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ABSTRACT

Principal Component Analysis (PCA) and Latent Class Analysis (LCA) are multivariate methods

commonly used for exploratory data analysis and data preprocessing in unsupervised settings. Two

difficulties often encountered in data analysis are missingness and high-dimensionality. This thesis

builds on the existing work for feature selection in PCA and tests new strategies for achieving

sparsity in PCA estimation. The missing data problem is examined for PCA by introducing two

techniques, each informed by a different paradigm of missing data methodology. It is shown that

the accuracy of sparse dimension reduction in the face of missing data and irrelevant features can be

improved by the techniques introduced in this work. Feature selection is also examined for binary

LCA. Data experiments show that our approach to LCA feature selection is not only viable but

sometimes necessary to achieve satisfactory results.
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CHAPTER 1

INTRODUCTION

Principal Component Analysis (PCA) and Latent Class Analysis (LCA) are two widely used mul-

tivariate statistical techniques. The goal of PCA is to learn a lower-dimensional representation of

continuous data, while LCA is a probabilistic approach to finite mixture modeling.1

Modern data challenges introduce complications that must be addressed in order to use these

methods. In this thesis we will examine the use of sparsity in model estimation to handle high-

dimensional data for PCA and LCA. We will also examine the problem of applying PCA and its

sparse variants to data with missing values.

Given n-by-p data, both PCA and LCA involve the estimation of a p-by-k matrix M where k

is the desired rank for PCA, or the desired number of latent classes for LCA. The elements of this

matrix estimate the role of each of the data’s p features in the model. In settings with large p,

it is often desirable to find a model that uses a subset of p′ < p features that still permits model

accuracy. This situation can occur if, for instance, many features are suspected to be irrelevant to

the low-dimensional structure or the latent class structure of the data. The problem of choosing the

best p′ predictors from a total of p is feature selection. A benefit of feature selection is to produce

interpretable models: by reducing the size of each model’s M estimate to a much smaller p′-by-k

matrix, the parameter becomes more manageable to inspect.

Feature selection in PCA can be thought of in terms of the selection of rows in the model’s

loading matrix M, where row i captures the role of column i in the data. Having a row of zero’s

indicates that the corresponding feature is estimated to have no role in the model, and so the

question of selecting features in PCA can be seen through the lens of imposing sparsity on the

loading matrix. One approach to this is to truncate small elements in the loading matrix to be

exactly zero, but that approach can yield misleading results (Cadima and Jolliffe, 1995). A more

sophisticated approach is Sparse Principal Component Analysis (SPCA) (Zou et al., 2006), which

uses sparse regression techniques to estimate a sparse loading matrix for PCA. This approach has

1 We examine LCA for binary data, but the model can be defined for continuous data types. PCA is traditionally
applied to continuous data and is often presented with the loose assumption of multivariate normality, but has seen
extensions to other types, e.g. Zhang (2016).

1



been shown to be consistent under certain sparse assumptions on high-dimensional data matrices

where PCA fails (Shen et al., 2013).

In this thesis, we examine sparse PCA using another sparse regression technique, Feature Selec-

tion with Annealing (FSA) (Barbu et al., 2017). We will propose and test a number of approaches

to learning a sparse loading matrix. We will use simulated and real data to compare the perfor-

mance of ordinary PCA, SPCA, a sparse PCA approach called JSPCA (Yi et al., 2017), and several

sparse PCA variants we introduce. We primarily use Principal Component Regression (PCR) data,

which allows us to compare model performance in terms of predictive accuracy.

We also examine how sparse PCA methods can be applied to data with missingness. We

develop an imputation strategy that can be applied to every sparse PCA model by leveraging that

model’s estimate of the data’s low-rank structure. The imputed data is then used in subsequent

model estimation steps which require fully-observed data. We also develop an estimation approach

that does not impute values, but that only learns from the data entries that are observed. These

two approaches to handling missing data are both fairly common, but are also very different.

By implementing both strategies in the same model, we will make a direct comparison of the

performance and challenges presented by each approach.

Feature selection in the clustering setting has seen much less attention than in supervised

settings. Further, feature selection for clustering commonly focuses on continuous data such as

a Gaussian mixture modeling context, rather than considering categorical data. We examine the

feature selection problem for LCA in a binary data setting. We will introduce a framework for joint

LCA model estimation and feature selection via FSA that permits the choice of various metrics of

feature relevance. We will use simulated and real data to compare the accuracy of these different

approaches against each other, LCA without feature selection, and LCA using feature selection by

stepwise selection. A final experiment considers the Factor Mixture Model (FMM) (Clark et al.,

2013) in a data setting that requires simultaneous application of feature selection for LCA, sparse

PCA, and the mitigation of missing values.

2



Setup and Notation

X,U,Γ Matrices are denoted by bold uppercase letters

Xi• Row i of matrix X

X•j Column j of matrix X

Xij Entry at row i and column j of matrix X

w,x,γ Vectors are denoted by bold lowercase letters

wi Entry i of vector w

i, n, p Scalars are denoted by lowercase letters

|x| Absolute value of x

I Identity matrix

0⃗ Vector of 0’s

λ Penalty parameter

λj Penalty parameter corresponding to the jth index of the item penalized

X̂ Estimator for X

X0,x0 Matrix X, vector x with missing entries replaced with 0

X′ Transpose of X

TrX Trace of X

∥X∥0 The number of nonzero entries in X

∥X∥1
∑

i,j |Xij |

∥x∥2
√∑

i x
2
i

∥X∥F
√∑

i,j X
2
ij

∥X∥2,1
∑

i

√∑
j Xij

2

x+

{
x, x > 0

0, Otherwise

Sign(x)


1, x > 0

0, x = 0

−1, x < 0

⌊x⌋ The largest integer not greater than x

3



CHAPTER 2

BACKGROUND

The basis for the methods discussed in this thesis is Principal Component Analysis, which we briefly

introduce. This is followed by an overview of sparsity methods for regression, and how they can be

embedded within PCA estimation to produce sparsity.

2.1 Principal Component Analysis

The objective of dimension reduction is to transform a matrix X with n instances and p features

into a reduced form Γ with n instances and k features, where k < p, but Γ manages to retain a

large amount of the information in X. The dimension reduction approach we consider involves

producing columns of Γ from linear combinations of columns of X. Thus we could produce Γ as

a product of X and an appropriate p-by-k loading matrix B. The columns of B indicate how Γ is

formed from the columns of X.

Principal Component Analysis (PCA) (Jolliffe, 2002) estimates B as an orthogonal matrix with

the property that the first principal component, Γ•1 = XB•1, maximizes its variance. Further,

the k-th principal component Γ•k = XB•k maximizes its variance under the constraint that B

remains orthogonal.1 Each principal component contributes what is estimated to be the next most

important axis to modeling variation across columns of X.

Considering a matrix U of n samples from N (⃗0,Σ) with Σ =

[
1 .95 0 0
.95 1 0 0
0 0 1 .95
0 0 .95 1

]
, we expect an n-

by-4 matrix with U•1 and U•2 strongly correlated, U•3 and U•4 strongly correlated, and (U•1,U•2)

and (U•3,U•4) independent. Thus we expect to be able to reduce the matrix U into an n-by-2

matrix Γ which can still accurately reproduce most of the variation in U. Examples of loading

matrices estimated by PCA on different samples of U are shown in Table 2.1. To reduce U to two

columns, we multiply U by the estimated B̂. Notice in Example 1, the first column B̂•1 forms a

weighted average of the columns of U using mostly U•1 and U•2, while B̂•2 mostly uses U•3 and

U•4. PCA has discovered the underlying structure of U and provided estimates of how to produce

low-rank representation Γ.

1 For matrix M, Mij indicates the element at the ith row and jth column; Mi• indicates row i; M•j indicates
column j.

4



Example 2, however, is an equally valid and accurate PCA loading matrix for a different sample

of U. The estimate B̂ no longer illuminates the structure of U by selectively assigning columns of

U to principal components, instead, every column of U is assigned to every principal component. It

is preferable for interpretation to have as many zero or near-zero loadings in B̂ without sacrificing

accuracy. PCA, however, does not produce sparse loadings.

Table 2.1: Sample Rank-2 PCA Loadings for Samples of U

Example 1: B̂ with easily
interpreted loadings

Example 2: B̂ with less
interpretable loadings

0.6987 −0.0749

0.7059 −0.0898

0.0834 0.7048

0.0814 0.6997





0.5129 0.4888

0.5144 0.4832

−0.4827 0.5137

−0.4892 0.5136



2.2 Sparsity in Regression

Interpretability of loadings from Example 1 of Table 2.1 was a result of certain loadings being

near zero. The desire for estimating a loading matrix with exact zeros in PCA is analogous to

seeking exact zeros in regression coefficients to perform feature selection in predictive models. In

the univariate regression model y = Xb+ϵ, we seek to estimate the b which minimizes the squared

loss ∥y −Xb∥22. For n > p, b̂ = (X′X)−1X′y is the unique minimizer. 2 3

As p increases to be larger than n, we face two issues. First, the minimizing b̂ is no longer

unique, which breaks the stated solution. Second, the estimated model is difficult to interpret due

to the large number of entries in b̂. If we suspect that many features in X are irrelevant to y,

the ideal estimate b̂ will have many entries exactly equal to zero. This can be achieved by sparse

regression methods.

We can resolve the p > n problems with the elastic net (Zou and Hastie, 2005). The elastic net

regression model adds penalties on b to achieve stable estimates in the p > n setting and to impose

sparsity. Given penalty parameters λ1 and λ2, the objective is presented in Equation (2.1).

2 The stated unique solution assumes the existence of (X′X)−1, which fails if the columns of X have perfect
multicollinearity.

3 X′ is the transpose of X.
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b̂EN = argmin
b
∥y −Xb∥22 + λ1∥b∥1 + λ2∥b∥22 (2.1)

Elastic Net Objective

The contribution of the L2 penalty is to produce stable, unique solutions even for p > n

(Marquardt and Snee, 1975), while the L1 penalty imposes sparsity by pushing small b̂ entries to

be exactly zero. Modifying λ1 allows the practitioner to set the desired level of sparsity.4

2.3 Sparse Principal Component Analysis

Sparse Principal Component Analysis (SPCA) is a technique for estimating sparse PCA loadings

(Zou et al., 2006). This method approximates the PCA solution but, by using the elastic net,

imposes sparsity constraints on the estimated loading matrix.

The PCA loading matrix for X can be written as the minimizer of Equation (2.2).

B̂PCA = argmin
B′B=I

∥X−XBB′∥2F (2.2)

PCA Objective

B̂PCA will project X into a desired lower rank by constraining the number of columns of B̂PCA.

For instance, limiting B̂PCA to be a single column will produce the best rank 1 estimate of X

according to the presented objective.

SPCA relaxes the orthogonality constraint and adds penalty terms to the PCA objective to

form the SPCA objective.

(ÂSPCA, B̂SPCA) = argmin
A′A=I

∥X−XBA′∥2F + λ1∥B∥1 + λ2∥B∥2F (2.3)

SPCA Objective

Due to L1 penalty term λ1∥B∥1, sparsity can be imposed on B̂SPCA.

We observe the SPCA criterion is very similar to the elastic net5 criterion. The similarity is

promising: Zou et. al. show that for fixed A in the SPCA criterion, the columns of B̂SPCA can

be estimated as individual elastic net problems. Given a fixed estimate B̂SPCA, they also provide

4 For more information on sparsity, see for instance Tibshirani et al. (2015)
5 This model is introduced by Zou, Hastie as the Näıve elastic net; for Näıve elastic net estimate b̂NEN , the Elastic

net solution b̂EN is defined as (1 + λ2)b̂NEN . For simplicity, we omit the distinction in this discussion.
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a method for estimating Â. Thus the SPCA solutions can be estimated by alternating updates

between A and B. Note that as each column B•j of B is estimated separately, the L1 penalty λ1

can be customized for each B•j . The full SPCA model thus uses L1 penalty term Σk
j=1λ

j
1∥B•j∥1.

Returning to estimated loadings from Table 2.1, we compare PCA loadings and SPCA loadings

in Table 2.2 on the two matrices previously sampled from N (⃗0,

[
1 .95 0 0
.95 1 0 0
0 0 1 .95
0 0 .95 1

]
). In Example 1, esti-

mated loading matrices from PCA and SPCA are both suggestive of the pairwise block covariance

structure, with the SPCA estimate demonstrating it more immediately by having exact zeros. In

Example 2, SPCA shows the structure in a way that is obscured in the PCA estimate.

Table 2.2: Sample Rank-2 PCA and SPCA Loadings

Example 1: B̂PCA Example 1: B̂SPCA

0.6987 −0.0749

0.7059 −0.0898

0.0834 0.7048

0.0814 0.6997





−0.7080 0

−0.7062 0

0 −0.7069

0 −0.7073


Example 2: B̂PCA Example 2: B̂SPCA

0.5129 0.4888

0.5144 0.4832

−0.4827 0.5137

−0.4892 0.5136





0 −0.7134

0 −0.7007

−0.7011 0

−0.7130 0



The fit of each low-rank estimate can be measured by the reconstruction error ∥X−XB̂PCAB̂
′
PCA∥2F

and ∥X−XB̂SPCAÂ
′
SPCA∥2F . In these examples, the increase in error from PCA to SPCA is neg-

ligible.

The SPCA objective can be solved by a series of regression estimates for each column of B,

where regression is performed by elastic net or thresholding to impose sparsity. The desired sparsity

can be imposed on B by explicitly specifying the number of nonzero entries to retain in each of B’s

columns. We employ the SPCA implementation by Sjöstrand (2005) which estimates sparse B to

minimize the SPCA objective based on desired penalty parameters λ1 and λ2.

7



Algorithm 1 Sparse Principal Component Analysis

Input:

• X, n-by-p matrix

• k, desired number of sparse principal components

• λj
1, Desired number of nonzero entries for loading matrix column j if soft thresholding; desired

L1 penalties if using elastic net

• λ2, L2 penalty

Output: Trained model parameters A, B

1: Initialize A as the first k loading vectors from PCA on X

2: for j = 1 to k do

3: while B•j has not converged do

4: if Soft Thresholding then

5: B•j = Sign(A•j
′X′X)(|A•j

′X′X| − λj
1)+

6: else if Elastic Net then

7: Solve B•j = argmin b ∥XA•j −Xb∥22 + λj
1∥b∥1 + λ2∥b∥22 by elastic net

8: end if

9: B•j = B•j/∥B•j∥2
10: A•j = (I−Aj−1Aj−1

′)X′XB•j ▷ Let Ac denote [A•1, . . . ,A•c], A0 = A•1

11: A•j = A•j/∥A•j∥2
12: end while

13: end for
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2.4 Feature Selection with Annealing

Sparsity in SPCA is achieved by embedding the elastic net, and in particular the L1 penalty,

into a slightly modified PCA estimation problem. In comparable models we propose here, spar-

sity is achieved by embedding a different feature selection method borrowed from regression and

classification: Feature Selection with Annealing (FSA) (Barbu et al., 2017).

For univariate regression y = Xb+ ϵ, FSA estimates sparse b by alternating between gradient

descent updates and sparsity enforcement on b̂. For a desired L0 sparsity, FSA gradually selects

entries in b̂ to be set to exactly zero, while the other values continue receiving gradient updates.

Algorithm 2 Feature Selection with Annealing for Regression

Input:

• X, n-by-p matrix

• y, n-by-1 response vector

• η, learning rate

• epochs, number of epochs

• l(X,y,b), desired loss function

• me, annealing schedule such that me is the number of features kept at epoch e

Output: Sparse estimated model parameter b

1: Initialize b = 0⃗

2: for e=1 to epochs do

3: Update b← b− η ∂l(X,y,b)
∂b

4: Keep only the me variables with highest |bj | and renumber them 1, . . . ,me

5: end for

The choice of annealing schedule me determines the rate at which features in b are dropped

from the estimation. For n-by-p X, b has p entries, but we may desire an estimate b̂ that only has

k < p nonzero entries. The schedule me is chosen to reduce the number of nonzero coefficients of

the estimate b̂ from m0 = p at the beginning of processing to mepochs = k at the final epoch.

A slow annealing schedule allows for more estimation to occur between annealing steps, making

it less likely that a relevant feature is dropped. A more aggressive schedule improves computation

time as the number of features under consideration shrinks more quickly. An appealing approach

from Barbu et al. (2017) is a schedule me that drops features aggressively in early epochs, quickly

dropping the large number of readily identified irrelevant predictors. The annealing slows as es-

timation continues so that more difficult feature selection choices are made with more carefully
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estimated parameters. Their proposed annealing schedule is

me = k + (p− k)max(0,
epochs− 2e

2eµ+ epochs
) (2.4)

for p features, desired ∥b̂∥0 = k, non-negative annealing schedule parameter µ, and epochs e =

1, . . . , epochs. The parameter µ controls how features are dropped as a function of e, with µ = 0

dropping features at a linear rate and higher values dropping features quickly in earlier epochs

before slowing down. Sample annealing schedules are shown in Figure 2.1.

Figure 2.1: Features Remaining me vs. Iteration e for Various µ Values, with p = 1000, k = 10,
epochs = 5006

2.5 Joint Sparse Principal Component Analysis

A recent development in sparse low-dimensional modeling is Joint Sparse Principal Component

Analysis (JSPCA) from Yi et al. (2017), which considers

(ÂJSPCA, B̂JSPCA) = argmin
A′A=I

∥X−XBA′∥2,1 + λ∥B∥2,1 (2.5)

JSPCA Objective

The L2,1 norm of a matrix is the sum of the L2 norms of its rows:

∥M∥2,1 =
∑
i

√∑
j

M2
ij

6 Barbu et al. (2017), reproduced with permission.
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The choice of L2,1 norm was motivated by a desire to impose row-sparsity and to improve

robustness. Due to the sparsity penalty λ∥B∥2,1 acting on the rows of B, entire rows are likely to

be reduced by shrinkage. Because rows of B correspond to features in X, this is a natural choice

of penalty for feature selection. Yi et. al. suggest the L2,1 loss term on X − X̂ is more robust to

outliers than the usual L2 loss on error, improving performance when faced with data corruption

and outliers.

We examine JSPCA alongside other methods in simulations and data experiments.

2.6 Sparse Reduced Rank Regression

Sparse Reduced Rank Regression (SRRR) (She, 2017) uses a low-rank representation of data X

to predict response matrix Y with the following objective function

(ÂSRRR, B̂SRRR) = argmin
A′A=I

∥Y −XBA′∥2F /(2K) +
∑
i,j

P (|Bij |;λe) (2.6)

SRRR Objective

where (P , λe) define the desired sparsity-inducing penalty function, K > 0, and the rank of XBA′

is controlled by the dimensions of (A, B). The authors introduce SRRR with an algorithm which

is shown to have convergence guarantees for the appropriate selection of P and K. A thresholding

method is provided allowing (2.6) to be fit with explicit sparsity restrictions on B, such as the

number of permitted nonzero entries or the number of nonzero rows. The latter constraint permits

the exact specification of the number of features of X to use.

While SRRR is defined for multivariate regression, She (2017) also examines sparse PCA which

emerges as a special case. Replacing Y with X and X with I reduces (2.6) to the SRRR-SPCA

objective:

(Ŝ, V̂) = argmin
V′V=I

∥X−VS′∥2F +
∑
i,j

P (|Sij |;λe) (2.7)

SRRR-SPCA Objective

The authors note that the usual approach to sparse PCA can be viewed within the SRRR

framework as a regression of X on itself. SPCA for instance can be generated from (2.6) by
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taking Y = X and selecting appropriate P . JSPCA applies an L2,1 norm to minimize the same

self-regression setup. SRRR-SPCA, however, differs from this behavior by directly estimating low-

dimension representation V alongside sparse S. This approach and its differences from the SPCA

objective and its derivatives will be important in our later discussion comparing various proposed

sparse PCA methodologies.

2.7 Latent Class Analysis

Latent Class Analysis (LCA) is a model-based clustering method for categorical data introduced

by Lazarsfeld (1950). In the LCA model, rows of a categorical data are presumed to belong to

unobserved latent classes. The class to which a row belongs defines the probability distributions

of its features. The goal of LCA is to use the observed distribution of features to cluster rows into

likely latent classes.

Unsupervised clustering of categorical data emerges in a wide variety of fields to discover po-

tential subgroups or validate existing categorization schemes of a population of interest. See for

instance applications of LCA in the development of typologies in topics as diverse as workplace

environments (Carr et al., 2022), family relationships (Barrett and Gunderson, 2021), homicidal be-

havior (Vaughn et al., 2009), attitudes of hunters (Ward et al., 2008), sleep patterns (Preckel et al.,

2020), compulsive shopping (Challet-Bouju et al., 2020), theater attendance (Grisoĺıa and Willis,

2012), psychosis (Kendler et al., 1998), game-playing strategies (Ghosh and Verbrugge, 2018), high

school attrition (Bowers and Sprott, 2012), and protein classification techniques (Chen et al., 2007).

We will examine the problem of feature selection for LCA models.

2.7.1 LCA Model Specification

An LCA model is defined by its number of unobserved latent classes, class-conditional proba-

bilities of response data, and the global mixture proportions of each class.

For instance, consider a latent class model for p-dimensional binary data with latent classes

K = {1, 2, . . . k}. A sample z generated by this model has p binary features which we observe, and

an underlying latent class label c ∈ K which is unobserved. Each class c has its own specification

of p Bernoulli parameters which define the distributions of the p features of observations belonging

to that class. This model can be specified by the following parameters:

• k, the number of latent classes
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• π, a length-k vector of probabilities where πc is the probability of a sample being generated

from class c. Note that
∑k

c=1 πc = 1.

