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ABSTRACT

This research provides a thorough analysis of feature selection methods in machine learning. The

study addresses challenges associated with high-dimensional data and aims to alleviate the curse

of dimensionality. The research is conducted on enhancing model performance through feature

selection techniques. It systematically reviews existing feature selection approaches, including both

supervised and unsupervised methods. New strategies are proposed to improve robustness and

create sparsity in the feature selection process. Additionally, the research emphasizes the critical

evaluation of these methods within a multi-class classification framework, utilizing both simulated

and real-world datasets. Key contributions of the study include the development of a signal-to-

noise ratio (SNR)-based feature selection technique, the theoretical investigation of feature recovery

guarantees, the proposal of robust outlier handling methods, the integration of per-class feature

selection for multi-class classification, and the execution of comprehensive experiments to confirm

the effectiveness and robustness of the proposed methods.
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CHAPTER 1

INTRODUCTION

Feature selection involves identifying a relevant subset of features from a larger set to address the

challenge of dealing with too many dimensions in data. Features are individual, measurable prop-

erties of what is being studied. Machine learning algorithms utilize these features for classification,

regression, and other purposes. As machine learning has advanced, the number of features used

has also grown.

Machine learning methods are expected to perform better when they have more information.

However, dealing with high-dimensional data poses challenges known as the curse of dimensionality.

As the number of features increases, issues such as training time, algorithmic complexity, storage

space, and noise in datasets can worsen. Noise can be referred to as the set of variables that do not

influence the target variable and may introduce bias in the prediction, or as the set of dependent

variables that provide no additional information [24, 97]. The performance of a classifier depends on

the interrelationship between the number of samples and the number of features used. Interestingly,

adding more features to the dataset can improve accuracy while the signal dominates the noise.

Beyond that point, the model accuracy reduces. This phenomenon is called peaking [56].

Therefore, dimensionality reduction techniques have become popular. They involve reducing the

number of features in a model, potentially through transformation methods. Feature selection is a

type of dimensionality reduction that removes features from the model’s inputs. The key distinction

is that dimensionality reduction may require all data sources to transform and reduce features,

whereas feature selection avoids irrelevant data collection while still providing good predictive

results. It has several advantages, as suggested by [13], such as:

• Increase the speed and scalability of the model, which are desirable traits for large-scale

computation.

• Removes noise and nuisance dimensions from the data to recover genuine signals with high

probability.

Several challenges arise in constructing feature selection algorithms for big data, as noted in

[108] and [13]. Some of them are the following:
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• The aim should be to select a smaller set of features while maintaining model accuracy,

ensuring that the accuracy of the chosen subset does not drop significantly compared to the

model trained on all features.

• The class distribution obtained for the selected features should closely resemble the original

class distribution, considering all features.

• Algorithms with simple implementations are preferred to avoid overfitting and ad-hoc designs.

• Consideration of nonlinear patterns of the features in the algorithm is also desirable.

Feature selection is integral to both supervised and unsupervised learning paradigms. In super-

vised learning, the primary aim is to differentiate between data points belonging to distinct classes

(classification) or to provide accurate predictions of regression targets. Conversely, unsupervised

feature selection addresses challenges in clustering. Instead of relying on labels, it seeks alterna-

tive metrics to measure the significance of available features. Feature selection can be achieved

through various approaches: they may operate independently of learning algorithms (filter meth-

ods), depend on learning algorithms iteratively to improve the quality of selected features (wrapper

methods), or integrate the feature selection phase into supervised/unsupervised learning algorithms

(embedded methods). Ultimately, in supervised setups, the trained classifier or regression model

employs the selected features to predict class labels or regression targets for test data points. In

contrast, in unsupervised scenarios, it provides the cluster structure of all data samples based on

the selected features using a standard clustering algorithm [40, 74].

The usual approach is to optimize a margin-maximizing loss function, which scales as O(C) with

the number of classes C. Our work emphasizes individual class modeling, independently leveraging

a generative model and feature selection for each class. This class-specific modeling sets our method

apart from existing feature selection techniques for the following reasons:

• It captures the unique characteristics and distribution by tailoring the model to each class.

• The model for each class is wrapped tightly around the observations of that class, which

allows the introduction of new classes without retraining the existing class models and scales

as O(1).

• Additionally, preserving learned parameters for each class mitigates the risk of catastrophic

forgetting when new data is introduced.

In our first step, we propose using the signal-to-noise ratio (SNR) as a feature selection criterion,

where the signal represents relevant information that contributes to accurate predictions, and the

2



noise represents irrelevant data. SNR quantifies the strength of the signal relative to noise, with

higher SNR features being more effective at distinguishing classes. Eliminating low SNR features

enhances computational efficiency and model interpretability. We employ low rank generative

models for individual class modeling and SNR estimation.

Recently, low-rank models have attracted considerable attention for feature selection, owing to

their capacity to capture underlying latent structures and disentangle informative signals from noise.

For instance, low-rank learning methods have been proposed for multi-label feature selection in [72],

demonstrating that low-dimensional latent representations can enhance discriminative performance.

Previously, factor analysis—a classical generative model—was applied to feature selection in the

context of Alzheimer’s disease diagnosis [96], where factor loadings identified relevant brain regions.

Collectively, these studies underscore the potential of low-rank and latent factor models for robust

feature extraction. However, they often lack formal non-asymptotic theoretical guarantees. This

thesis also takes an initial step toward analyzing the asymptotic properties and finite-sample bounds

for the signal variance, noise variance, and SNR estimation error, which are crucial for guaranteeing

true feature recovery. True feature recovery guarantees ensure that as we receive infinitely many

observations, the estimated SNRs should converge to the true counterparts.

In the next step, we also experiment with reduced-rank regression methods with sparsity con-

straints to perform feature selection. We also propose a novel robust loss-based rank optimiza-

tion further to reduce the impact of detrimental outliers in the dataset. In the simulation setup,

we have demonstrated how robust loss-based methods can effectively handle outliers when tradi-

tional l2-norm-based approaches completely break down. We have also employed these methods

for class-specific feature selection and conducted a performance comparison on real datasets with

the previously mentioned low-rank generative models.

In our next step, we apply the selected set of features within a multi-class classification frame-

work. Within this framework, the feature selection process is carried out independently for each

class. Subsequently, the selected features are used to compute the Bayesian probability for each

existing class for a new observation. The classification of the latest observation is then determined

by assigning it to the class with the highest posterior probability. This method is immune to catas-

trophic forgetting. Therefore, we have also employed our class-specific feature selection method

for class incremental learning using real data sets and have performed a comparative analysis with

contemporary techniques.
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In our experiments, we analyzed the feature selection abilities and classification accuracy of

these techniques using a simulated dataset. Additionally, we have evaluated their classification

performance across different computer vision datasets, including CIFAR-10 [65] and CIFAR-100

[66], each with 60,000 training images and 10 and 100 categories, respectively, and ImageNet-1k

[94] with 1.2 million training images and 1000 classes.

This dissertation presents a comprehensive investigation into feature selection, culminating in

a novel framework that is robust, scalable, and theoretically sound. The research systematically

reviews existing paradigms while introducing new strategies to advance the state of the art. The

key contributions of this work are summarized as follows:

• A Novel SNR-Based Feature Selection Framework: It introduces a feature selection

method based on the Signal-to-Noise Ratio (SNR) criterion for a class of low-rank generative

models, including Probabilistic PCA (PPCA) [110], Latent Factor Analysis (LFA) [35], ELF

[59], and Heteroskedastic PCA [122].

• Rigorous Theoretical Guarantees: It provides a detailed asymptotic and non-asymptotic

analysis for the proposed feature selection methods. This work establishes theoretical guar-

antees for true feature recovery under certain assumptions, providing a principled foundation

that moves beyond heuristic approaches.

• A Robust Method for Handling Outliers: Recognizing that real-world datasets are often

contaminated with outliers, a robust feature selection method is developed. This approach

incorporates a sparsity constraint and robust loss functions to effectively select influential

features even in the presence of data that could otherwise degrade model performance.

• A Scalable Framework for Multi-Class and Incremental Learning: It shows how to

apply the proposed feature selection method to multi-class classification, resulting in a class-

incremental learning method that is structurally immune to catastrophic forgetting. This

allows for the seamless addition of new classes without retraining on the entire dataset.

• Comprehensive Experimental Validation: The efficacy and robustness of the proposed

methods are rigorously validated through comprehensive experiments on both simulated data

and large-scale, real-world computer vision benchmarks, including CIFAR-10 [65], CIFAR-100

[66], and ImageNet-1k [94].

• Comparative Performance Analysis: The proposed method is compared against stan-

dard linear model-based and recent state-of-the-art feature selection methods. The results

demonstrate that our approach significantly outperforms classic methods by a wide mar-

gin and shows competitive performance in class-incremental learning setups, validating its

practical applicability.
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CHAPTER 2

SIGNAL TO NOISE RATIO (SNR) FOR FEATURE

SELECTION

This chapter introduces a feature selection technique that uses SNR as the criterion. This method

can be applied to various low-rank generative models, such as Probabilistic PCA and Latent Factor

Analysis. First, we describe these methods and their parameter estimation processes. We then use

these estimates to calculate the SNRs.

2.1 Related Work

2.1.1 PCA & LFA-Based and Hybrid Feature Selection

While many techniques leverage Principal Component Analysis (PCA) for dimensionality re-

duction, these approaches to feature selection differ significantly from the proposed SNR-based

method. Boutsidis et al. [18] focused on selecting a representative subset of features that preserves

the variance captured by top eigenfeatures. Our SNR-based method, however, evaluates each fea-

ture individually for its discriminatory power rather than selecting a collective subset to represent

the whole. The work by Niu and Qiu [82] on weighted PCA is conceptually extended by the SNR

approach, which formalizes the weighting by using the inverse of the noise covariance to distinguish

meaningful signals from noise systematically.

Several hybrid methods use PCA as a preliminary step before applying other selection tech-

niques. For instance, [112] employed a two-stage method combining Information Gain and a Genetic

Algorithm with PCA. Similarly, Ahmad [4], Alomari et al. [5], and Pushpalatha et al. [85] used

evolutionary algorithms such as the GA, Grey Wolf Optimizer, and ReliefF to refine a PCA-reduced

feature set. These multi-step approaches separate dimensionality reduction from feature selection,

whereas our SNR-based method provides an integrated solution in which the selection criterion is

inherent to the model.

Supervised PCA variants also differ in their core mechanism. Sharifzadeh et al. [99] and Rahmat

et al. [88] incorporate supervision by identifying features that are highly dependent on a response

variable. In contrast, our SNR-based method models each class independently and selects features
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based on their ability to represent the unique characteristics of that class, not just their correlation

with an output variable.

2.1.2 Methods Based on Latent Factor Models

Feature selection using latent factor models has also seen diverse approaches. The Sparse

Estimation of Latent Factors (SELF) framework proposed by Aziz [8] achieves feature selection

by imposing sparsity directly on the model’s transformation matrix W. The SNR-based method

diverges from this by removing such structural constraints and instead using the signal-to-noise

ratio as a post-hoc criterion to rank features based on the learned model.

The work of Abbas and Sivaswamy [1] utilized latent factors to extract influential low-dimensional

features from medical images, followed by classification using Mahalanobis distance. This consti-

tutes a feature-extraction approach, creating new features rather than a feature-selection method

that ranks and chooses from the original set of features, which is the focus of the SNR method.

Similarly, Townes et al. [111] proposed a latent factor model for single-cell RNA-sequencing data

that ranks genes based on deviance, a metric tailored to count data. Our SNR-based method is

more general, defining the signal and noise based on the variance explained by the generative model,

making it applicable across various data types.

In conclusion, while PCA- and LFA-based methods often rely on hybrid frameworks or structural

constraints for feature selection, the SNR-based approach offers a distinct, unified methodology.

It evaluates features on a class-by-class basis using an intrinsic, theoretically grounded measure of

their signal content.

2.1.3 Signal-to-Noise Ratio (SNR)–Based Feature Selection

The Signal-to-Noise Ratio (SNR) is one of the simplest and most interpretable measures for

identifying discriminative features. It quantifies how strongly a feature separates classes relative to

within-class variation, making it an effective filter criterion in high-dimensional data.

The use of SNR as a feature selection criterion dates back to early work in neural networks.

[15] introduced an SNR-based saliency measure to identify and prune noisy inputs during training

by comparing each input’s contribution to that of a random noise feature. This approach proved

effective for dimensionality reduction on benchmark datasets, outperforming standard PCA-based

methods. Shortly after, the now-classic SNR formulation, SNR = (µ1−µ2)/(σ1+σ2), was employed
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by [48] as a screening criterion for selecting features in binary classification tasks with probabilistic

neural networks, where (µi, σi) represent the mean and standard deviation of a feature for class i.

The utility of SNR became particularly evident in bioinformatics, where microarray and gene

expression data are characterized by high dimensionality and significant noise. To improve feature

ranking, [79] and later [95] proposed hybrid clustering frameworks where SNR was used to select

the most informative genes within each cluster, effectively reducing redundancy and enhancing

classification accuracy.

In recent years, SNR-based methods have been hybridized with other machine learning tech-

niques to enhance their robustness and applicability across diverse domains. In engineering, [41]

used a PCA-based signal subspace approach to improve the SNR of noisy vibration signals for

early fault detection in ball bearings. For wireless positioning systems, [83] developed SNR-driven

feature reduction techniques to minimize model complexity while maintaining predictive power in

low-SNR environments.

In genomics, Weighted SNR (WSNR) methods have been developed, such as the one by [42],

which integrates SNR scores with Support Vector Machine (SVM) weights to emphasize the most

discriminative genes. To mitigate the influence of outliers in skewed datasets, [53] combined SNR

scores with the Mood median test, creating a robust ”Md-score” that balances class separation and

statistical significance. Beyond classification, SNR has been adapted for nonlinear regression in

physical systems. [16] introduced an ANN-SNR method with confidence interval stopping rules to

predict concrete shear strength, achieving high accuracy with a significantly reduced feature set.

The existing body of work demonstrates that SNR is a flexible and interpretable feature selection

strategy. However, these methods are often heuristic, lack theoretical guarantees, and typically use

all available data to compute a single SNR value for each feature. Our proposed approach introduces

several key novelties that address these limitations.

First, it defines a different SNR criterion based on the parameters of a generative latent factor

model, where the signal is captured by the variance explained by the latent factors, and the noise is

the unexplained variance. Second, it proposes a class-based feature selection paradigm in which the

SNR for each feature is computed using only the data available for that class. This class-specific

modeling makes the approach highly scalable, naturally suited for class-incremental learning, and

capable of capturing the unique characteristics of each class.

Finally —and most significantly —our work takes a firm step toward establishing a rigorous

theoretical foundation. We analyze the asymptotic properties of the parameter estimates used
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to compute the SNRs and provide a path to deriving non-asymptotic probability bounds for the

estimated signal, noise, and SNR values. This provides a theoretical basis for SNR-based feature

selection in latent factor models, moving the field beyond heuristic applications toward a more

principled, scalable, and theoretically grounded methodology.

2.2 Low-rank Generative Models

In this section, we are going to describe the four different methods based on low-rank generative

models that are included in this study, namely Probabilistic PCA (PPCA) [110], Latent Factor

Analysis (LFA)[35], Heteroskedastic PCA (HeteroPCA) [122] and Estimation of Latent Factors

(ELF). We have introduced the last method in [59], which is a nonparametric version of LFA.

PPCA, LFA, and our newly introduced method, ELF, share the same model structure but

have different assumptions associated with their model parameters. The model aims to find a

relationship between the observed x ∈ Rd and a hidden set of variables (latent variables) γ ∈ Rr

with r << d and assumes the latent factors and noise variables are independent of each other. It

is as follows:

x = µ+ Wγ + ϵ, with E(ϵ) = 0 and var(ϵ) = Ψ. (2.1)

The PPCA and LFA methods assume that γ
i.i.d∼ N (0, Ir) and that the noise variable ϵ

i.i.d∼

N (0,Ψ) . It can be easily verified that for these two methods:

x|γ ∼ N (Wγ + µ,Ψ), and by integration, (2.2)

x ∼ N (µ,Σ),Σ = WWT + Ψ. (2.3)

Conversely, ELF does not make distributional assumptions about the parameters it estimates.

ELF assumes Γ = (γ1,γ2, · · · ,γn)T to be semi-orthogonal (ΓTΓ = Ir). LFA and ELF, while

sharing similar goals with PPCA, assume distinct noise variances across dimensions.

Ψ =

{
σ2Id for PPCA,

diag(σ21, σ
2
2, · · · , σ2d) otherwise.

(2.4)

µ has been treated as a constant vector in the model (2.1) and estimated as: µML = 1
n

∑n
i=1 xi.
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2.2.1 Parameter estimation for PPCA and LFA

Due to the isotropic nature of the Ψ in PPCA, a closed form of the Maximum Likelihood (ML)

estimates of the PPCA model parameters (W, σ2) has been derived in [110]. It is as follows:

σ2ML =
1

d− r

d∑
j=r+1

lj , (2.5)

WML = Ur(Sr − σ2MLIr)
0.5R, (2.6)

where lj is the jth largest eigenvalue and Ur consists of the first r principal eigenvectors of the

sample covariance matrix, Σ̂, the matrix Sr = diag(l1, l2, · · · , lr), while R is an arbitrary r × r

orthogonal rotation matrix.

As discussed in [110], an essential capability of PPCA is density modeling, whether through

individual or mixture models. PPCA can manage the model’s complexity by selecting a rank r

with r ≪ d. This choice helps limit the number of parameters used to define the covariance in

the high-dimensional space. In situations where employing fully parameterized covariance matrices

would lead to excessive under-constraint due to data dimensionality, this approach becomes useful.

It allows one to avoid problems that can arise from constraining the covariance to be diagonal

or spherical, which may be inappropriate for specific datasets. Furthermore, when it comes to

classification tasks, modeling the densities associated with different classes makes sense even when

the data dimensionality is quite large.

Latent Factor Analysis (LFA) is a multivariate statistical technique commonly used for dimen-

sionality reduction. This analytical approach shares significant kinship with PCA, which aims

to find orthogonal components (principal components) that maximize the variance in the data. In

contrast, LFA seeks to discover factors that account for observed variations but does not necessarily

require orthogonality.

LFA parameters (W,Ψ) can be estimated using an EM algorithm due to [35].

Theorem 1 (due to [35]). Assume that the data has been properly centralized and let β = ŴT (Ψ̂+

ŴŴT )−1. The EM updates of (Ŵ, Ψ̂) for LFA are:

• E-step: Compute E(γ|xi) and E(γγT |xi) for each data point xi as follows:

E(γ|xi) = βxi, E(γγT |xi) = Ir − βŴ + βxix
T
i β

T .
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• M-step Update the LFA parameters as:

Ŵnew =
n∑
i=1

xiE(γ|xi)T (
n∑
i=1

E(γγT |xi))−1, (2.7)

Ψnew =
1

n
D(

n∑
i=1

xix
T
i − ŴnewE(γ|xi)xTi ). (2.8)

2.2.2 Parameter estimation for ELF.

ELF estimates the model parameters (Γ,W) by optimizing the following:

(ŴELF , Γ̂ELF ) = argmin
(Γ,W),ΓTΓ=Ir

∥(X− ΓWT )Ψ− 1
2 ∥2F , (2.9)

where X = (x1 − µML,x2 − µML, · · · ,xn − µML)T , i.e. properly centralized. We use Ψ− 1
2

as feature weights in (2.9) to reduce the impact of features with significant unexplained noise

variance, thereby significantly improving model accuracy. During model training, we estimate:

σ̂2j = ∥X̂·j −X·j∥22/(n− 1) and employ (σ̂2j )
− 1

2 as jth feature weight for the estimation process.

To perform the minimization in (2.9), in every iteration, we first estimate (Ŵ, Γ̂) without the

constraint on Γ using Theorem 2 and then adjust the estimated parameters to satisfy the constraint

using the Proposition 1 below.

