resulting budgets
sorted (β). Many poorly fit Gaussians are weeded out by the market.

60

CHAPTER 7

PROSPECTIVE IDEAS

This chapter covers a collection of ideas for further development and applications of the
prediction market. These were very briefly explored but not in any great detail.

7.1 Market Transform

At the time of this writing, all work on Articial Prediction Markets have assumed discrete
and finite participants, indexing budgets and betting functions with the integers βm and
φm for m = 1, 2, . . . ,M . However, suppose that there were uncountably many participants?
Suppose a family of betting functionals were indexed over a parameter space θ ∈ Θ with
budget β(θ) and participants φ(·; θ). It is tempting to suppose that the bets and winnings
generalize. Suppose, for example, the case of the regression market, then

Bet = β(θ)

∫

Y

φ(t|x, c; θ)dt

Winnings = β(θ)

∫

Y

p(t|x)φ(t|x, c; θ)
c(t|x;β) dt

where p(t|x) is the ground truth and reward kernel. Therefore, this would produce the
following update rule

β(θ)← β(θ)− β(θ)

∫

Y

φ(t|x, c; θ)dt+ β(θ)

∫

Y

p(t|x)φ(t|x, c; θ)
c(t|x;β) dt

Likewise, the equilibrium price functional c(y|x;β) would be computed such that winnings
and losses matched, or

∫

Θ
β(θ)

∫

Y

p(t|x)φ(t|x, c; θ)
c(t|x;β) dtdθ =

∫

Θ
β(θ)

∫

Y

φ(t|x, c; θ)dtdθ

However, there is no clear solution to these functional equations even in the case of the
regression and density markets. However, if φ(t|x, c; θ) = h(t|x; θ), then solving the equi-
librium equation is trivial and reduces to

∫

Θ

(

β(θ)

∫

Y

p(t|x)h(t|x; θ)
c(t|x;β)dt− β(θ)

∫

Y

h(t|x; θ)dt
)

dθ = 0

61

If the price functional is assumed to be similarly defined as in the classification, regression
and density markets

c(t|x;β) =
∫

Θ
β(θ)h(t|x; θ)dθ

at least almost everywhere, then it is trivial to show that budget is conserved and that this
is really an equilibrium price functional

∫

Θ

(

β(θ)

∫

Y

p(t|x)h(t|x; θ)
c(t|x;β)dt− β(θ)

∫

Y

h(t|x; θ)dt
)

dθ

=

∫

Θ

∫

Y

(

β(θ)p(t|x)h(t|x; θ)
c(t|x;β) − β(θ)h(t|x; θ)dt

)

dtdθ

=

∫

Y

∫

Θ

(

β(θ)p(t|x)h(t|x; θ)
c(t|x;β) − β(θ)h(t|x; θ)dt

)

dθdt

=

∫

Y

(

p(t|x)
∫

Θ

β(θ)h(t|x; θ)
c(t|x;β) dθ − c(t|x;β)

)

dt

=

∫

Y

p(t|x)dt− 1 = 0

The uniqueness of the price functional is not known under any assumption (such as smooth-
ness). However, this market defines a transform between the ground truth and budget
function. First observe that successive budget updates can be written as

βi+1(θ) = βi(θ)

∫

Y

p(t|x) h(t|x; θ)
c(t|x;βi)

dt

= βi−1(θ)

∫

Y

p(t|x) h(t|x; θ)
c(t|x;βi−1)

dt

∫

Y

p(t|x) h(t|x; θ)
c(t|x;βi)

dt

= β0(θ)

i
∏

j=0

∫

Y

p(t|x) h(t|x; θ)
c(t|x;βj)

dt

where β0(θ) is some chosen initial budget function. Assuming that there is a unique budget
function β∗(θ) such that p(t|x) = c(t|x;β∗), then as i→∞ we would expect βi → β∗. Then
this defines the transform as

β∗(θ) = β0(θ)
∞
∏

i=0

∫

Y

p(t|x) h(t|x; θ)
c(t|x;βi)

dt (7.1)

p(t|x) =
∫

Θ
β∗(θ)h(t|x; θ)dθ (7.2)

The optimal budget function β∗(θ) is expected to be a density with modes at the optimal
constituent parameters. This might lead to an alternative method to EM to infer mixture
model weights and parameters.

62

7.2 Clustering Market

If the Market Transform described in 7.1 really does work, then one possible application
of this market is clustering. Writing (7.1) and (7.2) in terms of density aggregation gives

β∗(θ) = β0(θ)
∞
∏

i=0

∫

X

p(x)
h(x; θ)

c(x;βi)
dx (7.3)

p(x) =

∫

Θ
β∗(θ)h(x; θ)dθ (7.4)

where the price functional is defined as

c(x;β) =

∫

Θ
β(θ)h(x; θ)dθ (7.5)

It is suspected that the optimal β∗(θ) that gives p(x) = c(x;β∗) has modes around param-
eters θ that best describe the clusters. That is

∇θβ
∗(θ) = 0 (7.6)