• θ, a k-by-p matrix of class-conditional Bernoulli parameters defining the distribution of sam-

ples generated from each class. That is, for a sample z belonging to class c, θcj = P (zj = 1).

2.7.2 LCA Example

As a simple example, consider realizations of three coin tosses. The three tosses within a sample

are generated from the same coin, but samples are generated from a fair coin 30% of the time and a

loaded coin having a 90% chance of returning heads 70% of the time. In this scenario, realizations

belong to one of two latent classes (fair, unfair coin) which can be modeled as a two-class latent

class model with

π =

0.3
0.7

 θ =

0.5 0.5 0.5

0.9 0.9 0.9


Given these parameters, an observation (Heads, Heads, Heads) can be shown to have a higher

likelihood of having been generated from class 2 than from class 1.

2.7.3 LCA Likelihood

Given latent class modelΛ = (π,θ) for p-dimensional binary data with latent classes {1, 2, . . . , k},

let Z be a random variable representing p-dimensional samples distributed according to the model,

T the latent class label of Z, and z a sample drawn from Z. Note that T itself is random. We

summarize some useful properties of T which follow from the model specification:

• P (T = c) = πc

• P (Zj = 1 | T = c) = θcj

• P (Zj = 0 | T = c) = 1− θcj

• P (Zj = zj | T = c) =

{
θcj zj = 1

1− θcj zj = 0

= (θcj)
zj (1− θcj)

1−zj

• P (Zj = 1) =
∑k

c=1 P (T = c)P (Zj = 1 | T = c) =
∑k

c=1 πcθcj
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• P (Z1 = z1, Z2 = z2, . . . , Zp = zp | T = c)

=

p∏
j=1

P (Zj = zj | T = c)

=

p∏
j=1

(θcj)
zj (1− θcj)

1−zj

• P (Z1 = z1, Z2 = z2, . . . , Zp = zp)

=
k∑

c=1

P (T = c)P (Z1 = z1, Z2 = z2, . . . , Zp = zp | T = c)

=
k∑

c=1

P (T = c)

p∏
j=1

P (Zj = zj | T = c)

=

k∑
c=1

πc

p∏
j=1

(θcj)
zj (1− θcj)

1−zj

The final property listed above is helpful in defining the likelihood function of the model. Given

k-class LCA model Λ = (π,θ) for p-dimensional binary data and n-by-p binary matrix Z, the

likelihood of the model given Z is given by

L (Λ;Z) =
n∏

i=1

 k∑
c=1

πc

p∏
j=1

(θcj)
Zij (1− θcj)

1−Zij

 (2.8)

LCA Likelihood

Latent Class Analysis model parameters are ordinarily estimated by Expectation-Maximization.

Further detail can be found in Agresti (2010). In this work we will develop and test methods to

apply feature selection to Latent Class Analysis using FSA.
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CHAPTER 3

METHODOLOGY - LATENT CLASS ANALYSIS

3.1 Feature Selection for LCA

Latent-model categorical data with large p presents familiar challenges for modeling: stability,

interpretability, and parsimony. To this end, there have been developments in regularization and

feature selection for LCA. For this discussion we consider a k-class LCA model Λ = (π,θ) for

p-dimensional binary data.

Penalized Methods. Latent class models on high-dimensional data require estimation of

a large number of parameters, which can produce computational and numerical difficulty. One

option for stabilizing LCA estimation is including a penalty term in the likelihood function (2.8)

of the model. Houseman et al. (2006) apply L1 and L2 penalties on θ to LCA. Their finding

was that penalizing the likelihood enabled model-fitting in a setting where unpenalized estimation

would diverge. This penalized estimation method has since been extended to allow stable model

estimation of LCA on high-dimensional ordinal data (DeSantis et al., 2008) and to accommodate

incorporation of covariates to improve model accuracy (Leoutsakos et al., 2011).

Houseman, Leoutsakos, and colleagues differentiate their likelihood penalties from approaches

such as Mooijaart and Van der Heijden (1992), which assume a priori structural constraints on θ

such as equality of parameter elements having certain positional relationships. Two recent examples

of structured regularization for LCA incorporate the expectation from domain knowledge that

features will commonly have similar probabilities across adjacent latent classes (Chen et al., 2017) or

across classes in general (Robitzsch, 2020). However in the absence of domain knowledge justifying

constraint assumptions, a more general approach to penalization is appropriate (Houseman et al.,

2006; Leoutsakos et al., 2011; Robitzsch, 2020).

Stepwise Methods. A completely different feature selection framework is stepwise selection.

This approach fully trains a series of models, with feature selection decisions made by comparing

the fit of successive models. When a convergence criterion is met, the final model is hoped to use

the optimal subset of features.
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Raftery and Dean (2006) introduce a stepwise selection approach for model-based clustering.

They begin with a single-feature model, starting with the one showing greatest evidence of uni-

variate clustering. The next model adds a second feature: the one that when paired with the first

feature shows the greatest evidence for bivariate clustering. The addition of features continues for

all features that show evidence of being relevant to the clustering. This method was originally

demonstrated on continuous data but has since been applied to the categorical latent class setting

with slight modifications to the feature search strategy (Dean and Raftery, 2010; Fop et al., 2017).

However, Raftery and Dean (2006) caution that the stepwise approach is not feasible in the

high-dimensional setting. Penalized variable selection for model-based clustering is identified as

a viable alternative to stepwise selection in high dimensional settings in a review by Bouveyron

and Brunet-Saumard (2014) of high-dimensional clustering methods, and by Celeux et al. (2014)

in their direct comparison of stepwise selection and regularization. Pan and Shen (2007) also find

that penalized variable selection is preferable to stepwise selection methods in high dimensions, but

further suggest that stepwise feature selection may be flawed in low-dimension settings as well.

3.2 Latent Class Analysis with FSA

In this section we introduce Latent Class Analysis with FSA (LCA-FSA). In our approach,

feature relevance will be assessed by using the model’s ongoing estimate of latent class assignments.

Because latent class labels are categorical and the feature space is binary, we examine candidate

measures of association between categorical and binary random variables.

3.2.1 Measures of Categorical Association

The following discussion assumes discrete random variables X and Y . Probabilistic measures

of association may be functions of X and Y directly, while empirical measures will operate on

joint realizations {(xi, yi);xi ∼ X, yi ∼ Y }ni=1 which we organize into vectors x = {xi}ni=1 and

y = {yi}ni=1.

Mutual Information. Mutual information is a popular and intuitive approach to measuring

the association between two random variables, originating in the foundations of information theory

(Shannon, 1948).

MI(X,Y ) =
∑
x,y

P (X = x, Y = y)log
P (X = x, Y = y)

P (X = x)P (Y = y)
(3.1)
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Note that the sum is implied to only consider joint values (x, y) where P (X = x, Y = y) > 0.

Mutual information is non-negative, achieving its minimum MI(X,Y ) = 0 when X and Y are

mutually independent. It is symmetric over its inputs.

A detailed introduction to mutual information will be found in general texts on information

theory such as Yang (2008). A brief examination of its usage in feature selection is found in

Vergara and Estévez (2014), though there is a prolific and ongoing body of work contributing novel

modifications of mutual information to selection problems.

When used in LCA for feature selection with data Z and class label estimates T̂ , the feature

relevance score for feature j is given by MI(Z•j , T̂ ).

Algorithm 3 Calculating MI(x,y)

Input: Categorical vectors x, y of length n

Output: Mutual Information score between x and y

1: Let If be the indicator function:

If(statement) =

{
1 If True

0 Otherwise
(3.2)

2: Let P and Q be the sets of the distinct values taken by elements of x and y, respectively

3: For p ∈ P and q ∈ Q, define

Cx(p) =
1

n

∑
t
If(xt = p) (3.3)

Cy(q) =
1

n

∑
t
If(yt = q) (3.4)

Cx,y(p, q) =
1

n

∑
t
If(xt = p)If(yt = q) (3.5)

4: Calculate Mutual Information score

MIx,y =
∑

p∈P,q∈Q
Cx,y(p, q)log

max(Cx,y(p, q), 1)

Cx(p)Cy(q)
(3.6)

An influential association score based on mutual information is Maximum Relevance Min-

imum Redundancy (mRMR). In a classification feature selection setting, mRMR ranks candi-
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date features by rewarding mutual information with the response and penalizing mutual information

with features that have already been selected (Peng et al., 2005).

mRMR feature relevance scores for LCA can be calculated for feature Z•j of Z by calculating

its MI score and subtracting the average mutual information MI(Z•j ,Z•k) between feature j and

all other features k.

χ2 Test of Association. The χ2 test of association is a standard approach to performing

inference on contingency tables (Agresti, 2010, chap. 3). While the χ2 test is a classical inference

method designed for hypothesis-testing, the statistic and derivative methods are sometimes applied

to feature selection problems for classification (Forman et al., 2003; Spencer et al., 2020).

As a measure of categorical association, we define function χ2(x,y) between categorical vectors

x and y as the statistic produced by a χ2 test of association on those vectors when testing the

null hypothesis of no association. As an LCA feature relevance score, we take x to be the feature

being scored and y to be the model’s current class label estimates. Calculation steps are detailed

in Algorithm 4.
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Algorithm 4 Calculating χ2(x,y)

Input: Categorical vectors x, y of length n

Output: Chi-square statistic χ2

1: Let If be the indicator function:

If(statement) =

{
1 If True

0 Otherwise
(3.7)

2: Let {Pi}pi=1 and {Qi}qi=1 be the sets of the distinct values taken by elements of x and y,

respectively

3: Let O be a p-by-q matrix where

Oij =

n∑
t=1

If(xt = Pi)If(yt = Qj) (3.8)

4: Let E by a p-by-q matrix where

Eij =

(
n∑

t=1

If(xt = Pi)

)(
n∑

t=1

If(yt = Qj)

)(
1

n

)
(3.9)

5: Calculate chi-square statistic

χ2 =
∑
i,j

(Oij −Eij)
2

Eij
(3.10)

Diff-Criterion. Javed et al. (2010) introduce the diff-criterion for measuring association

between a binary response variable and binary features for the classification setting. Consider

Bernoulli random variables X and Y which are thought to have some association. Framed as a

classification problem, samples of X are used to predict corresponding samples of Y . The diff-

criterion measures the relevance of X to Y as the absolute difference in P (X = 1) given Y :

DiffCrit(Y,X) = |P (X = 1 | Y = 1)− P (X = 1 | Y = 0)| (3.11)

The diff-criterion showed promise as a fast filtering step for feature selection in high-dimensional

classification where Y is being predicted by a large number of binary features {Xj}j . Intuitively,

the criterion is meant to identify which features show little differentiation across response values.

The authors suggest its potential use in a two-stage approach to feature selection, with a fast

diff-criterion pass being followed by a more intensive approach.
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The diff-criterion was introduced for feature selection in a supervised classification setting; we,

however, apply it to unsupervised feature selection in LCA. Also, Javed et al. (2010) apply diff-

criterion to settings with binary Y . We apply and test an extension of the diff-criterion to multi-class

Y in a way proposed by Javed (2012) but which, to our knowledge, has not been examined in the

literature.

For categorical random variable Y taking values {1, ..., k} where P (Y = c) = πc, and binary

random variable X,

DiffCrit(Y,X) =
∑
i<j

πiπj |P (X = 1 | Y = i)− P (X = 1 | Y = j)| (3.12)

When used during model training to measure feature relevance, the feature Z•j being examined

is represented here as X, the model’s current estimates for class labels is used here as Y , π is an

estimated model parameter, and values of P (X = x|Y = y) are estimated from observed values.

3.2.2 Likelihood-Based Feature Relevance Score

LCA feature relevance methods introduced so far have been measures of categorical association.

Here, we describe a model-based approach to ranking feature importance.

In the stepwise selection methods reviewed in 3.1, feature selection progresses through com-

paring fit statistics of two competing, fully-trained models where the features of one model are a

subset of the features of the other. We propose a similar approach which anneals features based

on the effect of their removal on the model likelihood. However, this feature selection decision is

embedded as part of model training.

Given binary data matrix Z and LCA model Λ, the likelihood L (Λ;Z) is given by (2.8).

Consider that for any feature Z•j , we can produce revised data Z(j) removing that feature, and

revised model Λ(j) excluding parameter elements θ•j relating to the feature. L (Λ(j);Z(j)) would

then show the likelihood of the model while ignoring Z(j). By calculating all such likelihoods

{L (Λ(j);Z(j))}j , features can be scored by the impact of their exclusion on the overall likelihood.

Because these likelihoods will show higher values for less important features, we negate the value

for use as a feature relevance score.

LLScore(Z•j) = −L (Λ(j);Z(j))

3.2.3 Incorporating FSA into LCA

The measures of categorical association introduced above are applicable to feature selection in

Latent Class Analysis. During model training, the training algorithm’s current parameter estimates
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(π, θ) are available, as well as data Z being trained on. The parameter estimates allow us to

estimate the probability of a given class generating a row z based on its observed values, as shown

in 2.7.3. Letting T be the random variable representing possible class assignments of z, we have

P (z | T = c) =

p∏
j=1

(θcj)
zj (1− θcj)

1−zj (3.13)

as well as simultaneous probability

P (z, T = c) = πc

p∏
j=1

(θcj)
zj (1− θcj)

1−zj (3.14)

The joint probabilities between z and class possibilities c allow us to assign z a maximum

likelihood estimate of its class label. These estimates for all rows of Z are collected in a vector of

class label predictions T̂ .

Given these estimated labels, feature relevance can be ranked by calculating the association of

each feature Z•j and T̂ by any of MI, mRMR, DiffCrit, or χ2. If using the likelihood-based

approach for measuring feature relevance, scores can be obtained using the overall data likelihood

in the scheme prescribed in 3.2.2. We call this model LCA-FSA. The process for estimating an

LCA-FSA model is shown in Algorithm 5, which follows an expectation-maximization procedure

for LCA detailed by Goodman (1974).

Remarks on LCA Algorithm.

Remark 1. In practice, estimation of LCA models typically involves multiple starts.

The quality of a trained LCA model can vary based on the random initialization of parameters.

Therefore, clustering software typically suggests training a model multiple times allowing for multi-

ple initializations. The model showing highest log-likelihood is selected. See, for instance, popular

R packages for clustering (Linzer and Lewis, 2011; Scrucca et al., 2016; Maechler et al., 2022).

Remark 2. Calculations should be designed to mitigate underflow and exact 0’s in θ.

Model estimation at times involves performing intermediate products of a high number of prob-

abilities. This can produce underflow, where a product is returned with value exactly 0 because the

actual value is beyond the floating point precision of the machine. For high-dimensional applications

these calculations should be performed in terms of log probabilities rather than on probabilities

directly. Further, correct but vanishingly small values in θ can produce numerical overflow when
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Algorithm 5 Latent Class Analysis with FSA

Input:

• Z, n-by-p binary data matrix

• k, desired number of latent classes

• ω, desired number of features

• epochs, number of epochs

• me, FSA annealing schedule specifying number of features kept at epoch e

• A feature relevance scoring measure to be used with FSA

Output:

• Trained model parameters θ, π

• An index of retained features v =
{
j ∈ {1, 2, . . . , k} | Z•j retained by model

}
1: Let T be a vector of n random variables where Ti represents the unknown latent

class of row Zi•

2: Randomly initialize estimates T̂ of T by drawing n samples uniformly from {1, ..., k}
3: Initialize π with πi = Count(T̂ = i)/n

4: Initialize θ with θcj equal to the average value of
{
Zij | i ∈ {1, ..., n}, T̂i = c

}
5: Initialize feature retention index v = [1, 2, . . . , p]

6: for e = 1 to epochs do

7: Calculate n-by-k matrix C of observation-class likelihoods with
Cic = P (Zi• | Ti = c) by applying Equation (3.13)

(See Algorithm Note in 3.2.3)

8: Update π to be the column-wise means of C

9: Update θ to diag(π)−1C′Z/n, where diag(π) the diagonal matrix with diagonal entries π

10: Apply FSA

11: me is the desired number of features to retain for current epoch

12: Score all features with the chosen metric and identify those not in the top me

13: For each column Z•j not retained:
Remove that column from Z
Remove column θ•j from θ
Remove j from v

14: end for
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such small numbers are divisors. We find it helpful in estimation to introduce a slight bias to the

estimation of θ by preventing any of its elements from becoming exactly 0.

Remark 3. High-dimensional clustering of binary data is an ideal setting for sparse matrix pro-

gramming.

A common strategy for implementing an algorithm efficiently is to vectorize calculations. This

is possible for the estimation of LCA. However in the case of high dimensions, binary data is often

sparse i.e. having many features with very few positive cases. For these settings, it is worthwhile

to use sparse matrix data objects and to employ operations optimized for them.

Algorithm Note. To estimate C, calculation is performed in terms of log probabilities per Re-

mark 2. Observe that for model Λ = (π,θ), row z, and its unobserved latent class label

T ,

P (T = j | z)

= P (z | T = j)P (T = j)/P (z)

=
(
∏p

i=1 |1− zi − θji|)πj∑k
c=1(

∏p
i=1 |1− zi − θci|)πc

=

1 +
∑
c ̸=j

(
∏p

i=1 |1− zi − θci|)πc

(
∏p

i=1 |1− zi − θji|)πj

−1

=

1 +
∑
c ̸=j

exp

(
log(πc) +

p∑
i=1

log(|1− zi − θci|)− log(πj)−
p∑

i=1

log(|1− zi − θji|)

)−1

3.3 Methodology Comparison

In this chapter, we proposed LCA-FSA which uses annealed feature selection for training latent

class analysis models. Broad comparisons between LCA feature selection approaches were made

in 3.1. In particular, it was observed that regularization is a viable approach for high-dimensional

data, and that nonspecific penalties are preferred to a priori structural assumptions about the

parameter space without motivating domain knowledge.

Here we make more specific comparisons with other models.

Firstly, feature selection for categorical LCA is similar to the goal of feature selection in Gaussian

Mixture Models. Feature selection for GMMs has seen more attention in the literature and is often
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a source of methodology later extended to other clustering settings. Pan and Shen (2007) performed

feature selection for multivariate normal clustering using an L1 penalty and thresholding. They

remark that penalized likelihood had been thoroughly examined in the supervised setting, but not

for multivariate clustering.

Dong et al. (2021) examine feature screening for a high-dimensional LCA model using joint

L0−L1 constraints. Their incorporation of L0 allows them to achieve their goal of efficient feature

filtering prior to training a classification model. In spite of the recency of this work, the authors

observe that the feature selection literature continues to have little focus on the unsupervised

setting. The overall method examined is comparable to LCA-FSA, with the distinction that Dong

et. al. examine continuous (GMM) data.

Houseman et al. (2006) do apply penalization to the categorical LCA setting. Ridge and lasso

penalties were found to be necessary to estimate an LCA model. The focus of their experiments was

stability of model estimation and accuracy of predicted clustering, and so evaluating the correctness

of feature selection was not relevant to their context. Further, their data experiments had low-to-

moderate p.

Leoutsakos et al. (2011), closely following the work of Houseman, apply penalties to latent class

regression in low-p settings. Following experiments and discussion of ridge and lasso penalties, they

suggest that better results may derive from penalization that somehow promotes class separation.

Specifically, they surmise a penalty that rewards features for strong association with a particular

class and not others, an idea we will return to later.

There appears to be a consensus that stepwise or “best subsets” feature selection methods are

inappropriate for high dimensions. In their examination of the stepwise approach to LCA feature

selection, Fop et al. (2017) mention in passing that regularization is a possible approach, though

they are yet to encounter the technique applied to categorical clustering. Their methodology draws

heavily from the variable selection framework of Raftery and Dean (2006), which in its concluding

discussion raises the question of whether their model would perform better if their method’s greedy

search algorithm were replaced with simulated annealing.

Riyanto et al. (2022) recently applied mutual information in a forward search method embedded

into the training of LCA for categorical data. The approach was tested on data from the government

of Indonesia, which classified villages into five categories of economic development based on a series

of discrete measures surveyed for each village. Their model reduced the number of features needed

to estimate the classification with the goal of reducing the number of features needed in village
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surveys, which were costly to collect. Similar to this work, we will examine mutual information

for LCA-FSA, though our approach differs in several ways. Firstly, we will include simulated

data for which we can objectively measure the correctness of feature selection. Secondly, we will

include tests of feature selection on simulated and real data with high dimensionality, whereas

the authors’ experiment reduced data from 12 features to 4. Finally, we will compare multiple

measures of feature relevance rather than applying only mutual information, which the authors cite

as a limitation of their work.

Silvestre et. al. train categorical LCA with an embedded minimum message length (MML)

criterion to perform feature selection (Silvestre et al., 2015) and the selection of the number of latent

classes (Silvestre et al., 2022). Borrowing a technique from Law et al. (2004), the authors modify the

likelihood to include parameters representing the probability of relevance for each feature. These

parameters are estimated as part of the model and inform feature selection decisions. Experiments

compare the embedded MML approach to a filtering strategy using normalized entropy and a

wrapper strategy using mutual information. On synthetic data, the filter approach was unable to

differentiate between relevant and irrelevant features. The wrapper approach had some success

identifying relevant features, though not as well as embedded MML. On real data, embedded MML

was shown to produce a model with a smaller MML than the filter and wrapper methods, though it

is unclear what implication this has on model accuracy. Similarly in spirit to the embedded MML

approach, LCA-FSA also applies an embedded feature selection approach to LCA. We will observe

the ability to recover relevant features from synthetic data, as Silvestre et. al. do, but on data

with moderate to large p. We will also test the ability to recover known labels on real-world data,

allowing objective measures of model performance relative to parsimony.
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3.4 LCA Simulations

In this section we present the result of a simulation study on LCA-FSA with various feature

relevance metrics. The feature scoring methods are those introduced in 3.2.1: mutual information,

χ2 statistic, mRMR, diff-criterion, and a likelihood approach (“LL”). We also include results from

the R package LCAvarsel (Fop and Murphy, 2017), which is a forward stepwise selection approach

for LCA feature selection, called “FWD” in our experiments. 1 Finally, we include results from

latent class analysis without feature selection (“No FS”).