Theorem 2. The ELF objective (2.9) without the constraint ΓTΓ = Ir is minimized w.r.t Γ and

W by

Γ̂ = XΨ−1W(WTΨ−1W)−1and Ŵ = XTΓ(ΓTΓ)−1. (2.10)

Proof. Let l(Γ) = ∥(X− ΓWT )
√
Ψ−1∥2F . Then

arg min
Γ
l(Γ) = arg min

Γ
∥X
√

Ψ−1 − ΓWT
√
Ψ−1∥2F

= arg min
Γ

Tr((X
√

Ψ−1 − ΓWT
√
Ψ−1)T (X

√
Ψ−1 − ΓWT

√
Ψ−1))

= arg min
Γ

Tr(
√

Ψ−1XTX
√

Ψ−1 − 2
√
Ψ−1XTΓWT

√
Ψ−1 +

√
Ψ−1WΓTΓWT

√
Ψ−1)

= arg min
Γ

Tr(Ψ−1XTX− 2Ψ−1XTΓWT + Ψ−1WΓTΓWT )

= arg min
Γ

Tr(−2Ψ−1XTΓWT + Ψ−1WΓ′ΓWT )

= arg min
Γ

Tr(−2WTΨ−1XTΓ + ΓTΨ−1WΓT ).

∂l(Γ)

∂Γ
=

∂

∂Γ
Tr(−2WTΨ−1XTΓ + ΓTΨ−1WΓT ) = −2XΨ−1W + 2ΓWTΨ−1W.

∂l(Γ)

∂Γ
= 0 =⇒ Γ = XΨ−1W(WTΨ−1W)−1.
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Ŵ = argmin
W

d∑
j=1

∥X·j − ΓWT
j·∥2

σ2j
,

which is minimized individually for each Wj as WT
j· = (ΓTΓ)−1ΓTX·j , which gives the result. □

Proposition 1. If UDVT = Γ is the SVD of Γ, then Γ1 = U, and W1 = WVD satisfy

Γ1W
T
1 = ΓWT along with ΓT1 Γ1 = Ir.

Proof. It is easy to verify that ΓT1 Γ1 = Ir.□

The Ŵ produced in (2.10) does not depend on the feature weights Ψ. Algorithm 1 summarizes

the iterative estimation procedure.

Algorithm 1: Parameter Estimation for ELF

Input: Xn×d, T (number of iterations) and m

Output: Ŵ and Ψ̂

Initialize

• feature weight matrix Ψ = Id

• Γ as the first r principal components of X

• W as the first r loading vectors from PCA of X

for t = 1 to T do

Update W as W = XTΓ(ΓTΓ)−1

Update Γ as Γ = XΨ−1W(WTΨ−1W)−1

Perform SVD on Γ, UΓDΓV
T
Γ = Γ

Update Γ = UΓ and W = WVΓDΓ

Update Ψ = diag(σ21, σ
2
2, · · ·σ2d) with σ2i = var(X·i − ΓWT

i· )

Check for convergence: ∥X− ΓWT ∥F is sufficiently small.

2.2.3 Parameter Estimation for HeteroPCA.

Heteroskedastic PCA [122], also known as Hetero PCA, addresses the issue of performing PCA

when the data has heteroskedastic noise, meaning the noise variance differs across dimensions in a

spiked covariance model setup. It assumes the following setup:

Xd×n = X0 + ϵ, E(X0) = µ, Cov(X0) = Σ0, (2.11)

E(ϵ) = 0, Ψ = Cov(ϵ) = diag(σ21, σ
2
2, · · · , σ2d). (2.12)
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Here, X0 is the noise-free version (signal) of the given data matrix, X. Also, ϵ and X0 are

independent. Σ0 admits rank-r eigen-decomposition Σ0 = UDUT with U ∈ Rd×r and D ∈ Rr×r.

The goal is to estimate U.

Though the model is similar to LFA, there is a difference between the objectives of the two

models. LFA focuses on finding latent factors that explain the behavior of the observed variables,

but Hetero PCA aims to capture the principal components (PCs) (estimate U) of the underlying

data(X0), accounting for heteroskedasticity. This is useful when noise levels vary significantly

across samples and could bias traditional PCA.

The estimation of U using the classical PCA is equivalent to the estimation of eigenvectors of

the sample covariance matrix Cov(X) = Σ̂. Since E(Σ̂) = Σ0 + Ψ and (σ21, σ
2
2, · · · , σ2d) in the

diagonals of Ψ are not necessarily same, there will be a significant difference between the principal

components of E(Σ̂) and those of Σ0. To cope with the bias on the diagonal elements of the

covariance matrix, HeteroPCA iteratively updates the diagonal entries based on the off-diagonals,

so that the bias incurred on the diagonal is significantly reduced and more accurate estimation can

be achieved. The idea is originally inspired by diagonal deletion SVD [32], which states to set the

diagonal of the sample covariance matrix to zero before performing singular value decomposition.

In Algorithm 2, the estimate of U is iteratively updated by imputing the diagonal entries of the

sample covariance matrix Σ̂ by the diagonal entries of its low rank r approximation Ñ, to minimize

the following: Ñ = argminN,r(N)≤r ∥∆(Σ̂−N)∥2F .

2.3 Estimation of SNR

The estimated signal-to-noise ratio (SNR) for the available features is computed from the

(Ŵ, Ψ̂) estimates obtained by the different methods. The SNR for the i-th feature is defined

as:

SNRi =

∑r
j=1W

2
ij

σ2i
, i ∈ {1, 2, · · · , d}. (2.13)

The SNR can be directly calculated using Eq. (2.13) for PPCA, LFA, and ELF methods, due to

the assumption of var(γ) = I or ΓTΓ = I. For HeteroPCA, we obtain the r principal loading

vectors Û, corresponding to X0. To evaluate (2.13) for HeteroPCA, we execute the following steps

to obtain (Ŵ, σ̂21, · · · , σ̂2d):

• Estimation of signal strength: Our initial estimates are: Γ̃ = XÛ and W̃ = Û. Next,

we employ Proposition 1 to obtain semi-orthogonal Γ̂ and the corresponding Ŵ. Therefore,

X̂0 = Γ̂ŴT .
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Algorithm 2: Heteroskedastic PCA

Input : Σ̂: Cov(X), r : the rank of Σ̂, T : maximum number iterations

Output : Estimated rotation matrix Û, Σ̂0: estimated rank-r approximation of Σ0

Initialize: Initialize by setting the diagonal elements of Σ̂ to 0: N(0) = ∆(Σ̂)

for t = 0 to T do

Perform SVD on N(t) and let Ñ(t) be the best rank-r approximation:

N(t) = U(t)D(t)(V(t))
T =

∑
i

(λi)(t)(U·i)(t)(V·i)
T
(t), (λ1)(t) ≤ (λ2)(t) ≤ · · · (λd)(t)

Ñ(t) =
r∑
i=1

(λi)(t)(U·i)(t)(V·i)
T
(t)

Update N(t+1) = D(Ñ(t)) + ∆(N(t))

Until convergence or maximum number of iterations reached.

The outputs are the first r columns of Û(t): Û(t)[J], J = {1, 2, · · · , r}

• Estimation of noise variance: Next, the estimation process of (σ2i , i = 1, 2, · · · , d) is as

follows:

σ̂2i = ∥(X̂0)i· −Xi·∥22/(n− 1). (2.14)

The intuition for employing SNRs to identify key features in the latent factor model is based

on the assumption that the data originates from a lower-dimensional latent space. The signal is

represented as Wγ with the assumption ΓTΓ = Ir. The variance of the corresponding signals is

captured by the diagonal elements of WWT or the row sum of squares of W. At the same time,

the unexplained noise variance is reflected in the diagonal elements of Ψ. Therefore, features with

relatively high SNR values are identified as strongly associated with the latent variables, making

them prime candidates for representing objects within specific categories. Once we estimate the

SNRs, we perform feature selection by employing a simple thresholding technique, as described in

Algorithm 3.

Algorithm 3: SNR based Feature Selection

Input: (Ŵ, σ̂21, · · · , σ̂2d), m

Output: Im, the indices of m selected features.

Calculate SNRi =
∑r

j=1 Ŵ
2
ij

σ̂2
i

, i ∈ {1, 2, · · · , d}
Sort the SNR values: SNR(1) ≤ SNR(2) ≤ · · · ≤ SNR(d)

Selected feature indices are: Im = {i : SNRi ≥ SNR(d−m+1)}
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2.4 Theoretical Guarantees

A central pursuit in modern high-dimensional statistics is to understand not only if an esti-

mator converges to its true value, but at what rate it converges and with what level of certainty.

Latent variable models, and in particular Latent Factor Analysis (LFA) and Probabilistic Principal

Component Analysis (PPCA), represent a foundational toolkit for modeling and dimensionality

reduction in complex datasets. For decades, the theoretical understanding of these models was

primarily dominated by classical asymptotic results, which guarantee consistency and efficiency as

the number of samples approaches infinity [37, 36, 6, 117].

However, while asymptotic results establish eventual consistency, they are insufficient for a

rigorous analysis of an estimator’s behavior in the non-limiting regime. A complete theoretical

understanding requires finite-sample bounds. It provides explicit, high-probability guarantees on

the estimation error for any given sample size n. Such bounds are not merely a practical refinement;

they are a mathematical necessity for validating the downstream application of any estimator.

In the context of our work, the reliability of any feature selection procedure based on ranking

estimated SNR values fundamentally depends on the fidelity of the SNR estimates themselves.

A finite-sample bound establishes a high-probability ”contract” that the estimated value ˆSNR

lies within a quantifiable neighborhood of the actual, unobservable SNR. This is critical, as

it provides measurable confidence, ensuring that the estimated values used for any downstream

task are not artifacts of sampling noise but are instead meaningful approximations of the true

feature importance. Without such an explicit, non-asymptotic bound, the numbers produced by

the estimator lack formal validation, making any subsequent analysis heuristic.

This thesis makes an initial step toward deriving such a bound. We have conducted a rigorous

non-asymptotic analysis of the estimators for LFA and PPCA. We move beyond the traditional

asymptotic regime to analyze the explicit nature of the parameter estimation errors for moderate

values of n. Our theoretical framework is built upon the powerful tools of modern probability theory,

leveraging seminal results in matrix concentration inequalities and the behavior of quadratic forms

of sub-Gaussian random vectors [113, 126]. The primary contribution of this work is to translate

these abstract mathematical tools into concrete, interpretable guarantees for the key parameters

of latent factor models. The implications are significant: these bounds provide a formal basis for

model validation, enable a deeper understanding of the statistical difficulty of parameter estimation
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in the presence of noise, and offer a principled way to reason about the reliability of any downstream

task that depends on these models.

Our analysis begins with bounding the deviation of the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

xix
T
i

from its population counterpart Σ. This deviation directly governs the accuracy of estimated signal

and noise variances in PPCA and LFA.

We present two complementary results: a global bound on the operator norm ∥Σ̂−Σ∥op, which

controls the spectral deviation of all eigenvalues collectively, and a local bound on the diagonal

elements |(Σ̂−Σ)ii|, which quantifies feature-wise deviations.

Theorem 3 (due to [126]). [Covariance Matrix Concentration] Assume that M1, . . . ,Mn are in-

dependent realizations of a d × d positive semi-definite symmetric random matrix M with mean

E[M ] = Σ. Let M satisfy for some κ ≥ 1,

∥x⊤Mx∥ψ1 ≤ κ2x⊤Σx, for all x ∈ Rd, (2.15)

where ∥ · ∥ψ1 denotes the sub-exponential norm, defined as ∥Y∥ψα = inf{c > 0 : E[exp(|Y|α/cα)] ≤

2}. Then, for any t > 0, with probability at least 1 − exp(−t), it holds that

∥ 1

n

n∑
i=1

Mi −Σ∥op ≤ 20κ2∥Σ∥op

√
4r(Σ) + t

n
, (2.16)

whenever n ≥ 4r(Σ) + t, where r(Σ) = tr(Σ)/∥Σ∥op is the effective rank of Σ.

For many latent variable models, the observed data vectors xi are assumed to be zero-mean

sub-Gaussian random vectors. In this case, we can set Mi = xix
T
i . For a centered Gaussian vector

xi ∼ N (0,Σ), the condition of Theorem 3 is met with κ2 = 8/3. Considerable research [22, 3, 20,

63, 62] has focused on the problem of deriving non-asymptotic bounds for the operator norm error

∥Σ̂ −Σ∥op. Theorem 3 is a special case of the deviation bound derived by [62], which provides a

dimension(d)-free upper bound, ensuring the stability of eigenvalue-based estimators such as PPCA

loadings. It implies that accurate signal recovery is possible whenever n ≫ r(Σ), even if d ≫ n.

The effective rank term r(Σ) naturally emerges as a dimension-corrected complexity measure.

While the global bound provides a powerful worst-case guarantee on the overall deviation of the

matrix in any direction, we also employ a tighter, more refined bound on the error of the individual
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diagonal elements, |Σ̂ii −Σii|. If the feature variances are highly heterogeneous, the global bound

can yield a loose bound for low-variance features. A tighter bound for individual diagonal elements,

|(Σ̂−Σ)ii|, can be obtained by applying a scalar concentration inequality directly.

Theorem 4 (Refined Bound for Sample Variance Error). Let Zk = x2ki − E[x2ki] be i.i.d. zero-

mean random variables, where xki ∼ N (0,Σii). Let c be the universal constant from Bernstein’s

inequality. For any failure probability δ ∈ (0, 1), if the sample size n satisfies

n >
8

c
ln(4/δ), (2.17)

then the sample variance error is bounded with probability at least 1 − δ/2 by:

∣∣∣Σ̂ii −Σii

∣∣∣ ≤√2

c
Σii ·

√
ln(4/δ)

n
. (2.18)

Proof. The term to be bounded is the average of n i.i.d. mean-zero random variables:

Σ̂ii −Σii =
1

n

n∑
k=1

(
x2ki − E[x2ki]

)
. (2.19)

Let Zk = x2ki − E[x2ki]. From the LFA model, xki is a zero-mean Gaussian variable with variance

Σii = (WW T )ii + σ2i . Thus, Zk is a centered, scaled chi-squared random variable (Σii(χ
2
1 − 1)),

which is sub-exponential.

To apply Bernstein’s inequality[113], we identify its parameters. The variance parameter v is:

v = Var(Zk) = Var(x2ki) = 2Σ2
ii. (2.20)

The sub-exponential scale parameter b is proportional to the variance of the underlying Gaussian,

so b = CbΣii for some universal constant Cb. For a χ2
1 variable, a standard version of Bernstein’s

inequality uses parameters equivalent to v = 2Σ2
ii and b = 4Σii.

Bernstein’s inequality for the average provides the following bound on the tail probability:

P

(∣∣∣∣∣ 1n
n∑
k=1

Zk

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−c · n · min

(
ϵ2

2Σ2
ii

,
ϵ

4Σii

))
, (2.21)

where c is a universal constant. Setting the right-hand side to our desired failure probability δ/2

and solving for ϵ gives:

ϵ ≥ max

√2Σ2
ii log(4/δ)

cn
,

4Σii log(4/δ)

cn

 . (2.22)
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This can be rewritten as:

ϵ ≥ Σii · max

(√
2 log(4/δ)

cn
,

4 log(4/δ)

cn

)
. (2.23)

The ‘max‘ operator selects between the sub-Gaussian-like term (with
√

1/n) and the sub-exponential-

like term (with 1/n). The first term is larger if and only if:√
2 log(4/δ)

cn
>

4 log(4/δ)

cn
. (2.24)

Squaring both sides (which are positive) yields:

2 log(4/δ)

cn
>

16(log(4/δ))2

c2n2
. (2.25)

Assuming log(4/δ) > 0, we can simplify by multiplying by c2n2 and dividing by cn log(4/δ):

2c >
16 log(4/δ)

n
. (2.26)

Rearranging gives the constraint on n:

n >
8

c
log(4/δ). (2.27)

Under the constraint in Eq. (2.27), the first term in Eq. (2.23) dominates. The bound on the

error simplifies to: ∣∣∣Σ̂ii −Σii

∣∣∣ ≤ Σii

√
2 log(4/δ)

cn
. (2.28)

This theorem ensures that the error in estimating the variance of a quiet, low-variance feature

will not be artificially inflated by the presence of a noisy, high-variance feature elsewhere in the

data. This local control will be the key to analyzing the parameter estimates of LFA.

2.4.1 PPCA

We now apply the concentration bounds to analyze the parameter estimates of the PPCA model.

The following are the assumptions of our consideration.

(A1) Let x1, . . . ,xn be d−dimensional n i.i.d. samples from the PPCA model xk = Wγk + ϵk.

(A2) γk ∼ N (0, Ir) and ϵk ∼ N (0, σ2Id). The random vectors γk and ϵk′ are independent for any

{k, k′ ∈ {1, 2, . . . n}}.
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This isotropic noise variance assumption (σ2Id) enables a closed-form Maximum Likelihood

(ML) solution based on an eigendecomposition of the sample covariance matrix Σ̂ = UDUT =∑d
j=1 λjuju

T
j . This estimation process has been described in (2.5). Our goal is to bound the

estimation error of the principal subspace, represented by WWT , by leveraging the bound on

|Σ̂−Σ|ii.

To analyze the error in the estimated signal variance for a single feature, we first establish a

key identity.

Lemma 1. If the assumptions (A1-A2) hold, the i-th diagonal element of the PPCA signal esti-

mate (ŴWT )ii can be written as:

(ŴWT )ii = Σ̂ii − σ̂2 − ∆i,∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣ ≤ ∣∣∣(Σ̂−Σ)ii

∣∣∣+
∣∣σ̂2 − σ2 + ∆i

∣∣ , (2.29)

where (Ŵ, σ̂2) is defined in (2.5), lj is the jth eigenvalue and uj is the jth eigen vector of Σ̂, and

∆i =
∑d

j=r+1(lj − σ̂2)(uj)
2
i is a remainder term.

Proof. The i-th diagonal element of Σ̂ is Σ̂ii =
∑d

j=1 lj(uj)
2
i . The eigenvectors form an orthonormal

basis, so
∑d

j=1(uj)
2
i = 1. The estimated signal variance is (ŴWT )ii =

∑r
j=1(lj − σ̂2)(uj)

2
i .

(ŴWT )ii =
r∑
j=1

lj(uj)
2
i − σ̂2

r∑
j=1

(uj)
2
i

=

Σ̂ii −
d∑

j=r+1

lj(uj)
2
i

− σ̂2

1 −
d∑

j=r+1

(uj)
2
i


= Σ̂ii − σ̂2 −

 d∑
j=r+1

lj(uj)
2
i − σ̂2

d∑
j=r+1

(uj)
2
i


= Σ̂ii − σ̂2 −

d∑
j=r+1

(lj − σ̂2)(uj)
2
i .

(2.30)

We have: Σ = WWT + σ2Id

Then, the difference is:

|(WWT )ii − (ŴŴT )ii|

= |(Σii − σ2) − (Σ̂ii − σ̂2 − ∆i)|

= |(Σ− Σ̂)ii − (σ2 − σ̂2) + ∆i|

≤ |(Σ− Σ̂)ii| + |σ2 − σ̂2| + |∆i|

(2.31)
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The isotropic noise variance assumption (σ2Id) enables us to break down
∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣
in two parts as represented in (2.29). We have already showcased the bound for the first part (i.e.∣∣∣(Σ̂−Σ)ii

∣∣∣) in theorem 4. To bound the deviation in signal variance, we have to bound the second

term in (2.29). The following theorem provides an element-wise bound for the error in estimating

signal variances (i.e. (WWT )ii).

Theorem 5 (PPCA Element-wise Estimation Error). Let the assumptions of Theorem 4 hold along

with the assumptions (A1-A2). For any δ ∈ (0, 1), n > 8
c log(4/δ), with probability at least 1 − δ:

∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣ ≤ Σii

√
2 ln(4/δ)

cn

+ C ′ · ∥Σ∥op ·
√
r(Σ) + ln(2/δ)

n

≤ ϵ(δ)

(2.32)

where ϵ(δ) = C · ∥Σ∥op ·
√

r(Σ)+ln(1/δ)
n , r(Σ) = tr(Σ)

∥Σ∥op and C is an constant.

Proof. We start from the error decomposition established previously in (2.29):∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣ ≤ ∣∣∣(Σ̂−Σ)ii

∣∣∣+
∣∣σ̂2 − σ2 + ∆i

∣∣ .
We bound each of the two terms using a union bound, allocating a probability of failure of δ/2 to

the first term and δ/2 to the events driven by the operator norm.