For all solutions θm, m = 1, 2, . . . ,M to (7.6), we suppose the ideal mixture model is then
given as

c(x;β∗) =
1

n

M
∑

m=1

β∗(θm)h(x; θm)

where n =
∑M

m=1 β(θm) and θm are parameters that describe the clusters (e.g. like µ,Σ in
EM clustering with Gaussians). This looks surprisingly like the density market equilibrium
price function (5.7). However, it is not computationally feasible to directly compute (7.3).
One possible solution is to simultaneously update and optimize the budget function. The
incremental budget function update for densities is given as

βt+1(θ) = βt(θ)

∫

X

p(x)
h(x; θ)

c(x;βt)
dx

The gradient with respect to θ is then given as

∇θβ
t+1(θ) = ∇θβ

t(θ)

∫

X

p(x)
h(x; θ)

c(x;βt)
dx+ βt(θ)

∫

X

p(x)
∇θh(x; θ)

c(x;βt)
dx

The objective then, is to find a set of distinct local optima θ∗m, m = 1, 2, . . . ,M for (7.2).
This can be accomplished through, for example, gradient ascent

θt+1
m = θtm + ǫ∇θβ

t+1(θtm) m = 1, 2, . . . ,M

If ǫ is sufficiently small, we might avoid recomputing the gradient of the budget function
on the new θt+1

m by noting that

∇θβ
t+1(θt+1

m) ≈ ∇θβ
t+1(θtm)

63

which follows from the Taylor expansion of βt+1(θ) about θtm. This gives the following
update scheme

βt+1
m = βt

m

∫

X

p(x)
h(x; θtm)

c(x;βt)
dx (7.7)

∇θβ
t+1
m = ∇θβ

t
m

∫

X

p(x)
h(x; θtm)

c(x;βt
m)

dx+ βt
m

∫

X

p(x)
∇θh(x; θ

t
m)

c(x;βt
m)

dx (7.8)

θt+1
m = θtm + ǫ∇θβ

t+1
m (7.9)

where βt
m = βt(θtm) and we may arbitrarily choose θ0m and β0

m = 1
M
, ∇θβ

0
m = 0, m =

1, 2, . . . ,M . The price function c(x;βt) might be approximated with 5.7

c(x;βt) =
M
∑

m=1

βt
mh(x; θtm)

The integrals in the above scheme can be estimated with Monte Carlo quadrature on the
data points xn, giving

βt+1
m = βt

m

1

N

N
∑

n=1

h(xn; θ
t
m)

c(xn;βt)
(7.10)

∇θβ
t+1
m = ∇θβ

t
m

1

N

N
∑

n=1

h(xn; θ
t
m)

c(xn;βt
m)

+ βt
m

1

N

N
∑

n=1

∇θh(xn; θ
t
m)

c(xn;βt
m)

(7.11)

θt+1
m = θtm + ǫ∇θβ

t+1
m (7.12)

This idea is further justified from empirical observations from section 6.3. Even when
budgets are randomly initialized, just one market update can make dramatic changes to the
budgets. Each new θtm can be thought of as resulting in a new market with new participants.
Thus, the next budget update should dramatically change to reflect the best participants.

7.3 Object Detection

Recent works [27][45][18] have examined the regression forest for object detection with
promising findings. Since the Classification and Regression Markets have been extensively
applied to aggregating the leaves of decision trees, this section explores the possibilities and
issues when aggregating regression forests for object detection.

7.3.1 Problem Setup

Given a set of images In, n = 1, 2, . . . , N of arbitrary dimensions (could be 2D or 3D)
and a set of corresponding annotated positions yn, the objective is to learn a regressor
f(I(x)) that predicts an offset vector v such that y ≈ x+ v. Since the images In can vary
in dimension and field of view, the regressor cannot possibly predict the object position
directly. The training instances for the regressor are pairs of patches and offsets (I(x),y−x)
where y is the annoted object position for image I. This gives the training set as

{(In(x),yn − x : ∀x ∈ In, n = 1, 2, . . . , N}
where x ∈ In denotes all pixel/voxel positions in image In.

64

7.3.2 Regression Forest for Object Detection

The regression forest for object detection is similar to the regression forest described in
chapter 2 except that the prediction is multidimensional. While the training and evaluation
of this type of regression tree is similar, the splitting criteria is slightly different than the
conventional regression forest. The splitting criteria used in [45] amounts to component-wise
variance reduction

Var(V) = E[V TV]− E[V]TE[V]

where V denotes a matrix with the offset vectors vn(x) = yn − x as the rows. This gives
the splitting criteria as

ℓ(V ; t, f) =
|VI(x)f≤t|
|V | Var(VI(x)f≤t) +

|VI(x)f>t|
|V | Var(VI(x)f>t) (7.13)

In [18], the offsets were modeled as Gaussians and the regression tree optimized the infor-
mation gain (2.4) with the differential entropy of the Gaussians as the purity function

Hdifferential entropy(µ,Σ) =
1

2
log
(

(2πe)d|Σ|
)

where µ is the mean of the offset vectors and Σ is the covariance matrix.

7.3.3 Hough Forest

The Hough Forest [27] solves a slightly different problem. In addition to the offset vectors
vn(x), it also considers the foreground/background of an image patch. In addition to the
setup described in section 7.3.1, the Hough Forest also introduces an annotated bounding
box in each image In centered around the object position yn. Thus, a training instance is
a tuple (I(x),y − x, z) where z is the foreground/background label. A training instance is
labeled foreground if x falls inside the bounding box and background otherwise. For any
background position x, the offset vector y − x is ommitted from the training instance. In
this sense, a Hough Forest is both a regressor and a classifier.