3.4.1 Simulations Setup

To compare LCA models with feature selection, we simulate data following a latent class model

and observe (i) the ability to recover correct clustering into latent classes, and (ii) the ability to

identify relevant features.

Simulated data samples are generated from initial specifications:

• k, the number of latent classes

• n, the number of rows (observations)

• ω, the number of relevant features

• q, the number of noisy features

• p = ω + q, the total number of features

Given these, a specific data sample is generated in the following steps:

1. Generate T , a length-n vector of class labels, by selecting uniformly from {1, ..., k}
2. Generate θ as a random k-by-p matrix with entries sampled uniformly from (0, 1)

3. Generate π as a length-k vector with values 1/k

4. Generate n-by-ω matrix Z̃ as a binary matrix by sampling Z̃ij from Bernoulli(θcj) where

c=Ti

5. Generate n-by-q noisy data N as a binary matrix by sampling Nij from Bernoulli(rj) where

{ri}qi=1 is initialized as random uniform deviates

6. Generate observed data matrix Z with Z =

[
Z̃ N

]
In practice, we follow the data generation steps using 2n rows to obtain equally-sized training

and testing data matrices.

We run simulations on the following data settings

• k ∈ {2, 5, 30}
1 The forward stepwise approach performs feature selection by a series of feature addition/removal steps. The

model completes its feature selection when no further modification steps seem helpful, and thus choosing the total
number of features to retain is part of model estimation. To fit into our discussion, we modify the forward selection
algorithm to target an exact specified number of features to retain.
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• n ∈ {100, 500, 1000, 5000}
n.b. n = 100 is excluded when k = 30

• ω = 10

• q ∈ {10, 50, 100, 500, 1000}

3.4.2 Scoring Metrics

Models applying feature selection are given q, i.e., they are configured to select the top ω

features. Thus we are able to report the number of correctly selected features for each trained

model applying feature selection. Our simulations fix ω = 10, so this metric ranges from zero (all

incorrectly chosen) to ten (all correctly chosen).

Estimation of a latent class model includes estimating the assignment of observations into latent

classes. This is equivalent to predicting T , though not necessarily with the same labeling scheme.

Thus T and predicted values T̂ should not be thought of in terms of their label values, but as

partitioning schemes on rows of Z. To measure the accuracy of T̂ we report the Adjusted Rand

Index (Hubert and Arabie, 1985; Martinez et al., 2017) between T and T̂ on test data.

3.4.3 Simulations Results

Results are organized by simulation setting (2-class, 5-class, and 30-class) and metric examined.

These results are presented in Figures 3.1-3.3 and Tables 3.1-3.3.

For the 2-class model, we observe the LCA-FSA models’ ability to recover true features in Figure

3.1. The results show slight differentiation in model performance with χ2, diff, and MI performing

well, LL slightly lagging, and mRMR underperforming. This pattern holds as q increases. The

performance of mRMR worsens relative to other models with increasing q, while other models

retain the ability to recover most true features. Forward selection (FWD) performs well up to

q = 100 but suffers for higher values.

Adjusted Rand Index scores on test data for the 2-class problem show mRMR being outper-

formed by other models for q <= 100. For higher q, mRMR and FWD stand out as underperform-

ers.

Feature selection metrics for the 5-class simulations with q=10 (Figure 3.2) show better per-

formance for all models compared to the 2-class scenario, except FWD which seems unable to

accommodate the higher number of latent classes.. The performance of mRMR continues to lag,

though with less of a difference as q increases. In some cases the performance of mRMR improves
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with higher q, suggesting mRMR with lower q may benefit from a slower annealing schedule. Over-

all, all methods but FWD show an ability to recover relevant features well with larger n, and

diff-criterion appears to show the best performance.

Adjusted Rand Index scores show lower performance than for the 2-class problem. Further,

the performance hit that the non-FS model takes with increasing q becomes evident at 50 noisy

features, where in the 2-class setting the difference appeared at q = 500.

In the 30-class simulation (Figure 3.3), all models except FWD are able to identify relevant

features for low q and for moderate q when n is high. Performance suffers for high q, with the

highest performance achieved by diff-criterion.

Rand Index scores for the 30-class setting are too low to be of utility in a practical data analysis

setting. We include these results as a stress-test of models. For high q for instance, we find the

point where the model without feature selection is unable to recover any signal.

A point of inquiry in these results is the isolated poor performance of mRMR at various settings.

We posit that the cause may be the nature of the simulated data. Modeling data in these simulations

involves recovering true features in the face of an increasing number of noisy features, a kind of

needle in a haystack problem. The best-performing model will select all relevant features and

drop all noisy features. mRMR however penalizes redundancy in selected features, while this data

may benefit from capitalizing on discovered correlations. In later sections, we will examine the

performance of mRMR in settings where the feature selection task is to select the most useful

features out of many relevant ones, rather than to separate relevant from irrelevant features.

Another specific model to examine is the forward selection model. Stepwise methods are not

suited for high-dimensional problems, and this becomes clear as either q or the number of latent

classes increases. Further, the stepwise modeling approach takes much longer, as shown in Table

3.4.
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Table 3.1: 2-Class LCA Simulations

n Features Correctly Selected Test Adj. Rand Index

q n LL MI χ2 diff FWD mRMR LL MI No FS χ2 diff FWD mRMR

10

100 7.78 6.30 7.85 7.90 7.43 6.33 0.65 0.54 0.65 0.66 0.65 0.64 0.44

500 8.40 8.68 8.85 8.70 8.60 8.03 0.76 0.77 0.77 0.77 0.77 0.77 0.61

1000 8.65 8.93 8.98 9.00 9.08 8.38 0.77 0.77 0.78 0.78 0.78 0.78 0.62

5000 8.93 9.28 9.35 9.35 9.53 8.63 0.77 0.78 0.78 0.78 0.78 0.78 0.62

50

100 5.40 3.08 5.78 5.98 5.43 2.63 0.53 0.26 0.46 0.55 0.61 0.61 0.18

500 8.18 8.00 8.38 8.23 7.98 6.48 0.76 0.73 0.75 0.76 0.76 0.76 0.57

1000 8.73 8.65 8.88 8.78 8.75 6.58 0.77 0.76 0.77 0.77 0.77 0.78 0.51

5000 8.85 9.05 9.45 9.30 9.05 6.75 0.77 0.76 0.78 0.78 0.78 0.78 0.46

100

100 4.45 2.18 3.95 4.40 3.58 2.00 0.44 0.21 0.26 0.37 0.42 0.36 0.16

500 7.50 5.93 7.80 7.83 7.58 4.35 0.75 0.58 0.73 0.75 0.76 0.76 0.41

1000 7.83 7.55 8.28 8.40 8.58 4.70 0.75 0.68 0.76 0.75 0.77 0.77 0.37

5000 8.63 9.28 9.30 9.23 8.70 5.53 0.78 0.78 0.78 0.78 0.78 0.76 0.39

500

100 0.45 0.03 0.50 0.83 0.10 0.03 0.04 0.00 0.01 0.04 0.08 0.00 0.00

500 4.38 1.25 4.48 4.83 4.33 0.98 0.47 0.13 0.33 0.48 0.52 0.47 0.09

1000 6.35 5.30 6.58 7.00 3.73 1.40 0.65 0.51 0.59 0.65 0.69 0.40 0.12

5000 8.53 8.30 9.28 9.03 3.25 2.00 0.78 0.72 0.76 0.78 0.78 0.32 0.16

1000

100 0.15 0.00 0.13 0.15 0.13 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00

500 2.00 0.00 1.78 2.30 0.75 0.05 0.24 0.00 0.02 0.22 0.29 0.09 0.00

1000 4.50 1.45 4.55 4.78 0.67 1.35 0.52 0.16 0.25 0.48 0.52 0.09 0.15

5000 7.85 7.30 8.88 8.85 0.15 3.00 0.72 0.62 0.73 0.76 0.76 0.04 0.29
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Table 3.2: 5-Class LCA Simulations

n Features Correctly Selected Test Adj. Rand Index

q n LL MI χ2 diff FWD mRMR LL MI No FS χ2 diff FWD mRMR

10

100 8.08 7.50 7.70 8.25 6.43 7.25 0.22 0.21 0.20 0.23 0.24 0.13 0.20

500 9.73 9.25 9.53 9.73 6.38 8.75 0.48 0.45 0.45 0.47 0.48 0.19 0.40

1000 9.73 9.58 9.83 9.83 5.65 8.95 0.52 0.51 0.52 0.53 0.53 0.17 0.45

5000 9.60 9.68 9.93 9.83 4.75 9.00 0.56 0.56 0.57 0.57 0.56 0.18 0.50

50

100 4.73 3.30 4.60 5.63 3.68 3.38 0.10 0.07 0.05 0.11 0.14 0.07 0.08

500 9.30 8.13 8.95 9.23 5.55 7.95 0.43 0.39 0.31 0.43 0.44 0.16 0.37

1000 9.80 8.93 9.78 9.80 5.45 8.03 0.50 0.46 0.44 0.51 0.51 0.17 0.40

5000 9.93 9.78 9.90 10.00 4.60 8.45 0.55 0.55 0.54 0.55 0.55 0.17 0.44

100

100 2.58 1.03 2.53 3.70 1.88 1.38 0.06 0.03 0.01 0.05 0.09 0.03 0.02

500 8.73 7.08 8.13 8.78 5.05 6.73 0.39 0.32 0.18 0.38 0.39 0.16 0.30

1000 9.75 8.95 9.35 9.70 5.18 8.08 0.48 0.44 0.35 0.47 0.49 0.17 0.39

5000 9.83 9.95 9.90 9.95 4.65 8.25 0.56 0.57 0.54 0.57 0.57 0.17 0.44

500

100 0.25 0.00 0.35 0.53 0.23 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.00

500 2.75 0.58 2.43 4.40 1.40 0.78 0.10 0.02 0.01 0.09 0.17 0.04 0.03

1000 6.93 3.28 6.03 7.40 2.15 3.55 0.31 0.15 0.03 0.26 0.34 0.07 0.17

5000 9.80 8.55 9.73 9.95 2.08 7.70 0.50 0.42 0.38 0.49 0.51 0.07 0.38

1000

100 0.08 0.00 0.15 0.23 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 1.05 0.20 1.05 2.00 0.08 0.18 0.03 0.00 0.00 0.03 0.06 0.00 0.00

1000 3.38 1.40 3.23 5.25 0.18 1.48 0.14 0.06 0.00 0.14 0.20 0.00 0.06

5000 9.48 7.03 9.38 9.83 0.13 6.65 0.48 0.36 0.20 0.46 0.49 0.00 0.33
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Table 3.3: 30-Class LCA Simulations

n Features Correctly Selected Test Adj. Rand Index

q n LL MI χ2 diff FWD mRMR LL MI No FS χ2 diff FWD mRMR

10

500 8.53 8.03 7.78 8.68 6.60 8.03 0.07 0.07 0.05 0.07 0.07 0.01 0.07

1000 9.65 9.18 8.73 9.55 6.78 9.05 0.10 0.09 0.06 0.09 0.10 0.01 0.09

5000 9.90 9.53 9.85 10.00 5.23 9.10 0.15 0.15 0.13 0.16 0.16 0.01 0.13

50

500 5.20 4.48 4.58 5.68 3.53 4.40 0.04 0.03 0.01 0.03 0.04 0.01 0.03

1000 7.85 6.30 6.68 7.85 4.60 6.35 0.07 0.06 0.01 0.06 0.08 0.01 0.06

5000 10.00 9.35 9.93 9.93 4.50 9.25 0.15 0.14 0.06 0.15 0.15 0.01 0.14

100

500 2.53 2.20 2.25 4.13 1.93 2.23 0.02 0.01 0.00 0.01 0.02 0.00 0.02

1000 4.88 4.00 4.35 5.95 3.80 3.80 0.04 0.03 0.00 0.03 0.05 0.01 0.03

5000 10.00 9.63 9.80 9.98 4.48 9.68 0.14 0.13 0.03 0.14 0.14 0.01 0.13

500

500 0.40 0.08 0.33 0.73 0.30 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1000 0.63 0.13 0.55 1.55 0.35 0.33 0.00 0.00 0.00 0.00 0.01 0.00 0.00

5000 6.70 5.60 6.05 9.13 1.46 5.15 0.07 0.06 0.00 0.06 0.10 0.00 0.05

1000

500 0.25 0.05 0.18 0.38 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1000 0.20 0.03 0.20 0.48 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5000 2.28 1.63 2.48 6.90 0.22 2.10 0.02 0.01 0.00 0.02 0.07 0.00 0.02
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Table 3.4: LCA Simulations Average Model Estimation Time (s)

n noisy LL MI No FS χ2 diff FWD mRMR

100

10 0.20 0.23 0.35 0.53 0.29 33.20 0.22

50 0.41 0.30 0.19 1.17 0.24 126.46 0.46

100 0.55 0.31 0.51 2.95 0.42 267.78 0.84

500 1.54 0.83 0.48 6.98 0.52 1466.94 5.51

1000 2.76 0.88 0.73 12.78 0.79 2591.24 17.42

500

10 0.82 1.01 0.69 1.24 0.83 77.40 0.78

50 2.04 1.06 1.22 2.49 1.11 262.82 1.28

100 4.00 1.38 1.60 4.95 1.45 562.85 1.97

500 14.23 3.62 5.07 12.88 3.30 4448.61 9.75

1000 24.52 5.96 9.13 22.84 5.57 9415.28 27.90

1000

10 1.29 1.27 1.17 1.42 1.31 130.38 1.23

50 3.21 1.68 2.15 3.40 1.74 486.92 1.84

100 6.85 2.67 2.73 6.24 2.23 1014.46 2.80

500 24.41 5.94 9.67 18.17 6.07 8413.09 13.94

1000 42.57 9.82 15.80 32.34 9.71 25430.59 38.91

5000

10 4.56 4.28 4.29 4.55 3.89 682.18 4.38

50 11.53 6.35 7.98 11.42 6.19 2104.82 6.26

100 26.75 8.37 11.03 19.15 7.82 4594.74 9.19

500 108.28 24.57 44.93 62.62 23.50 66734.08 49.51

1000 224.49 49.27 93.54 120.43 49.63 118644.04 131.82
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Figure 3.1: LCA Simulation Scores for 2-Class Simulations with varying n, q
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Figure 3.2: LCA Simulation Scores for 5-Class Simulations with varying n, q
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Figure 3.3: LCA Simulation Scores for 30-Class Simulations with varying n, q
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3.5 LCA Experiment - Classification of School Types

In this section, we test LCA-FSA by attempting to recover underlying class labels of real data

for which the true class labels are known. Comparable to a classification setting, we use knowledge

of the true labeling to measure the accuracy of class predictions.

3.5.1 Experiment Data and Setup

Data for this experiment is derived from public data on K-12 schools published by the Florida

Department of Education (2016). For the 2015-2016 academic year, we collect FLDOE’s reported

classification of each Florida public school as an elementary, middle, or high school. We combine

this with FLDOE records on enrollment figures in individual classes for each public school for that

time period. The resulting data matrix Z includes a row for each school with binary features

indicating whether each class had any enrollment at that school. The LCA models will attempt to

recover class labels y, which indicate school level.

The data includes 2,909 schools which collectively offer 2,586 classes, producing Z with n=2,909

and p=2,586. The true mixing proportions of classes are 63.42% elementary school, 20.04% middle

school, and 16.53% high school. The data is saturated with 0’s, with an overall sparsity rate

of 97.1%. The observed cumulative distribution of sparseness of features is shown in Figure 3.4,

showing that over 90% of features have fewer than 10% nonsparse observations.

It would be fair to question the difficulty of the task of differentiating between elementary,

middle, and high schools. One could imagine the ability to achieve accurate clustering with as few

as two features. We offer the following observations:

1. Not all schools of a particular type offer the same classes. For instance, Advanced Placement

classes, International Baccalaureate classes, and trade classes exist in high schools, but no

one of those categories of coursework can successfully identify all high schools.

2. Schools of different types can overlap in course offerings. For instance a college preparatory

middle school can offer coursework usually encountered in high school, and a remedial or

second chance high school can offer coursework typically found in middle schools.

3. The problem is unsupervised. Relationships between features and latent classes which would

be easy to discover in a supervised setting may prove elusive in the unsupervised case. In

particular, the maximum amount of parsimony which still permits a performant model is not

evident a priori.
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4. Finally, the value of examining this data is demonstrated by the experimental results, which

show marked performance differences of competing FSA approaches at varying levels of feature

retention.

Figure 3.4: Observed Cumulative Distribution of Percent of Positive Cases for FLDOE Data Fea-
tures

Because there is no analogue of selecting a “true” number of features, we train LCA models at

varying numbers of retained features, ω. To measure performance, we split the data into training

and testing sets and report the average Adjusted Rand Index for each model over 100 train/test

replicates.

3.5.2 Experiment Results

Results are shown in Figure 3.5 and Table 3.5.

The non-FS LCA model does not perform feature selection, but is included as a reference line in

the chart for clarity. Forward selection for LCA is excluded because the software implementation

we had used for that model in simulations was unable to accommodate data with such a large

number of features. From these results it is observed that feature selection methods show unequal

sensitivity to choice of ω. mRMR and χ2 show performance that decreases steadily with lower ω.
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Figure 3.5: Recovering Latent Classes from FLDOE School Type Data. Average Test Adj. Rand
Index over 100 Train/Test Splits per Model.

MI, LL, and diff, however, show a sharp performance decrease between the 30-feature models and

50-feature models. With the upper range of feature retention (ω=100), the different models appear

to converge to comparable performance.

A second observation is that with all LCA-FSA models outperform ordinary LCA without

feature selection at ω ≥ 50. LCA-FSA with mRMR in particular achieved a higher average accuracy

with a parsimonious ω=10 model than the full LCA model using all 2,586 features. Table 3.6 shows

some details of one of these 10-feature mRMR models, listing the features (courses) the model

selected, the actual observed proportions of those courses occurring within each school type, and

the corresponding model estimates θ̂.
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Table 3.5: Test Adj. Rand Index for FLDOE School Type by ω

ω No FS LL MI χ2 diff mRMR

5

0.93

0.85 0.85 0.91 0.84 0.92

10 0.86 0.85 0.92 0.85 0.94

20 0.85 0.85 0.93 0.84 0.95

30 0.86 0.86 0.95 0.85 0.96

40 0.88 0.95 0.95 0.85 0.96

50 0.95 0.96 0.96 0.95 0.96

100 0.96 0.96 0.96 0.97 0.96

Table 3.6: Selected Features, Actual Feature Proportions, and θ̂ of a Sample 10-Feature LCA-FSA
Model on FLDOE Data

Course

Elementary

School

Proportion

Middle

School

Proportion

High

School

Proportion

Estimated

Elementary

School

Parameter

Estimated

Middle

School

Parameter

Estimated

High

School

Parameter

LANG ARTS GRADE 3 0.998 0.000 0.002 0.999 0.000 0.000

MATH GRADE THREE 0.998 0.000 0.002 0.999 0.000 0.000

PHYSICAL EDUCATION 3 0.997 0.000 0.002 0.999 0.000 0.000

SCIENCE GRADE THREE 0.997 0.000 0.002 0.998 0.000 0.000

PHYSICAL EDUCATION 2 0.991 0.000 0.002 0.992 0.000 0.000

M/J GRADE 7 MATH 0.001 0.957 0.010 0.002 0.986 0.011

M/J LANG ARTS 2 0.001 0.952 0.012 0.002 0.974 0.014

M/J GRADE 8 PRE-ALG 0.001 0.962 0.015 0.002 0.982 0.018

ENG 2 0.000 0.000 0.919 0.001 0.000 0.894

ENG 3 0.000 0.000 0.909 0.001 0.000 0.883
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3.6 LCA Experiment - Text Classification

In this section we test LCA-FSA on a text classification task. Abstract text from published

thesis work are collected from three departments of an academic institution. The modeling task is

to accurately cluster these text documents, recovering their grouping into departments.

3.6.1 Experiment Data and Setup

A data matrix is prepared of thesis abstract text and the thesis’s department of origin. This data

is collected from open-access metadata records hosted by an academic institution (Florida State Uni-

versity Libraries, 2018). Published abstracts are collected from three academic departments: Psy-

chology (n=641), English (n=634), and Earth, Ocean and Atmospheric Sciences (n=628). These

three were selected as they are well-differentiated from each other in terms of their domains of

knowledge, and because they each have a similar number of documents.

The final data matrix has n=1,903 and p=27,332, and we intend to model it as a three-class

latent model. What follows is an overview of the process used to generate the data.

3.6.2 Natural Language Processing

In order to apply LCA, we must convert a corpus of text data into a binary matrix with one

record per document.

A text document is first tokenized, that is, converted to a list of words it contains. During

tokenization, several preprocessing steps are used to improve the usefulness of the data. Common

steps performed are

• The removal of punctuation marks.

• The removal of stop-words, which are words so commonly used that they are not helpful in

differentiating different types of text content, such as “a”, “the”, “and”.

• Lemmatization, which is the transformation of a word to a common, basic form indepen-

dent of its grammatical usage. For instance, lemmatization would reduce “automobiles” to

“automobile”.

• Part-of-speech tagging. Parsing the part of speech for a token (e.g. noun, verb, adjective)

can enhance the quality of lemmatization.