Term 1:
∣∣∣(Σ̂−Σ)ii

∣∣∣. This term represents the deviation of a single element of the sample

covariance matrix. As established in 4, the average of the i.i.d. mean-zero sub-exponential variables

Zk = (xk)
2
i −Σii is bounded by applying Bernstein’s inequality. For n > 8

c log(4/δ), with a failure

probability of δ/2, the bound is:

∣∣∣(Σ̂−Σ)ii

∣∣∣ ≤ Σii

√
2 log(4/δ)

cn
(2.33)
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Term 2: We want to bound |σ̂2 − σ2 + ∆i|.

σ̂2 − σ2 + ∆i =

 1

d− r

d∑
j=r+1

(lj − σ2)

+

 d∑
j=r+1

(lj − σ̂2)(uj)
2
i


=

 1

d− r

d∑
j=r+1

(lj − σ2)

+

 d∑
j=r+1

(lj − σ2 − (σ̂2 − σ2))(uj)
2
i


= (σ̂2 − σ2) +

d∑
j=r+1

(lj − σ2)(uj)
2
i − (σ̂2 − σ2)

d∑
j=r+1

(uj)
2
i

= (σ̂2 − σ2)

1 −
d∑

j=r+1

(uj)
2
i

+

d∑
j=r+1

(lj − σ2)(uj)
2
i . (2.34)

Using the identity 1 −
∑d

j=r+1(uj)
2
i =

∑r
j=1(uj)

2
i , from (2.34), we have:

= (σ̂2 − σ2)
r∑
j=1

(uj)
2
i +

d∑
j=r+1

(lj − σ2)(uj)
2
i .

Results like Weyl’s[113] inequality relate the eigenvalues lj of Σ̂ to the eigenvalues λj of the

true covariance Σ = WWT + σ2Id. Specifically,

max
j=1,...,d

|lj − λj(Σ)| ≤ ∥Sn − Σ∥op.

This helps control the error in the estimated eigenvalues λ̂j . Also note that, for PPCA, λj = σ2,

for j ∈ {r + 1, r + 2, . . . , d}. Therefore, Using Weyl’s inequality, we get:

|σ̂2 − σ2| =

∣∣∣∣∣∣ 1

d− r

d∑
j=r+1

lj − σ2

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

d− r

d∑
j=r+1

(lj − λj)

∣∣∣∣∣∣ (since λj = σ2 for j > r)

≤ 1

d− r

d∑
j=r+1

|lj − λj |

≤ max
j=r+1,...,d

|lj − λj | ≤ ∥Σ̂−Σ∥op

(2.35)

Once again, we apply the triangle inequality and Weyl’s inequality[113]:

|σ̂2 − σ2 + ∆i| ≤ |σ̂2 − σ2|
r∑
j=1

(uj)
2
i +

d∑
j=r+1

|lj − σ2|(uj)2i

≤ ∥Σ̂−Σ∥op
r∑
j=1

(uj)
2
i + ∥Σ̂−Σ∥op

d∑
j=r+1

(uj)
2
i (due to(2.35))

= ∥Σ̂−Σ∥op

 r∑
j=1

(uj)
2
i +

d∑
j=r+1

(uj)
2
i

 = ∥Σ̂−Σ∥op
d∑
j=1

(uj)
2
i = ∥Σ̂−Σ∥op. (2.36)
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The bound for Term 2 depends on the operator norm bound ∥Σ̂ − Σ∥op. With a probability

of at least 1 − δ/2, we use the dimension-free bound from [126], which applies to sub-Gaussian

vectors. To achieve a failure probability of δ′ = δ/2,we set δ/2 = e−t, which implies t = log(2/δ).

Substituting this into the bound from that paper, we have that with probability at least 1 − δ/2:

∥Σ̂−Σ∥op ≤ 20 · 8

3
· ∥Σ∥op ·

√
r(Σ) + log(2/δ)

n
. (2.37)

The bound for Term 1 also holds with probability at least 1 − δ/2 whenever n > 8
c log(4/δ).

Therefore with probability at least 1 − δ:∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣ ≤ Σii

√
2 log(4/δ)

cn
+

160

3
· ∥Σ∥op ·

√
r(Σ) + log(2/δ)

n
(2.38)

The non-asymptotic bound in Theorem 5 is composed of two distinct parts:

1. A local bound for
∣∣∣(Σ̂−Σ)ii

∣∣∣: 2 ·Σii
√

(· · · ), which depends on the variance of the specific

feature i.

2. A global bound
∥∥∥(Σ̂−Σ)

∥∥∥
op
:
∥∥∥Σ̂−Σ

∥∥∥
op

arises, as we try to bound
∣∣σ̂2 − σ2 + ∆i

∣∣: The

operator bound appears as we apply Weyl’s inequality from [113] to bound both |σ̂2−σ2| and

|lj − σ2|. As PPCA estimates the noise variance σ2 by averaging information across all noise

dimensions, it couples the estimation error of feature i to the behavior of all other features

through the operator norm.

Before moving to the LFA error analysis, we present another lemma for the PPCA model to achieve

a somewhat more local bound for
∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣.
Lemma 2. Let the assumptions of Theorem 5 hold. For any δ ∈ (0, 1), when n > 8

c log(4/δ) with

probability at least 1 − δ: ∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣ ≤ Σii

√
2 ln(4/δ)

cn

+ min{ϵ(δ/2), 2Σii}.
(2.39)

Proof. From the previous Theorem 5

(WWT )ii = Σii − σ2, as σ2 > 0, therefore (WWT )ii < Σii (2.40)

(ŴŴT )ii = Σ̂ii −

 d∑
j=r+1

lj(uj)
2
i + σ̂2

r∑
j=1

lj(uj)
2
i

 (lj ≥ 0 for all j ≥ 1 as Σ̂ is psd) (2.41)

(ŴŴT )ii < Σ̂ii (2.42)
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By applying triangle inequality we get:

|ŴŴT −WWT |

≤ |Σ̂ii| + |Σii|

≤ |Σ̂ii −Σii| + 2|Σii| (2.43)

Previously we proved: |ŴŴT −WWT | ≤ |Σ̂ii −Σii| + ∥Σ̂−Σ∥op

Combining the above two inequalities, we get: |ŴŴT −WWT | ≤ |Σ̂ii −Σii| + min{∥Σ̂ −

Σ∥op, 2Σii}

Therefore, the required bound can be obtained with probability at least (1 − δ), by employing

Theorems 4 and 3

Lemma 2 shows that for small n, the estimation error for ith signal variance can be bounded

locally by Σii

√
2 ln(4/δ)

cn + 2Σii. It is a biased bound as Σii ≥ 0 no matter how large the n value

is. Therefore, as n → ∞, more precisely when n ≥ max{C
2∥Σ∥2op
4Σ2

ii
(r(Σ) + ln(2/δ)), 8c log(4/δ)}, the

lemma uses the global bound for
∥∥∥Σ̂−Σ

∥∥∥
op

, which goes to 0 for large values of n.

Large d, large n. In this type of results, both the number of features d and the number of

samples n tend to infinity, while the ratio d
n(= γ ≥ 0) is kept constant. This is also known as

the “ultra-high dimensional” or “big data” regime. The main challenge to drawing inferences on

asymptotic behaviors of eigenvalues and eigenvectors in this setup is that the sample covariance

matrix does not well approximate the population covariance matrix unlike the case when d was

fixed. There has been considerable effort to establish convergence results for sample eigenvalues

and eigenvectors in recent years. Some of these findings will be discussed below.

Recent theoretical advancements on the ’large d large n’ setup are based on the assumption

that the data matrix, X is generated from a spiked population covariance model. The notion of

the spiked population covariance model was first introduced by [58].

Definition 1. Spiked Covariance model. Under this model, the data matrix X, can be viewed

as XT = EΛ
1
2Z, where E = [e1, e2, · · · , ed] is a d×d orthogonal matrix, Λ = diag(λ1, λ2, · · · , λd)

with λ1 ≥ λ2 ≥ · · · ≥ λd and Z is a d × n matrix constructed with iid random variables Zij with

E(Zij) = 0, E(Z2
ij) = 1 and E(Z4

ij) ≤ ∞. The population covariance matrix is Σ = EΛET .

Here, λk’s are assumed to follow a specific structure, λ1 ≥ λ2 ≥ · · · ≥ λm > λm+1 = · · · = λd = 1.

The sample covariance matrix is Σ̂ = XTX/n = EΛ
1
2ZZTΛ

1
2E

T
/n.
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The spectral decomposition of the sample covariance matrix Σ̂ is, Σ̂ = USUT . Here, S =

diag(s1, s2, · · · sd) are the ordered sample eigenvalues and U = [u1,u2, · · · ,ud] is the corresponding

d× d sample eigenvector matrix. For the remaining of the section, we assume that limn→∞
d
n = γ.

Also there are k population eigenvalues such that λi > 1 +
√
γ, for i ≤ k

The following result is due to [11].

Theorem 6. [due to [11]] For γ ∈ (0, 1), the following holds:

si
a.s.→

{
ρ(λi), if i ≤ k

(1 +
√
γ)2 otherwise,

where ρ(x) = x(1 + γ
x−1).

It is evident from Theorem 6, the sample eigenvalues are not consistent estimates of the popula-

tion counterparts. However, a consistent estimator can be found for λi > 1 + γ using the following

inverse function:

ρ−1(x) =
x+ 1 − γ +

√
(x+ 1 − γ)2 − 4x

2
(2.44)

Also, it has been shown in [10] that si are asymptotically normal .

Although consistency could not be proved for γ > 0, [69] proved consistency for γ = 0.

Lemma 3 (due to [69]). If limn→∞
d
n = γ = 0, then,

si
a.s.→

{
λi if i ≤ m

1 otherwise.

For eigenvectors, the convergence of the angle between sample eigen vectors(ui) and population

eigenvectors(ei) has been proved for Gaussian Zij ’s in [84]. The author used the inner product

between two unit vectors to represent the cosine angle between ui and ei.

Theorem 7. [due to [84]] Under the assumption of multiplicity one , if limn→∞
d
n = γ ∈ (0, 1),

and Zij’s follow the standard normal distribution, then

| < ei,ui > | a.s.→

{
ϕ(λi) if λi > 1 +

√
γ

0 if 1 < λi < 1 +
√
γ.

Here, < a, b > represents the inner product between two vectors a and b, and ϕ(x) =

√
1− γ

(x−1)2

1+ γ
x−1

.

[80] reached the same conclusion for γ > 0 using a matrix perturbation approach under the

Gaussian random noise model. [69] generalized Theorem 7 by relaxing the distributional assumption

and proved a weaker convergence (in probability) for the angles between population and sample

eigenvectors, when γ ≥ 0.
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Lemma 4 (due to [69]). Under the assumption of multiplicity one , if limn→∞
d
n = γ ≥ 0,

| < ei,ui > | p→

{
ϕ(λi) if λi > 1 +

√
γ

0 if 1 < λi < 1 +
√
γ.

2.4.2 LFA

We now turn to the more general Latent Factor Analysis (LFA) model, where the idiosyn-

cratic noise Ψ is diagonal but not necessarily isotropic. This flexibility prevents a simple closed-

form solution for the ML estimators, which are instead found using iterative algorithms such as

Expectation-Maximization (EM). The details of the EM-process have been presented in Theorem

1. Our goal is to analyze the behavior of the estimation error for feature-specific parameters: the

signal variances (WWT )ii and the noise variances Ψii. One of the foundational asymptotic the-

ories for the high-dimensional LFA problem was comprehensively established in the past by [9].

Their main contribution is the development of a complete asymptotic theory for the MLE of LFA

parameters when (n, d) → ∞. To achieve this goal, they have considered some assumptions on the

model parameters:

(A3) The latent factors {γi, i = 1, 2, . . . , n} are deterministic and non-random, with a sample

covariance matrix converging to a positive definite matrix Mff . This indicates that the

factors are ”strong” and stable.

(A4) The noise {ϵi, i = 1, 2, . . . , n} are iid random variables, also they are independent with {γi, i =

1, 2, . . . , n}. Also, E(ϵi) = 0, E(ϵ2i ) = Ψ, E(ϵ4i ) ≤ C4, where Ψ = diag(σ21, σ
2
2, . . . σ

2
d).

(A5) For some positive constant and i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , d}:

– ∥Wj·∥2 ≤ C,

– C−2 ≤ σ2 ≤ C2, where var(ϵi)jj = σ2j ,

– WTΨ−1W/d→ C,

– limd→∞
1
d

∑d
j=1 σ

−4
j ((Wj· ⊗Wj·)(W

T
j· ⊗WT

j·)) = Ω,

where (C,Ω) are positive definite matrices. This ensures that influential, detectable factors

are present in high dimensions.

(A6) The model parameters (specifically σ2j ) are estimated to lie within a compact set (C−2, C2), a

standard technical requirement for proving the consistency of complex, non-linear estimators.

The latent factor models are generally non-identifiable without additional constraints. There-

fore, authors have introduced additional constraints (IC1-IC5) in [9] to ensure the full identifia-

bility of the model parameters. Now we will state the theorem that proves the consistency of the

estimators and establishes their rates of convergence in the high high-dimensional data regime:
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Theorem 8 (due to [9]). Under Assumptions (A3-A6), when d, n → ∞, with any one of the

identification conditions(IC1-IC5) mentioned in [9], we have:

1

d

d∑
i=1

1

σ̂2i
∥Ŵi,· −Wi,·∥2 = Op(

1

n
), (2.45)

1

d

d∑
i=

(σ̂2i − σ2i )
2 = Op(

1

n
), (2.46)

where, Xn = Op
(
1
n

)
means for any ϵ > 0, there exists a finite, positive constant M such that for

all n ≥ 1: P (|nXn| > M) < ϵ.

The results of [9] provide a clear idea of the convergence rates for Ŵ and Ψ̂. The four assump-

tions, defined in (A3-A6), collectively ensure the factor model is well-posed for high-dimensional

analysis and guarantee that a stable underlying factor signal can be consistently estimated because

it remains statistically detectable amidst well-behaved, feature-specific noise as the dimensions of

the data grow to infinity.

Specifically, the assumption A5 plays a significant role in ensuring this stability. It also tells us

how the SNRs will behave for high-dimensional data. In our work SNRs are defined as:

SNRi =
1

σ2i

r∑
j=1

W2
ij , i ∈ {1, 2, · · · , d}. (2.47)

The condition in (A5), the fact that the limit imd→∞
1
d

∑d
i=1 σ

−4
i ((Wi· ⊗Wi·))(Wi· ⊗Wi·) = Ω,

a fixed matrix, implies the following:

• The contributions of the features must, on average, be well-behaved. This prevents patho-

logical scenarios. For instance, it implies that the signal strengths {
∑r

j=1W
2
ij , i ∈ {1, . . . , n}

cannot be growing in a wild, unbounded way relative to the noise variances as we add more

features. If the SNRs were systematically exploding or behaving too erratically, this sum

would not converge to a stable limit.

• The weighting term σ−4
i is the strongest link to the SNR. Features with low idiosyncratic noise

(σ2i ) are weighted extremely heavily in this sum. These are the features that are likely to

have high SNRs. Therefore, the assumption can be rephrased more intuitively: The long-term

stability and learnability of the entire factor model is determined by the collective properties

of its most informative (highest-SNR) features. The noisy, low-SNR features contribute very

little to the sum and are effectively ignored.

• The condition that the resulting matrix Ω must be positive definite is a statement about non-

redundancy. For example, this condition would be violated if 90% of the high-SNR features
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were strongly related to Factor 1 but had almost no relation to Factors 2 through r. In such a

case, we would learn a lot about Factor 1, but the information about the other factors would

be weak, and the matrix Ω would become singular (not positive definite).

They have also shown that the same set of estimates has limiting distributions (i.e., asymptotic

normality). The entirety of their results — consistency, rates, and distributions — is asymptotic

i.e. when both d and n approach infinity. These results do not provide a quantifiable bound on the

estimation error for any fixed, finite sample size n. Their Op(1/n) rate tells us about the scaling in

the limit, but not the constants or higher-order terms that govern performance for a real-world n.

Now, we will prove the following lemma, which is a direct implication of Theorem 8:

Lemma 5. Under the assumptions A3-A6, as (d, n) → inf, maxi=1,...,d |σ̂2i − σ2i | = OP

(√
d
n

)
.

Proof. Let Ψ̂ = diag(σ̂21, . . . , σ̂
2
d) be the estimated noise variance matrix. From Theorem 5.1 of [9],

1

d

d∑
i=1

(σ̂2i − σ2i )
2 = OP

(
1

n

)
. (2.48)

From this, we can derive the Frobenius norm bound for the difference between Ψ̂ and Ψ:

∥Ψ̂−Ψ∥2F =

d∑
i=1

(σ̂2i − σ2i )
2 = d ·

(
1

d

d∑
i=1

(σ̂2i − σ2i )
2

)
= d ·OP

(
1

n

)
= OP

(
d

n

)
.

Taking the square root, we get:

∥Ψ̂−Ψ∥F = OP

(√
d

n

)
. (2.49)

From the Frobenius norm bound, we can directly derive a bound for the maximum element-wise

deviation. Since the Frobenius norm is the square root of the sum of squared elements, the largest

squared element must be less than or equal to the sum of all squared elements:

max
i=1,...,d

(σ̂2i − σ2i )
2 ≤

d∑
i=1

(σ̂2i − σ2i )
2 = ∥Ψ̂−Ψ∥2F .

Substituting the Frobenius norm bound:

max
i=1,...,d

(σ̂2i − σ2i )
2 = OP

(
d

n

)
.

Taking the square root, we get the bound for the maximum absolute deviation:

max
i=1,...,d

|σ̂2i − σ2i | = OP

(√
d

n

)
. (2.50)
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However, the constraints (IC1-IC5) to ensure identifiability have only been applied to prove

asymptotic results for |Ŵ −W|, not for |σ̂2i − σ2i |; therefore, the constraints (IC1-IC5) have also

not been considered in Lemma 5.

However, moving from asymptotic convergence to explicit, finite-sample bounds of order f(d, n)

presents a formidable theoretical challenge. The difficulty stems directly from the inherent struc-

ture of the LFA estimation problem. Unlike models with closed-form solutions, where errors can

be propagated directly, LFA parameters are the output of an iterative procedure, such as the

Expectation-Maximization (EM) algorithm [92]. This iterative process establishes a profound and

intricate relationship between the estimates of the signal loadings Ŵ and the noise variances Ψ̂.

As a result, a simple error analysis is intractable. As we proceed, we will discuss the challenges one

faces when deriving tight bounds for the ML estimates of latent factor model parameters. For our

analysis, we will also consider the following assumptions:

(A7) {xi}ni=1 be n i.i.d. samples from a d-dimensional Latent Factor Analysis (LFA) model: xi =

Wγi + ϵi, ϵi ∼ N (0,Ψ),

(A8) γk ∼ N (0, Ir) and Ψ = diag(σ21, σ
2
2, . . . , σ

2
d). The random vectors γk and ϵk′ are independent

for any {k ̸= k′ ∈ {1, 2, . . . n}}

(A9) The true, underlying parameters of the LFA model are assumed to be well-behaved:

(i) ∥Wi·∥2 ≤ CW ,

(ii) 0 < σ2min ≤ σ2j ≤ σ2max for all j ∈ {1, . . . , d}.

(A10) The parameter estimates (Ŵ, Ψ̂) produced by the estimation procedure in Theorem 1 are

assumed to be regular in the sense that their corresponding operator norms are bounded.

(i) ∥Ŵi·∥2 ≤ CŴ ,

(ii) ∥β̂i·∥2 ≤ Cβ, where β̂ = ŴT (ŴŴT + Ψ̂)−1.

Now we prove a set of essential equations that hold when the EM algorithm for LFA converges.

Theorem 9 (Stationary Point Characterization of the LFA Log-Likelihood). The EM algorithm

for LFA converges to a point where the parameter estimates (Ŵ, Ψ̂) satisfy certain fixed-point

equations, as characterized in Theorem 1. Suppose Assumptions (A7,A8,A9(ii) and A6) hold.