Hough trees employ randomly alternating split criteria to solve both the regression and
classification problem. It either uses (7.13) for the regression task, or for the classification
task (2.4) with the entropy purity function Hentropy.

When evaluated, a Hough Forest produces a probability score that the patch I(x) is
foreground and if any foreground example fell in one of the leaves, it predicts an average
offset v to the object position. Thus, the Hough Forest is evaluated at every position in an
image I and places a weighted vote at the predicted position x+ v with the weight as the
foreground probability score. This gives a voting map which requires some post processing,
such as non-maximal suppression or mean-shift, to extract the final predicted location due
to some possible outlier predictions. See figure 7.1 for an example of the offset predictions
and voting map. To deal with scale and aspect ratio variation, the Hough Forest is evaluated
on a pyramid of images. For each scaled image, the Hough Forest predicts an aspect ratio
adjusted offset, or

y = x+ rv

where r is the aspect ratio scalar. On the Weizmann horse data set [8], the scales varied from
s ∈ {0.7, 0.6, 0.5, 0.4, 0.3} and the aspect ratios varied from r ∈ {0.5, 0.75, 1.0, 1.25, 1.5}.

65

(a) (b)

Figure 7.1: Example of Hough Forest evaluation. Figure (a) illustrates how Hough
Forest predicts foreground (green) and background (red). The foreground patches
predict offsets while the background patches do not. Figure (b) shows the resulting
voting map on the image. The horse center prediction is well localized, although
with some noisy predictions far away.

7.3.4 Hough Market

Briefly explored, the Hough Market is a type of density market that aggregates the
leaves of Hough trees in Hough Forest. The objective is to minimize the KL divergence
between the resulting voting map and a Gaussian centered about the the object center y.

KL(N(x,y, σ), c(x|I)) =
∑

x∈I
N(x,y, σ) log

(

N(x,y, σ)

c(x|I)

)

where N(x,y, σ) is the Gaussian density with mean y and standard deviation σ and c(x|I)
is the voting map. The Hough Market attempts to exploit specialization and updates the
estimated probability scores stored in the leaves to weed out poorly performing Hough tree
leaves. See example 7.2 for an illustration of the process.

Input Image Voting Maps Hough Market Map

Figure 7.2: Example of aggregation of Hough tree leaves on a horse image.

66

Training. The training in a Hough Market proceeds by first recording a voting map
for each individual leaf Hm. If a leaf is a foreground leaf, then the voting map for the leaf
is computed as described by section 7.3.3. If the leaf is negative, then the voting map is
computed by adding 1

|Im| , where |Im| = width × height, at each pixel position to indicate
uncertainty at every position. Then the equilibrium price is computed as

c(x|I) = 1

Z

M
∑

m=1

βmHm(x|I) (7.14)

where Z =
∑

x∈I c(x|I) to normalize it to sum to 1. Since the ground truth density
N(x,y, σ) is known, we may directly approximate 5.6 with a Riemann sum

βm ← βm + ηβm
∑

x∈I

[

N(x,y, σ)
Hm(x|I)/Z
c(x|I;β) −

Hm(x|I)
Z

]

(7.15)

Here the normalization factor Z is needed on the betting functions since they do not neces-
sarily sum to ≤ 1. The η here is used to weight the update on positives and negatives and
taken to be

η =

{

0.05ηmax positive

0.5ηmax negative
(7.16)

where ηmax describes the maximum value of η so that at least one participant goes bankrupt
(i.e. βm = 0).

A market was trained on the Weizmann horse data set as described above for each
individual scale-ratio pair (s, r), giving a total of 25 markets.

Evaluation. During evaluation, the equilibrium price is instead computed without
normalization since the normalized values are miniscule, thus

c(x|I) =
M
∑

m=1

βmHm(x|I) (7.17)

This also allows a fair comparison with Hough Forest since an untrained market will give
identical voting maps as the Hough Forest. Once the voting map is computed for both
Hough Forest and Hough Market, non-maximal suppression is used to post process the
voting maps giving a few detections per image. A template box is then positioned and
scaled based on the corresponding scale-ratio pair (s, r) to give the final bounding box
detection.

The threshold for the non-maximal suppression is determined by the ROC curve (at
10% false alarm rate). The ROC curve is based on thresholds on the voting map weights
with true and false positive defined as

true positive =
|T ∩G|
|T ∪G| > 0.5

false positive =
|T ∩G|
|T ∪G| ≤ 0.5

67

where T is the template box and G is the ground truth annotation. Negative images are
given 1 true negative if there are no detections and positive images are given 1 false negative
if there are no detections. For the Hough Market, the AUC is computed at each epoch and
then the epoch with the largest AUC is used for detection with the threshold picked the
same way. Some example detections for Hough Forest and Hough Market can be seen in
figures 7.4 and 7.5 respectively. The thresholds for the examples were computed on the
unseen ROC curves given in figure 7.3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
et
ec
ti
on

R
at
e

False Alarm Rate

Hough Forest
Hough Market: Epoch 14

Figure 7.3: ROC curves for horse detection on the Weizmann test set.