For instance, tokenization of the first line of the Gettysburg Address:
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Four score and seven years ago our fathers brought forth on this continent,

a new nation, conceived in Liberty, and dedicated to the proposition that

all men are created equal.

produces list of tokens

four, score, seven, year, ago, father, bring, forth, continent, new, nation,

conceive, liberty, dedicate, proposition, men, create, equal

The final step to produce a data matrix is to convert the lists of tokens for each document into a

binary indicator matrix with documents as rows, tokens as features, and values indicating whether

a token occurred in a document. This step, commonly called the bag of words approach, converts

tokens to vectors in a vector space.

Remark 4. Populating a document-token matrix with binary indicators is not the most powerful

approach to creating a bag of words matrix of data. Instead, the matrix can contain the frequency of

each token’s occurrence in each document, that frequency scaled by how commonly the token occurs

within the entire corpus, or other variations. These approaches produce continuous vectors that can

more sensitively capture differences between documents. However, to examine LCA, we utilize the

binary approach.

Detailed coverage of this and other NLP techniques used here can be found in Zong et al. (2021).

We apply tokenization, stop-word removal, part-of-speech tagging, and lemmatization with the

Natural Language Toolkit software library (Bird et al., 2009). Processing into bag of words is

performed using the Gensim software library (Řeh̊uřek and Sojka, 2010).

The final data matrix has 1,903 observations and 27,332 features. The large p is a reflection of

how many unique tokens were extracted from the documents. For clustering purposes, we anticipate

that most of these features are irrelevant. Further, most features will be extremely sparse, occurring

in very few documents.

3.6.3 Experiment Results

LCA and LCA-FSA are applied to the generated data and the resulting clustering is compared

to the known labeling of abstracts into departments using the Adjusted Rand Index. Average test

scores over 100 train/test splits are shown in Table 3.8 and Figure 3.6.

The results show a striking pattern of clustering accuracy as a function of the number of features

retained, ω. Figure 3.6 includes a constant line showing the score of latent class analysis with no
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Table 3.7: Summary Statistics on Text Documents in Corpus

Minimum Maximum Mean Median Standard Deviation

Number of Sentences 1 94 12.1 10 8.2

Number of Tokens Extracted 1 1,530 184.3 158 121.7

feature selection. For this data, any amount of feature selection outperformed LCA without feature

selection.

The highest-performing choice of ω for all feature selection strategies was to subset 500 features

from the original 27,332. The diff-criterion showed the best performance, and mRMR performed

the worst out of LCA-FSA models. Forward selection results are not included as the relevant

software package was unable to handle data with this number of features.

Figure 3.6: Average Test Adjusted Rand Index on Text Classification Data
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Table 3.8: Test Adj. Rand Index for Text Classification by ω

ω No FS LL MI χ2 diff mRMR

50

0.31

0.52 0.49 0.52 0.61 0.51

100 0.58 0.53 0.58 0.70 0.57

500 0.59 0.54 0.59 0.76 0.57

1000 0.57 0.51 0.56 0.75 0.53

1500 0.54 0.50 0.54 0.75 0.49

2000 0.54 0.49 0.52 0.74 0.46

2500 0.52 0.48 0.52 0.75 0.45

3000 0.51 0.47 0.51 0.72 0.43

3500 0.51 0.47 0.50 0.71 0.42

4000 0.50 0.45 0.50 0.68 0.41

4500 0.49 0.44 0.49 0.69 0.40

5000 0.49 0.43 0.49 0.67 0.40
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A sample LCA-FSA model trained with diff-criterion at ω=50 produces an estimate θ̂ that is

a manageable size for interpretation. The 50 features selected correspond to tokens:

analysis, analyze, area, behavior, climate, collection, compare, condition,

control, current, data, determine, due, effect, examine, factor, finding,

high, however, increase, indicate, large, life, low, may, measure, model,

ocean, participant, region, result, results, sample, show, significant, story,

study, suggest, support, surface, task, temperature, test, time, use, variability,

water, wind, work, write

θ̂ can take practical meaning by observing which tokens take the highest values for each class.

This is shown in Tables 3.9-3.11. In each table, θ̂ is subsetted and reordered for clarity in under-

standing each class.

Classes can be interpreted by the tokens which are probable in one class and improbable in

others. From Table 3.9 it can be seen that Class 1 has several tokens overlapping with Class 3, such

as study and use. However Class 1 also has differentiating tokens, including: surface, water,

temperature, region, area, analyze, ocean, wind, climate, variability. By observing

groundtruth labels, we confirm that this cluster represents abstracts from the Department of Earth,

Ocean and Atmospheric Sciences.

Class 2 captures the Department of English. Table 3.10 shows differentiating tokens story,

life, write, collection. Differentiating tokens for Class 3, Psychology, are shown in Table

3.11 to be finding, behavior, participant, task.
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Table 3.9: Top Values for Tokens in Sample θ̂ for Class 1

θ̂ Subsetted and Reordered for Clarity
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Table 3.10: Top Values for Tokens in Sample θ̂ for Class 2

θ̂ Subsetted and Reordered for Clarity
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Table 3.11: Top Values For Tokens in Sample θ̂ for Class 3

θ̂ Subsetted and Reordered for Clarity
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3.7 Discussion

Simulation and experiment results show a range of outcomes for competing feature relevance

metrics used with LCA-FSA.

An initial observation is that there can be marked differences in performance between feature

selection methods, even when they are conceptually similar. mRMR for instance has a close rela-

tionship to MI, but shows very different behavior on simulated data. These performance differences

highlight the need to investigate comparative performance of different feature selection criteria.

At the same time, it is also observed that no single feature selection approach dominates the

others in accuracy across data settings. For instance, the best performer on both simulated data

and text classification data was diff-criterion and the worst was mRMR; this situation is reversed

for school classification data. Thus it is noted not only that FSA criteria ought to be compared in

terms of performance, but that performance in one data setting is not necessarily an indicator of

performance in other settings.

A pattern shared by all tested FSA methods is improved accuracy on simulated data with in-

creasing n, which is to be expected. The same rule however does not follow for ω, the number of

features retained in a model. For the school type data, model accuracy was approximately mono-

tonically increasing against ω. For the text classification data, however, accuracy was monotonically

decreasing against ω for all but the most extreme levels.

A final observation on these results is that, with few exceptions, FSA was able to improve the

performance of LCA. LCA without FSA showed competitive performance on simulated data in

settings with a low number of latent classes and a low number of noisy features. For simulations

with a high number of latent classes or high dimensionality, however, it was outperformed by all

FSA methods, including mRMR. In the most extreme case ordinary LCA was not able to learn

at all. In experiment data, it is shown that a wide range of ω values can simultaneously achieve

parsimony and improved performance.
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CHAPTER 4

METHODOLOGY - SPARSE PRINCIPAL

COMPONENT ANALYSIS

In this chapter we examine various approaches to imposing sparsity on PCA models. Extensions

of the original SPCA (2.3) model are introduced which apply feature selection with annealing (2.4)

to impose sparsity on model parameters during estimation. These methods include

1. ASPCA (4.1), which follows the SPCA algorithm but uses FSA for imposing sparsity

2. GSPCA (4.2), which imposes sparsity by applying FSA “globally” to the entire model loading

matrix

3. WPCA (4.4), which incorporates feature weights into PCA

4. SELF (4.5), which directly estimates a low-rank representation of data X as its own entity,

Γ, rather than the usual approach of reducing data using a loading matrix as XB.

In (4.3) we examine an imputation strategy for these models. SELF is also tested with additional

strategies for handling missingness and incorporating feature weights. Algorithms for each method

will be provided. These methods are tested on simulated and real data in a Principal Component

Regression setting.

4.1 Annealed Sparse Principal Component Analysis

SPCA estimates a sparse PCA representation of data by estimating the columns of loading

matrix B with sparse regression methods. We consider a sparse PCA model with sparsity produced

by FSA (2.4) rather than the elastic net. FSA produces sparse regression estimates by annealing,

so the L1 penalty of SPCA is replaced by the desired annealing schedule.

Having a customizable annealing schedule by parameter µ, as those shown in Figure 2.1, may

allow more control over the sparsity estimation. We test Annealed Sparse Principal Component

Analysis (ASPCA) to see if the choice of FSA or elastic net for sparsity affects performance.
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(ÂASPCA, B̂ASPCA) = argmin
∥B∥0≤m
A′A=I

∥X−XBA′∥2F + λ∥B∥2F (4.1)

ASPCA Objective

Algorithm 6 Annealed Sparse Principal Component Analysis

Input:

• X, n-by-p data matrix

• k, desired number of sparse principal components

• λ, L2 penalty

• epochs, number of epochs

• mej , FSA annealing schedule specifying number of nonzero entries of B•j kept at epoch e

Output: A,B solutions of Eq. (4.1)

1: Initialize A as the first k loading vectors from PCA on X

2: for j = 1 to k do

3: while B•j has not converged do

4: Solve B•j = argmin b ∥XA•j −Xb∥22 + λ∥b∥22 with desired sparsity by FSA

5: B•j = B•j/∥B•j∥2
6: A•j = (I−Aj−1Aj−1

′)X′XB•j ▷ Let Ac denote [A•1, . . . ,A•c], A0 = A•1

7: A•j = A•j/∥A•j∥2
8: end while

9: end for

4.2 Globally Annealed Sparse Principal Component Analysis

Sjöstrand’s sequential SPCA implementation, which forms the basis for Algorithm 6, enjoys

some similarities to PCA. The loading matrix B is estimated one column at a time. Thus once B•1

is estimated, its values are fixed when estimation continues to B•2. An estimate B̂k from a rank k

model fitted on X will have the same first k columns as higher-rank estimate B̂k+i. PCA loadings

have the same property: B•1 is the loading column producing the best rank 1 estimate of X, and

will be the same regardless of how many more columns of B are estimated.

The sequential approach that SPCA and ASPCA apply to estimatingB carries some limitations.

She (2017) notes that separate estimation of sparse loading vectors, while a common approach

in sparse PCA models, does not necessarily achieve an optimal estimate when these individual
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estimates are composed into B. Better models may result from jointly estimating all columns of

B, as is done in 2.6.

In Algorithm 1 for SPCA and Algorithm 6 for ASPCA, the desired sparsity for B is manually

chosen for each of the k univariate regression problems solved. For data experiments, in order

to estimate a rank-k loading matrix B̂SPCA or B̂ASPCA with q nonsparse entries, we specify the

desired sparsity at each column as ⌊q/k⌋. Prespecifying the sparsity structure of B in this way is

somewhat arbitrary, but for the sequential approach we have little choice.

We test a more flexible approach to estimating a sparse B where the desired overall sparsity

is applied globally to B rather than per column. Recall that in univariate regression, FSA per-

forms feature selection by annealing parameter entries between the parameter’s gradient updates.

According to the annealing schedule, a number of entries with the lowest absolute magnitudes are

dropped from the model. By estimating the loading matrix B in sparse PCA by a gradient method,

we can apply FSA to perform “loading entry selection” on the entire matrix.

The general approach is to initialize A and B and update their estimates for a certain number

of epochs. For certain epochs, the annealing schedule imposes sparsity on B, so that it has fewer

nonzero entries as estimation continues. Estimation progresses until annealing is complete and the

model has converged.

Over training epochs, entries in B are dropped by being forced to 0. When this happens,

subsequent gradient updates allow remaining entries of B to adjust to accommodate the change

before the next annealing occurs.

Consider the ASPCA objective in Equation (4.1) with A′A = I:

l(A,B) = ∥X−XBA′∥2F + λ∥B∥2F (4.2)

Proposition 1. The gradient of l(A,B) w.r.t. B is

∇Bl(A,B) = 2X′X(B−A) + 2λB.

Proof. Taking the derivative of (4.2),

∂l

∂B
=

∂

∂B
Tr(X−XBA′)′(X−XBA′) + λB′B

=
∂

∂B
TrX′X−X′XBA′ −AB′X′X+AB′X′XBA′ + λB′B

=
∂

∂B
Tr(−2X′XBA′) +

∂

∂B
Tr(B′X′XB) +

∂

∂B
Tr(λB′B)

51



= −2X′XA+ 2X′XB+ 2λB

= 2X′X(B−A) + 2λB

Now fixing B = B̂ we return to the loss to optimize over A.

Proposition 2. Objective (4.2) is minimized w.r.t. A by Â = UV′ where UDV′ is the singular

value decomposition of X′XB.

Proof.

Â = argmin
A′A=I

Tr(X−XBA′)′(X−XBA′) + λB′B

= argmin
A′A=I

Tr(−2X′XBA′) + Tr(AB′X′XBA′) + Tr(λB′B)

= argmin
A′A=I

−2Tr(X′XBA′) + Tr(B′X′XB) + λTr(B′B)

= argmax
A′A=I

Tr(X′XBA′)

= argmax
A′A=I

∥X′XBA′∥2F

The solution to the final optimization is known to be Â = UV′ where X′XB = UDV′ by SVD

(Zou et al., 2006).

These updating methods for A and B are used in conjunction with FSA to produce Globally

Annealed Sparse Principal Component Analysis (GSPCA), presented in Algorithm 7.

For a toy example, consider a data matrix U of n samples from N (⃗0,Σ) with

Σ =



1 0.95 0.95 0.95 0.95 0.95 0 0

0.95 1 0.95 0.95 0.95 0.95 0 0

0.95 0.95 1 0.95 0.95 0.95 0 0

0.95 0.95 0.95 1 0.95 0.95 0 0

0.95 0.95 0.95 0.95 1 0.95 0 0

0.95 0.95 0.95 0.95 0.95 1 0 0

0 0 0 0 0 0 1 0.95

0 0 0 0 0 0 0.95 1


We should be able to represent U with two principal components, one drawing from the first

six columns of U, the second from the final two columns. This would yield an ideal 8-by-2 loading
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Algorithm 7 Globally Annealed Sparse Principal Component Analysis (GSPCA)

Input:

• X, n-by-p data matrix

• k, desired number of sparse principal components

• η, learning rate

• epochs, number of epochs

• λ, L2 penalty

• me, FSA annealing schedule specifying the number of nonzero entries of B kept at epoch e

Output: Estimated model parameters A, B

1: Initialize both A and B as the first k loading vectors from PCA on X

2: for e = 1 to epochs do

3: A = UV′ with X′XB = UDV′ by SVD

4: ∇B = 2X′X(B−A) + 2λB

5: B = B− η∇B/n

6: Apply FSA to B

7: me is the desired number of nonzero elements of B for current epoch

8: Retain the top me entries of B with the highest absolute values, setting the
remaining entries to 0

9: Normalize columns of B to have length 1

10: end for
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matrix B with 6 nonzero entries in the first column and 2 nonzero entries in the second column.

However, recall that SPCA and ASPCA require prespecification of sparsity per column of B.

Without manually testing different possibilities, we implement these models on data by applying

sparsity evenly across principal components. In this case, B̂SPCA would then have 4 nonzero entries

in each column. GSPCA on the other hand automatically selects which entries to anneal freely

from the entire matrix, so that B̂GSPCA can have varying amounts of sparsity per column without

manual adjustments. PCA, of course, does not impose any sparsity.

Sample loading matrices on U are shown in Table 4.1.

Table 4.1: Estimated Loading Matrices for Samples of U

Sample B̂PCA Sample B̂SPCA Sample B̂GSPCA

0.4072 −0.0153

0.4117 −0.0090

0.4058 −0.0065

0.4089 −0.0155

0.4075 −0.0152

0.4070 −0.0201

0.0219 0.7054

0.0251 0.7079





0 0

0 0

0.4876 0

0.3844 −0.0004

0.3471 0

0.7029 −0.0115

0 0.7105

0 0.7036





0.4074 0

0.4081 0

0.4085 0

0.4084 0

0.4084 0

0.4086 0

0 0.7072

0 0.7070


The observed B̂SPCA is able to identify structure in the sampled U, but does not identify an

ideal sparse representation due to the limitation of having to prespecify sparsity in each loading

column. While estimating principal components sequentially is similar to PCA, it reduces the

method’s flexibility. B̂GSPCA on the other hand is able to apply differing levels of sparsity to each

principal component when given a total desired sparsity of 8 nonzero entries for the entire matrix.

4.3 Handling Missing Data by Imputation

Knowledge of a data matrix’s structure can inform an imputation strategy for partially-observed

data. We present an imputation approach based on sparse PCA model estimation and integrate

the approach with the models presented.
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Sparse PCA models estimate X as the low-rank XBA′.1 Fixing current estimates of A and B,

consider row x of X having missing values.

x = (x1 x2 • x4 • x6)

Letw = (w1 w2) represent the unobserved missing entries (x3 x5) in x. Take x0 as 0-imputed

x and define function f(w) that places the values of w into corresponding positions of a data row

and places 0’s elsewhere. For the shown example, f(w) = (0 0 w1 0 w2 0).

We can now consider fully-observed representation x̃ = x0+f(w) = (x1 x2 w1 x4 w2 x6)

which we use to simultaneously estimate model parameters (A, B) and imputed values w.

The low-rank reconstruction of x̃ is then (x0 + f(w))BA′ and its error can be calculated as

l(A,B) = ∥x0 + f(w)− (x0 + f(w))BA′∥22 (4.3)

We estimate w to minimize the loss given A and B. This imputation step is placed alongside

estimation steps for A and B, which rely on fixing the current imputation estimates.

To minimize l, recognize that f(w) = wP for appropriate placement matrix P. For instance,

(
w1 w2

)0 0 1 0 0 0

0 0 0 0 1 0

 =

(
0 0 w1 0 w2 0

)

In the general case, if x has p entries with m missing, P is m-by-p with

Pij =

{
1 wi is the missing value corresponding to xj

0 Otherwise

Proposition 3. The minimum of the loss (4.3) w.r.t. w can be obtained analytically as:

w = −x0D′P′(PDD′P′)−1.

Proof. Revisiting the row loss,

l(A,B) = ∥x0 + f(w)− (x0 + f(w))BA′∥22

= ∥x0 +wP− (x0 +wP)BA′∥22

= ∥x0 − x0BA′ +wP−wPBA′∥22
1 JSPCA (2.5) reduces the dimension of data X in a manner compatible with this imputation approach, and we

incorporate imputation into experiments with JSPCA on data with missingness. The authors’ estimation algorithm
(Yi et al., 2017) acts on X′, so a slight reparametrization is applied to retain consistency within our discussion.
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= ∥x0(I−BA′) +wP(I−BA′)∥22

= ∥C+wPD∥22 for D = (I−BA′) and C = x0D

= (C+wPD)(C+wPD)′

= CC′ + 2wPDC′ +wPDD′P′w′

Minimizing the loss for w,

∂l

∂w
= 2CDP′ + 2wPDD′P′ = 0 =⇒ w = −x0D′P′(PDD′P′)−1.

Remark 5. High missingness can produce singularity or near-singularity in PDD′P′, which needs

to be inverted. The inversion problem can be stabilized by adding a ridge parameter (Foucart, 1999;

Jensen and Ramirez, 2012; Hoerl and Kennard, 1970).

Thus for a single row x, corresponding placement matrix P, fixed estimates A and B, ridge

parameter λr, and D defined as above, ŵ = −x0D′P′(PDD′P′ + λrI)
−1. All methods introduced

thus far use a low-rank estimate of X taking form XM1M2 where matrices M1 and M2 are es-

timated to have desirable properties such as semi-orthogonality or sparsity. Thus the imputation

method presented here can be applied to each model. The general imputation approach is pre-

sented in Algorithm 8. Extensions of SPCA, ASPCA, and GSPCA to incorporate imputation for

missingness are shown in Algorithms 9, 10, and 11.

Algorithm 8 Imputation by Low-Rank Completion

Input:

• X, n-by-p data matrix

• A, B such that X ≈ XBA′

Output: Fully-imputed data X

1: for each row x of X containing missing values do

2: Generate m-by-p placement matrix P as

Pij =

{
1 xi is the jth missing value of x

0 Otherwise

where m is the number of missing entries in x

3: w= −x0DD′P′(PDD′P′ + λrI)
−1 with D = I − BA′ and λr an optional

imputation ridge parameter
4: Replace corresponding row in X with x0 +wP

5: end for
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Algorithm 9 Sparse Principal Component Analysis with Imputation

Input:

• X , n-by-p data matrix

• k, desired number of sparse principal components

• λj
1, Desired number of nonzero entries for loading matrix column j if soft thresholding; desired

L1 penalties if using elastic net

• λ2, L2 penalty

Output: Estimated model parameters A, B and low-rank estimate X̂ of X
1: Set X = X 0 ▷ Let M0 denote 0-imputed M

2: Initialize A as the first k loading vectors from PCA on X

3: for j = 1 to k do

4: while B•j has not converged do

5: if Soft Thresholding then

6: B•j = Sign(A′
•jX

′X)(|A•j
′X′X| − λj

1/2)+

7: else if Elastic Net then

8: Solve B•j = argmin b ∥XA•j −Xb∥22 + λj
1∥b∥1 + λ2∥b∥22 with desired sparsity

by elastic net
9: end if

10: B•j = B•j/∥B•j∥2
11: A•j = (I−Aj−1Aj−1

′)X′XB•j ▷ Let Ac denote the first c columns of A, A0 = A•1

12: A•j = A•j/∥A•j∥2
13: Update imputation with new (A, B) as shown in Algorithm 8

14: end while

15: end for

16: Set X̂ = XBA′
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Algorithm 10 Annealed Sparse Principal Component Analysis with Imputation

Input:

• X , n-by-p data matrix

• k, desired number of sparse principal components

• λ, L2 penalty

• mej , FSA annealing schedule specifying number of nonzero entries of B•j kept at epoch e

Output: Estimated model parameters A, B and low-rank estimate X̂ of X
1: Set X = X 0 ▷ Let M0 denote 0-imputed M

2: Initialize A as the first k loading vectors from PCA on X

3: for j = 1 to k do

4: while B•j has not converged do

5: Solve B•j = argmin b ∥XA•j −Xb∥22 + λ∥b∥22 with desired sparsity by FSA

6: B•j = B•j/∥B•j∥2
7: A•j = (I−Aj−1Aj−1

′)X′XB•j ▷ Let Ac denote the first c columns of A, A0 = A•1

8: A•j = A•j/∥A•j∥2
9: Update imputation with new (A, B) as shown in Algorithm 8

10: end while

11: end for

12: Set X̂ = XBA′
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Algorithm 11 Globally Annealed Sparse Principal Component Analysis with Imputation

Input:

• X , n-by-p data matrix

• k, desired number of sparse principal components

• η, learning rate

• epochs, number of epochs

• λ, L2 penalty

• me, FSA annealing schedule specifying the number of nonzero entries of B kept at epoch e

Output: Estimated model parameters A, B and low-rank estimate X̂ of X
1: Set X = X 0 ▷ Let M0 denote 0-imputed M

2: Initialize both A and B as the first k loading vectors from PCA on X

3: for e = 1 to epochs do

4: A = UV′ with X′XB = UDV′ by SVD

5: ∇B = 2X′X(B−A) + 2λB

6: B = B− η∇B/n

7: Apply FSA to B

8: me is the desired number of nonzero elements of B for current epoch

9: Retain the top me entries of B with the highest absolute values, setting the
remaining entries to 0

10: Normalize columns of B to have length 1

11: Update imputation with new (A, B) as shown in Algorithm 8

12: end for

13: Set X̂ = XBA′

4.4 Feature-Weighted PCA

Here we examine feature weights for PCA by incorporating a parameter to explicitly govern the

influence of features in the model. While not achieving genuine sparsity, the goal of feature weights

is to reduce the influence of less useful features.