At a stationary point of the LFA log-likelihood (see [92]), the following two identities hold:

(I−M−1Σ̂)M−1Ŵ = 0, (2.51)

D(M−1Σ̂) = I, (2.52)
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where M = ŴŴ⊤ + Ψ̂, and D(X) denotes the diagonal matrix formed by the diagonal elements

of X.

Furthermore, the following identity holds for each coordinate i ∈ {1, . . . , d}:

(ŴŴ⊤)ii = Σ̂ii − Ψ̂ii. (2.53)

Consequently, we obtain the following inequalities:

∣∣(WW⊤)ii − (ŴŴ⊤)ii
∣∣ ≤ ∣∣(Σ̂−Σ)ii

∣∣+
∣∣Ψ̂ii −Ψii

∣∣, (2.54)∣∣Ψ̂ii −Ψii

∣∣ ≤ ∣∣(Σ̂−Σ)ii
∣∣+
∣∣(WW⊤)ii − (ŴŴ⊤)ii

∣∣. (2.55)

Proof. The M-step (of the EM algorithm) update equation for W is given in Theorem 1, with

converged W):

Ŵ =

(
n∑
i=1

xiE(γi|xi)T
)(

n∑
i=1

E(γiγ
T
i |xi)

)−1

Let’s simplify the terms:

• Numerator sum: Substituting E(γi|xi) = βxi:

n∑
i=1

xiE(γi|xi)T =
n∑
i=1

xi(βxi)
T =

n∑
i=1

xix
T
i β

T

=

(
n∑
i=1

xix
T
i

)
βT = (nΣ̂)βT .

• Denominator sum: Substituting E(γiγ
T
i |xi) = Ir − βŴ + βxix

T
i β

T :

n∑
i=1

E(γiγ
T
i |xi) =

n∑
i=1

(Ir − βŴ + βxix
T
i β

T )

= n(Ir − βŴ) + β

(
n∑
i=1

xix
T
i

)
βT

= n(Ir − βŴ) + β(nΣ̂)βT

= n(Ir − βŴ + βΣ̂βT ).

Now, substitute these simplified sums back into the Ŵ equation:

Ŵ = (nΣ̂)βT (n(Ir − βŴ + βΣ̂βT ))−1

= (nΣ̂)βT
1

n
(Ir − βŴ + βΣ̂βT )−1

= Σ̂βT (Ir − βŴ + βΣ̂βT )−1.
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Multiplying both sides by (Ir − βŴ + βΣ̂βT ) from the right, we obtain:

Ŵ(Ir − βŴ + βΣ̂βT ) = Σ̂βT .

To further apply matrix algebra, we substitute β = ŴT (Ψ̂+ŴŴT )−1. Let M = Ψ̂+ŴŴT ,

so β = ŴTM−1. Also note that ŴŴT = M− Ψ̂.

The identity becomes:

Ŵ − ŴβŴ + ŴβΣ̂βT = Σ̂βT ,

Ŵ − Ŵ(ŴTM−1)Ŵ + Ŵ(ŴTM−1)Σ̂(M−1Ŵ) = Σ̂M−1Ŵ,

Ŵ − (ŴŴT )M−1Ŵ + (ŴŴT )M−1Σ̂M−1Ŵ = Σ̂M−1Ŵ,

Ŵ − (M− Ψ̂)M−1Ŵ + (M− Ψ̂)M−1Σ̂M−1Ŵ = Σ̂M−1Ŵ,

Ŵ − (I − Ψ̂M−1)Ŵ + (I − Ψ̂M−1)Σ̂M−1Ŵ = Σ̂M−1Ŵ,

Ŵ − Ŵ + Ψ̂M−1Ŵ + Σ̂M−1Ŵ − Ψ̂M−1Σ̂M−1Ŵ = Σ̂M−1Ŵ.

Simplifying, moving all terms to one side and factoring out M−1Ŵ, we obtain:

(Ψ̂ + Σ̂− Ψ̂M−1Σ̂− Σ̂)M−1Ŵ = 1.

This simplifies to:

(Ψ̂− Ψ̂M−1Σ̂)M−1Ŵ = 1,

Ψ̂(I−M−1Σ̂)M−1Ŵ = 1.

Assuming Ψ̂(A9(ii),A6) is invertible, we get

(I−M−1Σ̂)M−1Ŵ = 1 . (2.56)

This identity must hold at the maximum likelihood estimate for Ŵ and Ψ̂.

Next, let us discuss the identity for Ψ̂. The M-step update equation for Ψ̂ is given as in Theorem

1, with converged Ψ̂:

Ψ̂ =
1

n
D

(
n∑
i=1

xix
T
i − ŴE(γi|xi)xTi

)
(2.57)
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Let’s simplify the sum term inside D(·):

n∑
i=1

xix
T
i − ŴE(γi|xi)xTi =

n∑
i=1

xix
T
i − Ŵ

n∑
i=1

E(γi|xi)xTi

= nΣ̂− Ŵ
n∑
i=1

(βxi)x
T
i

= nΣ̂− Ŵβ

(
n∑
i=1

xix
T
i

)
= nΣ̂− Ŵβ(nΣ̂).

Substitute this back into the Ψ̂ equation:

Ψ̂ =
1

n
D(nΣ̂− Ŵβ(nΣ̂))

= D(Σ̂− ŴβΣ̂).

Now, substitute β = ŴTM−1:

Ψ̂ = D(Σ̂− Ŵ(ŴTM−1)Σ̂),

Ψ̂ = D(Σ̂− ŴŴTM−1Σ̂),

Substitute ŴŴT = M− Ψ̂:

Ψ̂ = D(Σ̂− (M− Ψ̂)M−1Σ̂)

= D(Σ̂− (I− Ψ̂M−1)Σ̂)

= D(Σ̂− Σ̂ + Ψ̂M−1Σ̂).

The Σ̂ terms cancel out:

Ψ̂ = D(Ψ̂M−1Σ̂).

This is a critical identity. Given that Ψ̂ is a diagonal matrix, we can state that its i-th diagonal

element is equal to the i-th diagonal element of Ψ̂M−1Σ̂.

If Ψ̂ is invertible (A6), we can imply a further identity by ”dividing” by Ψ̂ (element-wise on

the diagonal operation):

I = D(M−1Σ̂) . (2.58)

This identity states that the diagonal elements of the product M−1Σ̂ must be equal to 1. Since

M−1Σ̂ is symmetric, this is equivalent to saying that (M−1Σ̂)ii = 1 for all i = 1, . . . , d.
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Now we will proceed to prove the next part of the theorem. Let A = Σ̂−M. Then Σ̂ = M+A

and M−1Σ̂ = I + M−1A so Eq. (2.56) becomes

M−1AM−1W = 0,

which after multiplying to the left with M becomes

AM−1W = 0.

Multiply by WT to the right and we obtain

AM−1WWT = AM−1(M−Ψ) = 0.

which means

A = AM−1Ψ.

The identity from (2.58) becomes

(M−1A)ii = 0.

But A = AT so (AM−1)ii = 0. But in this case, since A = AM−1Ψ, we also have that Aii = 0

for all i.

This implies that:

(ŴŴT )ii = Σ̂ii − Ψ̂ii. (2.59)

Let us proceed to the last part of the theorem.∣∣∣(WWT )ii − (ŴŴT )ii

∣∣∣ =
∣∣∣(Σii −Ψii) − (Σ̂ii − Ψ̂ii)

∣∣∣
=
∣∣∣(Σii − Σ̂ii) + (Ψ̂ii −Ψii)

∣∣∣
≤
∣∣∣(Σ̂−Σ)ii

∣∣∣+
∣∣∣Ψ̂ii −Ψii

∣∣∣ .
(2.60)

This theorem is powerful because it allows us to decompose the error in the signal variance

estimate. The problem is now reduced to bounding the sample variance error (which we can do

with Theorem 4) and the noise variance estimation error. However, the derivation for the finite

sample bound for (WW⊤,Ψ) is complicated and computation heavy.

Before that, we will derive some asymptotic bounds for signals and SNR estimation error in the

following theorem.
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Theorem 10. Under the assumption A5-A8, When (n, d) → ∞, then∣∣∣(WWT )ii − (ŴŴT )ii

∣∣∣ = Op(
√
d/n) (2.61)∣∣∣ŜNRi − SNRi

∣∣∣ = Op(
√
d/n) (2.62)

Proof. From Theorem 9, we get:
∣∣∣(WWT )ii − (ŴŴT )ii

∣∣∣ ≤ ∣∣∣(Σ̂−Σ)ii

∣∣∣+
∣∣∣Ψ̂ii −Ψii

∣∣∣.
From Theorem 4, we get

∣∣∣(Σ̂−Σ)ii

∣∣∣ = Op(1/
√
n) and from Lemma 5, it can be derived that∣∣∣Ψ̂ii −Ψii

∣∣∣ = Op(
√
d/n).

Therefore,
∣∣∣(WWT )ii − (ŴŴT )ii

∣∣∣ = Op(max(1/
√
n,
√
d/n)) = Op(

√
d/n)

Now we, turn to SNRs. Let X0, Y0 be true values and X,Y be estimators. If 1/c ≤ Y ≤ c, for

some c > 0 then,

|(XY0 −X0Y )/(Y Y0)| = |(X −X0)Y0 −X0(Y − Y0)| /(|Y |Y0) ≤ c
Y0

(Y0|X −X0| +X0|Y − Y0|).

We wish to bound the error
∣∣∣ŜNRi − SNRi

∣∣∣. Note that, SNRi =
WWT

ii

σ2
i

=
Σii−σ2

i

σ2
i

= Σii

σ2
i
−1.

Therefore, the numerator and denominator terms are:

• True Numerator: X0 = Σii

• Estimated Numerator: X = Σ̂ii

• True Denominator: Y0 = σ2i

• Estimated Denominator: Y = σ̂2i

Assumption A6 assures that there is a c, such that 1/c ≤ σ2i ≤ c for sufficiently large n. Therefore,

we get the following:∣∣∣ŜNRi − SNRi

∣∣∣ =

∣∣∣∣XY − X0

Y0

∣∣∣∣
≤ c

Y0
(Y0 |X −X0| +X0 |Y − Y0|)

= c(
∣∣∣Σ̂ii −Σii

∣∣∣+ SNRi

∣∣σ̂2i − σ2i
∣∣) (2.63)

= c(Op(
√

1/n) + SNRi ×Op(
√
d/n)) = Op(

√
d/n). (2.64)

Here we present the three remarks, which provide an upper bound for
∣∣(WW⊤)ii− (ŴŴ⊤)ii

∣∣,∣∣Ψ̂ii −Ψii

∣∣, and
∣∣ ˆSNRi − SNRi

∣∣.
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Remark 1. Let x1, . . . ,xn be d−dimensional n i.i.d. samples from the LFA model xk = Wγk+ϵk.

Suppose Assumptions (A5-A8,A10) hold.

For any δ ∈ (0, 1), if n > ln(6/δ), then with probability at least 1 − δ, the noise variance

estimation error is bounded by:

|σ̃2i − σ2i | ≤ K ·
√

ln(6/δ)

n
+ µi,

and when, n ≥ max{8
c ln(4/δ), ln(12/δ)}, with probability at least 1− δ, the signal variance estima-

tion error is bounded by:

∣∣∣(WWT )ii − (ŴWT )ii

∣∣∣ ≤ (Σii

√
2/c+K

)√ ln(c′/δ)

n
+ µi (2.65)

where µi is defined as:

µi = (WW T )ii − (Ŵ β̂WW T )ii − (Ŵ β̂Ψ)ii (2.66)

and c′ is an universal constant. Also,

µi ≤ Bi, i ∈ {1, . . . , n}

and d is fixed and µi → 0 as n→ ∞. Here, the constant Bi is defined in the proof and depends on

the assumed constants CW , CŴ , Cβ, and σ
2
max.

Proof. The proof strategy is to decompose the error term into a sum of averages of i.i.d. mean-zero

random variables and then apply the appropriate concentration inequalities to each term using a

union bound.

Error Decomposition. The error is decomposed into three main terms:

σ̂2i − σ2i =
1

n

n∑
k=1

[
ϵ2ki + (Wγk)

2
i + 2(Wγk)iϵki − (Ŵγ̂k)i((Wγk)i + ϵki) − σ2i

]
.

Rearrange:

σ̂2i − σ2i =
1

n

n∑
k=1

(
ϵ2ki − σ2i

)
+

1

n

n∑
k=1

[
(Wγk)

2
i − (Ŵγ̂k)i(Wγk)i + 2(Wγk)iϵki − (Ŵγ̂k)iϵki

]
.

Rewrite the second term:

(Wγk)
2
i − (Ŵγ̂k)i(Wγk)i = (Wγk)i

[
(Wγk)i − (Ŵγ̂k)i

]
,

2(W∗γk)iϵki − (Wnewγ̂k)iϵki = ϵki [2(W∗γk)i − (Wnewγ̂k)i] .
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Define uki = (Wγk)i − (Ŵγ̂k)i. Then:

2(Wγk)i − (Ŵγ̂k)i = (Wγk)i +
[
(Wγk)i − (Ŵγ̂k)i

]
= (Wγk)i + uki.

Thus:

σ̂2i − σ2i =
1

n

n∑
k=1

(
ϵ2ki − σ2i

)
︸ ︷︷ ︸

Term 1

+
1

n

n∑
k=1

[(Wγk)iuki]︸ ︷︷ ︸
Term 2a

+
1

n

n∑
k=1

[ϵki((Wγk)i + uki)]︸ ︷︷ ︸
Term 2b

, (2.67)

where uki = (Wγk)i − (Ŵγ̂k)i. We allocate a failure probability of δ/3 to each term.

Term 1 (Noise Variance Error). This is the average of i.i.d. mean-zero variables Zk = ϵ2ki−σ2i .

Since ϵki ∼ N (0, σ2i ), Zk is a scaled centered chi-squared variable, which is sub-exponential with

parameters (v, b) = (2σ2i , 4σ
2
i ). Applying the two-sided Bernstein’s inequality ([113], Eq. 2.20),

with probability at least 1 − δ/3:

∣∣∣∣∣ 1n
n∑
k=1

(ϵ2ki − σ2i )

∣∣∣∣∣ ≤ K1i · max

(√
log(6/δ)

n
,

log(6/δ)

n

)
. (2.68)

Where K1i = cσ2i , c is the constant from Bernstein’s inequality.

Term 2a (Signal-Signal Cross-Term)

We begin by defining Term 2a as the average of n i.i.d. random variables Tk:

Term 2a =
1

n

n∑
k=1

Tk, (2.69)

where Tk is given by

Tk = (Wγk)i ·
[
(Wγk)i − (Ŵ γ̂k)i

]
. (2.70)

In general, the expectation of Tk is non-zero. Let µ2a = E[Tk]. The error is bounded using the

triangle inequality:

|Term 2a| ≤ |µ2a| +

∣∣∣∣∣ 1n
n∑
k=1

(Tk − µ2a)

∣∣∣∣∣ . (2.71)

We will bound the deterministic bias term |µ2a| and the zero-mean fluctuation term separately.

Term 2a Bias Term. The expectation µ2a is computed as:

µ2a = E[Tk] = (WW T )ii − (Ŵ β̂WW T )ii. (2.72)

We bound its magnitude using the triangle inequality and properties of matrix norms:

|µ2a| ≤ |(WW T )ii| + |(Ŵ β̂WW T )ii|. (2.73)
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Under the assumptions, we get the operator norms , the terms are bounded as follows:

|(WW T )ii| = ∥W ∥22 ≤ C2
W , (2.74)

|(Ŵ β̂WW T )ii| ≤ ∥Ŵ β̂WW T ∥2 ≤ ∥Ŵ ∥2∥β̂∥2∥W ∥22 ≤ CŴCβC
2
W . (2.75)

Combining these gives the bound on the bias:

|µ2a| ≤ (C2
W + CŴCβC

2
W ) = O(C2

W + CŴCβC
2
W ) =: K2a,bias. (2.76)

This constant is a polynomial in the assumed regularity constants and is independent of n and δ.

Term 2a Fluctuation Term. To bound the fluctuation term, we express the centered sum-

mands T̃k = Tk − µ2a as a centered quadratic form and apply the Hanson-Wright inequality. First,

define the concatenated Gaussian vector zk ∈ Rr+d:

zk =

(
γk
ϵk

)
∼ N (0,C), (2.77)

where the covariance matrix C is

C =

(
Ir 0
0 Ψ

)
. (2.78)

The operator norm of C is bounded by ∥C∥op = max(1, σ2max) =: σC . We define two deterministic

row vectors, a⊤i and b⊤i :

a⊤i =
(
W i,: 01×d

)
∈ R1×(r+d), (2.79)

b⊤i =
(
W i,: − (Ŵ i,:β̂)W −Ŵ i,:β̂

)
∈ R1×(r+d). (2.80)

With these, the components of Tk are linear forms of zk, and Tk is a quadratic form:

Tk = (a⊤i zk)(b
⊤
i zk) = z⊤k (aib

⊤
i )zk. (2.81)

We use the symmetric part of the matrix, defining Ai:

Ai =
1

2

(
aib

⊤
i + bia

⊤
i

)
. (2.82)

Now, Tk = z⊤kAizk, and its expectation is E[Tk] = tr(AiC) = µ2a. The centered variable is:

T̃k = Tk − µ2a = z⊤kAizk − tr(AiC). (2.83)

The Hanson-Wright inequality states that for a sum of such i.i.d. centered variables,

P

(∣∣∣∣∣
n∑
k=1

T̃k

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−cmin

(
t2

n∥C1/2AiC
1/2∥2F

,
t

∥C1/2AiC
1/2∥op

))
, (2.84)
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for some universal constant c > 0. Let M i = C1/2AiC
1/2. We need to bound the norms of M i.

The norms of M i depend on the norms of ai and bi.

∥ai∥2 = ∥W i,:∥2 ≤ ∥W ∥2 ≤ CWR. (2.85)

For bi, we have:

∥bi∥22 = ∥W i,: − Ŵ i,:β̂W ∥22 + ∥Ŵ i,:β̂∥22 (2.86)

≤
(
∥W i,:∥2 + ∥Ŵ i,:∥2∥β̂∥op∥W ∥op

)2
+
(
∥Ŵ i,:∥2∥β̂∥op

)2
(2.87)

≤
(
CW + CŴCβCW

)2
+
(
CŴCβ

)2
. (2.88)

Let Cb be the square root of the right-hand side, which is a polynomial in the constants.

∥bi∥2 ≤ Cb. (2.89)

The norms of Ai are bounded by:

∥Ai∥op ≤ ∥ai∥2∥bi∥2 ≤ CWCb = O(CWCβCWCŴ ), (2.90)

∥Ai∥F ≤
√

2∥ai∥2∥bi∥2 ≤
√

2CWCb. (2.91)

Finally, we bound the norms of M i:

∥M i∥op ≤ ∥C∥op∥Ai∥op ≤ σCCWCb =: KA,op, (2.92)

∥M i∥F ≤ ∥C∥op∥Ai∥F ≤ σC
√

2CWCb =: KAF . (2.93)

We now solve for the bound on the average fluctuation. Let ϵ = t/n. For a failure probability

of δ/3, the Hanson-Wright inequality is:

δ

3
≥ 2 exp

(
−c · n · min

(
ϵ2

K2
AF

,
ϵ

KA,op

))
. (2.94)

Solving for ϵ yields two conditions that must be met:

ϵ ≥ KAF√
c

√
log(6/δ)

n
, (2.95)

ϵ ≥
KA,op

c

log(6/δ)

n
. (2.96)

To satisfy both, ϵ must be at least the maximum of the two lower bounds. We define a constant

K2a,fluc:

K2a,fluc := max

(
KAF√
c
,
KA,op

c

)
. (2.97)
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This gives the high-probability bound on the fluctuation term:∣∣∣∣∣ 1n
n∑
k=1

(Tk − µ2a)

∣∣∣∣∣ ≤ K2a,fluc max

(√
log(6/δ)

n
,

log(6/δ)

n

)
. (2.98)

Final Bound for Term 2a. By combining the bounds for the bias and the fluctuation, we

arrive at the final bound for Term 2a, which holds with probability at least 1 − δ/3:

|Term 2a| ≤ K2a,bias +K2a,fluc max

(√
log(6/δ)

n
,

log(6/δ)

n

)
. (2.99)

Term 2b (Signal-Noise Cross-Term)

We define Term 2b as the average of n i.i.d. random variables Yk:

Term 2b =
1

n

n∑
k=1

Yk, (2.100)

where Yk is given by

Yk = ϵki ((Wγk)i + uki) = ϵki

(
2(Wγk)i − (Ŵ γ̂k)i

)
. (2.101)

The expectation of Yk is generally non-zero. Let µ2b = E[Yk]. We bound the error using the triangle

inequality:

|Term 2b| ≤ |µ2b| +

∣∣∣∣∣ 1n
n∑
k=1

(Yk − µ2b)

∣∣∣∣∣ . (2.102)

We proceed by bounding the deterministic bias |µ2b| and then the zero-mean fluctuation term.