Issues. While the Hough Market does reduce the average KL divergence on the train-
ing images, this does not necessarily imply an improvement in the ROC curve. Qualitatively,
compared to the Hough Forest, the Hough Market would produce better localized peaks in
the voting maps at the cost of more far away noisy predictions. The Hough Market was
observed to increase the area under the unseen ROC curve (AUC), but the AUC for the
training ROC curve would strangely decrease which is concerning.

7.4 Betting Function Learning

At the time of this writing, one limitation of the Artificial Prediction Market has been
the inability to infer the participants or their parameters. Other aggregation methods such
as boosting [52] train their own constituent classifiers. The Classification and Regression
Markets have largely relied on decision tree leaves,as trained by decision trees, for the
specialized classifier. Indeed, the original objective of Artificial Prediction Markets has

68

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.4: Example detections of the Hough Forest. The green box is the ground
truth while the red box is the detection. The first row, or (a)(b)(c)(d), are detec-
tions on positive images while the second row, or (e)(f)(g)(h), are the detections
on negative images.

always been purely aggregation of generic models. This section briefly explores inferring
betting functions.

7.4.1 Market Prices and Auto Context

The trading prices of real prediction markets provide some insight on the outcome of an
event. If the efficient market hypothesis, in any of its forms, is true, then the trading price
reflects the fusion of some or all available information, public or private. There have been
works that examined the issue of interpreting the trading prices of prediction markets. In
this sense, contract trading prices could be useful features in learning problems.

Using probabilities as features has been explored in [51] with promising results in com-
puter vision tasks. In [51], a classifier is first trained on image features to produce a map of
the classification probabilities, then another classifier is trained using either image features
or the classification map as features. This process can be repeated several times. While a
single instance in an Artificial Prediction Market only produces a single equilibrium price
instead of a map of prices, this bares some resemblance to AutoContext since betting func-
tions are functions of the price. In that sense, the prices are features for betting functions.

7.4.2 Online Random Trees

One potential online learning method for betting function learning is the Online Ran-
dom Tree [22]. This would also serve as an ideal method for comparison with the results

69

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.5: Example detections of the Hough Market. The green box is the ground
truth while the red box is the detection. The first row, or (a)(b)(c)(d), are detec-
tions on positive images while the second row, or (e)(f)(g)(h), are the detections
on negative images. While the Hough Market can eliminate some of the false
positives and false negatives, it can also introduce them as in (h).

reported in this work and in [34][33][3] as these consider the batch random forest. Unlike the
training algorithm described in section 2.2, the Online Random Tree described in [22] in-
crementally considers the correlation between features either in a forward fashion (CorrFS)
or a backward fashion (CorrBE).

7.4.3 AutoMarket

With a suitable online learning method such as Online Random Tree, the market and
its participants can be trained incrementally. This involves first estimating the equilibrium
prices ck, k = 1, 2, . . . ,K, computing the budget update, and then updating the participants
with the instance features augmented with the price.

For a given training instance (x, y), the equilibrium price is first computed by solving
the fixed point equation

ck =
1

n

M
∑

m=1

βmφk
m(x, c) k = 1, 2, . . . ,K (7.18)

where n =
∑M

m=1 βm
∑K

k=1 φm(x, c) is a normalizer. The solution must be approximated

70

with something like the Mann Iteration [37] as in algorithm 4. Then the budgets are updated

βm ← βm − ηβm

K
∑

k=1

φk
m(x, c) + ηβm

φy
m(x, c)

cy
(7.19)

where η ≤ 1 is intended to prevent instant bankruptcies (i.e. βm = 0). And lastly the
feature vector x is augmented with the prices [x|c] and the training instance ([x|c], y) is
used to update each participant φm, m = 1, 2, . . . ,M .

One special consideration is that the online method give equal weight to the features x
and c (if this applies). This is to ensure that features from either x or c are selected fairly
as the dimension of x is likely to exceed K, the number of class labels and the dimension
of c.

71

CHAPTER 8

CONCLUSION

This work presents a theory for artificial prediction markets for the purpose of supervised
learning of class conditional probability estimators, real value conditional probability esti-
mators for regression, and density estimators. The artificial prediction market is a novel
online learning algorithm that can be easily implemented classification, regression and den-
sity estimation applications. Linear aggregation, logistic regression as well as certain kernel
methods can be viewed as particular instances of the artificial prediction markets. Inspired
from real life, specialized classifiers that only bet on subsets of the instance space were
introduced. Experimental comparisons on real and synthetic data show that the prediction
market usually outperforms random forest, regression forest, adaboost and implicit online
learning in prediction accuracy.

The artificial prediction market shows the following promising features:

1. It can be updated online with minimal computational cost when a new observation
(x, y) is presented (or just x in the case of density estimation).

2. It has a simple form of the update iteration that can be easily implemented.

3. For multi-class classification it can fuse information from all types of binary or multi-
class classifiers: e.g. trained one-vs-all, many-vs-many, multi-class decision tree, etc.