Recall PCA objective (2.2) finds orthogonal B to minimize low-rank estimate XBB′ of X with

B̂PCA = argmin
B′B=I

∥X−XBB′∥2F .

Consider diagonal matrixW with positive diagonal entries. TheWeighted PCA (WPCA) model

estimates a low-rank representation of matrix X where the effect of feature X•i is weighted by Wii.
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BWPCA = argmin
B′WB=I

∥(X−XBB′)
√
W∥2F (4.4)

Weighted PCA Objective

The objective can be motivated by an equivalent formulation of loss where X̂ is low-rank

estimate XBB′ of X: ∑
i,j

(Xij − X̂ij)
2Wjj

This expression shows how diagonal entries in W weight the effect of X in a columnwise fash-

ion. Estimating PCA with feature weights is a special case of the “Generalized SVD” model of

(Greenacre, 1984, Appendix A.1), in which the simultaneous application of row and feature weights

is shown to be reducible to an ordinary SVD problem.

To accommodate the incorporation of feature weights into the model, we first approach opti-

mizing for B.

Proposition 4. Given n-by-p matrix X and p-by-p positive diagonal matrix W, let

M = 2W1/2X′XW−1/2 −W−1/2X′XW−1/2

and let Ã be a p-by-k matrix satisfying

Ã = argmax
A′A=I

TrA′MA

Then the WPCA Objective (4.4) is satisfied by B̃ = W−1/2A.

Proof. The objective is first modified to a more tractable form.

B̃ = argmin
B′WB=I

∑
i,j

(Xij − X̂ij)
2Wjj

= argmin
B′WB=I

∥(X−XBB′)
√
W∥2F

= argmin
B′WB=I

Tr((X−XBB′)
√
W)′(X−XBB′)

√
W

= argmin
B′WB=I

Tr
√
W

′
(X−XBB′)′(X−XBB′)

√
W

= argmin
B′WB=I

TrW(X′X− 2X′XBB′ +BB′X′XBB′)

= argmin
B′WB=I

Tr − 2WX′XBB′ +WBB′X′XBB′
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Let Ã =
√
WB̃. We then have B̃ = W−1/2Ã. In particular, B̃′WB̃ = Ã′W−1/2WW−1/2Ã =

Ã′Ã establishes the equivalency B̃′WB̃ = I ⇐⇒ Ã′Ã = I which allows us to continue the

derivation in terms of Ã.

B̃ = argmin
B′WB=I

Tr − 2WX′XBB′ +WBB′X′XBB′

= W−1/2Ã, where Ã satisfies

Ã = argmin
A′A=I

Tr − 2WX′XW−1/2AA′W−1/2 +WW−1/2AA′W−1/2X′XW−1/2AA′W−1/2

= argmin
A′A=I

Tr − 2W1/2X′XW−1/2AA′ +AA′W−1/2X′XW−1/2AA′

= argmin
A′A=I

TrA′(−2W1/2X′XW−1/2)A+A′(W−1/2X′XW−1/2)A

= argmin
A′A=I

TrA′(−2W1/2X′XW−1/2 +W−1/2X′XW−1/2)A

= argmax
A′A=I

TrA′(2W1/2X′XW−1/2 −W−1/2X′XW−1/2)A

Taking M = 2W1/2X′XW−1/2 −W−1/2X′XW−1/2 completes the proof.

Proposition 5. Defining Ã, M as in Proposition 4, the columns of Ã are the orthonormal eigen-

vectors of M+M′ corresponding to the largest eigenvalues.

Proof.

Ã = argmax
A′A=I

TrA′MA

= argmax
A′A=I

1

2
Tr(A′MA) +

1

2
Tr(A′M′A)

= argmax
A′A=I

TrA′MA+A′M′A

= argmax
A′A=I

TrA′(M+M′)A

With orthogonal A and symmetric M+M′, the optimization is solved by the following result from

(Harville, 1997, Thm. 21.12.5).

Proposition 6. Given p-by-p symmetric S with eigenvalues d1 ≥ d2 ≥ . . . ≥ dp and p-by-k Q

satisfying Q′Q = I (where k ≤ p),

trQ′SQ ≤
k∑

i=1

di

and equality is achieved when the columns of Q are orthonormal eigenvectors of S corresponding

to d1, d2, . . ., dk.
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Proposition 6 provides the necessary information to estimate Ã given M. Estimation is com-

pleted by taking BWPCA = W−1/2Ã.

Algorithm 12 Weighted PCA

Input:

• X, n-by-p data matrix

• k, model rank

• epochs, number of epochs

Output:

• Loading matrix B, solution of Equation (4.4)

• W, diagonal matrix of feature weights

1: Obtain X̂ = XBPCAB
′
PCA where BPCA is obtained from rank-k PCA on X

2: Set w as variances of columns of X̂−X

3: Create diagonal matrix W with Wjj = max(wj , .1)
−1

4: Set M = 2W1/2X′XW−1/2 −W−1/2X′XW−1/2

5: Set the columns of A as eigenvectors of M+M′ corresponding to the k largest eigenvalues

6: Obtain estimate B = W−1/2A

In simulations and experiments, WPCA is implemented by calculating feature weights as in

Algorithm 12 and applying them in Matlab’s implementation of feature-weighted PCA (The Math-

Works, Inc., 2023).
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4.5 Sparse Estimation of Latent Factors

SPCA, ASPCA, and GSPCA all follow the self-regression formulation to produce a low-rank

estimate of X as X ≈ XBA′ with sparse B reducing X and semi-orthogonal A remapping it to

the original dimension.

To introduce our final approach, recall the alternative to self-regression proposed by SRRR-

SPCA (2.7), where X is instead modeled as X ≈ VS′ with semi-orthogonal V and sparsity con-

straints imposed on S. Model estimation directly estimates low-dimensional representation V.

We pursue the same idea, estimating reduced representation Γ of X, and a matrix A, such

that X ≈ ΓA′. However we make a slight deviation from SRRR-SPCA and consider the case of

maintaining sparsity and semi-orthogonality in the same parameter A. This yields our objective

for Sparse Estimation of Latent Factors (SELF):

(ÂSELF , Γ̂SELF ) = argmin
∥A∥0≤m
A′A=I

∥X− ΓA′∥2F (4.5)

SELF Objective

A more general form of the SELF Objective incorporates feature weights in a similar style as

Weighted PCA in 4.4. Let W be a positive diagonal matrix where Wii is the feature weight we

wish to apply to feature X•i.

(ÂSELF−W , Γ̂SELF−W ) = argmin
∥A∥0≤m
A′WA=I

∥(X− ΓA′)
√
W∥2F (4.6)

Weighted SELF Objective

In practice, sparse PCA models do not pursue the goal of estimating A to satisfy both A′A = I

and ∥A∥0 ≤ m. While nonsparse PCA produces estimate X ≈ XAA′ with A′A = I, SPCA

achieves sparsity by separating the desired parameter properties across semi-orthogonal A and

sparse (but not semi-orthogonal) B to yield X ≈ XBA′. We, too, must accept this relaxation

on orthogonality when imposing sparsity on A. We begin by deriving some helpful results in

calculating parameter estimates for SELF, but in the case of estimating A we consider only the

nonsparse case. In the algorithm to estimate the SELF model presented further, A is estimated to

be semi-orthogonal but deviates from that property as sparsity is imposed upon it by FSA.
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Proposition 7. The Weighted SELF Objective (4.6) is minimized w.r.t Γ by Γ̂ = XWA(A′WA)−1.

Proof. Let l = ∥(X− ΓA′)
√
W∥2F . Then

argmin
Γ

l = argmin
Γ

∥X
√
W − ΓA′√W∥2F

= argmin
Γ

Tr(X
√
W − ΓA′√W)′(X

√
W − ΓA′√W)

= argmin
Γ

Tr
√
WX′X

√
W − 2

√
WX′ΓA′√W +

√
WAΓ′ΓA′√W

= argmin
Γ

TrWX′X− 2WX′ΓA′ +WAΓ′ΓA′

= argmin
Γ

Tr − 2WX′ΓA′ +WAΓ′ΓA′

= argmin
Γ

Tr − 2A′WX′Γ+ ΓA′WAΓ′

∂l

∂Γ
=

∂

∂Γ
Tr − 2A′WX′Γ+ ΓA′WAΓ′ = −2XWA+ 2ΓA′WA

∂l

∂Γ
= 0 =⇒ Γ = XWA(A′WA)−1.

Proposition 8. The SELF Objective (4.5) is minimized w.r.t Γ by Γ̂ = XA(A′A)−1.

Proof. This follows from Proposition 7 by taking W = I.

Proposition 9. The SELF Objective (4.5) without sparsity is minimized w.r.t A by Â = UV′

where UDV′ is the singular value decomposition of X′Γ.

Proof.

Â =argmin
A′A=I

∥X− ΓA′∥2F

=argmin
A′A=I

Tr(X− ΓA′)′(X− ΓA′)

= argmin
A′A=I

Tr(−2AΓ′X) + Tr(AΓ′ΓA′)

= argmax
A′A=I

Tr(AΓ′X)

= argmax
A′A=I

Tr(X′ΓA′)

which is known to be maximized w.r.t A by Â = UV′ with X′Γ = UDV′ (Zou et al., 2006).

Proposition 10. The Weighted SELF Objective (4.6) without sparsity is minimized w.r.t A by

Â = W−1/2UV′ where UDV′ is the singular value decomposition of
√
WX′Γ.
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Proof.

Define Â, Z, and B as follows:

Â = argmin
A′WA=I

∥X
√
W − ΓA′√W∥2F

Z = X
√
W

B =
√
WA

Observing that A = W−1/2B, we have

A′WA = I ⇐⇒ (
√
WA)′(

√
WA) = I ⇐⇒ B′B = I (4.7)

Therefore we can express Â in terms of B and Z:

Â = argmin
A′WA=I

∥X
√
W − ΓA′√W∥2F

= W−1/2B̂

where

B̂ = argmin
B′B=I

∥Z− ΓB′∥2F (4.8)

which is given by Proposition 9.

4.5.1 SELF With Missing Data

Sparse PCA models thus far have accommodated missing data by using the estimated low-rank

structure of the data to impute values (4.3). In simple terms, the model predicts the values of

missing data based on observed values from the same row. This imputation strategy is applied to

the SELF model in 4.10.1.

Here we examine an alternative to imputation of missing values, instead using only what data

is observed to estimate the model.

Non-Imputed Estimation of A. In the non-missing case, SELF estimates A by taking the

SVD of X′Γ (Algorithm 13 Line 4). This is clearly not doable if there is missingness in X, and the

prior missingness approach imputed values to have a full data matrix to work with.

However, consider the role each row of A plays in the model. SELF approximates X with

X̂ = ΓA′. Rows ofA determine how to produce columns of X̂ from values in Γ, so that X̂•j = ΓA′
j•.
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Algorithm 13 Sparse Estimation of Latent Factors

Input:

• X, n-by-p data matrix

• k, desired number of sparse principal components

• epochs, number of epochs

• me, FSA annealing schedule specifying the number of nonzero entries of A kept at epoch e

Output: Estimated latent factors Γ of X and estimated loading matrix A

1: Initialize Γ as the first k principal components and A as the first k loading
vectors from PCA on X

2: for e = 1 to epochs do

3: Γ = XA(A′A)−1

4: A = UV′ with X′Γ = UDV′ by SVD

5: Apply FSA to A

6: me is the desired number of nonzero elements of A for current epoch

7: Retain the top me entries of A with the highest absolute values, setting the
remaining entries to 0

8: end for

Suppose we wished to estimate each rowAj• individually. Rather than regarding the entire objective

we use a column-specific objective for SELF:

l = ∥X•j − ΓA′
j•∥2F

Proposition 11. The Columnar SELF Objective ∥X•j −ΓA′
j•∥2F is minimized w.r.t A′

j• by Â′
j• =

(Γ′Γ)−1Γ′X•j.

Proof.

argmin
a

∥X•j − Γa∥2F

= argmin
a

(X•j − Γa)′(X•j − Γa)

= argmin
a

X′
•jX•j − 2X′

•jΓa+ a′Γ′Γa

= argmin
a

−2X′
•jΓa+ a′Γ′Γa

∂

∂a
− 2X′

•jΓa+ a′Γ′Γa = 0

=⇒ −2Γ′X•j + 2Γ′Γa = 0

=⇒ a = (Γ′Γ)−1Γ′X•j .
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Estimation of a row Aj• separately from the rest of A presents an opportunity to navigate

missing values. Because the estimate of Aj• relies only on column X•j of X, only the missing

values of X•j are relevant. Therefore, consider X̃•j to be the subset of X•j which excludes its

missing values. Let Γ̃ be the subset of Γ excluding the same rows as X̃•j .

Per Proposition 11, we estimate A′
j• = (Γ̃

′
Γ̃)−1Γ̃

′
X̃•j . Composing these estimates together for

each j, we have a candidate estimator for A.

Note that this deviation from SVD means A is no longer orthogonal.

Non-Imputed Estimation of Gamma. Estimation of Γ with missingness can also be ap-

proached without imputation. We examine the technique of estimating each row of Γ using only

non-missing values of the corresponding row of X.

Consider a row γ of Γ and corresponding data row x. Per Proposition 7, γ can be estimated

from the values of x and A as γ = xWA(A′WA)−1.

In the case of missing values, subset x̃ is taken as a row of values of x for which data is not

missing. Further, Ã is the row-subset of A which corresponds to the columns retained in x̃, and

W̃ the same subset of W. These subsets allow us to circumvent missing data in x to estimate the

corresponding row of Γ. Incorporating a ridge bias per Remark 5 yields

γ = x̃W̃Ã(Ã′W̃Ã+ λrI)
−1

Ill-Condition Filter. An additional technique for mitigating the effects of missingness on

model estimation concerns the estimation of A. Within each epoch, A is updated to minimize the

SELF objective based on the values of X and Γ, as shown in Proposition 9. Γ itself is estimated

row-wise as γ = x̃′Ã(Ã′W̃Ã+ λrI)
−1 as shown above.

Recall that a ridge parameter λr is used to alleviate potential instability of the inversion problem

(Ã′W̃Ã + λrI)
−1. In cases of high missingness, however, the inversion calculation can still be

unstable. We store this information by calculating, for each row of the Γ update step, the reciprocal

condition number2 of the matrix Ã′W̃Ã used to produce it. This gives us a measurement of which

rows of Γ risk being the least reliably estimated.

Combining this information with a desired threshold λm, A can be updated using only rows

from Γ and X with satisfactory reciprocal condition numbers. This is implemented in Algorithm

14, Line 29.

2 Details on conditioning can be found in Higham (2002). We use reciprocal 1-norm condition numbers as calculated
by LAPACK (Anderson et al., 1999, chap. 4).
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4.5.2 Feature Weights

In the presence of noisy or irrelevant features, model accuracy may be improved by down-

weighting their effect on model training. Here we explore downweighting features based on their

unexplained error, as estimated by deviation from observed and estimated values for each feature.

Take X = ΓA′ +E where A is fixed, Γ ∼ N (⃗0, I), and E ∼ N (⃗0,Ψ) with Ψ a diagonal matrix

having diagonal entries Ψjj = σ2
j .

During model training, X is modeled as a low-rank matrix X̂. For each column X•j of X, error

variance σ2
j can be estimated as ∥X̂•j −X•j∥22, where rows with missing values for X̂•j are ignored.

We use estimated reciprocal standard deviations σ̂2
j

−1/2
as feature weights during estimation.

The additional steps for estimation with weights occur in each epoch as follows:

• Estimate data matrix X as X̂ = ΓA′ based on current model estimates of Γ and A.

• For each column X•j and current estimate X̂•j , calculate estimated variance ∥X̂•j −X•j∥22 by

ignoring rows with missing values. Collect these variances in vector v.

• Threshold values of v to take a minimum value of .1. Produce weights matrix W with values

as the inverse values in v.

The calculation steps for weighted SELF are included in Algorithm 14, Line 18.

4.5.3 Weighted Feature Selection

Weights matrix W from 4.5.2 may be informative in feature selection.

In the SELF model, feature selection acts through sparsification of A. Weights can be incor-

porated in feature selection by imposing FSA on WA and imposing the resulting sparsity on A.

This modification encourages dropping features which are estimated through W to be less relevant.

Weighted feature selection is implemented in Algorithm 14, Line 35.
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Algorithm 14 Sparse Estimation of Latent Factors with Missing Data

Input:

• X , n-by-p data matrix

• k, desired number of sparse principal components

• epochs, number of epochs

• me, FSA annealing schedule specifying the number of nonzero entries of A kept at epoch e

• λr, ridge parameter to stabilize matrix inversion

• λm, ill-condition threshold

Output: Estimated latent factors Γ of X and estimated loading matrix A

1: Set X = X 0

2: Initialize feature weights matrix W as Ip

3: Initialize row reciprocal condition vector r as n-dimensional 0⃗

4: Initialize Γ as the first k principal components and A as the first k loading
vectors from PCA on X

5: for e = 1 to epochs do

6: Update Γ:

7: for each row x of X do

8: if data row is fully-observed then

9: Update corresponding row γ of Γ with γ = xWA(A′WA)−1

10: else if data row has missingness then

11: Set x̃ as the column subset of x for which its values are non-missing in original
data row Xi• where i is the current row number

12: Set Ã as column subset of A corresponding to x̃

13: Set W̃ as row and column subset of W corresponding to x̃

14: Update corresponding row γ of Γ with γ = x̃W̃Ã(Ã′W̃Ã+ λrI)
−1

15: Update ri to be the reciprocal condition number of Ã′W̃Ã ▷ See Section 4.5.1

16: end if

17: end for

18: if using feature weights then

19: Set X̂ = ΓA′

20: Estimate column error variances v with vj the observed variance of X̂•j −
X•j where for each j, rows with missing values Xij in the original data are
excluded from the calculation

21: Update diagonal values of W with Wjj = max(vj , .1)
−1

22: end if
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Algorithm 14 Sparse Estimation of Latent Factors with Missing Data (continued)

23: Update A:

24: if X has no missing data then

25: Set A = UV′ with X′Γ = UDV′ by SVD

26: else

27: for j = 1, . . . , p do

28: Let F1 be an index on rows of X having F1 = {1 ≤ i ≤ n | Xij is non-missing}
29: Let F2 be an index on rows of X having F2 = {1 ≤ i ≤ n | ri ≥ λm}
30: Produce Γ̃ by subsetting rows of Γ to F1 ∩ F2

31: Produce X̃•j by subsetting X to column j and rows in F1 ∩ F2

32: Update row j of A with Aj• = (Γ̃
′
Γ̃+ λrI)

−1Γ̃
′
X̃•j . ▷ If F1 ∩ F2 = ∅, set Aj• = 0⃗

33: end for

34: end if

35: Apply FSA to A

36: me is the desired number of nonzero elements of A for current epoch

37: Identify the top me entries of WA with the highest absolute values. Retain the
corresponding entries of A, setting the remaining entries to 0

38: end for

39: ΓA′ is the low-rank estimate of X
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4.6 Methodology Comparison

We make some comparisons between models.

The PCA objective (2.2) estimates X as XBB′ where B′B = I. WPCA incorporates feature

weights into the PCA objective.

Of the sparse PCA models, the first distinction to make is those models that follow the “self-

regression” (She, 2017) setup of SPCA. That is, SPCA, ASPCA, and GSPCA all approximate

X ≈ XBA′ with B sparse and A′A = I. SELF, however, follows the SRRR-SPCA setup where

X ≈ ΓA′, with A sparse. Yet SELF does share a characteristic of SPCA that semi-orthogonality

is lost when sparsity is imposed on A.