Term 2b Bias Term The expectation µ2b is computed by taking the expectation over γk and

ϵk. The terms involving products of independent zero-mean variables vanish:

µ2b = E[Yk] = E
[
ϵki

(
2(Wγk)i − (Ŵ β̂(Wγk + ϵk))i

)]
(2.103)

= E [2ϵki(Wγk)i] − E
[
ϵki(Ŵ β̂Wγk)i

]
− E

[
ϵki(Ŵ β̂ϵk)i

]
(2.104)

= 0 − 0 − E

ϵki d∑
j=1

(Ŵ β̂)ijϵkj

 . (2.105)

Since Ψ is diagonal, E[ϵkiϵkj ] = σ2i if j = i and 0 otherwise. This simplifies to:

µ2b = −(Ŵ β̂)iiσ
2
i . (2.106)

We bound its magnitude using the regularity assumptions:

|µ2b| = |(Ŵ β̂)ii|σ2i

≤ ∥Ŵ ∥2∥β̂∥2σ2max ≤ CŴCβσ
2
max =: K2b,bias.

(2.107)
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Term 2b Fluctuation Term. We express the centered summands Ỹk = Yk−µ2b as a centered

quadratic form of the concatenated Gaussian vector zk = (γ⊤
k , ϵ

⊤
k )⊤ ∼ N (0,C). The variable Yk

is a product of two linear forms, Yk = (c⊤i zk)(d
⊤
i zk). The first form represents ϵki:

c⊤i =
(
01×r e⊤i

)
∈ R1×(r+d), (2.108)

where ei is the i-th standard basis vector in Rd. The second form represents 2(Wγk)i − (Ŵ γ̂k)i:

d⊤i =
(
2W i,: − (Ŵ i,:β̂)W −Ŵ i,:β̂

)
∈ R1×(r+d). (2.109)

Thus, Yk is the quadratic form:

Yk = z⊤k (cid
⊤
i )zk. (2.110)

We use the symmetric matrix Bi:

Bi =
1

2

(
cid

⊤
i + dic

⊤
i

)
. (2.111)

Now, Yk = z⊤kBizk, and its expectation is E[Yk] = tr(BiC) = µ2b. The centered variable is:

Ỹk = Yk − µ2b = z⊤kBizk − tr(BiC). (2.112)

We apply the Hanson-Wright inequality to the sum
∑n

k=1 Ỹk, which requires bounding the norms

of the matrix N i = C1/2BiC
1/2.

The norms of N i depend on the norms of ci and di.

∥ci∥2 = ∥ei∥2 = 1. (2.113)

For di, we have:

∥di∥22 = ∥2W i,: − Ŵ i,:β̂W ∥22 + ∥ − Ŵ i,:β̂∥22 (2.114)

≤
(

2∥W i,:∥2 + ∥Ŵ i,:∥2∥β̂∥op∥W ∥op
)2

+
(
∥Ŵ i,:∥2∥β̂∥op

)2
(2.115)

≤
(
2CW + CŴCβCW

)2
+
(
CŴCβ

)2
= O(C2

Ŵ
C2
βC

2
W ) (2.116)

We assume that C2
Ŵ
C2
βC

2
W is much larger than C2

W . Let Cd be the square root of the right-hand

side, which is a polynomial in the constants.

∥di∥2 ≤ Cd. (2.117)
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The norms of Bi are bounded by:

∥Bi∥op ≤ ∥ci∥2∥di∥2 ≤ Cd, (2.118)

∥Bi∥F ≤
√

2∥ci∥2∥di∥2 ≤
√

2Cd. (2.119)

Finally, we bound the norms of N i = C1/2BiC
1/2:

∥N i∥op ≤ ∥C∥op∥Bi∥op ≤ σCCd =: KB,op, (2.120)

∥N i∥F ≤ ∥C∥op∥Bi∥F ≤ σC
√

2Cd =: KBF . (2.121)

Final Bound for Term 2b. By combining the bounds for the bias and the fluctuation, we

arrive at the final bound for Term 2b, which holds with probability at least 1 − δ/3:

|Term 2b| ≤ Ki
2b,bias +K2b,fluc max

(√
log(6/δ)

n
,

log(6/δ)

n

)
. (2.122)

Where,

K2b,fluc := max

(
KBF√
c
,
KB,op

c

)
. (2.123)

Final Combination. By the union bound, all three bounds((2.68),(2.99),(2.122)) hold simulta-

neously with probability at least 1 − δ. Summing the bounds, we get:

|σ̃2i − σ2i | ≤ Ki · max

(√
log(6/δ)

n
,

log(6/δ)

n

)
+K2b,bias +K2a,bias. (2.124)

For n > log(6/δ),

|σ̃2i − σ2i | ≤ Ki ·
√

log(6/δ)

n
+ µi . (2.125)

Defining the final constant Ki := K1i + K2a,fluc + K2b,fluc and µi = (WW T )ii − (Ŵ β̂WW T )ii −

(Ŵ β̂Ψ)ii. From the bias term analysis we get: for i ∈ {1, . . . , n}, µi ≤ K2b,bias +K2a,bias = Bi.

When d is fixed and n → ∞, we get ML estimates (Ŵ, β̂) which are consistent estimators of

W, β (i.e. (Ŵ, β̂)
p→ (W, β)). Therefore, for sufficiently large n, if we replace (Ŵ, β̂) with (W, β),

we get the following:

µi2a + µi2b = (WW T )ii − (Ŵ β̂WW T )ii − (Ŵ β̂Ψ)ii

= (WW T )ii − (WβWW T )ii − (WβΨ)ii

= (WW T (Id −Σ−1(Σ−Ψ)) − (WβΨ))ii

= (WW TΣ−1Ψ−WβΨ)ii

= (WβΨ−WβΨ)ii = 0,

(2.126)
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which completes the proof of the noise estimation error bound.

Now we will prove the next part. The result follows directly from the error decomposition in

Equation (2.60). We bound the two terms on the right-hand side separately.

The first term,
∣∣∣(Σ̂−Σ)ii

∣∣∣, is the element-wise covariance error. By Theorem 4, this is bounded

by Σii

√
2 log(4/δ)/cn with probability at least 1 − δ/2, whenever n ≥ 8

c log(4/δ).

The second term,
∣∣∣Ψ̂ii −Ψii

∣∣∣, is the noise variance estimation error. By Theorem 1, this is

bounded by Ki ·
√

log(12/δ)
n +Bi with probability at least 1 − δ/2, whenever n > log(12/δ).

Applying a union bound to combine these two events and absorbing constants gives the final

result.

Now we will present our following remark, which will connect the estimation error associated

with (Σii, σ
2
i ) with the estimation error of SNRi.

Remark 2 (SNR Estimation Error Bound). For the i-th feature in the LFA model, let the true

SNR be SNRi = (WWT )ii/σ
2
i and its estimate be ŜNRi = (ŴWT )ii/σ̂

2
i . Let the assumptions of

Remark 1 hold.

If the sample size n satisfies n ≥ 2Ki

(σ2
i −2Bi)2

ln(12δ ), then with probability at least 1 − δ, the SNR

estimation error is bounded by:

|ŜNRi − SNRi| ≤
2c

σ2i
Σii ·

√
ln(4/δ)

n
+

2SNRi

(σ2i )
(K ·

√
log(12/δ)

n
+Bi) (2.127)

where (K,Bi) are defined in Theorem 1.

Proof. From theorem 10, we observe that bound of |ŜNRi−SNRi|, depends upon |σ2i − σ̂2i |. We

assume that,
∣∣σ̂2i − σ2i

∣∣ ≤ σ2i /2 Therefore, we require the sample size n to be large enough so that

this bound is less than or equal to σ2i /2:

K ·
√

log(12/δ)

n
+Bi ≤

σ2i
2

=⇒ n ≥
2Ki log(12δ )

(σ2i − 2Bi)2
).

This is the sample size condition stated in the theorem. Assuming this condition holds, we can

proceed, we want the error bound hold with probability (1 − δ
2)

Note
∣∣σ̂2i − σ2i

∣∣ ≤ σ2i /2 =⇒ |ŜNRi−SNRi| ≤ 2
(σ2

i )

∣∣∣Σ̂ii −Σii

∣∣∣+ 2SNRi

(σ2
i )

∣∣σ̂2i − σ2i
∣∣ Now we will

get the required bound by replacing the
∣∣∣Σ̂ii −Σii

∣∣∣ and
∣∣σ̂2i − σ2i

∣∣, with their finite sample bound,

derived in Theorem 4 and Remark 1
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Discussion of the SNR Estimation Error Bound and its Implications. The implications

of this result can be deconstructed into several key points.

First and foremost, the theorem provides the critical transition from an asymptotic promise

to a finite-sample guarantee. The convergence guarantees in our previous work assured us that

with enough data, we would eventually identify the correct features. This result quantifies that pro-

cess, providing a non-asymptotic error bound that holds for any given n. The explicit dependence

on n via the 1/
√
n term establishes the rate of convergence, confirming that the estimator behaves

as expected, with the statistical error diminishing at the standard parametric rate. This allows a

user to understand how the precision of their SNR estimates will improve with the collection of

more data.

Second, the structure of the bound is deeply informative. It is composed of two distinct parts:

a systematic bias term (B) and a statistical fluctuation term that scales with 1/
√
n. The

statistical term represents the random error from finite sampling. The bias term, however, is a finite

sample correction. It represents an error component that does vanish as the number of samples

n increases. This bias arises from using the estimated parameters themselves within the iterative

EM estimation procedure, coupling the estimates in a way that introduces a persistent, systematic

deviation. Our analysis makes this bias explicit, demonstrating that while the LFA-derived SNR

is a statistically stable estimate, it is not, in general, an unbiased one for finite n. This is a critical

piece of knowledge for anyone using LFA for precise quantitative modeling.

Finally, and most importantly, this theorem provides the formal justification for our feature

selection methodology. It proves that the SNR we compute from data is not an arbitrary, noisy

value but a statistically stable quantity that is explicitly and controllably close to the true SNR.

This guarantee is what allows us to confidently rank features based on their estimated SNR values,

knowing that this ranking is a meaningful reflection of the features’ true, underlying importance.

It elevates our method from a successful heuristic to a theoretically grounded and provably reliable

engineering solution.

2.5 Simulations

We test the efficiency of previously discussed latent factor models through simulations. The

methods employ dimension reduction through feature selection, and these simulations enable the

measurement of the accuracy in recovering the true features. This is tested over varying sample

sizes n and noise levels dnoise.
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2.5.1 Simulation Procedure

The simulated sample has the following form:

Xn×d =
(
X

(1)
n×10,X

(2)
n×dnoise

)
(2.128)

Here, the d-dimensional observation vector X is a concatenation of relevant X(1) and noisy

(irrelevant) X(2) dimensions. In this simulation setup, the number of relevant features (i.e., the

dimension of X(1)) is fixed at 10, and we have experimented with different numbers of noisy di-

mensions, dnoise. The simulation procedure is described in detail in the following steps:

1. We assume the SNR values corresponding to X(1) are positive. It is intuitive to generate

X(1) based on a pre-fixed set of positive SNR values. For a given set of signals, smaller SNRs

correspond to large error variances. To make the true feature recovery more challenging, we

choose SNRs to range from 0.5 (small) to 1.4 (large): SNR∗[i] = (15 − i)/10, i ∈ {1, ..., 10}.

2. Generate the coefficient matrix W associated with γis and used for computing signals.

(a) W10×r = [Wij ], Wij
iid∼ N(0, 1)

3. Generate the error vector e(1) ∈ R10, e
(1)
i

iid∼ N(0,Ψ(1)∗). Here Ψ(1)∗ = diag(σ∗21 , σ
∗2
2 , · · · , σ∗210)

and σ∗2j =
∑r

l=1 W
2
jl

SNR∗[j]

4. Generate the latent factors γi ∈ Rr associated with X
(1)
i· : γi

iid∼ N(0, Ir), i = 1, 2, · · · , n. We

used r = 3 in experiments.

5. Generate the relevant features as (X
(1)
i· )T = Wγi + e

(1)
i , i = 1, 2, · · · , n.

For the noisy variables, we assume the signal is equal to 0. Therefore, the generation of noise

is sufficient. Following are the steps to generate X
(2)
n×dnoise

:

1. Generate noise variances, Ψ∗(2) = diag(σ∗211, σ
∗2
12, · · · , σ∗2d ) and

σ∗2(10+j)
iid∼ Uniform(r/1.4, r/0.5), ; j = 1, · · · , dnoise

2. Generate (X
(2)
i· )T

iid∼ N(0,Ψ∗(2)), i = 1, · · · , n.

Also, let us denote Ψ∗ = [Ψ∗(1),Ψ∗(2)] and ψ∗ = diagonal elements of (Ψ∗) and

sig∗ = diagonal elements of (WWT ) for future use.

Smaller SNRs usually correspond to larger error variances. Therefore, the true SNRs range

from 0.5 (small) to 1.4 (large) to make true feature recovery more challenging. The noise variable

variances for the irrelevant dimensions are made comparable to those of the signal dimensions using

the uniform distribution, as specified above.
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(a) (b)

Figure 2.1: Generated plots using n = 1000 and d = 110, for err( ˆsig) in (a), err(ψ̂) in (b)

Figure 2.2: Comparison of ˆSNR vs ˆSNR∗ for n = 1000 and d = 110

Parameter Estimation Evaluation. We compare the estimation error of the model param-

eters for the four SNR-based methods (i.e., PPCA, LFA, ELF, HeteroPCA).

Within a simulated dataset, we analyzed the estimation error for the signals ( ˆsig) and error

variances (ψ̂) across multiple dimensions (denoted as d) for various iteration counts. For an esti-

mate θ̂d×1 corresponding to the parameter, θ∗d×1, we measure the mean absolute deviation (MAD)

between those two over the d dimensions, denoted as err(θ̂). It is defined below:

err(θ̂) = MAD(θ̂) =
1

d

d∑
i=1

|θ∗i − θ̂i|, (2.129)

where θ̂ could be one of (sig,ψ).
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Figure 2.1 displays the estimation errors of the signal and noise variances as err( ˆsig) and

err(ψ̂) respectively for different iteration counts for all the SNR based methods. In contrast to

other methods, which stabilize at a value higher than 0, those of the LFA method consistently

decrease, eventually converging towards zero within 100 iterations. The performance of ELF and

HeteroPCA methods closely resembles each other. ELF exhibited slightly superior performance

over HeteroPCA in estimating the signal (sig), while HeteroPCA outperformed ELF in estimating

ψ. Both methods reached stability within the initial 5 iterations. The PPCA method exhibits the

maximum estimation error for ˆsig among all the SNR-based methods. However, the estimation of

ψ̂ is considerably lower than the ELF and HeteroPCA methods.

In Figure 2.2 are plotted the estimated SNRs ˆSNR along with the true SNRs SNR∗ for all

SNR-based methods. All the methods provided estimates close to 0 for the noisy dimensions (i.e.,

11, 12, · · · , 110) except for PPCA. There are several dimensions with significant noise levels where

PPCA provided ˆSNR considerably above 0, whereas there are several crucial dimensions where

PPCA produced ˆSNR near zero. From the plot, it’s evident that LFA has the most accurate

estimation of SNR∗. Regarding ELF, we observed that its ˆSNR values are above 0 and close

to corresponding positive values of SNR∗, although they do not precisely align with the values

of SNR∗ as effectively as LFA does. Conversely, HeteroPCA tends to overestimate the positive

values of SNR∗ the most, compared to other methods. However, ˆSNR provided by HeteroPCA

still captures the pattern of SNR∗ more efficiently than ELF.

Furthermore, we have simulated 50 datasets for various sample size choices (denoted as n), to

measure the estimation errors for ( ˆsig,ψ̂, ˆSNR) using the average of MAD over d dimensions. We

have already defined err(θ̂) in (2.129) as the mean AD over d-dimensions. For multiple datasets

with fixed value of n and d = 110, we will use the average of err(θ̂),denoted as err(θ̂). Let

erri(θ̂), i = 1, 2, · · · p be the estimation errors using p different samples. Then err(θ̂) is defined as:

err(θ̂) =
1

p

p∑
i=1

erri(θ̂). (2.130)

In our case, p = 50.

Figure 2.3 presents the average estimation error err(θ̂) plotted against the sample size n, where

θ belongs to the set of parameters {sig, ψ, SNR}.

Across all three graphs, an observable trend is evident, suggesting that the LFA method provides

maximum reliability as the sample size increases. Specifically, for LFA, as we gather more data,
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(a) (b) (c)

Figure 2.3: Generated plots using d = 110 and different values of n, for err( ˆsig) in (a), err(ψ̂) in
(b) and err( ˆSNR) in (c)

the errors in estimating all parameters decrease. Notably, the LFA method exhibits the smallest

estimation error across all parameters when compared to the other methods.

Additionally, the ELF and HeteroPCA methods, both nonparametric variants of LFA, operate

on SNR. The performance of these two methods is very close in terms of estimation error corre-

sponding to the set of parameters {sig, ψ, SNR}. Conversely, PPCA represents a parametric

alternative, predicated upon the assumption of uniform error variance across dimensions. In Fig-

ure 2.3 (a), the ELF signal estimates exhibit the smallest approximation error after LFA, and is

marginally better than HeteroPCA. The PPCA provides the largest average error for estimating

ˆsig among all other methods.

In Figure 2.3 (b), HeteroPCA shows a slight advantage by consistently providing smaller err(ψ̂)

values across all sample sizes compared to ELF and PPCA, with the latter two exhibiting similar

performance. LFA stands out as significantly superior in estimating Ψ compared to all other

methods.

In Figure 2.3 (c), LFA, HeteroPCA, and ELF demonstrate comparable performance, with ELF

and HeteroPCA showing slightly higher err( ˆSNR) values than LFA. Conversely, PPCA falls be-

hind due to its assumption of homoscedasticity, which poses a challenge in accurately estimating

model parameters.

Table 2.1 displays the average (standard deviation) of erri(θ̂), i = 1, 2, · · · , 50 for varying sample

sizes n. Overall, the mean values for PPCA tend to be higher compared to those of the other

methods. Additionally, we observed that the standard deviations of erri( ˆSNR), i = 1, 2, · · · , 50,

for small values of n using the LFA method are notably higher than those of other methods, which

eventually decrease as the sample size increases.

Figures 2.4 and 2.5 provide a comprehensive empirical validation of our theoretical analysis.

Figure 2.4 showcases the comparison between err( ˆsig) and the corresponding theoretical bound
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Table 2.1: Mean and standard deviation of parameter estimate errors for SNR based methods.