4. It can obtain meaningful probability estimates when only a subset of the market
participants are involved for a particular instance x ∈ X. This feature is useful for
learning on manifolds [6, 21, 46] , where the location on the manifold decides which
market participants should be involved. For example, in face detection, different face
part classifiers (eyes, mouth, ears, nose, hair, etc) can be involved in the market,
depending on the orientation of the head hypothesis being evaluated.

5. Because of their betting functions, the specialized market participants can decide for
which instances they bet and how much. This is another way to combine classifiers,
regressors, and density estimators different from other approaches such as boosting,
kernel methods, EM, where all classifiers, regressors, and density estimators partici-
pate in estimating the conditional probability for each observation.

6. Because of the general nature of the framework, the market can potentially aggregate
heterogenous models. Other aggregation approaches such as boosting, kernel methods,

72

and EM work with specific forms of models at a time.

Future work includes finding explicit bounds for the generalization error based on the
number of training examples. Another item of future work is finding other generic types
specialized participants that are not leaves of random or adaboost trees. For example,
by clustering the instances x ∈ Ω , one could find regions of the instance space Ω where
simple models (e.g. logistic regression, linear regression, Gaussians, etc) can be used as
specialized market participants for that region. In the case of regression, hinge functions
from Multivariate Adaptive Regression Splines can be used as specialized participants in
place of regression tree leaves. Lastly, we have briefly explored betting function learning in
the online random tree framework. This especially deserves more attention since even the
participants are online learning methods. This can potentially be extended to MARS as
well in the regression task.

73

APPENDIX A

PROOFS

Proof of Theorem 3.1.1. From eq. (3.12), the total budget
∑M

m=1 βm is conserved if and
only if

M
∑

m=1

K
∑

k=1

βmφk
m(x, c) =

M
∑

m=1

βmφy
m(x, c)/cy (A.1)

Denoting n =
∑M

m=1

∑K
k=1 βmφk

m(x, c), and since the above equation must hold for all y,
we obtain that eq. (3.18) is a necessary condition and also ck 6= 0, k = 1, ...,K, which means
ck > 0, k = 1, ...,K. Reciprocally, if ck > 0 and eq. (3.18) hold for all k, dividing by ck we
obtain eq. (A.1).

Proof of Remark 3.1.2. Since the total budget is conserved and is positive, there exists
a βm > 0, therefore

∑M
m=1 βmφk

m(x, 0) > 0, which implies limck→0 fk(ck) = ∞. From
the fact that fk(ck) is continuous and strictly decreasing, with limck→0 fk(ck) = ∞ and
limck→1 fk(ck) = 0, it implies that for every n > 0 there exists a unique ck that satisfies
fk(ck) = n.

Proof of Theorem 3.1.3. From Remark 3.1.2 we get that for every n ≥ nk, n > 0 there is
a unique ck(n) such that fk(ck(n)) = n. Moreover, following the proof of Remark 3.1.2
we see that ck(n) is continuous and strictly decreasing on (nk,∞), with limn→∞ ck(n) = 0.
If maxk nk > 0, take n∗ = maxk nk. There exists k ∈ {1, ...,K} such that nk = n∗, so
ck(n

∗) = 1, therefore
∑K

j=1 cj(n
∗) ≥ 1.

If maxk nk = 0 then nk = 0, k = 1, ...,K which means φk
m(x, 1) = 0, k = 1, ...,K for

all m with βm > 0. Let akm = min{c|φk
m(x, c) = 0}. We have akm > 0 for all k since

φk
m(x, 0) > 0. Thus limn→0+ ck(n) = maxm akm ≥ ak1, where we assumed that φ1(x, c)

satisfies Assumption 1. But from Assumption 1 there exists k such that ak1 = 1. Thus
limn→0+

∑K
k=1 ck(n) ≥

∑K
k=1 a

k
1 > 1 so there exists n∗ such that

∑K
k=1 ck(n

∗) ≥ 1.

Either way, since
∑K

k=1 ck(n) is continuous, strictly decreasing, and since
∑K

k=1 ck(n
∗) ≥

1 and limn→∞
∑K

k=1 ck(n) = 0, there exists a unique n > 0 such that
∑K

k=1 ck(n) = 1.
For this n, from Theorem 3.1.1 follows that the total budget is conserved for the price
c = (c1(n), ..., cK(n)). Uniqueness follows from the uniqueness of ck(n) and the uniqueness
of n.

74

Proof of Theorem 3.4.1. For the current parameters γ = (γ1, ..., γM) = (
√
β1, ...,

√
βm) and

an observation (xi, yi), we have the market price for label yi:

cyi(xi) =
M
∑

m=1

γ2mφyi
m(xi)/(

M
∑

m=1

K
∑

k=1

γ2mφk
m(xi)) (A.2)

So the log-likelihood is

L(γ) =
1

N

N
∑

i=1

log cyi(xi) =
1

N

N
∑

i=1

log
M
∑

m=1

γ2mφyi
m(xi)−

1

N

N
∑

i=1

log
M
∑

m=1

K
∑

k=1

γ2mφk
m(xi) (A.3)

We obtain the gradient components:

∂L(γ)

∂γj
=

1

N

N
∑

i=1

(

γjφ
yi
j (xi)

∑M
m=1 γ

2
mφyi

m(xi)
−

γj
∑K

k=1 φ
k
j (xi)

∑M
m=1

∑K
k=1 γ

2
mφk

m(xi)

)

(A.4)

Then from (A.2) we have
∑M

m=1 γ
2
mφyi

m(xi) = B(xi)cyi(xi). Hence (A.4) becomes

∂L(γ)

∂γj
=

γj
N

N
∑

i=1

1

B(xi)

(

φyi
j (xi)

cyi(xi)
−

K
∑

k=1

φk
j (xi)

)

.