Another difference worth mentioning is that while SELF and SRRR-SPCA both directly esti-

mate low-dimensional representations of X, the representation V in SRRR-SPCA satisfies V′V = I

while SELF’s Γ does not. Our motivation for allowing this relaxation on both SELF parameters

Γ and A is to test the model with the non-imputation strategy on missing data. To perform this

approach, rows of Γ are estimated individually, which allows us to accommodate the particular

missingness pattern observed in each row of X. Likewise, A estimation handles missingness in

X by estimating the rows of A individually, accommodating the particular missingness pattern

observed in each column of X. For both Γ and A, the piecewise estimation strategy renders the

parameters non-orthogonal.

Another characteristic of these sparse PCA models concerns the nature of how the sparse pa-

rameter is estimated. In particular, the implementations of SPCA and ASPCA that we examine

estimate their loading matrix sequentially. In contrast, SRRR-SPCA estimates its sparse parame-

ter’s columns jointly. GSPCA follows this approach over the sequential strategy, applying FSA on

its entire loading matrix. SELF follows this method of imposing sparsity as well. Note that while

SELF’s non-imputation method does use a kind of sequential approach to estimating the rows of

A, it differs from the sequential nature of SPCA and ASPCA in an important way. The estimation

of A in SELF is a self-contained step which is repeated within training epochs alongside the update

step of Γ. As a result, not only is the full-column estimate of A available during every epoch of

model training, but across epochs all of A is able to receive updates. Potential advantages of the

sequential strategy applied to SPCA is discussed in Sjöstrand (2005).

GSPCA updates its sparse parameter via gradient descent, a departure from SPCA, ASPCA,

and SELF. Therefore, its sparse parameter requires a learning rate to be applied. The choice of
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learning rate may need to be considered alongside annealing rate µ. That is, a more aggressive

annealing schedule may benefit from a learning rate that is able to update quickly in response to

features being dropped. On the other hand, a slower µ and lower learning rate, perhaps combined

with momentum3, may encourage smoother updates to GSPCA. Thus GSPCA’s sparse parameter

might be expected to show less dramatic parameter updates compared to a sequential approach,

but is also less fixed in the sense that the entire sparse parameter receives updates in every epoch.

In contrast to this, SELF recreates its estimates Γ and A based on each other and on X, from

scratch, within each epoch.

The imputation method (4.3) is available to all examined models. This approach uses each

row’s observed values to estimate its unobserved values. The relationship between observed and

unobserved features is taken from what has been learned of the data’s low-rank structure, as

captured in model parameters. Estimating missing values by regressing them on observed values is

a common approach to imputation. An early example has Buck (1960) imputing missing values by

generating a series of linear regressions to predict unobserved values by observed values. Beale and

Little (1975) refine this approach by repeating iterations of imputation until the estimated values

converge. Many modern imputation strategies, including ours, involve estimating and iteratively

updating these estimates.

The basis of our estimates for missing data is learning low-rank structure. While the imputation

strategy estimates a low-rank representation by using data completed with imputed values, the non-

imputation approach (4.5.1) only uses observed values in its calculations. This general tactic for

estimation has been called available-case analysis (Little and Rubin, 2019, chap. 3). A noted

drawback of the available-case approach, however, is that the resulting estimate may not satisfy

the desirable properties expected of that estimate in the non-missing case. This situation emerges

in the non-imputed estimation of the SELF model, where the componentwise calculation of A does

not guarantee A′A = I; this is not an issue in the imputation case. If desired, Γ and A can be

rotated by multiplication with an appropriate square matrix to produce an orthogonal A. A sparse

PCA variant that follows a non-imputation strategy but retains orthogonality its loading matrix

parameter can be found in Zhang (2016).

A complication of the imputation strategy we employ concerns the sequentially-updating nature

of SPCA and ASPCA as examined here. In these models, the model’s understanding of low-rank

3 Momentum is a gradient descent technique where each applied gradient update is a weighted average between
current and previous gradient estimates (Sutskever et al., 2013)
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structure in the data is limited by which loading matrix column step the estimation process has

reached. That is, when these models begin estimation of the first loading matrix column, only that

column is available for producing imputation estimates, and so imputation in this step assumes

a rank-1 structure. Likewise, at the step estimating loading matrix column k, only the first k

columns are available to estimate imputed values. Further, at the point when the final column is

being estimated, any improved ability to model the missing data does not affect the estimates of

loading columns that have already been estimated.

Methodologies for handling missingness in low-rank settings have seen enormous attention re-

cently due to their applicability in matrix factorization for recommender systems. It is worth

mentioning some notable contributions in modeling incomplete low-rank data. Candes and Recht

(2012) show that, with some probability, many incomplete low-rank matrices can have their miss-

ing values recovered exactly; they also provide a convex algorithm for doing so. Mazumder et al.

(2010) soften the goal of exact recovery and instead seek to learn low-rank structure by minimizing

a loss function which ignores missing values. Regularization is a frequent technique used to combat

estimation problems introduced by higher levels of missingness; see for instance Josse et al. (2009).

Many variations of both imputation and non-imputation strategies have emerged in the literature.

For an overview, techniques with specific relevance to PCA are briefly outlined in (Jolliffe, 2002,

chap. 13.6). Low-rank methods for matrix completion were recently surveyed by Nguyen et al.

(2019). A broader overview of matrix completion methods is given by Dax (2014).

SELF includes additional modeling options including the incorporation of feature weights in

model estimation and feature selection and the ability to avoid data rows showing too much miss-

ingness. These options, and imputation and non-imputation strategies, are compared for SELF in

an ablation study in Section 4.10.
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4.7 Sparse PCA Simulations

We test models on simulated principal component regression (PCR) data. These models perform

an unsupervised dimension reduction task and a supervised regression task. Having both tasks

allows us to measure the accuracy of feature selection for dimension reduction and the subsequent

accuracy of the overall regression model. This is tested over varying sample sizes and numbers of

noisy features.

A simulated sample of (Γ,X,y) begins with generating an n-by-3 matrix of NIID latent factors

Γ ∼ N (⃗0, I3).

The response vector y is generated as the sum of each row of Γ.

y = Γ


1

1

1


We then generate n-by-10 data matrix X from Γ. A is generated as a 10-by-3 matrix of

independent standard normal deviates. Following this,

1. Relevant features of data are generated as X̃ = ΓA′ +E where E ∼ N (⃗0, .3I10)

2. q uninformative (noisy) features are generated as n-by-q matrix Q ∼ N (⃗0, Iq)

3. Final data matrix X is produced as the composite of relevant and irrelevant features: X =[
X̃ Q

]
4. Missingness is imposed on entries of X randomly at a rate of 50%.

Simulations are run on varying n and q. Model accuracy is reported by the following measures.

First, each PCR model’s loading matrix used for dimension reduction has sparsity that is meant

to reduce the impact of irrelevant features. Not all models impose exact sparsity, but row-norms

of the loading matrix can be used to see how many of the ten relevant features were selected as the

most important. For the regression component of the model, we report R2 on test data simulated

alongside training data, as well as R2 on test data without missingness imposed. Note that in this

latter case, the models were still trained on data with missingness. Resulting scores are averages

of 100 replicates of each data configuration (n, q).
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The results show SELF having the best performance in test R2. PCA shows a slight performance

edge over WPCA, though they are close. Beyond the lowest values of n, model performance does

not seem to improve as a function of sample size.

We highlight two observations from these results. First, Table 4.2 shows the correctness of

model “feature selection”. Because model sparsity is not imposed in a way that explicitly selects

a fixed number of features, we use loading matrix row-norms to count how many of the 10 true

features occupy the 10 “largest” rows. By this metric, PCA and WPCA appear to do very well.

Although we considered this a natural approach to measuring whether models were focusing on

the right features, in this setting the metric did not reliably translate into model accuracy. For

instance, PCA and WPCA often outperformed SELF by this metric, but are not comparable to

SELF performance in test R2.

A second observation the striking behavior of SPCA, which shows dramatically decreasing

performance against increasing n. We examine this counter-intuitive behavior further.
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Table 4.2: Number of Features Correctly Selected of PCR Models with varying n, q

n q PCA WPCA SPCA ASPCA JSPCA GSPCA SELF4

100 10 9.2 9.3 8.4 9.0 8.7 9.2 9.3

100 50 8.7 8.6 7.5 8.5 7.7 8.5 8.9

100 100 8.4 8.4 7.1 8.2 6.9 8.2 8.3

500 10 9.9 9.9 9.5 9.6 9.3 9.8 9.8

500 50 9.8 9.8 9.2 9.4 9.0 9.8 9.7

500 100 9.8 9.8 9.1 9.4 8.8 9.7 9.7

1,000 10 9.9 10.0 9.6 9.7 9.5 9.9 9.9

1,000 50 9.9 9.9 9.5 9.6 9.3 9.9 9.8

1,000 100 9.8 9.9 9.5 9.6 9.3 9.8 9.8

2,000 10 10.0 10.0 9.8 9.8 9.6 10.0 9.9

2,000 50 9.9 10.0 9.7 9.7 9.4 9.9 9.9

2,000 100 9.9 10.0 9.7 9.7 9.5 9.9 9.8

5,000 10 10.0 10.0 9.9 9.9 9.6 10.0 9.9

5,000 50 10.0 10.0 9.8 9.8 9.6 10.0 9.9

5,000 100 10.0 10.0 9.8 9.8 9.7 10.0 9.9

10,000 10 10.0 10.0 9.9 9.9 9.6 10.0 9.9

10,000 50 10.0 10.0 9.9 9.9 9.7 10.0 9.9

10,000 100 10.0 10.0 9.9 9.9 9.7 10.0 9.9

4 The SELF model used in these results follows Algorithm 14 with the feature weights option, and is identified as
variant S-NAWFS in 4.10.2.

76



Table 4.3: Test R2 of PCR Models with varying n, q

n q PCA WPCA SPCA ASPCA JSPCA GSPCA SELF

100 0 0.59 0.57 0.39 0.49 0.53 0.73 0.88

100 10 0.58 0.57 0.48 0.54 0.49 0.54 0.83

100 50 0.56 0.55 0.60 0.57 0.48 0.57 0.80

100 100 0.54 0.54 0.60 0.56 0.46 0.56 0.77

500 0 0.61 0.58 0.51 0.52 0.52 0.77 0.89

500 10 0.61 0.58 0.29 0.56 0.47 0.46 0.87

500 50 0.61 0.58 0.56 0.62 0.48 0.49 0.86

500 100 0.60 0.58 0.62 0.62 0.50 0.51 0.86

1,000 0 0.62 0.59 0.54 0.52 0.50 0.78 0.89

1,000 10 0.61 0.59 0.22 0.55 0.47 0.42 0.88

1,000 50 0.61 0.59 0.48 0.60 0.47 0.47 0.87

1,000 100 0.61 0.59 0.56 0.62 0.50 0.46 0.87

2,000 0 0.62 0.59 0.55 0.55 0.49 0.78 0.89

2,000 10 0.62 0.59 0.14 0.52 0.45 0.44 0.88

2,000 50 0.62 0.59 0.39 0.59 0.46 0.45 0.87

2,000 100 0.62 0.59 0.49 0.61 0.48 0.47 0.87

5,000 0 0.62 0.59 0.55 0.55 0.44 0.77 0.89

5,000 10 0.62 0.59 0.08 0.51 0.44 0.44 0.88

5,000 50 0.62 0.59 0.25 0.56 0.44 0.45 0.88

5,000 100 0.62 0.59 0.34 0.59 0.45 0.45 0.88

10,000 0 0.62 0.59 0.54 0.55 0.41 0.77 0.89

10,000 10 0.62 0.59 0.05 0.50 0.42 0.44 0.89

10,000 50 0.62 0.59 0.15 0.54 0.41 0.46 0.88

10,000 100 0.62 0.59 0.24 0.56 0.42 0.46 0.88
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Table 4.4: Non-Missing Test R2 of PCR Models with varying n, q

n q PCA WPCA SPCA ASPCA JSPCA GSPCA SELF

100 0 0.89 0.87 0.81 0.74 0.86 0.89 0.98

100 10 0.87 0.86 0.83 0.77 0.81 0.83 0.95

100 50 0.84 0.84 0.83 0.79 0.76 0.83 0.91

100 100 0.81 0.81 0.81 0.78 0.71 0.82 0.90

500 0 0.91 0.89 0.83 0.78 0.82 0.94 0.98

500 10 0.91 0.89 0.83 0.79 0.78 0.86 0.98

500 50 0.90 0.88 0.89 0.86 0.78 0.88 0.98

500 100 0.89 0.87 0.90 0.85 0.83 0.88 0.97

1,000 0 0.91 0.89 0.84 0.76 0.82 0.94 0.98

1,000 10 0.91 0.89 0.83 0.81 0.77 0.86 0.98

1,000 50 0.91 0.89 0.89 0.85 0.77 0.88 0.98

1,000 100 0.90 0.88 0.89 0.86 0.82 0.90 0.98

2,000 0 0.92 0.89 0.86 0.75 0.79 0.95 0.98

2,000 10 0.92 0.89 0.84 0.77 0.74 0.87 0.98

2,000 50 0.91 0.89 0.87 0.84 0.78 0.89 0.98

2,000 100 0.91 0.89 0.89 0.86 0.79 0.91 0.98

5,000 0 0.92 0.90 0.86 0.75 0.74 0.95 0.98

5,000 10 0.92 0.90 0.82 0.71 0.72 0.89 0.98

5,000 50 0.92 0.90 0.85 0.80 0.75 0.89 0.98

5,000 100 0.92 0.90 0.87 0.83 0.78 0.89 0.98

10,000 0 0.92 0.89 0.86 0.74 0.67 0.95 0.98

10,000 10 0.92 0.89 0.81 0.71 0.70 0.89 0.98

10,000 50 0.92 0.89 0.84 0.77 0.73 0.89 0.98

10,000 100 0.92 0.89 0.85 0.81 0.72 0.90 0.98
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Figure 4.1: Test R2 of PCR Models with varying n, q

4.7.1 SPCA Performance with Missing Data

We focus on the q = 10 data setting, which should present an easy feature selection problem

given ample n.

Training and test R2 plummet as training sample size n increases. However, when these models

are applied to test data absent missing values, R2 shows good values, indicating that the issue may

be in how missingness is handled.
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Table 4.5: SPCA PCR Model Performance with q = 10

n Number of True Features Selected Training R2 Test R2 Non-Missing Test R2

100 8.45 0.55 0.48 0.83

500 9.47 0.34 0.29 0.83

1,000 9.63 0.24 0.22 0.83

2,000 9.79 0.15 0.14 0.84

5,000 9.88 0.08 0.08 0.82

10,000 9.93 0.05 0.05 0.81

We surmise two potential mechanisms for this issue which are byproducts of the imputation

strategy rather than a reflection of the accuracy of the SPCA model. The first observation regards

the implementation of the imputation strategy. Imputation is applied by using low-rank struc-

ture as learned during model training. This strategy is applied to all sparse PCA models5 under

consideration. However, it is not possible to apply imputation in exactly the same way. Consider

that GSPCA, JSPCA, and SELF iteratively update their loading matrix in its entirety. Thus at

any stage of model training, the current estimate of the entire loading matrix is applied to the

imputation problem. As noted in (4.6) however, SPCA and ASPCA estimate their loading matrix

sequentially. The consequence of this is that during estimation of the first sparse loading matrix

column, the model is only able to capitalize on a rank-1 understanding of the data to apply to-

wards imputation. When estimation proceeds to the next sparse loading column, a rank-2 estimate

is applied. Eventually estimation arrives at the final loading matrix column permitting imputation

estimation by the full rank of the model, but the enhanced accuracy of imputation is unable to

impact the loading matrix columns that have already been estimated. This limitation applies to

both SPCA and its close derivative, ASPCA. While ASPCA may show less drastic of an effect, it

shares the pathology of suffering from higher training n. We do not dismiss the possibility that

a modified imputation strategy may better accommodate sequential sparse PCA models, or that

some modification of the sequential approach may circumvent this limitation; however, we do not

pursue these directions in this work.

5 A non-imputation strategy has been developed for SELF, but the imputation strategy is still implemented and
tested for that model
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The second drawback to the imputation strategy which may explain SPCA’s behavior regards

the instability of the imputation calculation in cases of high missingness. Missing values are imputed

row by row, and higher levels of missingness can produce ill-posed calculations. Simply put, given

the same missingness rate, an n = 10,000 sample is more likely to have rows presenting ill-posed

problems compared to an n = 100 sample. Considering the case of outliers in data analysis, it is

easy to imagine that a small number of extreme occurrences can interfere with model estimation.

To observe this, we take a close look at a single simulation instance.

PCR simulation results are averages over 100 replicates, meaning models are trained against

each data setting (n, q) generated from 100 random seeds. However, there is some consistent

behavior within replicates.

First, given a seed and sample size n, training data is drawn as the first n rows of the same

sample generated by that seed. Thus for a given seed value, the training data produced in the

n=100 case is the same as the first 100 rows of any training data produced by that seed with

n > 100. Second, whatever the training sample size n is chosen for training a model, the size

of test data in these simulations is always n = 1, 000. This means that within a seed, the only

difference in training data for different n is how many rows of the same data sample are used for

model training, and there is no difference in samples used to calculate test scores. The final result

is that by examining SPCA performance within a specific seed against different n, all factors are

held constant except sample size.

Taking a specific seed as an example, SPCA models trained at every level of n are all tested

on the exact same test data. The performance of SPCA against data generated from this specific

replicate unsurprisingly follows the overall observed pattern of performance.
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Table 4.6: Sample SPCA PCR Simulation Replicate

Training n Number of True Features Selected Training R2 Test R2 Non-Missing Test R2

100 10 0.92 0.76 0.99

500 10 0.59 0.56 0.86

1,000 10 0.53 0.42 0.99

2,000 10 0.20 0.21 0.99

5,000 10 0.06 0.04 0.99

10,000 10 0.06 0.04 0.95

However, focusing on a single simulation replicate allows us to examine model behavior more

closely. Consider the model trained at n = 100, with 100-by-p training data X. By the imputa-

tion strategy used with SPCA and other models, part of model estimation involves using model

parameter estimates (A, B) to impute values of data under consideration. Thus a trained SPCA

model in this framework has the implicit ability to impute values for data sampled from the same

low-rank structure the model was trained on.

All SPCA models trained in this replicate use training data that contains X as its first 100 rows.

Training data is created with a 50% missingness rate. Because the data is simulated, however, we

can recover the true data values that were obfuscated before imposing missingness. Further, we can

compare these true values against imputation estimates produced by this replicate’s SPCA models

trained on various n. By applying each model’s imputation method to the same X, we can compare

imputed values against true and exact underlying values. This is shown in Figure 4.2.

The observed pattern shows accurate imputation for the SPCA model trained on n=100. As

training sample size increases, however, imputed estimates take on increasingly extreme values.

Simulated data naturally lies within a range of approximately -5 to +5. At the n=10,000 case,

however, imputed values show values as extreme as 100.

The data for the instance we are examining has 10 true features and q=10 noisy features. Taking

the extreme imputed value as an example, we identify the data row in X for which that value was

generated. The training data row, x, with missing values, is found in this instance to be
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(• • • • −1.4 −0.2 • • • 2.0 0.8 1.5 1.3 0.8 • • −0.5 −0.3 • 0.8)

Given estimated model parameters (A, B) from the n = 10,000 SPCA model from this replicate,

we apply the imputation strategy outlined in Algorithm 8. Following the instructions produces

placement matrix P and takes D = I−BA′. With ridge parameter λr and 0-imputed row x0, the

estimated imputed values are w = −x0DD′P′(PDD′P′ + λrI)
−1.

A =



0.115 −0.204 0.110

−0.084 0.297 −0.311

0.596 0.092 0.174

0.159 0.497 0.752

−0.181 −0.486 0.399

−0.137 −0.187 0.190

0.303 −0.468 −0.006

0.39 0.091 −0.235

−0.365 −0.109 0.211

−0.412 0.322 −0.015

0.001 0.005 0.007

0.000 0.004 −0.003

0.004 −0.001 0.006

0.003 −0.001 0.001

0.001 −0.002 0.000

0.002 0.007 0.010

−0.001 0.000 −0.002

−0.002 0.000 −0.001

0.001 0.000 0.000

−0.005 −0.001 0.000



B =



0.112 −0.200 0.102

−0.082 0.297 −0.312

0.597 0.092 0.172

0.159 0.498 0.754

−0.180 −0.488 0.400

−0.133 −0.185 0.186

0.303 −0.469 0.000

0.391 0.090 −0.234

−0.365 −0.108 0.210

−0.413 0.321 −0.012

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0


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Taking λr = 10−5, estimated missing values are w = −x0DD′P′M−1 where M = PDD′P′ +

λrI, yielding imputation estimates

w =

(
1.73 − 12.09 42.33 98.05 − 16.29 0.11 − 2.28 − 0.05 1.28 0.03

)
which is seen to include extreme and problematic imputation estimates.

More importantly, the critical matrix M in this instance has a condition number of 6,516.3,

indicating that the inversion problem is sensitive to perturbation. The instability of M is not

particular to the 100-row sample X, which was satisfactorily modeled by SPCA with imputation

applied to that n = 100 case. The matrix M is created not only from the missingness of its

corresponding row, but from the observed values of that row, the present model estimates (A, B),

and the mitigating effect of λr.

The numerical challenges which emerge in this imputation setup are no different from those

present in other settings, such as solutions for underdetermined systems. There are a number of

possible responses. An easy approach is examining the tradeoff of introducing more bias by increas-

ing λr. More deliberate constraints may be applied to imputation estimates to keep them within

control, such as requiring they be sampled from an explicit probability distribution or incorporating

a penalty on their magnitude. Or, the relative effect of potentially unstable imputed estimates can

be reduced by a weighting strategy. However, we forego more advanced imputation strategies in

favor of the non-imputation direction introduced in (4.5.1) and tested against imputation in (4.10).
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Figure 4.2: True vs. Imputed Missing Values for a Single Replicate of SPCA PCR Models
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4.8 Sparse PCA Experiment - Postsecondary Institution
Characteristics

Here we apply sparse PCA models with regression on a real dataset compiled of academic

institution characteristics.