Mean (std)

n ELF HeteroPCA LFA PPCA
ˆsig 50 0.23(0.022) 0.24(0.014) 0.45(0.568) 0.23(0.007)

100 0.17(0.019) 0.19(0.015) 0.24(0.217) 0.19(0.006)
300 0.11(0.003) 0.12(0.008) 0.07(0.007) 0.15(0.003)
500 0.11(0.002) 0.11(0.003) 0.04(0.004) 0.15(0.002)
1000 0.10(0.002) 0.10( 0.004) 0.03(0.003) 0.14(0.001)

Ψ̂ 50 0.98(0.014) 0.95(0.01) 0.74(0.038) 0.97(0.01)
100 0.96(0.014) 0.93(0.009) 0.50(0.044) 0.96(0.007)
300 0.94(0.002) 0.91(0.007) 0.26(0.008) 0.95(0.003)
500 0.94(0.001) 0.91(0.002) 0.20(0.006) 0.94(0.002)
1000 0.94(0.001) 0.91(0.001) 0.14(0.005) 0.94(0.002)

ˆSNR 50 0.19(0.002) 0.19(0.002) 0.41(0.059) 0.20(0.002)
100 0.09(0.002) 0.12(0.001) 0.14(0.04) 0.15(0.001)
300 0.04(0.001) 0.04(0.001) 0.03(0.021) 0.11(0.001)
500 0.04(0.001) 0.04(0.001) 0.02(0.015) 0.11(0.001)
1000 0.03(0.001) 0.03(0.001) 0.01(0.009) 0.10(0.001)

vs n on a log-log scale for PPCA. This figure empirically validates our non-asymptotic analysis

for the signal variance estimator, sig. The near-linear slope of both curves on the log-log scale

visually demonstrates the expected 1/
√
n rate of convergence. Similarly, Figure 2.5 illustrates

the average estimation error, its corresponding theoretical bound, and the systematic bias for

the LFA estimators (sig,ψ,SNR) vs. the n. Across all three subplots, the key observations

confirm the soundness of our framework: the empirical error consistently lies below our derived

theoretical bound, demonstrating that our bound is valid and correctly upper-bounds the true

error. A closer comparison reveals important structural details. The estimation behaviors for the

(sig,ψ) are nearly identical, as shown by the parallel trends in plots (a) and (b). Furthermore,

the plots highlight the significance of the systematic bias (green dashed line). This bias constitutes

a substantial component of the overall error. It converges much more slowly than the stochastic

error, underscoring the need to analyze it as a distinct, non-vanishing term. While the convergence

rate of the empirical SNR error is comparable to that of the signal and noise, its structure is

different. The lower magnitude of its bias term relative to its overall bound suggests that the final

error is more heavily influenced by the stochastic component, which diminishes rapidly with n.
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Figure 2.4: Estimation error and theoretical bound vs. number of observations (n) for the PPCA
signal variance.

(a) ˆsig (b) ψ̂ (c) ˆSNR

Figure 2.5: Estimation errors, Theoretical Bounds and Biases vs. number of observations (n) of
LFA for (a) the signal variance, ˆsig, (b) the noise variance, ψ̂, and (c) the SNRs, ˆSNR, when
d = 110.

Feature Recovery Evaluation. Feature Recovery Evaluation. In this experiment, we

consider feature selection accuracy a pivotal aspect of method assessment. To measure how accu-

rate the feature selection process is, we compare the set of indices of the features that are truly

relevant(signals), denoted as Itrue with the ones each method has predicted as relevant, denoted

as Ipred. The feature selection accuracy is defined as the average percentage of features that are

correctly recovered:

Acc = E(|Itrue ∩ Ipred|)/|Itrue|, (2.131)

where the expected value is computed over 50 independent runs. We conducted 50 simulations for

each n and dnoise combination and recorded the Acc values in Table 2.2.

Our experimentation involved varying dnoise within {10, 50, 100} and n within {50, 100, 300, 500, 1000}.

Table 2.2 presents the accuracies of variable selection for six methods discussed in previous chapters.

A clear and consistent trend across all methods is a direct relationship between sample size and
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Table 2.2: Feature selection accuracy for outlier-free data.

Noise n Methods

PPCA LFA ELF HeteroPCA

10

50 71.2 90.6 87.6 84.4
100 82.4 97.0 94.0 93.0
300 88.0 100.0 98.0 98.8
500 92.4 100.0 99.0 99.2
1000 95.6 100.0 99.2 99.8

50

50 55.4 70.4 73.4 65.6
100 72.6 91.8 92.8 87.0
300 79.8 100.0 98.6 94.4
500 86.4 100.0 99.4 98.6
1000 91.4 100.0 99.0 99.2

100

50 49.0 57.4 59.0 55.8
100 62.8 87.4 87.2 75.6
300 82.0 99.6 99.6 96.4
500 82.6 100.0 99.4 95.2
1000 90.0 100.0 99.4 99.6

accuracy. As the number of observations n increases from 50 to 1000, the feature recovery accuracy

of all models improves significantly. This validates the statistical consistency of the SNR-based ap-

proach, confirming that with more data, the models become progressively better at distinguishing

true signal from noise. Conversely, for a fixed sample size, increasing the number of noise features

from 10 to 100 generally degrades performance, highlighting the challenge of identifying relevant

signals in a higher-dimensional, noisier space.

The central finding of this simulation is the clear stratification in performance among the

different generative models, with LFA demonstrating overwhelmingly superior performance. Across

nearly all conditions, LFA achieves the highest accuracy, often reaching perfect (100%) or near-

perfect feature recovery with only n = 300 samples, even in the most challenging scenario with 100

noise features. The ELF method proves to be a very strong second, with performance that is highly

competitive with LFA, particularly in the low-sample-size regime (n = 50 and n = 100), where

it occasionally outperforms all other methods. HeteroPCA also performs robustly, consistently

surpassing PPCA, but it generally lags behind the top-tier performance of LFA and ELF.
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CHAPTER 3

FEATURE SELECTION USING SPARSITY

INDUCING PENALTIES

3.1 Related Work

The use of sparsity inducing penalties in high-dimensional data analysis is one of the most

popular research directions. To select features in a high-dimensional dataset, sparse penalty-based

methods reduce prediction errors by setting many feature coefficients to zero. This helps simplify

the model.

In the case of binary classification or regression, one way of performing feature selection is to use

a special penalty term called ”p-norm sparsity-inducing penalty” on the coefficient matrix W, where

p can be any number from 0 to 1. The goal is to minimize a loss L(W) = loss(y,WX) + α∥W∥p.

The penalty term encourages most features to be small or even zero. The parameter α helps balance

between making accurate predictions versus simplifying the model. Even though p = 0 would be

ideal in this case, it is not feasible for optimization. Often p = 1 is used instead, which usually

results in a convex optimization problem. This method, called LASSO [109], has become popular

among feature selection methods.

Sparsity has also been introduced into PCA methods, such as Sparse PCA [130]. Regular PCA

identifies the most informative directions in the data, but these directions can involve many features

while sparse PCA does the same by introducing sparsity. Sparse principal components often rely

on only a few features, making them easier to interpret and potentially reducing model complexity.

It also outperforms traditional PCA in the presence of data correlation. In recent years, sparse

PCA has been widely used for feature selection across many fields [57, 21]. These algorithms seek

sparse loading vectors separately and progress sequentially. The loading matrix obtained may lack

optimality and contain too many variables. On the other hand, [102] proposes joint sparsity across

all loading vectors, to ensure dimension reduction even when constructing a number of factors.

This turns out to be particularly helpful in rank-constrained variable screening. We will discuss

this approach in detail in the following section. In recent years, [78] has introduced sparse PCA

by adding ”False Discovery Rate” (FDR) control. FDR limits the chance of accidentally picking

49



irrelevant variables (false positives) while selecting the important ones. They use a tool called the

T-Rex selector to achieve this, which automatically handles selection without requiring manual

tweaking of how ”sparse” (few variables) the model should be. [124] reformulates convex SPCA

with PSD cone constraints for faster optimization via two-step PSD projection. They also include

regularization (penalty) strategies to fine-tune sparsity.

Sparsity constraints have also been combined with other models to identify important features

during a particular task. [49] tackle cancer classification using gene expression by introducing a

hybrid L 1
2

+L2 regularization for sparse logistic regression. This technique leverages the L1 penalty

for feature selection (finding key genes) and the L2 penalty for stability (grouping correlated genes).

[12] proposes an online feature selection method suitable for massive datasets. It uses sparse

gradients to promote sparsity in its feature weights during classifier training. Therefore, features

with minimal influence will have their weights driven towards zero and will be removed from the

model eventually.

3.2 Selective Reduced Rank Regression

In this section, we will introduce the Selective Reduced Rank Regression (SRRR) proposed by

[102]. We will then propose a robust version of it in the following section. SRRR is an approach for

extracting selective factors from a parsimonious set of features in a multivariate regression setup.

First, we will describe the original problem of SRRR. Eventually, we will make some adjustments

and add more constraints to make it suitable for feature selection in the unsupervised setup.

The original optimization problem (in a supervised setup) uses a low-rank representation of the

data Xn×d to predict a response matrix Yn×p.

min
W∈Rp×d

F (W, λ), where F (W, λ) =
1

K
∥Y −XW∥2F +

d∑
j=1

P (∥Wj∥2, λ), and r(W) ≤ r. (3.1)

Here W is the loading matrix, λ and r are the regularization parameters that control the sparsity

and rank of the loading matrix respectively, r ≪ min{p, d}, K denotes the scaling parameter for

(3.1) and P is a sparsity promoting, possibly non-convex penalty function, which is associated with

some thresholding function Θ defined in Definition 3 below. First we will introduce the definition

of a thresholding function Θ.

Definition 2. A Thresholding Function is a function Θ(·;λ) : R → R with 0 ≤ λ < ∞ that

satisfies:
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• Θ(−t;λ) = −Θ(t;λ),

• Θ(t;λ) ≤ Θ(t′;λ) for t ≤ t′,

• limt→∞ Θ(t;λ) = ∞,

• 0 ≤ Θ(t;λ) ≤ t for 0 ≤ t <∞.

Θ(t;λ) is an odd monotone unbounded shrinkage rule for t. A vector version, Θ(t;λ) is defined

componentwise.

Definition 3. Θ induced P: Given any thresholding function Θ(·;λ), we say penalty P is induced

by Θ if:

P (t;λ) − P (0;λ) = PΘ(t;λ) + q(t;λ),

PΘ(t;λ) =

∫ |t|

0
[Θ−1(u;λ) − u]du,

Θ−1(u;λ) = sup{s : Θ(s;λ) ≤ u},

for some non negative q(θ, λ) : q{Θ(t;λ)} = 0, t ∈ R.

The Θ− induced property enables us to substitute the penalty function P with the corresponding

thresholding function Θ, to directly control the sparsity of each row in W. This not only streamlines

the feature selection process but also enhances the model’s interpretability. This optimization

problem is a modified version of reduced rank regression[54], which aims to find a low rank solution

for W, while considering two parsimonies jointly: 1) low rank constraint of W and 2) sparsity

constraint on W.

The author shows that the proposed method enjoys sharp oracle inequalities even when the

number of input features is much larger than the number of response variables.

Theorem 11. [due to [102]] Let Yn×p = Xn×dW
∗ + E, with all entries of E, independent and

identically distributed as N (0, σ2). Let Ŵ be a selective reduced rank regression estimator that

minimizes equation ∥Y − XW∥2F + λ2∥W∥2,0, subject to r(W) ≤ r. Then, under λ = Aσ(r +

log(d))
1
2 , where A is a large enough constant, the following oracle inequality holds for anyW ∈ Rd×p

with r(W ) ≤ r:

E(∥XŴ −XW ∗∥2F ) ≲ ∥XW −XW ∗∥2F + λ2∥W∥2,0 + (p− r)rσ2 + σ2. (3.2)

Here, ”≲” means that the inequality holds up to a multiplicative constant.
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Theorem 11 establishes non-asymptotic oracle inequalities for the prediction error of the selective

reduced rank regression estimator. The estimator minimizes the squared Frobenius norm loss

∥Y −XW∥2F augmented with group sparsity penalties on the coefficient matrix W, subject to a

rank constraint r(W) ≤ r. E(∥XŴ−XW∗∥2F ) is bounded, up to a universal constant, by ∥XW−

XW∗∥2F (bias) plus a penalty term involving the number of non-null rows, plus (p − r)rσ2 + σ2.

The resulting error rate for the true model (W = W∗) is O((∥W∗∥2,0 + p− r∗)r∗ + ∥W∗∥2,0 log p),

which is sharper than rates computed in several other contemporary works [19, 77].

This theorem is crucial because it rigorously justifies the benefit of joint variable selection and

rank reduction, demonstrating that simultaneous regularization achieves lower prediction error than

applying either technique alone.

This joint regularization simultaneously controls the number of active predictors via λ and

the dimensionality of the factor space via r, enabling interpretable factor extraction from high-

dimensional multivariate data. To adaptively tune these parameters without cross-validation, the

author introduces the predictive information criterion (PIC), defined as Po(W) = σ2
[
{q ∧ r(W) +

p − r(W)}r(W) + J(W) log(ed/J(W))
]
, where q = r(X),J(W) = ∥W∥2,0 and σ2 is the noise

variance. The PIC integrates a degrees-of-freedom term for rank reduction with a risk inflation

term for variable selection uncertainty. The paper established a non-asymptotic oracle inequality

showing that minimizing ∥Y −XW∥2F + APo(W) yields prediction error within a constant factor

of the minimax optimal rate over all candidate models, without assumptions on X or W∗. A

scale-free variant of Po(W) eliminates σ2 estimation, ensuring practical applicability. Unlike BIC

or cross-validation, which lack theoretical support in joint sparse low-rank settings, the PIC is

minimax optimal and naturally adapts to unknown sparsity and rank structures. This scale free

version of PIC is given by: ∥Y −XW∥2F /{pn−APo(W)/σ2}

The Θ−induced penalties enable a universal algorithmic treatment via iterative thresholding

[101], with convergence guarantees even for nonconvex penalties. Examples include: (i) convex

penalties such as the group l1(Θ(s;λ) = (s − λ)+), which induces (P (s;λ) = λs); (ii) nonconvex

penalties like SCAD[31], MCP[123] etc., all of which induce hard-thresholding-like behavior(Θ(s;λ) =

s · I(|s| ≥ λ)) for large signals while smoothly shrinking small ones. Algorithm 4 demonstrates the

iterative optimization process for the SRRR problem.
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Algorithm 4: Selective Reduced Rank Regression Methods (Supervised Case):

Input :

• Rank r , 1 ≤ r ≤ p and thresholding parameter λ : λ ≥ 0.

• Θ : Thresholding rule

• Minner : Maximum number of inner iterations

• Mouter : Maximum number of outer iterations

Output : Estimated matrices Ŵ = W(t), Ŝ = S(t),V̂ = V (t)

Initialize: Reduced Rank Regression Estimate has been used here to initialize.

• V(0) = Vr,Vr is formed by first r eigen vectors of YTX(XTX)+XTY

• S(0) = (XTX)+XTYVr

• W(0) = (XTX)+XTYVrV
T
r

Calculate K = ∥X∥22
for t = 0 to Mouter do

Calculate M = Y TXS(t−1), compute the reduced rank UrDrV
T
r = M by SVD

Compute V(t) = UrV
T
r

To update S, set l = 0 , S̃(0) = S(t−1)

for l = 0 to Minner do

Compute Ξ(l,t) = XTY V(t−1)/K + (I −XTX/K)S̃(l−1)

S̃(l) = Θ(Ξ(l,t), λ)

if {∥S̃(l) − S̃(l−1)∥ is sufficiently small} break

Compute Ŝ(t) = S̃(l)

Compute Ŵ (t) = S(t)V
T
(t)

if {∥Ŵ (t) − Ŵ (t−1)∥2 is sufficiently small} break

53



3.3 Feature Selection for Selective PCA

SRRR stands as a valuable tool for feature selection, efficiently optimizing the problem defined

in Eq. (3.1), by integrating several parsimonies: low-rank constraint and row-wise sparsity. In our

methodological framework, we do not include class label information in the optimization problem,

thereby enhancing computational efficiency and scalability. In this unsupervised setup, the data

matrix is X ∈ Rn×d, and the design matrix can be assumed to be I. The new method has

been named ’Selective Principal Component Analysis’. The objective function along with variable

screening is formulated in the following way, with sparsity control and variable screening constraints:

min
S∈Rd×r,V∈On×r

1

2K
∥X− SV⊤∥2F +

η

2
∥S∥2F subject to ∥S∥2,0 ≤ m. (3.3)

The matrix V can be regarded as the unobserved latent factor matrix, which is accountable for

variation in the data matrix X, and S can be interpreted as the coefficient matrix, which transforms

the r-dimensional latent vector into a d-dimensional observation. Therefore, Ŝ plays an important

role in the variable selection procedure.

Here, rank(S) = r ≪ m (number of selected features) facilitates the projection of the cho-

sen features into a lower-dimensional space, as the chosen features may not be independent from

each other. Additionally, the low-rank constraint ensures a reduction in the effective number of

parameters, thereby improving estimation efficiency.

Furthermore, the cardinality constraint on S, rather than a penalty, enables the direct control

of the number of predictors selected and is very intuitive. One can use the quantile thresholding

function θ to optimize the new objective function to handle the row-wise sparsity.

Quantile Thresholding: Given 1 ≤ i ≤ d, for any S = (s1, s2, · · · sd)T ∈ Rd×r, to get m

features, the thresholding function can be defined as,

Θ(s, η,m) =

{
s(j)/(1 + η) if 1 ≤ j ≤ m,

0 otherwise.
(3.4)

Here {s(i), i = 1, 2, · · · , d} are the ordered row vectors of S based on ∥si∥2. To get m features,

we will use Θ(Ξ(l,t),m) in Algorithm 5.

We will exclude a feature from X if it corresponds to an entire row of Ŝ set to 0, determined

by the thresholding rule. The computation becomes much lighter in the unsupervised case for the

identity design matrix. Note that the Selective PCA enjoys all the theoretical properties of SRRR,
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as the oracle theorem or any other theorem following that in [102], does not impose any condition

on X,W∗.

Algorithm 5: Feature Selection with Selective PCA

Input : Rank r, 1 ≤ r ≤ d, desired number of features m, maximum number of

iterations Miter.

Output : Set I of indices corresponding to the m most important features

Initialize: Initialize S,V and W similar to Algorithm 4 with Y = XT and X = I

for t = 1 to Miter do
Calculate M = XS(t−1), compute the reduced rank SVD, M = UrDrV

T
r

Compute V(t) = UrV
T
r

Compute Ξ(t) = XTV(t−1)

Calculate S(t) = Θ(Ξ(t);m) using Eq. (3.4).

Compute Ŵ (t) = S(t)V
T
(t)

if {∥Ŵ (t) − Ŵ (t−1)∥2 is sufficiently small} break

Obtain selected set of indices corresponding to the m most important features,

Im = {i : si ̸= 0}

3.4 Robust Loss Minimization

We will now propose a robust version of Selective PCA to handle extreme values in high-

dimensional datasets effectively, along with feature selection and rank optimization. The mean

squared error (MSE) is sensitive to outliers as the squared differences can be heavily influenced,

leading to significant errors and affecting the model’s overall performance. Robust loss functions,

on the other hand, are designed to handle outliers more effectively by being less sensitive to extreme

values. Here are some challenges with the MSE loss in the presence of outliers and some ways in

which robust loss functions can address these issues:

• The MSE loss amplifies the influence of outliers by squaring errors, but robust loss functions

mitigate this effect by downweighting the impact of significant errors.

• The optimization process with the MSE loss becomes unstable due to the linear increase

in gradient with outliers. In contrast, robust loss functions can limit such influence on the

gradient to prevent extensive updates.

To obtain robust estimates of location, the M-estimation method in linear regression setup

was proposed by [50]. Instead of minimizing ∥y − Xβ∥2, in a linear regression setup, the author
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suggested using a general loss function ρ, and a robust location estimate can be found by minimizing

the following:

min
β

∑
i

ρ(y[i] − xTi β). (3.5)

Here, X = (x1,x2, · · · ,xn)T . As a consequence, we replace the following score equation in OLS:

XT (Xβ − y) = 0

with the corresponding score equation in the M-estimation method:

∑
i

xiψ(y[i] − xTi β) = 0,

where ψ(x) = ∂
∂xρ(x). But the score function ψ can be defined more generally than a derivative

function.

Here, we are going to use a Lorentzian loss [17] as ρ and explore feature selection methods

similar to the Selective PCA setup afterwards. Originally, the Lorentzian loss was defined as:

Definition 4 (due to [17]). The Lorenzian Loss is defined as:

ρL(r, σ2) = log(1 +
r2

σ2
).

The Lorenzian loss function with σ2 = 2c, where c > 0 is a scaling factor, can be viewed as a

special case of the following general family of robust loss functions [14].

Definition 5. [due to [14]] The general family of robust loss function ρ(x, α, c) is defined as:

ρ(x, α, c) =


1
2(xc )2 if α = 2,

log(12(xc )2 + 1) if α = 0,

1 − exp(−1
2(xc )2) if α = −∞,

|α−2|
α ((

(x
c
)2

|α−2| + 1)
α
2 − 1) otherwise.