Write uj = 1
N

∑N
i=1

1
B(xi)

(

φ
yi
j (xi)

cyi (xi)
−∑K

k=1 φ
k
j (xi)

)

, then ∂L(γ)
∂γj

= γjuj . The batch update

(3.23) is βj ← βj + ηβjuj . By taking the square root we get the update in γ

γj ← γj
√

1 + ηuj = γj + γj(
√

1 + ηuj − 1) = γj + γj
ηuj

√

1 + ηuj + 1
= γ′j .

We can write the Taylor expansion:

L(γ′) = L(γ) + (γ′ − γ)T∇L(γ) + 1

2
(γ′ − γ)TH(L)(ζ)(γ′ − γ)

so

L(γ′) = L(γ) +

M
∑

j=1

γjuj
ηγjuj

√

1 + ηuj + 1
+ η2A(η) = L(γ) + η

M
∑

j=1

γ2j u
2
j

√

1 + ηuj + 1
+ η2A(η)

where |A(η)| is bounded in a neighborhood of 0.

Now assume that ∇L(γ) 6= 0, thus γjuj 6= 0 for some j. Then
∑M

j=1

γ2
j u

2
j√

1+ηuj+1
> 0

hence L(γ′) > L(γ) for any η small enough.
Thus as long as ∇L(γ) 6= 0 the batch update (3.23) with any η sufficiently small will

increase the likelihood function.
The batch update (3.23) can be split into N per-observation updates of the form (3.24).

Proof of Theorem 3.4.3. The Hessian matrix ℓ(β) with respect to β ∈ R
M
≥0\{0} is defined

as

H =

∫

Ω
p(x)

K
∑

k=1

p(k|x)h
k(x)hk(x)T

ck(x;β)2
dx

75

Suppose ∃v ∈ R
M , v 6= 0 such that vTHv = 0, then

∫

Ω
p(x)

K
∑

k=1

p(k|x)v
Thk(x)hk(x)Tv

ck(x;β)2
dx = 0

But since H is symmetric, it is at least semi-positive definite and so this will only integrate
to 0 if hk(x)Tv = 0, k = 1, 2, . . . ,K almost everywhere. However, since the market
participants h(x) is a vector of classifiers with linear dependence only on a zero measure
set, then hk(x)Tv = 0 =⇒ v = 0. This is a contradiction and H is strictly positive
definite.

Proof of Theorem 3.4.4. Differentiating gm(β) gives

∂gm
∂βn

= βm
∂fm
∂βn

m 6= n

∂gm
∂βm

= fm + βm
∂fm
∂βm

where the derivatives of fm are given as

∂fm
∂βn

= −
∫

Ω
p(x)

K
∑

k=1

p(k|x)h
k
m(x)hkn(x)

ck(x;β)
dx

This gives Jg in the convenient form

Jg = diag(f) + diag(β)Jf

Evaluated at β∗ gives
Jg(β

∗) = I + diag(β∗)Jf (β
∗)

since f(β∗) = 1 from (3.30).
To show Jg(β

∗) has eigenvalues with magnitude less than 1, we first show that all
eigenvalues λβf of diag(β∗)Jf (β

∗) are bounded −1 ≤ λβf < 0.
First note that f(β) = −∇βKL(p(x), c(x,β)) and so Jf = −HKL where HKL is the

Hessian matrix of (3.28) and since KL(p(x), c(x,β)) is strictly convex in β then −HKL is
negative definite and thus has strictly negative eigenvalues. Now since the eigenvalues of
diag(β∗)Jf (β

∗) are equivalent to diag(β∗)
1
2Jf (β

∗)diag(β∗)
1
2 which is a symmetric matrix,

it’s obvious that diag(β∗)Jf (β
∗) remains negative definite and thus has strictly real negative

eigenvalues. Therefore λβf < 0.
Now denote the matrix A = diag(β∗)Jf (β

∗) given as

Amn = β∗
m

∂fm
∂βn

= β∗
m

∂fn
∂βm

Then by Gershgorin’s circle theorem, the eigenvalues λβf lie in the union of complex disks
each defined as

|λβf −Ann| ≤
∑

m 6=n

|Amn| n = 1, 2, . . . ,M

76

However since the eigenvalues are real negative values, we may instead write

−
∑

m 6=n

|Amn| ≤ λβf +Ann ≤
∑

m 6=n

|Amn|

∑

m 6=n

β∗
m

∂fn
∂βm

≤ λβf − β∗
n

∂fn
∂βn

< −
∑

m 6=n

β∗
m

∂fn
∂βm

M
∑

m=1

β∗
m

∂fn
∂βm

≤ λβf < 0

Expanding the lower bound gives

M
∑

m=1

β∗
m

∂fn
βm

= −
M
∑

m=1

β∗
m

∫

Ω
p(x)