A cross-section of aggregate institutional metrics is collected for 1,197 public and private North

American colleges and universities for the 2016-2017 academic year. Metrics include demograph-

ics of the student body like percentages by race and gender, figures on enrollments and degrees

awarded, academic indicators of admits such as average ACT and SAT scores, aggregate financial

aid characteristics and cost of attendance, graduation rates, and faculty characteristics. In total,

there are 316 features, with Endowment ($) separated as the response to predict.

Not all metrics are found for all institutions, which generates missingness in the data. The

overall missingness rate of all predictors is 44.0%. Predictors are centered and scaled to have

observed mean 0 and standard deviation 1. As is often the case with monetary data, the response

Endowment ($) shows skew which is resolved by taking a log transform (see Figure 4.3).

Figure 4.3: Deskewing Response Endowment ($)

Models tested include SPCA, ASPCA, GSPCA, and JSPCA with the imputation strategy

described in Algorithm 8; the SELF variant identified as S-NAWFS in 4.10.2; 0-imputed PCA and

WPCA. These are used as the PCA component of PCR models, so that each model’s reduced-

dimension estimate of the data is used as the predictors of an OLS model predicting the response.

We include, for comparison, OLS applied directly on 0-imputed data.
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PCR models estimate a rank-2 representation of data. PCR models imposing sparsity (SPCA,

ASPCA, GSPCA, JSPCA, and SELF) are configured to allow on average 30 nonzero values in each

column of their estimated loading matrix. Data is split into 70% for training and 30% for testing.

Model performance is scored by observing the average R2 on training and testing data over 100

random train/test splits.

Table 4.7: PCR Model Performance on Postsecondary Institutions Data

PCR Model Training R2 Test R2

0-Imputed OLS 0.79 0.38

ASPCA + OLS 0.60 0.59

GSPCA + OLS 0.59 0.58

PCA + OLS 0.56 0.55

SELF + OLS 0.60 0.59

SPCA + OLS 0.60 0.59

WPCA + OLS 0.57 0.55

JSPCA + OLS 0.54 0.52

Results show the worst performance for OLS, though the model showed the highest average

training R2 indicating overfitting. Better performance is achieved by PCA, Weighted PCA, and

JSPCA. The best-performing models are GSPCA, SPCA, ASPCA, and SELF.

Figure 4.8 shows a sample loading matrix estimated from a sparse model, partitioned into three

tables. The sparsity imposed allows us to exclude most of the 315 predictors. Additionally, the

sparsity shows an interpretable factor structure, allowing us to isolate “factor 1” predictors and

“factor 2” predictors, shown below.

Factor 1 predictors: Early action applicants enrolled, Final cohort (exclusions),

Initial FTIC Cohort, Female freshman enrollment, Total enrollment, Bachelor’s degrees

awarded, Male freshman enrollment, FTIC Enrollment, Early action applicants accepted,

Full-time enrollment, Undergraduate alumni of record, Number of applicants accepted,

Male applicants accepted, Female applicants accepted, Final Cohort (Pell Grant), Initial

FTIC Cohort (Pell Grant), Full-time faculty, ACT Science: % of students scoring below
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6, Number of registered clubs and organizations, Early decision applicants enrolled,

Early action applicants, Total number of undergraduate students, Number of applicants,

Female applicants, Male applicants, Early decision applicants accepted.

Factor 2 predictors: Average FTIC financial aid package FTIC, Average financial aid

package, Average freshmen aid, Average aid, Average freshman retention rate, % of freshmen

in top quarter of high school class, ACT Reading: % of students scoring 30-36, SAT

25th percentile, SAT 75th percentile, SAT Writing average score, 6-year graduation

rate (average), SAT Math: % of students scoring 400-499, 6-year graduation rate (single

cohort), 4-year graduation rate, 5-year graduation rate, SAT Math average score, Predicted

graduation rate, SAT Verbal average score, ACT Composite average score, ACT 75th percentile,

ACT 25th percentile.

It is readily observed that factor 1 predictors are a measurement of institution size, focusing on

enrollment figures, while factor 2 predictors focus on academic strength. The inclusion of financial

aid predictors in factor 2 suggest that those may also be a proxy for academic strength, or that

they also capture variation and may call for a rank-3 model.
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Table 4.8: Sample Estimated Loading Matrix for Automotive Data

Loadings 1 Loadings 2

-0.60 0

-0.58 0

-0.58 0

-0.58 0

-0.57 0

-0.57 0

-0.56 0

-0.59 0.03

-0.55 0

-0.59 0.05

-0.54 0

-0.53 0

-0.52 0

-0.51 0

-0.51 0

-0.51 0

Loadings 1 Loadings 2

-0.50 0

-0.50 0

-0.49 0

-0.49 0

-0.49 0

-0.58 0.11

-0.45 0

-0.45 0

-0.44 0

-0.41 0

0 -0.59

0 -0.60

0 -0.61

0 -0.62

0 -0.65

0 -0.66

Loadings 1 Loadings 2

0 -0.66

0 -0.68

0 -0.68

0 -0.68

0 -0.70

0 0.71

0 -0.71

0 -0.71

0 -0.72

0 -0.72

0 -0.73

0 -0.74

0 -0.74

0 -0.76

0 -0.76

Matrix partitioned into three submatrices

Excludes features with both loadings 0
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4.9 Factor Mixture Model Experiment - Automotive Dataset

In this section we test a Factor Mixture Model (FMM) on a dataset of automobile sales records.

FMM is a model that applies LCA on data to produce clusters and then applies separate factor

analysis models to each cluster. We apply LCAFSA with sparse PCA methods on this data, followed

by OLS regression, to predict the asking price of vehicles based on their listed characteristics.

4.9.1 Large Car Dataset

The Large Car Dataset (Competitive Intelligence Solutions, 2021) is a public dataset of vehicle

listing collected from automotive dealers in Illinois from 2018-2020. Each record indicates a vehicle,

the listed characteristics of that vehicle, and the listing’s asking price. The data includes a mixture

of categorical features, continuous features, and missingness.

The stated asking price of a listing is isolated as the target of prediction.

Listings include information about vehicles that serve as continuous predictors, such as a vehi-

cle’s mileage, top speed, and wheel size. There are also categorical features, mostly indicating the

presence of automotive amenities such as adaptive cruise control, entertainment systems, and lane

keep systems.

Missingness is present in the data for two reasons. First, listings were collected from over one-

thousand dealerships and so will have inconsistent coverage of vehicle information. Second, many

features are conditional on vehicle type. For instance, information about charger levels and charger

power are only relevant to electric vehicles, while the number of engine cylinders does not apply to

electric vehicles and would be shown as missing rather than having a value 0. Likewise, the number

of windows would be missing for motorcycles.

To prepare data for analysis, we randomly subset listings of 10,000 vehicles from the source

data. The sample is stratified to include a cross-section of vehicle types. Of the features present

in the data, we retain for analysis those which capture a generic characteristic of the vehicle. For

instance, we include mileage as a potential predictor of asking price, but we exclude information

on a vehicle’s make and model from which prices can essentially be memorized by a model. Other

features are removed for being direct proxies of asking price such as MSRP and Base Price.

The final data includes 35 continuous predictors. Categorical predictors include binary at-

tributes present in vehicle listing information. We enhance these binary predictors to also include

missingness indicators for each source feature used. For instance, while only electric vehicles will
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have observed data for a feature vf chargerpowerkw, all records will have a value for the corre-

sponding derived binary indicator feature reporting whether that feature is observed. This yields

a total of 113 binary predictors.

4.9.2 Factor Mixture Models

The Factor Mixture Model (FMM) is a contribution by Muthén (2006) in unsupervised analysis

of data featuring continuous and categorical indicators. Instead of making a decision between

taking a categorical approach via LCA or a continuous dimensional approach via Factor Analysis

(FA), several hybrid methods are described allowing both approaches to be used in the same model.

We apply a method closely following one examined in Clark et al. (2013)6 which applies LCA to

the categorical features to partition the data into clusters, and then applies class-conditional FA

to each cluster. In our case, we will apply LCA and LCA-FSA on our binary features, followed by

class-conditional sparse PCR models.

To use FMM, the practitioner must decide on the number of latent classes for LCA and the rank

of the low-dimensional FA/PCA models. Clark et al. (2013) outlines an approach which increments

the number of latent classes and ranks so that a variety of possible combinations is examined. To

this end, we test FMMs for varying configurations and observe the resulting predictive accuracy.

4.9.3 Experimental Setup

In this experiment, we will train FMMs to predict the asking price of automotive sales listings

based on vehicle characteristics.

Each FMM has an LCA or LCA-FSA component assigning records to estimated classes. Each

class has its own PCA-type model performing dimension reduction, and each of those models feeds

into an OLS model to make final predictions. The steps are as follows.

1. Train an LCA or LCA-FSA model on the categorical features present in the dataset. In our

experiment we have 113 binary predictors to be used for this step. We also have various

feature selection approaches (listed in 3.2) which can be applied with LCA-FSA.

2. Apply the trained model on the data, producing a partition of data into clusters. Apply a

dimension reduction technique to the continuous features corresponding to records within each

cluster. In our experiment we have 35 continuous features which will be used in dimension

reduction. We also have various sparse PCA approaches we can apply, as well as varying

sparsity levels we can examine.

6 In Clark et al. (2013), the relevant model variant is referred to as FMM-4.
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3. For each cluster’s PCA-reduced continuous data, train an OLS model to predict the target

outcome.

The final trained model is applied in the same way on new data: first, the trained LCA model is

applied to the data’s categorical features to assign cluster labels for the observations; second, each

cluster applies its specific PCA model to its partition of continuous features; finally, each partition’s

reduced features are fed into that cluster’s trained OLS model.

The LCA-FSA models we test use feature selection approaches (mutual information, χ2 statistic,

mRMR, diff-criterion, LL) set to select ω=25 categorical features. LCA without feature selection

is also included. We test these with 2, 3, and 5 latent classes.

Dimension reduction models examined include PCA, SPCA, WPCA, ASPCA, GSPCA, and

SELF. In the case of missingness, PCA and WPCA begin by 0-imputing continuous features. Be-

cause the number of source continuous features is low (35), we introduce a feature selection prob-

lem by appending continuous features with 50 additional noisy features generated as NIID(0, 1).

Sparse PCA methods are tested at various sparsity levels: targeting the most relevant 10, 20, or

35 features. These models are tested at ranks 2, 3, and 5.

Prior to applying models, continuous features are standardized to have observed mean 0 and

variance 1. The prediction target, asking price, is log-transformed. FMMs are created by producing

each possible combination of an LCA model and PCA model, and attaching an OLS model to each

class-conditional PCR model. These models are trained on random splits of training and testing

data at varying sample sizes. The resulting test R2 of each model is reported as an average of 100

train/test splits.

4.9.4 FMM Results

Testing various types of LCA models attached to various PCA models produces many combi-

nations to examine. However, the results offer some convenient ways to reduce the number of cases

which need to be examined.

First, we do not examine every combination of sparse or nonsparse PCA models and LCA

models. Within each data setting (n, number of latent classes, rank of PCA model), each PCA

model is tested against every LCA model. In reporting results, however, we allow each candidate

sparse PCA model to be attached to whatever LCA configuration produced the best average results

for its corresponding PCR model at that data setting. These selections did not reveal a particular
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LCA feature selection approach as the dominant one in terms of how frequently it was selected;

this suggests that the choice was not as critical to model accuracy.

A second source of complexity of examining results is the choice of sparsity imposed within

sparse PCA models. We test sparse PCA models at sparsity levels of 10, 20, and 35 average

nonzero entries per loading matrix column. Recall that continuous predictors in this experiment

include 35 continuous features measuring automotive characteristics plus the 50 noisy features we

add. This produces three sparsity levels to examine for each sparse PCA method. However, the

results present us with a simpler view. Across the various configurations of number of LCA classes,

PCA ranks, and n, each sparse PCA approach showed a clear affinity for a single loading matrix

sparsity level based on R2. We present each sparse PCA model with its best-performing sparsity

level.

First, we show baseline results from trying simpler models on the data. By 0-imputing data,

we can test using OLS by itself for prediction. We also examine 0-imputed PCR using ordinary

PCA and Weighted PCA, both without LCA. The results are shown in Table 4.9 and Figure 4.4,

which report test R2 over 100 train/test splits at varying sample sizes. Note that OLS results are

repeated in the charts which show PCR at varying ranks.

OLS and Rank-2 PCR models show unstable behavior as a function of sample size. It is

suspected that a combination of missingness issues and an assumption of homogeneous data causes

issues for these models. This effect seems to alleviate for PCR models at higher rank, with WPCR

outperforming PCR. The best observed test R2 here is .243.

Figure 4.4: OLS and PCR Test R2 on Automotive Data
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Table 4.9: OLS, PCR, and WPCR Test R2 on Automotive Data

n OLS
Rank-2
PCR

Rank-3
PCR

Rank-5
PCR

Rank-2
WPCR

Rank-3
WPCR

Rank-5
WPCR

500 0.126 0.164 0.172 0.181 0.193 0.211 0.219

1,000 0.134 0.168 0.179 0.189 0.191 0.222 0.234

2,000 0.180 0.151 0.175 0.189 0.169 0.222 0.242

3,000 0.213 0.142 0.177 0.189 0.153 0.218 0.243

4,000 0.197 0.134 0.177 0.187 0.133 0.215 0.239

5,000 0.173 0.172 0.179 0.188 0.193 0.214 0.240

FMM models are trained at varying numbers of latent classes and PCA ranks. Test R2 from

these models are shown in Tables 4.10-4.12 and Figure 4.5. A comparison of all model types at

their best settings is shown in Table 4.13 and Figure 4.6.

An immediate observation is that the incorporation of LCA as a step prior to PCA modeling

produces better accuracy than PCR on its own or OLS on its own, validating the FMM premise.

Overall, SELF appears to show the best performance. All models seem to struggle with the Rank-2

setting, showing better results at higher ranks. The highest average accuracy overall is achieved by

the 5-class SELF model at Rank-3 with training n = 5, 000.
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Table 4.10: 2-Class FMM Test R2 on Automotive Data

LCA

Classes

PCA

Rank

n ASPCA GSPCA PCA SELF SPCA WPCA JSPCA

2

2

500 0.341 0.316 0.312 0.350 0.371 0.325 0.345

1000 0.379 0.351 0.342 0.385 0.393 0.359 0.353

2000 0.388 0.373 0.362 0.411 0.390 0.385 0.355

3000 0.380 0.373 0.362 0.403 0.375 0.387 0.355

4000 0.375 0.375 0.359 0.397 0.375 0.378 0.350

5000 0.372 0.376 0.358 0.395 0.376 0.375 0.350

3

500 0.360 0.340 0.326 0.386 0.392 0.352 0.352

1000 0.395 0.374 0.366 0.422 0.414 0.390 0.379

2000 0.421 0.405 0.397 0.445 0.423 0.418 0.388

3000 0.424 0.414 0.407 0.444 0.420 0.427 0.386

4000 0.426 0.418 0.411 0.441 0.423 0.427 0.383

5000 0.427 0.421 0.415 0.440 0.424 0.427 0.384

5

500 0.370 0.354 0.341 0.405 0.397 0.371 0.377

1000 0.404 0.386 0.375 0.430 0.423 0.406 0.403

2000 0.427 0.414 0.403 0.454 0.433 0.431 0.419

3000 0.431 0.420 0.413 0.456 0.432 0.433 0.420

4000 0.433 0.424 0.416 0.456 0.433 0.433 0.418

5000 0.434 0.425 0.419 0.457 0.434 0.434 0.420
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Table 4.11: 3-Class FMM Test R2 on Automotive Data

LCA

Classes

PCA

Rank

n ASPCA GSPCA PCA SELF SPCA WPCA JSPCA

3

2

500 0.349 0.322 0.312 0.372 0.375 0.330 0.340

1000 0.384 0.355 0.348 0.397 0.401 0.364 0.355

2000 0.397 0.381 0.371 0.416 0.399 0.391 0.358

3000 0.390 0.382 0.371 0.410 0.388 0.393 0.349

4000 0.387 0.385 0.371 0.408 0.389 0.389 0.346

5000 0.383 0.385 0.369 0.405 0.387 0.385 0.346

3

500 0.365 0.343 0.331 0.399 0.394 0.357 0.359

1000 0.400 0.381 0.372 0.433 0.422 0.396 0.384

2000 0.429 0.411 0.404 0.457 0.430 0.428 0.396

3000 0.433 0.422 0.415 0.461 0.432 0.435 0.391

4000 0.436 0.426 0.419 0.458 0.433 0.435 0.391

5000 0.440 0.431 0.424 0.464 0.436 0.437 0.388

5

500 0.374 0.355 0.344 0.418 0.398 0.376 0.387

1000 0.408 0.391 0.382 0.441 0.425 0.414 0.414

2000 0.435 0.421 0.410 0.465 0.438 0.438 0.433

3000 0.439 0.428 0.420 0.465 0.439 0.442 0.428

4000 0.441 0.431 0.423 0.462 0.440 0.441 0.430

5000 0.442 0.432 0.426 0.462 0.439 0.443 0.429
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Table 4.12: 5-Class FMM Test R2 on Automotive Data

LCA

Classes

PCA

Rank

n ASPCA GSPCA PCA SELF SPCA WPCA JSPCA

5

2

500 0.361 0.335 0.320 0.379 0.380 0.340 0.350

1000 0.397 0.374 0.366 0.416 0.413 0.379 0.357

2000 0.418 0.403 0.396 0.440 0.425 0.407 0.363

3000 0.416 0.408 0.399 0.438 0.416 0.411 0.359

4000 0.417 0.414 0.403 0.440 0.421 0.416 0.355

5000 0.419 0.416 0.406 0.437 0.419 0.414 0.354

3

500 0.374 0.352 0.338 0.407 0.393 0.363 0.375

1000 0.410 0.394 0.384 0.446 0.431 0.406 0.398

2000 0.442 0.425 0.416 0.476 0.450 0.439 0.409

3000 0.448 0.436 0.427 0.480 0.451 0.446 0.411

4000 0.455 0.444 0.434 0.482 0.457 0.451 0.401

5000 0.456 0.445 0.437 0.477 0.456 0.452 0.404

5

500 0.379 0.351 0.342 0.407 0.396 0.371 0.386

1000 0.415 0.397 0.391 0.448 0.431 0.423 0.425

2000 0.444 0.430 0.420 0.474 0.453 0.449 0.448

3000 0.450 0.437 0.429 0.477 0.453 0.454 0.448

4000 0.456 0.445 0.436 0.480 0.458 0.457 0.450

5000 0.456 0.446 0.439 0.476 0.457 0.463 0.454
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Table 4.13: Test R2 of All Models at Best Settings on Automotive Data

Test Rsq

n

PCA

Rank

LCA

Classes

PCA

Sparsity7
500 1000 2000 3000 4000 5000

OLS 0.126 0.134 0.180 0.213 0.197 0.173

PCR - PCA 5 0.181 0.189 0.189 0.189 0.187 0.188

PCR - WPCA 5 0.219 0.234 0.242 0.243 0.239 0.240

FMM - PCA 5 5 0.342 0.391 0.420 0.429 0.436 0.439

FMM - WPCA 5 5 0.371 0.423 0.449 0.454 0.457 0.463

FMM - JSPCA 5 5 0.386 0.425 0.448 0.448 0.450 0.454

FMM - ASPCA 5 5 10 0.379 0.415 0.444 0.450 0.456 0.456

FMM - SPCA 5 5 10 0.396 0.431 0.453 0.453 0.458 0.457

FMM - GSPCA 5 5 20 0.351 0.397 0.430 0.437 0.445 0.446

FMM - SELF 3 5 20 0.407 0.446 0.476 0.480 0.482 0.477

Table 4.14 shows the non-missing rates for select continuous predictors used by PCA in a 3-

class FMM model which showed high performance. It is observed that for at least certain features,

the assignment of records to classes appears to organize data by what features are observed. It is

presumed that Class 1 data, which shows higher missingness rates for the select predictors, will

have a PCA model that has the opportunity to emphasize other features.

7 PCA Sparsity denotes the average number of nonzero entries per estimated loading matrix column out of the
number of continuous features in the data, p=35+50
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Table 4.14: Class-Conditional Non-missing Rates of Select Predictors in Sample FMM Model

Predictor

Overall

Non-missing

Rate

Class 1

Non-missing

Rate

Class 2

Non-missing

Rate

Class 3

Non-missing

Rate

wheels 36.3% 1.4% 99.8% 97.1%

seatrows 31.7% 0.0% 95.1% 81.6%

seats 34.0% 0.9% 92.4% 92.9%

wheelbaseshort 41.8% 14.0% 96.9% 86.1%

wheelsizerear 28.4% 0.8% 81.7% 73.5%

wheelsizefront 28.5% 0.9% 81.7% 73.5%

transmissionspeeds 20.5% 4.4% 44.4% 53.7%
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Figure 4.5: FMM Test R2 on Automotive Data
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Figure 4.6: Test R2 of All Models at Best Settings on Automotive Data
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4.10 SELF Ablation Study

In this section we examine the motivation and performance impact of various sparse PCA

enhancements tested with the SELF model. The following discussion concerns the estimation of

matrices Γ and A in the service of modeling data matrix X based on the SELF Objective (4.5).