Therefore, the corresponding gradients ψ(x, α, c) are:

∂

∂x
ρ(x, α, c) = ψ(x, α, c) =


x
c2

if α = 2,
2x

x2+2c2
if α = 0,

x
c2

exp(−1
2(xc )2) if α = −∞,

x
c2

(
(x
c
)2

|α−2| + 1)
α
2
−1 otherwise.
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Figure 3.1: Several loss functions (left) and their corresponding derivatives (right) from Definition
5.

This family of loss functions is smooth with respect to x and has bounded first and second order

derivatives for α ≤ 1. More specifically,

|∂ρ
∂x

(x, α, c)| ≤

1
c

(
α−2
α−1

)(α−1
2 )

≤ 1
c if α ≤ 1,

|x|
c2

if α ≤ 2.

To get an idea about how the robust losses behave, it is crucial to look at the corresponding

gradients ψ.

• α = 2 (L2 loss): In this case, the gradient ψ is linear. It means a larger error yields a larger

gradient, which is not a desirable property of a robust loss function.

• α = 1 (Charbonnier loss [25], pseudo-Huber loss [52] ): The ψ function saturates, which

means the large errors have as much effect as moderate errors on the gradients.

• α = 0 (Lorentzian Loss [17]): The ψ begins to redescend toward 0 as the error gets larger.

This means the large errors have less influence than the moderate errors.

• α < 0 (Geman-McClure loss [34], Welsch loss [27, 68] ): As α gets smaller, the rate at which

ψ redescends towards 0 increases. Therefore, the effects of outliers on the gradient become

even smaller.

Therefore, it is evident that the Lorenzian loss is more robust to outliers compared to many

other loss functions with α > 0. Therefore, if the data contains a significant number of outliers,

the Lorenzian loss might be a better choice to minimize their influence on the loss calculation as

ψ(t)/t decreases sharply.
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Now, we will define finite sample breakdown points, which are a crucial measure for quantifying

the robustness of an estimator in the presence of outliers in the dataset. It can be defined in many

ways, but we will use the definition from [51].

Definition 6. Finite Sample Breakdown Points [due to [51]] Let x = {x1, x2, · · · , xn} be

a finite sample of size n. We can corrupt this sample by performing ϵ contamination: Let y =

{y1, y2, · · · , ym} be m arbitrary values, then the corrupted sample is x′ = x ∪ y of size m + n and

contains a fraction ϵ = m
m+n of bad values. Let T (x) be a robust estimator and b(ϵ,x, T ) be the

maximum bias associated with it. Therefore, b(ϵ,x, T ) = sup ∥T (x′) − T (x)∥, where the supremum

is taken over all ϵ-corrupted samples x′.

The finite sample breakdown point ϵ∗ is defined as:

ϵ∗(x, T ) = inf{ϵ|b(ϵ,x, T ) = ∞}

The breakdown point can take the highest value of 1 for a constant statistic or a Bayes estimate

with a prior that has compact support. It can also approach 0, for example, when T is the sample

mean.

• Sample Mean: The sample mean has a breakdown point of ϵ = 1/n. Replacing just a single

data point with an infinitely large value will cause the mean to become infinite. As n → ∞,

its breakdown point is 0. It is not robust.

• Sample Median: The sample median has a breakdown point of ϵ ≈ 1/2. To make the

median arbitrarily large, one must corrupt at least half of the data points. This is the highest

possible breakdown point for any translation-equivariant location estimator, making it highly

robust.

The breakdown point of an M-estimator is directly related to its score function ψ.

• M-estimators with monotone ψ-functions (like Huber’s) have a breakdown point that is

positive but strictly less than 1/2.

• M-estimators with redescending ψ-functions (like the Lorentzian loss) can achieve the opti-

mal breakdown point of 1/2. This is because their ability to ignore extreme outliers completely

prevents those outliers from driving the estimate to infinity.

There are multiple estimation methods available in the literature to obtain estimates with high

breakdown points. Some of them are the Least median of squares (LMS)[91], Least trimmed squares

(LTS)[91], and Least trimmed absolute values (LTA)[44]. All these estimation methods provide
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robust estimates of location with high breakdown points, but they also have some drawbacks. LMS

is proven to be less efficient statistically compared to LTS. This means that a larger sample size is

required to arrive at the same conclusion in probabilistic terms when the distribution of errors is

normal, due to its low statistical efficiency relative to LTS.

Redescending ψ in the M estimation methods yields estimates with potentially high breakdown.

Like the trimming estimators LMS, LTS, and LTA, they can ignore observations that appear to

deviate from the model. One of the main advantage of using Redescending ψ is, unlike the trimming

estimators, the data drive the amount of trimming; only cases with extreme residuals will be

trimmed.

Theorem 12 (due to [51]). Let ρ be a loss function satisfying the following properties:

• ρ is symmetric,

• ρ(0) = 0,

• lim|x|→∞ ρ(x) = ∞,

• lim|x|→∞
ρ(x)
x = 0.

Further, we assume that the corresponding ψ is continuous and there exists an x0 such that ψ(x) is

weakly increasing for 0 ≤ x ≤ x0 and weakly decreasing for x0 ≤ x ≤ ∞. Then, the ϵ-contamination

breakdown point of an M-estimate is 1
2 .

Therefore, the robust loss function and its corresponding derivative that we will be working

with are the following:

ρL(x) = log(1 +
1

2
x2) (3.6)

ψL(x) =
2x

2 + x2
(3.7)

When ρL is applied to a matrix M, we will perform the following operation to calculate the output:

ρL(Mn×d) =

n∑
i=1

d∑
j=1

log(1 +
1

2
M2
ij).

Our initial optimization goal is to find a low-rank r and row-wise sparse matrix W that mini-

mizes the given loss. It can be defined in the following way:

min
W∈Rn×d

F (W ) with ∥W∥2,0 ≤ m, r(W) ≤ r

= min
W∈Rn×d

ρL(X−W) +
λ

2
∥W∥2F with ∥W∥2,0 ≤ m, r(W) ≤ r

= min
S∈Rd×r,V ∈On×r

ρL(X−VST ) +
λ

2
∥S∥2F with ∥S∥2,0 ≤ m.

(3.8)
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Although the employed loss exhibits nice robustness properties, its nonconvex nature makes it

difficult to optimize. We will implement a surrogate function to optimize the problem in Eq. (3.8).

Definition 7. Surrogate Function. Given argminβ f(β), a surrogate function is defined as

g(β, β−) with the following properties:

p1) g(β, β−) ≥ f(β),

p2) g(β−, β−) = f(β−).

We can reformulate the original problem using a surrogate function, and the predefined prop-

erties (p1 and p2) ensure the convergence of the optimization algorithm. Let us define βt+1 =

argminβ g(β, βt). It can be easily seen that:

f(βt+1) ≤ g(βt+1, βt) ≤ g(βt, βt) ≤ f(βt).

For a smooth function, a popular choice of a surrogate function is:

g(β, β−) = f(β−)+ < ∇βf(β−), β − β− > +
α

2
∥β − β−∥2F . (3.9)

If β is replaced by β− in Eq. (3.9), p2 holds and to satisfy p1, we should choose α in the

following way:

α ≥ L : ∥∇βf(β1) −∇βf(β2)∥F ≤ L∥β1 − β2∥, for all β1, β2.

In our case, ∇βf(β) = ∇βρL(β) = ψL(β) = 2β
2+β2 . The Lipschitz continuity for ψL(β) can be

verified, since the magnitude of 2β
2+β2 is not larger than 1 for any β ∈ R. Therefore, it follows from

the mean value theorem that for any β1, β2 ∈ R :

∥ψL(β1) − ψL(β2)∥F ≤ ∥β1 − β2∥.

Let, ρL(X−W) = ρ(W). Our solution strategy is the following:

• Construct a surrogate function:

g(W ,W−) = ρ(W−)+ < ∇Wρ(W−),W −W− > +
α

2
∥W −W−∥2F + P0(W ) (3.10)

= α[
1

2
∥W −W− +

1

α
∇Wρ(W−)∥2f +

1

α
P0(W )], (3.11)

where W− is the update of W from the previous time point, 1/α is the step size, and

P0(W) =

{
0 if r(W ) ≤ r, ∥W∥2,0 ≤ m,

∞ otherwise.

• Let Z = W− − 1
α∇Wρ(W−).
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• The optimization problem in Eq. (3.10) for t-th time point looks like the following:

Wt+1 = argmin
W

g(W,Wt) (3.12)

= argmin
W

1

2
∥W − Zt∥2F +

1

α
P0(W ). (3.13)

• The problem in Eq. (3.12) looks similar to the one in the Selective PCA setup in Section 3.3.

At the t-th time step, we will first calculate Zt for a fixed Wt and then employ Algorithm 5

to update V and S correspondingly.

This strategy is detailed in Algorithm 6.

Algorithm 6: Feature Selection using Robust Loss Minimization(RLM)

Input : Rank r, 1 ≤ r ≤ d, desired number of features m, maximum number of

iterations Miter.

Output : Set I of indices corresponding to the m most important features

Initialize: Initialize S,V and W

for t = 1 to Miter do
Compute Zt = Wt − 1

α∇Wρ(W t)

Get St+1,Vt+1 using Selective PCA with Zt as data matrix.

Compute Wt+1 = Vt+1S
T
t+1

if {∥Ŵ (t+1) − Ŵ (t)∥2 is sufficiently small} break

Obtain selected set of indices corresponding to the m most important features,

I = {i : Si· ̸= 0}
Obtain the selected set of features Fm = X[Im]

Here we have chosen c = 1, assuming the data has been properly standardized. Otherwise,

the estimation of scale parameter c in the Lorentzian loss function, ρL(r) = log(1 + r2/(2c)), can

be integrated directly into the iterative robust loss minimization algorithm 6. The recommended

approach is to update c at each iteration based on a robust measure of the current model’s residuals.

After updating the model parameters at iteration t, the residuals are computed as {R}t+1 = X−Wt.

The scale for the next iteration, ct+1, is then set using the square of the median of the derived

residuals:

ct+1 = k · (median(|vec(Rt+1)|))2 (3.14)

where k is a constant (e.g., k ≈ 2.2 for consistency with Gaussian noise). This iterative refinement

creates a virtuous cycle: a better model yields a more accurate estimate of the inlier noise scale,

which in turn allows the robust loss to better down-weight outliers in the subsequent iteration,

leading to a more stable and accurate final model.
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3.5 Simulations

In this section, we conduct a simulation study to evaluate the robustness of our proposed

methods against the presence of outliers in the data. The primary goal is to assess how accurately

each method can perform variable selection when the dataset is contaminated with extreme values.

All datasets are generated according to the procedure described in Section 2.5.1. To introduce

outliers, 2% of the samples in each generated dataset are randomly replaced with outlier data

points. These outliers are simulated by drawing d-dimensional random vectors from a Cauchy

distribution, characterized by its heavy tails. Specifically, we used a Cauchy distribution with a

location parameter µ = 0 and a scale parameter σ2 = 2.

For each contaminated dataset, we apply the different feature selection methods. For the Signal-

to-Noise Ratio (SNR) based methods (PPCA, LFA, etc.), the SNR is computed from the estimated

coefficient matrix Ŵ and error variance matrix Ψ̂ to rank and identify the top 10 most influential

features. For the Selective PCA and our proposed Robust-Loss-based methods (RLM), the set of

relevant features is directly determined from the inherent sparsity in the rows of their respective

coefficient matrices.

To quantify the variable selection accuracy, we compare the set of indices of the true relevant

features, denoted as Itrue, with the set of indices predicted as relevant by each method, denoted as

Ipred. The performance is then measured using the measure, described in (2.131).

We will first showcase the true feature recovery accuracy for the clean datasets (outlier-free)

and then we will showcase the same for contaminated datasets.

A comparative analysis of Table 2.2 (reproduced as Table 3.1 along with Selective PCA and

RLM), and Table 3.2 reveals the profound impact of outliers on the performance of different fea-

ture selection methods and unequivocally demonstrates the superior robustness of our proposed

Robust-Loss based approach. Table 3.1 establishes the baseline performance in an ideal, outlier-

free environment, while Table 3.2 presents the results from an identical setup but with 2% of the

data contaminated by extreme values from a heavy-tailed Cauchy distribution.

In the clean data scenario, the results confirm the findings from our initial simulation. The

methods designed to handle heteroscedastic noise—LFA and ELF—emerge as the clear top per-

formers, consistently achieving the highest feature selection accuracy across nearly all conditions.

LFA, in particular, demonstrates remarkable efficiency, often achieving near-perfect recovery of the

10 true signal features with only 300 to 500 samples. Our proposed Robust-Loss method, while
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Table 3.1: Feature selection accuracy for outlier-free data.

Noise n Methods

PPCA LFA ELF HeteroPCA Selective PCA RLM

10

50 71.2 90.6 87.6 84.4 73.2 72.6
100 82.4 97.0 94.0 93.0 82.2 79.6
300 88.0 100.0 98.0 98.8 90.2 93.6
500 92.4 100.0 99.0 99.2 93.6 95.2
1000 95.6 100.0 99.2 99.8 96.2 97.0

50

50 55.4 70.4 73.4 65.6 57.8 38.6
100 72.6 91.8 92.8 87.0 71.2 57.8
300 79.8 100.0 98.6 94.4 82.4 79.0
500 86.4 100.0 99.4 98.6 86.8 84.6
1000 91.4 100.0 99.0 99.2 91.2 95.6

100

50 49.0 57.4 59.0 55.8 48.2 21.6
100 62.8 87.4 87.2 75.6 62.4 29.8
300 82.0 99.6 99.6 96.4 83.2 74.6
500 82.6 100.0 99.4 95.2 81.2 85.6
1000 90.0 100.0 99.4 99.6 92.8 94.6

not the top performer in this ideal setting, still delivers competitive results, generally better than

those of standard generative models like PPCA and HeteroPCA. This confirms that the robust loss

function does not significantly compromise performance when no outliers are present.

The introduction of outliers dramatically changes the performance landscape. The performance

of all standard generative methods, including the previously dominant LFA and ELF, collapses

catastrophically. In the most challenging scenario (100 noise features), their accuracy plummets

to barely above chance (around 10% of features). This demonstrates their extreme sensitivity to

outliers; the squared-error loss inherent in their likelihood-based estimation is heavily skewed by

the extreme values, leading to a complete failure in identifying the actual signal.

In stark contrast, our proposed RLM method demonstrates exceptional resilience. It consis-

tently and overwhelmingly outperforms all other methods in every single outlier condition. Even in

the most challenging scenario (100 noise features, 1000 samples), the Robust-Loss method correctly

identifies 60% of the true features, whereas all other methods fail to identify more than 12%.
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Table 3.2: Feature selection accuracy for data with outliers from Cauchy(0,2).

Noise n Methods

PPCA LFA ELF HeteroPCA Selective PCA RLM

10

50 56.2 58.8 53.8 52.6 56.4 64.8
100 55.0 57.0 53.2 53.0 55.2 69.4
300 52.0 60.4 52.0 53.6 52.2 76.0
500 51.6 57.6 52.6 54.4 51.4 77.4
1000 52.0 55.0 51.2 51.8 52.6 80.2

50

50 16.0 15.5 17.0 16.0 16.5 25.0
100 16.5 16.5 16.0 17.5 16.0 33.5
300 19.0 14.5 17.5 16.0 18.0 52.5
500 14.5 17.0 14.0 14.0 15.0 57.0
1000 16.5 17.0 17.0 19.0 17.5 60.0

100

50 6.0 9.0 7.0 5.0 4.0 20.0
100 8.0 7.0 7.0 7.0 10.0 33.0
300 9.0 9.0 7.0 10.0 9.0 43.0
500 8.0 11.0 8.0 11.0 8.0 52.0
1000 12.0 10.0 12.0 12.0 12.0 60.0

64



CHAPTER 4

FEATURE SELECTION FOR CLASS

INCREMENTAL LEARNING

4.1 Related Work

One of the foundational techniques in feature selection is Correlation-Based Feature Subset Se-

lection (CFSS). This method evaluates and ranks subsets of features by maximizing their collective

relevance to the target class while simultaneously minimizing inter-feature redundancy [60]. While

effective for identifying synergistic feature groups, a key limitation of CFSS is its inability to assess

the individual relevance of a feature to a specific class in a multi-class setting.

More recently, feature selection has been framed as a network pruning problem. An efficient

pruning method was proposed by [39] using an l0 sparsity constraint, allowing direct specification of

the desired sparsity level. This approach iteratively removes parameters based on criteria similar to

those in Feature Selection Annealing (FSA) [13]. Another powerful technique is the Thresholding-

based Iterative Selection Procedure (TISP) [103, 101], which provides direct control over model

sparsity by applying a thresholding function to network parameters. A related approach, inspired

by deep networks, was proposed by [7], in which autoencoders are first used to extract features, and

a pruning algorithm then constructs a subset by minimizing the input reconstruction error. While

powerful, these methods’ selection criteria are based on sparsity or reconstruction error rather than

a direct, model-based measure of a feature’s discriminatory signal for a particular class.

Principal Component Analysis (PCA) has been widely adopted for supervised feature selection.

Supervised PCA, introduced by [120], incorporates class labels to identify principal components

that capture both high variance and strong class separation. However, this method faces significant

scalability challenges, as the entire model must be retrained whenever a new data class is introduced.

To address this, recent work [114] has explored the use of Probabilistic PCA (PPCA) for

multi-class classification. Their approach models each class separately, enabling class-incremental

learning, but their work did not include a feature selection mechanism.

Hybrid methods, such as the PCA-Logistic regression framework used by [127] for facial recog-

nition, have also been proposed. A significant drawback of such approaches is their reliance on
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accessing the entire dataset for dimensionality reduction. More importantly, these methods per-

form feature transformation (or extraction), not selection. The resulting principal components

are linear combinations of all original features, meaning that even when using a reduced set of

components, one must still measure every original feature, which can be impractical and harms

interpretability.

Our proposed method offers a distinct and practical alternative to the techniques reviewed

above. It is founded on three core principles: class-specific modeling and feature selection via a

Signal-to-Noise Ratio (SNR) criterion, and a unique classification mechanism based on the Maha-

lanobis distance over class-specific feature sets.

To classify a new observation, we compute its Mahalanobis distance to each class. Crucially,

the distance to a given class j is calculated only using the feature subset selected for that class

j. This means that for a single new data point, the classification process involves projecting it

onto multiple, distinct feature subspaces—one for each potential class—and evaluating its distance

within each subspace, accounting for that class’s unique covariance structure.

This approach represents a fundamental departure from feature transformation methods. Our

method performs true feature selection, identifying a parsimonious subset of original features for

each class. This is a critical advantage over PCA-based techniques, which create new features

from linear combinations of all original variables. By not relying on any transformation, our

method ensures that only the selected features need to be measured for classification, leading to a

truly reduced and interpretable model. This makes it highly efficient and practical for real-world

applications where data acquisition is costly.

4.2 Multi-class Classification

After selecting the relevant features, we next conduct multi-class classification using them. For

each class, we will individually train the model, estimate the parameters, perform feature selection

based on these estimates, and store the results. When predicting the class for a new observation,

we will compute the posterior probability that the new observation belongs to each class using

the selected features, ultimately assigning the new observation to the class with the maximum

likelihood.

First, we will define certain variables before proceeding to technical details in this section. Y

represents the class label (Y ∈ {1, 2, 3, · · · , C}). Let m and n denote the number of selected features
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for every class and the total number of training samples from all the classes, respectively, and ni

be the number of training observations in the ith class. The random vector corresponding to the

set of all features is denoted as x = (x1, x2, · · · , xd), whereas x(j) and x(−j) represents the random

vector corresponding to selected set of feature and the remaining features for class j. Let J denote

the m indices of selected features for class j, i.e. J ⊂ {1, 2, · · · , d}. Therefore, x(j) = x[J] and

x(−j) = x[{1, 2, · · · , d} ∩ J].