K
∑

k=1

p(k|x)h
k
m(x)hkn(x)

ck(x;β
∗)2

dx

= −
∫

Ω
p(x)

K
∑

k=1

p(k|x) hkn(x)

ck(x;β
∗)

M
∑

m=1

β∗
mhkm(x)

ck(x;β
∗)
dx

= −
∫

Ω
p(x)

K
∑

k=1

p(k|x) hkn(x)

ck(x;β
∗)
dx = −fn(β∗) = −1

Therefore

− 1 ≤ λβf < 0 =⇒ Jg(β
∗) = I +QΛβfQ

−1 = Q(I + Λβf)Q
−1 = QΛgQ

−1

giving the bounds for λg

0 ≤ λg = 1 + λβf < 1

Therefore β∗ is a sink that solves f(β) = 1 =⇒ ∇vKL(p(x), c(x;β)) = 0.

77

BIBLIOGRAPHY

[1] Storkey Amos. Machine learning markets. Journal of Machine Learning Research,
2011.

[2] K. J. Arrow, R. Forsythe, M. Gorham, R. Hahn, R. Hanson, J. O. Ledyard, S. Levmore,
R. Litan, P. Milgrom, and F. D. Nelson. The promise of prediction markets. Science,
320(5878):877, 2008.

[3] A. Barbu and N. Lay. An introduction to artificial prediction markets for classification.
Journal of Machine Learning Research, 13:2177–2204, 2012.

[4] A. Barbu, M. Suehling, X. Xu, D. Liu, S. Zhou, and D. Comaniciu. Automatic detection
and segmentation of lymph nodes from ct data. IEEE Trans. on Medical Imaging,
31(2):240–250, 2012.

[5] S. Basu. Investment performance of common stocks in relation to their price-earnings
ratios: A test of the efficient market hypothesis. The Journal of Finance, 32(3):663–
682, 1977.

[6] M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine
Learning, 56(1):209–239, 2004.

[7] C. Blake and CJ Merz. UCI repository of machine learning databases [http://www.
ics. uci. edu/ mlearn/MLRepository. html], Department of Information and Computer
Science. University of California, Irvine, CA, 1998.

[8] Eran Borenstein, Eitan Sharon, and Shimon Ullman. Combining top-down and bottom-
up segmentation. In Computer Vision and Pattern Recognition Workshop, 2004.
CVPRW’04. Conference on, pages 46–46. IEEE, 2004.

[9] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[10] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and Regression
Trees. Wadsworth, Belmont, California, 1984.

[11] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[12] F. Bunea and A. Nobel. Sequential procedures for aggregating arbitrary estimators
of a conditional mean. IEEE Transactions on Information Theory, 54(4):1725–1734,
2008.

78

[13] Y. Chen, J. Abernethy, and J.W. Vaughan. An optimization-based framework for
automated market-making. Proceedings of the EC, 11:5–9, 2011.

[14] Y. Chen and J.W. Vaughan. A new understanding of prediction markets via no-regret
learning. In Proceedings of the 11th ACM conference on Electronic commerce, pages
189–198. ACM, 2010.

[15] Yileng Chen and Jennifer Wortman Vaughan. A new understanding of prediction
markets via no-regret learning. In In the Eleventh ACM Conference on Electronic
Commerce (EC 2010), 2010.

[16] C. Chow. On optimum recognition error and reject tradeoff. IEEE Trans. on Infor-
mation Theory, 16(1):41–46, 1970.

[17] B. Cowgill, J. Wolfers, and E. Zitzewitz. Using prediction markets to track information
flows: Evidence from Google. Dartmouth College, 2008.

[18] Antonio Criminisi, Jamie Shotton, Duncan Robertson, Konukoglu, and Ender. Regres-
sion forests for efficient anatomy detection and localization in ct studies. In Bjoern
Menze, Georg Langs, Zhuowen Tu, and Antonio Criminisi, editors, Medical Computer
Vision. Recognition Techniques and Applications in Medical Imaging, volume 6533 of
Lecture Notes in Computer Science, pages 106–117. Springer Berlin / Heidelberg, 2011.

[19] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer
Society Conference on, volume 1, pages 886–893. IEEE, 2005.

[20] J. Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine Learning Research, 7:30, 2006.

[21] A. Elgammal and C.S. Lee. Inferring 3d body pose from silhouettes using activity
manifold learning. In CVPR, 2004.

[22] Osman Hassab Elgawi. Online random forests based on corrfs and corrbe. In Com-
puter Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer
Society Conference on, pages 1–7. IEEE, 2008.

[23] E.F. Fama. Efficient capital markets: A review of theory and empirical work. Journal
of Finance, pages 383–417, 1970.

[24] C. Ferri, P. Flach, and J. Hernández-Orallo. Delegating classifiers. In International
Conference in Machine Learning, 2004.

[25] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[26] J.H. Friedman and B.E. Popescu. Predictive learning via rule ensembles. Annals of
Applied Statistics, 2(3):916–954, 2008.

[27] Juergen Gall and Victor Lempitsky. Class-specific hough forests for object detection.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 1022–1029. IEEE, 2009.

79

[28] S. Gjerstad and M.C. Hall. Risk aversion, beliefs, and prediction market equilibrium.
Economic Science Laboratory, University of Arizona, 2005.