4.10.1 SELF with Imputation

We first show a formulation of SELF using the imputation method of 4.3. In this approach,

missing entries of a row are estimated as w. Applying a placement function f(w) produces a vector

of the same size as a data row. f(w) takes value 0 where row x is observed and has an imputed

estimate in positions corresponding to x’s missing values. This suggests loss l = ∥x0 + f(w)− x̂∥22
where x̂ = γA′. Holding A, we optimize over Γ and w.

For individual row x of X, consider corresponding latent estimate γ and imputed value vector

w.

Proposition 12. The row loss function

l = ∥x0 + f(w)− γA′∥22 (4.9)

with data row x and corresponding missingness placement matrix P can be minimized w.r.t (γ,w)

by

[
γ w

]
=

[
x0A x0P′

]A′A A′P′

−PA PP′


−1

. (4.10)

Proof.

l = ∥x0 + f(w)− γA′∥22

= (x0 + f(w)− γA′)(x0 + f(w)− γA′)′

= x0x0′ + 2x0f(w)′ − 2x0Aγ ′ − 2f(w)Aγ ′ + f(w)f(w)′ + γA′Aγ ′

∂l

∂γ
= 0 =⇒ γA′A− f(w)A = x0A =⇒ γA′A−wPA = x0A

∂l

∂w
= 0 =⇒ γA′P′ −wPP′ = x0P′,

where P is the appropriate placement matrix for x such that f(x) = wP, as constructed in

Algorithm 8.
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γ and w then form a system:

γ(A′A) +w(−PA) = x0A

γ(A′P′) +w(PP′) = x0P′.

Or in block matrix notation,

[
γ w

]A′A A′P′

−PA PP′

 =

[
x0A x0P′

]

yielding [
γ w

]
=

[
x0A x0P′

]A′A A′P′

−PA PP′


−1

. (4.11)

We can thus estimate the latent representation γ and missing entries w simultaneously for each

row of X.

With estimated imputed values for a data matrix, and estimated Γ, A can be estimated per

Proposition 9.

Per Remark 5, we add a ridge parameter to alleviate matrix inversion instability:

[
γ̂ ŵ

]
=

[
x0A x0P′

]
(

A′A A′P′

−PA PP′

+ λrI)
−1. (4.12)

The method is presented in Algorithm 15.
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Algorithm 15 Sparse Estimation of Latent Factors with Imputation

Input:

• X , n-by-p data matrix

• k, desired number of sparse principal components

• epochs, number of epochs

• λr, ridge parameter to stabilize matrix inversion

• me, FSA annealing schedule specifying the number of nonzero entries of A kept at epoch e

Output: Estimated latent factors Γ of X and estimated loading matrix A

1: Set X = X 0

2: Initialize Γ as the first k principal components and A as the first k loading
vectors from PCA on X

3: for e = 1 to epochs do

4: for each row x of X do

5: if data row is fully-observed then

6: Update corresponding row of Γ with γ = x′A(A′A)−1

7: else if data row has missingness then

8: Set P as appropriate placement matrix for row x as in Algorithm 8

9:

[
γ w

]
=

[
x0A x0P′

]
(

A′A A′P′

−PA PP′

+ λrI)
−1

10: Update corresponding row of Γ with γ

11: Update corresponding row of X with x0 +wP

12: end if

13: end for

14: A = UV′ with X′Γ = UDV′ by SVD

15: Apply FSA to A

16: me is the desired number of nonzero elements of A for current epoch

17: Retain the top me entries of A with the highest absolute values, setting the
remaining entries to 0

18: end for

19: ΓA′ is the low-rank estimate of X .

4.10.2 Simulations on SELF Variants

Here we report performance of components of the SELF model using the simulations setup of

4.7. These simulations use sparse PCA models in a Principal Component Regression setting. Thus,

we score model performance based on accuracy of feature selection and accuracy of regression.

Variations of SELF models are abbreviated:

• S-I: SELF with Imputation (4.10.1)
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• S-IA: SELF with Imputation and A condition filter (4.5.1)

• S-NA: SELF with Non-imputation (4.5.1) and A condition filter

• S-NAW: SELF with Non-imputation, A condition filter, and weighted estimation (4.5.2)

• S-NAWFS: SELF with Non-imputation, A condition filter, weighted estimation, and weighted

feature selection (4.5.3)

Table 4.15: Number of Features Correctly Selected by SELF PCR Models with varying n, q

n q S-I S-IA S-NA S-NAW S-NAWFS

100 10 8.9 8.8 8.3 9.2 9.3

100 50 7.8 8.0 7.5 8.6 8.9

100 100 7.6 7.5 7.2 7.7 8.3

500 10 9.4 9.4 8.9 9.8 9.8

500 50 8.6 8.5 8.7 9.7 9.7

500 100 8.4 8.4 8.6 9.6 9.7

1,000 10 9.5 9.6 9.0 9.9 9.9

1,000 50 8.8 8.5 9.0 9.8 9.8

1,000 100 8.5 8.6 8.9 9.8 9.8

2,000 10 9.6 9.6 9.1 9.9 9.9

2,000 50 8.9 8.7 9.1 9.8 9.9

2,000 100 8.3 8.3 9.1 9.8 9.8

5,000 10 9.6 9.6 9.1 9.9 9.9

5,000 50 8.8 8.8 9.2 9.9 9.9

5,000 100 8.6 8.4 9.2 9.9 9.9

10,000 10 9.7 9.8 9.2 10.0 9.9

10,000 50 8.9 9.0 9.2 10.0 9.9

10,000 100 8.2 8.2 9.2 10.0 9.9
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Table 4.16: Test R2 of SELF PCR Models with varying n, q

n q PCA S-I S-IA S-NA S-NAW S-NAWFS

100 0 0.59 0.20 0.22 0.86 0.88 0.88

100 10 0.58 0.21 0.21 0.68 0.81 0.83

100 50 0.56 0.15 0.16 0.62 0.76 0.80

100 100 0.54 0.13 0.12 0.61 0.72 0.77

500 0 0.61 0.30 0.27 0.86 0.89 0.89

500 10 0.61 0.28 0.26 0.73 0.86 0.87

500 50 0.61 0.26 0.27 0.71 0.85 0.86

500 100 0.60 0.26 0.25 0.70 0.84 0.86

1,000 0 0.62 0.32 0.29 0.86 0.89 0.89

1,000 10 0.61 0.27 0.29 0.72 0.86 0.88

1,000 50 0.61 0.29 0.27 0.72 0.85 0.87

1,000 100 0.61 0.30 0.28 0.72 0.85 0.87

2,000 0 0.62 0.31 0.30 0.86 0.89 0.89

2,000 10 0.62 0.29 0.31 0.73 0.87 0.88

2,000 50 0.62 0.29 0.28 0.73 0.86 0.87

2,000 100 0.62 0.29 0.28 0.73 0.86 0.87

5,000 0 0.62 0.31 0.31 0.86 0.89 0.89

5,000 10 0.62 0.30 0.29 0.73 0.88 0.88

5,000 50 0.62 0.30 0.29 0.73 0.87 0.88

5,000 100 0.62 0.30 0.31 0.73 0.87 0.88

10,000 0 0.62 0.31 0.32 0.86 0.89 0.89

10,000 10 0.62 0.31 0.30 0.73 0.88 0.89

10,000 50 0.62 0.31 0.35 0.73 0.87 0.88

10,000 100 0.62 0.30 0.29 0.73 0.87 0.88
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4.10.3 Postsecondary Institutions Characteristics

Here we use the PCR setup of (4.8) to compare the performance of SELF variants combined

with OLS. As in that section, the data is split into 70% training and 30% test data. SELF models

are trained at rank 2. Sparsity is imposed on loading matrices at a rate of 30 nonsparse entries per

loading matrix column on average. R2 is reported over 100 train/test splits.

SELF variants are abbreviated:

• S-I: SELF with Imputation (4.10.1)

• S-IA: SELF with Imputation and A condition filter (4.5.1)

• S-NA: SELF with Non-imputation (4.5.1) and A condition filter

• S-NAW: SELF with Non-imputation, A condition filter, and weighted estimation (4.5.2)

• S-NAWFS: SELF with Non-imputation, A condition filter, weighted estimation, and weighted

feature selection (4.5.3)

Result show that imputation models struggle with this data, with a large jump in accuracy

coming from the non-imputation strategy. Beyond that, weights and weighted feature selection

offer modest performance gains.

Table 4.17: SELF Variant Performance on Postsecondary Institutions Data

PCR Model Training R2 Test R2

S-I 0.101 0.092

S-IA 0.102 0.092

S-NA 0.591 0.573

S-NAW 0.593 0.576

S-NAWFS 0.602 0.585

4.10.4 Automotive Dataset

We examine the performance of SELF variants in the factor mixture setup of (4.9). Following

the prior setup, a number of LCA models are applied to binary indicators from that data. Class-

conditional SELF models are trained on continuous features of the resulting clusters of these LCA
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models, with low-rank representations feeding into final OLS models predicting the target outcome.

Test R2 is observed on the target outcome, the log asking price of vehicles.

LCA models are trained at 5 latent classes, with and without feature selection at ω = 25. SELF

variants are trained at rank 3 and a sparsity level yielding an average of 20 nonzero entries per

loading matrix column. These are the settings which showed the best results for the full SELF

model in Table 4.13; here we apply those settings to all SELF variants. As before, each variant is

paired with the LCA setup which produced the best overall results. Average test R2 is reported

over 100 train/test splits. SELF variant names are abbreviated as in prior ablation sections.

As previously observed, the major performance difference comes from the using the non-

imputation strategy over imputation. The application of weights in estimation appears to help,

while weighted feature selection show some performance increases except for the lowest case of n.

Table 4.18: SELF Variant Performance on Automotive Data

n S-I S-IA S-NA S-NAW S-NAWFS

500 0.162 0.171 0.398 0.419 0.407

1,000 0.186 0.185 0.432 0.445 0.446

2,000 0.196 0.193 0.458 0.471 0.476

3,000 0.188 0.203 0.465 0.474 0.480

4,000 0.196 0.200 0.462 0.477 0.482

5,000 0.215 0.212 0.468 0.473 0.477

108



Figure 4.7: Number of Features Correctly Selected by SELF PCR Models with varying n, q
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Figure 4.8: Test R2 of SELF PCR Models with varying n, q
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CHAPTER 5

CONCLUSION

Here we will summarize the contributions and findings of this work.

5.1 Feature Selection for Latent Class Analysis

We began with a review of the brief history of feature selection for unsupervised clustering

of categorical data, noting the absence of methods examined in high-dimensional settings. We

introduce LCA-FSA, an estimation framework where feature relevance metrics can be used to

perform feature selection in a hybrid nature alongside model estimation rather than as a pre-

processing or post-processing step. The performance of a number of feature relevance measures is

tested, including some familiar approaches like mutual information, a measure using the chi-square

statistic for association, and mRMR. We also examine a recent contribution, the diff-criterion,

originally introduced by Javed et al. (2010) as a fast screening step for feature selection in binary

classification problems. Finally, we examine a likelihood-based approach for measuring feature

importance, and an existing forward selection procedure for feature selection in LCA.

5.1.1 LCA Simulations

These LCA feature selection methods were tested against simulated data, allowing us to compare

their performance in terms of feature selection and latent class recovery. Results show that in

the simplest setting (2-class, 10 noisy features), all methods are capable of recovering relevant

features to some extent. Further, all models- including LCA with no feature selection- are able to

produce satisfactory recovery of latent classes in this setting, except mRMR. As problem complexity

increases with a higher number of latent classes and more noisy features, the forward selection

procedure takes a major hit in feature selection and clustering accuracy. This merely confirms what

is already stated in the literature: stepwise methods are not ideal for high-dimensional settings.

However, increasing problem complexity affects the accuracy of all models, and we observe that

some approaches are more robust to this complexity than others. After forward selection, models

using mRMR, mutual information, and LCA without feature selection suffer the largest relative

performance decreases.
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Not all simulated settings showed a clear feature selection approach dominating others in per-

formance. However the diff-criterion was always in the group of top performers, and in other cases

was the identifiable top performer. We find this to be a satisfying result due to diff-criterion’s

intuitive and computationally simple approach.

5.1.2 LCA Experiments

LCA-FSA methods were tested on real data, which sometimes showed a different story than

simulations.

An unsupervised problem attempting to recover school types (elementary, middle, or high

school) used p=2,586 binary features indicating what classes had enrollment at each of p=2,909

Florida schools. Intuition suggests that the data should have a natural class-conditional distri-

bution, leading to the unsurprising result that LCA-FSA models are able to recover underlying

classes with high accuracy. However, mRMR is shown to be the standout model- the reverse of

our findings in simulations, with chi-square as a close second. Diff-criterion, mutual information,

and the likelihood method show an apparent critical point, where model performance at ω ≤ 30 is

considerably worse than ω ≥ 50; this weakness is not shared by mRMR and chi-square. Note that

the ω = 50 level of feature selection means a selection of 50 features to use out of the original 2,586.

At that level of ω and higher, LCA-FSA with any feature relevance metric is seen to outperform

LCA without feature selection.

Another unsupervised 3-class experiment is tested with bag of words text data having p=27,332

and n=1,903, though the sample size available for model training is less due to splitting data

into training and testing sets. In this setting, diff-criterion returns as the dominant model. A

striking finding shows that any amount of moderate-to-extreme feature selection (50 ≤ ω ≤ 5, 000)

outperforms LCA without feature selection, with the aggressive ω = 500 setting showing the best

results for all feature relevance metrics. At this setting, diff-criterion showed an average test

Adjusted Rand Index of .76, compared to nonsparse LCA’s .31.

Overall it is shown that LCA-FSA is not only a viable technique for training sparse models,

but can be crucial to the accuracy of latent class models on high-dimensional data. Further,

the parsimony enabled by feature selection models in these two experimental settings permitted

readily-interpretable model parameters, which would otherwise be a challenge given such high p.

It is observed that the choice of best feature selection metric may be dataset-dependent, and that

it is important to test such models at varying levels of ω.
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5.2 Sparse PCA

We also examined sparse PCA models, including the well-known SPCA (Zou et al., 2006), the

recently introduced JSPCA (Yi et al., 2017), and introduced some new approaches, with the goal

of handling missing data. The ASPCA model is developed to follow SPCA but to use FSA for

to impose sparsity rather than the usual elastic net. GSPCA applies FSA to its loading matrix

elementwise, rather than by the usual sequential training approach for sparse PCA methods. The

SELF model deviates from the common setup inspired by SPCA with X ≈ XBA′, and instead

directly estimates latent data representation Γ and its corresponding loading matrix, withX ≈ ΓA′,

more in the style of SRRR-SPCA (2.6).

We adapt the above sparse PCA models to handle missing data. Two missingness strategies

are developed, tested and compared: using low-rank structure to impute data allowing estimation

to continue on full data, and a relaxed estimation approach that mimics SVD but avoids missing

values. The former approach is common to the domain of matrix completion problems, while the

general tactic of modifying estimation to circumvent missing entries is also a common approach.

A number of additional sparse PCA modeling tactics are developed and examined. We modify

PCA and SELF to incorporate optional feature weights with the goal of downweighting features

which the model estimates to have a greater noise component. An additional missingness mitigation

strategy is tested with SELF, where rows of data are excluded from calculations if their missingness

pattern is shown to yield an unstable estimation problem.

5.2.1 Sparse PCA Simulations

Data is simulated to test sparse PCA models in a PCR setting with missingness (50%) and

irrelevant features. In these simulations, SELF with non-imputation is shown to perform well.

Other models show worse performance, decreasing in average test R2 with increasing n. PCA and

WPCA, which are tested with 0-imputation as their missingness strategy, are immune to this effect.

Therefore, it is suspected that the imputation strategy may be prone to instability, even with a

basic attempt at mitigating these issues with a ridge parameter.

The imputation and non-imputation methods are more directly compared in an ablation study

where variants of the SELF model and its optional components are individually tested. In our PCR

simulations setup, it is readily observed that SELF with the imputation strategy is vastly outper-

formed by 0-imputed nonsparse PCA in average test R2. SELF estimated with non-imputation,

113



however, outperforms PCA. The incorporation of weights in non-imputed SELF estimation further

increases average predictive accuracy, particularly in the case of data simulated with noisy features.

It is concluded that a dominant factor in our simulation results is the missingness strategy. In our

initial testing, imputation by low-rank completion was found to be effective at lower missingness

rates. The accuracy of the imputation strategy is also seen in the low-n setting in Figure 4.2.

The stability of naive 0-imputed PCA results relative to imputation methods in our simulations

demonstrates that in certain missingness settings, imputing values by estimation from surrounding

data values may be more of a hindrance than an enhancement.

There are undoubtedly robustification approaches that can be applied to our imputation strat-

egy to resolve the issues we observed. However, we conclude our examination of missingness strate-

gies by highlighting non-imputation, as implemented in the SELF model, as a viable alternative.

Further, it is observed that the incorporation of weights, as in SELF and WPCA, can improve

unsupervised dimension reduction in the face of irrelevant features.

5.2.2 Sparse PCA Experiments

A regression dataset is compiled which seeks to predict the endowments of institutions of higher

education. The predictors include p = 315 continuous measures of various institutional character-

istics. Because the predictors feature many overlapping measures, it is hypothesized that they

can be accurately estimated by dimension reduction; because there is missingness (44%) due to

inconsistent reporting across schools, it is further hypothesized that dimension reduction may be

necessary to accurately model the data. Finally, due to the predictors capturing a vast array of

institutional traits, it is presumed that sparse PCA will enable us to ignore the majority of our

predictors.

Our suspicions are confirmed in average test R2 results, showing that 0-imputed OLS (training

R2 = .79, test R2 = .38) is readily outperformed by 0-imputed PCR using PCA (training R2 = .56,

test R2 = .55). Further, PCR using sparse PCA methods SPCA, ASPCA, GSPCA, and SELF

show higher performance, with test R2 in the range of .58-.59.

The Large Car Dataset presents us with the task of predicting the listed asking price of a car

based on its recorded characteristics. The data features similar characteristics to the postsecondary

institution data: continuous predictors covering a variety of unrelated traits (including our addition

of noisy features), missingness, and our hypothesis of a low-rank structure. However, due to different

vehicle types, the data allows us to test factor mixture models (Muthén, 2006) where LCA with
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an unknown number of classes is to be paired with class-conditional PCA with an unknown rank.

The method suggested by Muthén follows a sequential examination of each combination of LCA

model and PCA model. In our case, we combine LCA models of varying number of latent classes

and feature selection approaches with PCR models with varying ranks, sparsity, and missingness

approaches.

The results, reported as average test R2 values, first validate the FMM setup by showing that

class-conditional PCR models working alongside LCA easily outperform PCR or OLS without LCA.

Further, at varying choices of number of LCA classes and number of sparse PCA model ranks, all

LCA models paired with sparse PCA models outperform LCA paired with PCA, with the sole

exception of JSPCA. The FMM model using 0-imputed weighted PCA, though not sparse, also

outperforms the FMM with ordinary 0-imputed PCA. For the majority of FMM settings, SELF is

the dominant performer.

Similar to the LCA experiment setting, the feature selection employed by FSA-LCA models

(ω = 25) enabled easier interpretation of parameter estimates relative to nonsparse LCA whose

parameters would reflect all of the 113 binary features in the original data.

5.3 Closing Remarks

Our examination of latent class analysis and principal component analysis covers some territory

that has seen much attention, such as sparse estimation of PCA, as well as less-examined topics, such

as unsupervised feature selection for binary clustering. Analysis of continuous data by PCA was

exacerbated by the presence of irrelevant features, missingness, in some cases high-dimensionality,

and in one case an underlying latent class structure. LCA data also featured irrelevant features and

high dimensionality. For each category of data challenges faced, we presented multiple competing

strategies. These strategies included known methods as well as new contributions.

We hope the outcomes of our analysis are found to be interesting and useful. As we observe

the rapid and exciting development of powerful AI models with unprecedented size and complexity,

classical methods like PCA and LCA continue to be cornerstones of quantitative methodology for

many fields of study. Model interpretability is particularly essential to many scientific settings,

where analysis results are evaluated in the context of existing theory and domain knowledge. Our

aspiration in this work is to support the incorporation of modern techniques into statistical methods

that serve as the traditional tools of analysis for many practitioners.
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Řeh̊uřek, R. and Sojka, P. (2010). Software Framework for Topic Modelling with Large Corpora.
In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pages
45–50, Valletta, Malta. ELRA. http://is.muni.cz/publication/884893/en. 41

Riyanto, A., Kuswanto, H., and Prastyo, D. D. (2022). Mutual information-based variable selection
on latent class cluster analysis. Symmetry, 14(5). 24

Robitzsch, A. (2020). Regularized latent class analysis for polytomous item responses: An appli-
cation to spm-ls data. Journal of Intelligence, 8(3):30. 15

Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2016). mclust 5: clustering, classification
and density estimation using Gaussian finite mixture models. The R Journal, 8(1):289–317.
21

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423. 16

She, Y. (2017). Selective factor extraction in high dimensions. Biometrika, 104(1):97–110. 11, 50,
71

Shen, D., Shen, H., and Marron, J. S. (2013). Consistency of sparse PCA in high dimension, low
sample size contexts. Journal of Multivariate Analysis, 115. 2

Silvestre, C., Cardoso, M., and Figueiredo, M. (2022). An mml embedded approach for estimating
the number of clusters. In 17th Conference of the IFCS 2022–International Federation of
Classification Societies: Classification and Data Science in the Digital Age. CLAD-Associação
Portuguesa de Classificação e Análise de Dados. 25

Silvestre, C., Cardoso, M. G., and Figueiredo, M. (2015). Feature selection for clustering categorical
data with an embedded modelling approach. Expert systems, 32(3):444–453. 25
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