[29] Jonathan L. Gross and Jay Yellen. Graph Theory and its Applications. Chapman &
Hall/CRC, Boca Raton, Florida, 2006.

[30] Trevor J.. Hastie, Robert John Tibshirani, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction. Springer, 2009.

[31] Thorsten Joachims. A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization. Technical report, DTIC Document, 1996.

[32] B. Kulis and P.L. Bartlett. Implicit Online Learning. In ICML, 2010.

[33] N. Lay and A. Barbu. Supervised Aggregation of Classifiers using Artificial Prediction
Markets. In ICML, 2010.

[34] Nathan Lay. Supervised aggregation of classifers using artificial prediction markets.
Master’s thesis, The Florida State University, Tallahassee, Florida, November 2009.

[35] B.G. Malkiel. The efficient market hypothesis and its critics. The Journal of Economic
Perspectives, 17(1):59–82, 2003.

[36] O. L. Mangasarian and W. H. Wolberg. Cancer diagnosis via linear programming.
SIAM News, 23(5):1 & 18, 1990.

[37] W. Robert Mann. Mean Value Methods in Iteration. Proc. Amer. Math. Soc., 4:506–
510, 1953.

[38] C.F. Manski. Interpreting the predictions of prediction markets. Economics Letters,
91(3):425–429, 2006.

[39] Tom M. Mitchell. Machine Learning. WCB/McGrow-Hill, Boston, MA, 1997.

[40] J. Perols, K. Chari, and M. Agrawal. Information Market-Based Decision Fusion.
Management Science, 55(5):827–842, 2009.

[41] C.R. Plott, J. Wit, and W.C. Yang. Parimutuel betting markets as information aggre-
gation devices: Experimental results. Economic Theory, 22(2):311–351, 2003.

[42] P.M. Polgreen, F.D. Nelson, and G.R. Neumann. Use of prediction markets to forecast
infectious disease activity. Clinical Infectious Diseases, 44(2):272–279, 2006.

[43] C. Polk, R. Hanson, J. Ledyard, and T. Ishikida. The policy analysis market: an
electronic commerce application of a combinatorial information market. In Proceedings
of the 4th ACM conference on Electronic commerce, pages 272–273. ACM New York,
NY, USA, 2003.

[44] W.H. Press. Numerical recipes: the art of scientific computing. Cambridge University
Press, 2007.

80

[45] P Kohli R Girshick, J Shotton and A Criminisi. Efficient Regression of General-Activity
Human Poses from Depth Images. In Proceedings of the 13th International Conference
on Computer Vision, 2011.

[46] L.K. Saul and S.T. Roweis. Think globally, fit locally: unsupervised learning of low
dimensional manifolds. The Journal of Machine Learning Research, 4:119–155, 2003.

[47] R.E. Schapire. The boosting approach to machine learning: An overview. LECTURE
NOTES IN STATISTICS-NEW YORK-SPRINGER VERLAG-, pages 149–172, 2003.

[48] A. Storkey, J. Millin, and K. Geras. Isoelastic agents and wealth updates in machine
learning markets. ICML, 2012.

[49] Luis Torgo. Regression data sets, 2010.

[50] F. Tortorella. Reducing the classification cost of support vector classifiers through an
ROC-based reject rule. Pattern Analysis & Applications, 7(2):128–143, 2004.

[51] Zhuowen Tu. Auto-context and its application to high-level vision tasks. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE, 2008.

[52] Paul Viola and Michael J Jones. Robust real-time face detection. International journal
of computer vision, 57(2):137–154, 2004.

[53] J. Wolfers and E. Zitzewitz. Prediction markets. Journal of Economic Perspectives,
pages 107–126, 2004.

81

BIOGRAPHICAL SKETCH

Nathan Lay was born and raised in Boca Raton, FL where he grew passionate interest in
mathematics and computer science in his later high school years. He attended Florida State
University in 2003 and pursued a major in pure mathematics and a minor in computer sci-
ence and earned a bachelors degree in pure mathematics cum laude in 2007. In his senior
year of undergraduate studies, he briefly worked with Mark Sussman, Yousuff Hussaini, his
former student Edwin Jimenez, and former postdoctoral research associate Svetlana Poro-
seva on fluid dynamics, Monte Carlo techniques, uncertainty quantification of hurricane
models, and survivability of power systems. His work contributed to four corresponding
papers. Following his dual passion, he entered the newly formed scientific computing grad-
uate program at Florida State University pursuant of a masters degree where he met his
current adviser Adrian Barbu. With similar interests and under the guidance and support
of his adviser, Nathan worked on face detection and later produced a novel aggregation
technique based on prediction markets. He earned a masters degree in 2009 and a Ph.D.
in 2013 with his current adviser in the areas of machine learning and biomedical imaging.
He was hired by Siemens Corporate Research first as an intern in June 2011 and later as
a Research Scientist in May 2012. He works primarily on machine learning and computer
vision tasks in medical imaging.

Nathan’s research interests include machine learning, computer vision, and mathematics.
His hobbies intertwine with his research interest but also include fishing, scuba diving,
computers, table tennis, rock climbing and miscellaneous mathematics.

82