4.2.1 PPCA

In this section, to perform multi-class classification, we will calculate the probability score

associated with every class. For class j, the selected set of features will follow a normal distribution:

x(j) ∼ N(µj ,Σj) (4.1)

Σj = W (j)W (j)T + σ2j Im, and (4.2)

x(−j) ∼ N(µ−j , σ
2
j Id−m). (4.3)

Here, x(j) and x(−j) are independent from each other. Ŵ(j) and σ̂2j can be achieved from the

closed form of ML estimates, detailed in equation (2.5).

The following lemma describes how to make class predictions for a new observation xnew using

PPCA.

Lemma 6. For a new set of features, xnew, we will assign it to class k,if,

k = argmin
j∈{1,2,··· ,c}

{
Sj(x

new,µj ,Σj)

2
+

EPPCAj (xnew)

2
+ aj} (4.4)

where Sj(x,µj ,Σj) = (x(j) − µj)TΣ−1
j (x(j) − µj), EPPCAj (x) =

(x(−j)−µ−j)
T (x(−j)−µ−j)

σ2
j

and aj =

1
2 ∗ (log |Σj | + (d−m) log(σ2j )) − log nj.
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Proof. For a new set of features, xnew, we will assign it to class k, if:

k = argmax
j∈{1,2,··· ,c}

P (Y = j|x = xnew)

= argmax
j∈{1,2,··· ,c}

P (x = xnew|Y = j)P (Y = j)

P (x = xnew)

= argmax
j∈{1,2,··· ,c}

P (x = xnew|Y = j)P (Y = j)

= argmax
j∈{1,2,··· ,c}

P (x(j) = xnew(j))P (x(−j) = xnew(−j))P (Y = j)

= argmin
j∈{1,2,··· ,c}

{1

2
(log |Σj | + (xnew(j) − µj)TΣ−1

j (xnew(j) − µj) + (d−m) log(σ2j )+

(xnew(−j) − µ−j)
T (xnew(−j) − µ−j)

σ2j
) − log(

nj
n

)}

= argmin
j∈{1,2,··· ,c}

{
Sj(x

new,µj ,Σj)

2
+

EPPCAj (xnew)

2
+ aj}

and log n is a constant which can be omitted. Here P (Y = j) has been approximated by utilizing

the ratio of sample observations nj relative to the total number of observations n i.e. P (Y = j) =

nj

n .

If the the number m of selected features is large (e.g., m = 4096), the computation of Sj(x),

for each observation, involves multiplication with a large m×m matrix, which can be expensive.

Hence, to simplify the computational burden in equation (4.4), an alternative theorem will be

employed. In this scenario, we will perform SVD on the estimated covariance matrix Σ̂
0
j to obtain

the rank-r estimate of it.

Σ̂
0
j = VDVT , (4.5)

Σ̂j = LjDjL
T
j + λIm, (4.6)

where λ has been considered as 0.01, Lj(∈ Rm×r, r << m) consists of first r columns of V and Dj

is the diagonal matrix with r largest singular values from D.

Now we will define the alternative score variable denoted as rj(x), and subsequently present a

theorem that employs the same variable.

rj(x) = r(x(j);µj ,Lj ,Dj) = ∥x(j) − µj∥22/λ− ∥u(x(j))∥22/λ (4.7)

where, u(x) = diag(

√
dj√

dj+λ1r
)LTj (x − µj) and dj ∈ Rr is the vector consisting of the diagonal

elements of Dj . The tall matrix Lj , makes the matrix multiplication procedure less time consuming.
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Theorem 13. (due to [114]) The score variable in Lemma 6 can also be written as: Sj(x,µj ,Σj) =

rj(x), and log |Σj | = (m− r) log λ+
∑r

l=1(dj [l] + λ), where, dj [l] denotes the lth element of dj.

4.2.2 LFA

Multi-class classification using LFA is similar to PPCA. The only difference being the involve-

ment of Ψj instead of σ2j Id in the probability score for the jth class.

Similar to PPCA, using the model in eq.(2.1), the distribution of x(i) is:

x(j) ∼ N(µj ,Σ
′
j) (4.8)

Σ′
j = W(j)W(j)T + Ψ(j) (4.9)

x(−j) ∼ N(µ−j ,Ψ
(−j)). (4.10)

The estimated Ŵ(j) and Ψ̂
(j)

, and Ψ̂
(−j)

can be obtained after convergence of the EM algorithm,

in Theorem 1.

Lemma 7. For a new observation xnew, we will assign it to class k with

k = argmin
j∈{1,2,··· ,c}

Sj(x
new,µj ,Σ

′
j)

2
+

ELFAj (xnew)

2
+ bj (4.11)

where Sj(x
new,µj ,Σ

′
j) has been defined in Lemma 6,

ELFAj (x) = (xnew(−j) − µ−j)
T (Ψ(−j))−1(xnew(−j) − µ−j) and

bj =
1

2
(log |Σ′

j | + log |Ψ(−j)|) − log nj . (4.12)

Proof. Using Lemma 6, we get:

k = argmax
j∈{1,2,··· ,c}

P (x(j) = xnew(j))P (Y = j)

= argmax
j∈{1,2,··· ,c}

P (x(j) = xnew(j))P (x(−j) = xnew(−j))P (Y = j)

= argmin
j∈{1,2,··· ,c}

[
1

2
(log |Σ′

j | + (xnew(j) − µj)T (Σ′
j)

−1(xnew(j) − µj)

+ (xnew(−j) − µ−j)
T (Ψ(−j))−1(xnew(−j) − µ−j) + log |Ψ(−j)|) − log nj ]

= argmin
j∈{1,2,··· ,c}

Sj(x
new,µj ,Σ

′
j)

2
+

ELFAj (xnew)

2
+ bj .
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4.2.3 Unified Approach

In this section, we propose a unified approach for multi-class classification to compare model

performance. We will only employ the selected features for a new observation, xnew(j), and calculate

the Mahalanobis distance over all the given classes. It is defined as the following:

MD(xnew, classj) = (xnew(j) − µ̂j)T Σ̂
−1
j (xnew(j) − µ̂j) (4.13)

with µ̂j and Σ̂j are the sample mean and estimated covariance of the signals for class j, respectively.

There are a few advantages of using the Mahalanobis distance over the Frobenius norm:

• In the previous section, we have seen that the estimated posterior probability corresponding to

class prediction k, P (Y = k|x = xnew), yields a minimum in MD(xnew, classj)+EPPCAj +aj

for PPCA and MD(xnew, classj) + ELFAj + bj , for LFA. Here, (aj , bj) are constants (do not

depend on xnew) and EPPCAj , ELFAj attributed to noise variables for class j and do not have

meaningful contribution to this equation. Hence, it is rational to compute the Mahalanobis

distance and exclude EPPCAj and ELFAj , while focusing solely on relevant features for multi-

class classification.

• In high-dimensional scenarios, the Mahalanobis distance is preferred over the Frobenius norm

because it considers the covariance structure of the data. The Frobenius norm may struggle

to accurately capture variable relationships in high-dimensional spaces accurately, whereas

the Mahalanobis distance normalizes differences by variances and covariances, making it more

robust. This enhances its accuracy in task classification.

To classify a new observation(xnew), our unified approach consists of two steps:

• Calculate the score for every class j: MDj = MD(xnew, classj).

• Predicted class(k) will be the one that results in a minimum value of the score variable,

k = argminj∈{1,2,··· ,C}MDj

When dealing with multiclass classification, where the feature count (m) is high, computing

MD(xnew, classj) becomes time-consuming due to the matrix multiplication of size m × m. To

overcome this computational burden, we can substitute it with the r-score rj(x
new).

For PPCA, we assume the same noise variance over all the dimensions. SRRR and Robust loss

minimization seek a low-rank, sparse representation while screening essential variables. Therefore,

these methods can be viewed as non-parametric versions of PPCA with an added sparsity constraint.

For these three methods, we can directly replace MD(xnew, classj), with rj(x
new).
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LFA, ELF, and HeteroPCA are the methods based on the latent factor model. They share the

assumption that the noise covariance structure (Ψ) is not isotropic. Therefore, the PPCA r-score

(3.4) is not valid in such cases. Here, we present a general version of the PPCA r-score that reduces

the computation time of the MD-score while using LFA models for feature selection in multi-class

classification.

To make use of Theorem 13 for LFA models with non-isotropic noise variance Ψ, we employ

the following theorem to make the Mahalanobis distance computation faster.

Theorem 14. If

Σ = LDLT + Ψ, (4.14)

with L ∈ Rm×r, and diagonal matrices D ∈ Rr×r and Ψ ∈ Rm×m with positive entries, the

Mahalanobis distance can be computed as:

MD(x,µ,Σ) = r(Ψ− 1
2x;Ψ− 1

2µ,L′,D′, 1) (4.15)

where r(x;µ,L,D, λ) is defined in (4.7), and L′ and D′ are obtained by SVD on Σ′ = Ψ− 1
2ΣΨ− 1

2 .

Proof. We consider the following transformation:

x′ = Ψ− 1
2x,

µ′ = Ψ− 1
2µ,

Σ′ = (Ψ− 1
2W)(Ψ− 1

2WT ) + Im.

Σ′ looks similar to (4.1), with λ = 1. Therefore, using the Proposition 13, we get: MD(x′,µ′,Σ′) =

r(x′;µ′,L′,D′, 1). Here, Σ′ = Ψ− 1
2ΣΨ− 1

2 = L′D′L′T . Also,

MD(x,µ,Σ) = (x− µ)TΣ−1(x− µ)

= (x− µ)T (Ψ− 1
2 )(Ψ

1
2 )Σ−1(Ψ

1
2 )(Ψ− 1

2 )(x− µ)

= (x′ − µ′)T (Ψ− 1
2ΣΨ− 1

2 )−1(x′ − µ′)

= (x′ − µ′)TΣ′−1(x′ − µ′)

= MD(x′,µ′,Σ′)

= r(x′;µ′,L′,D′, 1)

= r(Ψ− 1
2x;Ψ− 1

2µ,L′,D′, 1). □

Therefore, when incorporating the r-score into the computation of classification scores for these

methods, the following steps are performed:

71



1. Consider the transformation: u(j) = Ψ̂
(j)− 1

2x(j)

2. Calculate the score for every class j: MD(xnew, classj) = MD(unew, classj) = rj(u
new).

4.3 Class Incremental Learning

4.3.1 Introduction

Class Incremental learning is a machine learning paradigm that enables a model to continu-

ously learn from new data without requiring retraining on the entire dataset from scratch. This

approach is essential for large-scale, dynamic environments where new classes or tasks are intro-

duced sequentially over time. The primary goal is to update an existing model to incorporate new

information while retaining the knowledge it has already acquired from previous data. It is the

process of adding new classes to a model without losing the understanding of previously learned

classes, thereby facilitating learning on massive datasets with lower computational and memory

costs. This paradigm is crucial for building scalable systems that can adapt and evolve without

the prohibitive expense of repeated, full-scale training sessions.

Catastrophic forgetting is the primary challenge in incremental learning, a phenomenon in which

a model’s performance on previously learned tasks drastically deteriorates after it is trained on a

new task. When a neural network is fine-tuned on new classes, its parameters (weights) are adjusted

to minimize the error for those new classes. This optimization process often overwrites or interferes

with the parameter configurations that were essential for correctly classifying the old courses. This

is a particular problem for conventional classifiers, leading to a severe drop in accuracy for the old

classes.

4.3.2 Literature Review

The literature has explored two primary schools of thought to mitigate this issue: (1) methods

that aim to preserve the knowledge of old classes, typically through regularization or the use of

exemplars, and (2) methods that focus on correcting the inherent bias towards new classes that

emerges in the classifier.

One of the popular works for regularization based approaches includes knowledge distilla-

tion(KD) application by [46]. KD preserves a model’s prior behavior by adding a loss term that

minimizes the difference between the softened output probabilities of the current model and a stored

(or previous) version of itself on old classes—typically using temperature-scaled softmax outputs.
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This regularization encourages stability in decision boundaries without requiring raw old data. The

following methods, reviewed chronologically, leverage KD or alternative approaches to address for-

getting. Early and influential approaches to incremental learning focused on preserving the learned

feature representations. [121] proposed paying attention to specific activation maps to distill knowl-

edge from teacher to student models effectively. This approach laid the foundation for subsequent

works that incorporate attention mechanisms to prevent changes in feature representations during

continual learning. Building on these ideas, the Incremental Classifier and Representation Learning

(iCaRL) framework, introduced by [89], dynamically updates these exemplars after each training

stage and employs a nearest-class-mean classifier along with knowledge distillation loss to mitigate

forgetting. Additionally, iCaRL integrates task-specific parameters and builds a mechanism to store

representative samples, ensuring balanced performance across old and new classes. [28] employs

an attention distillation loss to transfer knowledge without needing data from base classes. To

maintain performance on prior tasks, they use a gradient that incorporates information which does

not change features of old classes significantly. [30] introduced a multi-scale feature distillation

strategy that applies knowledge distillation to pooled outputs at different spatial resolutions in a

CNN. By enforcing consistency across feature map levels, it preserves spatial and semantic infor-

mation from old tasks. It achieves strong performance in exemplar-free and low-exemplar regimes,

outperforming iCaRL in several benchmarks.

While the aforementioned methods focus on preserving the feature extractor, another line of

research focuses on a strong bias towards the most recently seen classes. [47] identified the imbalance

between old and new classes as a primary cause of catastrophic forgetting and proposed UCIR to

address task recency bias. They replace the standard softmax layer with a cosine normalization

layer to mitigate this imbalance. This bias-correction method aims to create a unified classifier

that performs well across all classes by rebalancing the learning process. [118] discovered a strong

bias towards new classes in the last fully connected layer of CNNs and introduced BiC to correct

this task bias. Their method adds an additional layer for bias correction and divides training into

two stages: one for model training and another using a validation set to estimate and adjust the

bias.

Some of the modern approaches employ pre-trained Models(PTM). [81] proposed a k-Nearest

Neighbor (KNN) classifier based on CLIP[86]. This method evaluates the classifier on several

popular benchmarks and achieves state-of-the-art performance in continual learning settings. By

leveraging CLIP’s robust features, it dynamically handles old and new classes without severe forget-
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ting. Following a similar philosophy, [114] also proposed using a frozen, pre-trained self-supervised

feature extractor to ensure feature consistency across all incremental tasks. However, instead of

a non-parametric classifier, they train a separate, generative Probabilistic Principal Component

Analysis (PPCA) model for each class and structurally prevent catastrophic forgetting. This do-

main of PTM based research in class incremental learning is gaining popularity. PTM based works

utilize CLIP or Dinov2 as the backbone to extract deep features from images and incorporate pro-

totype classifiers [128], knowledge rumination[33] to enhance generalization and adaptability while

keeping the amount of catastrophic forgetting minimal in the class incremental setup.

4.3.3 A Generative and Feature-Selective Approach to CIL

Our proposed framework aligns with the modern school of thought in Class-Incremental Learn-

ing, leveraging powerful pre-trained Models (PTMs) to provide a stable feature space. However, it

introduces a critical and novel extension by integrating a class-specific feature selection mechanism.

Building on the philosophy of works such as [114], which use a frozen feature extractor and separate

generative models per class, our approach not only learns a unique distribution for each class but

also identifies the most salient original features necessary for its recognition. This architecture

offers a fundamental and structural solution to catastrophic forgetting, contrasting sharply with

the preservation and bias-correction methods discussed previously. Unlike regularization-based ap-

proaches [46, 89] that require exemplars or knowledge distillation to approximate past knowledge,

our method perfectly preserves it. It also sidesteps the need for complex bias-correction layers [47,

118] that re-balance a shared classifier. The suitability of our framework for CIL is rooted in its

class-specific design for the following reasons:

• Structural Immunity to Forgetting: The core challenge of catastrophic forgetting arises

from the overwriting of shared parameters in a monolithic model. By dedicating a separate,

independent generative model to each class, we eliminate this issue by design. The parameters

learned for a new class have no architectural pathway to interfere with the parameters of

previously learned classes. Preserving these learned parameters ensures prior knowledge is

fully retained, not just approximated.

• Constant-Time Model Expansion: Traditional classifiers often require retraining on a

growing dataset, with complexity scaling as O(C) with the number of classes C. Our approach

is significantly more scalable. The model for each class is ”wrapped” tightly around its own

observations. When a new class is introduced, we train a new, independent model for it. This

allows the system to expand its knowledge with a computational cost that scales as O(1) per

new class, making it ideal for dynamic, large-scale environments.
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• Adaptive and Interpretable Feature Selection: The key novelty of our extension is the

integration of Signal-to-Noise Ratio (SNR)-based feature selection. As each new class model

is trained, we also identify the most discriminative subset of features from the PTM’s output

space for that specific class. This ensures that the system learns not only what a new class

looks like (its distribution) but also which features matter most for identifying it. This adds

a layer of adaptability and interpretability that is not present in prior generative CIL work.

While a comprehensive methodological exploration of CIL is beyond the primary scope of this

dissertation, the inherent properties of our framework make it a powerful and elegant solution to

the CIL problem. We apply it in a CIL setting primarily to empirically validate its structural

robustness against catastrophic forgetting, with a detailed comparative analysis presented in the

results section.

4.4 Real Data Experiments

We evaluate the proposed feature selection for multi-class classification methods on three widely

utilized popular image classification datasets: CIFAR-10 [65], CIFAR-100 [66] and ImageNet-1k

[94].

4.4.1 ImageNet-1k

The ImageNet-1k dataset, formally known as the dataset for the ImageNet Large Scale Vi-

sual Recognition Challenge (ILSVRC) classification task, stands as one of the most influential

benchmarks in the history of computer vision [93]. The ”1k” designation refers to its core task:

classifying images into one of 1000 distinct object categories. The dataset is massive, comprising

approximately 1.28 million high-resolution images for training, 50,000 for validation, and 100,000

for testing.

ImageNet-1k’s importance is immense; it sparked the deep learning revolution. AlexNet’s suc-

cess at ILSVRC 2012 showcased deep CNNs’ capabilities and influenced two decades of research

[67]. Its scale and complexity made ImageNet-1k the benchmark in image classification. Generally,

good performance on it is considered a model’s ability to learn robust, generalizable visual features

[98, 45, 29, 75].

From a statistical and machine learning perspective, the primary challenges of ImageNet-1k

stem from its class structure and data properties. These create two key difficulties: high intra-

class variance, where instances of the same class (e.g., chair) can appear in vastly different poses,
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lighting conditions, etc., and low inter-class variance, where different classes (e.g., Siberian husky vs.

Eskimo dog) can be almost visually indistinguishable. An effective model must learn representations

invariant to diverse appearances within a class while sensitive to subtle differences distinguishing

closely related classes. ImageNet-1k serves as a key testbed for scalability and robustness. Its large

scale tests the efficiency of our feature selection framework, and its fine-grained classes evaluate

our SNR-based criterion’s ability to identify subtle, discriminative features crucial for accurate

classification.

4.4.2 CIFAR 10/100

The CIFAR-10 and CIFAR-100 datasets are cornerstone benchmarks in the field of computer

vision and image classification [65, 66]. Both datasets consist of 60,000 32x32 pixel color (RGB)

images, which are partitioned into a standard training set of 50,000 images and a test set of 10,000

images. Due to their manageable size and well-defined structure, they have become ubiquitous in

the machine learning literature [125, 100] and serve as a standard testbed for evaluating the ability

to learn meaningful representations from low-resolution data [23, 55, 90, 2, 64].

The primary distinction between the two datasets lies in their class granularity and hierarchical

structure. CIFAR-10 divides its images into 10 coarse, mutually exclusive object classes: “air-

plane”, “automobile”, “bird”, “cat”,etc. This presents a general object recognition task where the

categories are semantically distinct. In contrast, CIFAR-100 presents a more significant challenge

in fine-grained classification. It contains 100 distinct classes, which are further grouped into 20

superclasses. For example, the superclass “trees” contains subclasses such as “oak tree”, “maple

tree”, “pine tree”, while the superclass “aquatic mammals” includes “beaver”, “dolphin”, etc. This

hierarchical structure makes CIFAR-100 an excellent benchmark for testing a model’s ability to

learn nuanced and detailed feature representations.

In the context of this dissertation, the CIFAR allows us to evaluate our feature selection frame-

work on tasks of varying classification complexity (10 vs. 100 classes) before scaling up to ImageNet.

The primary challenge posed by these datasets is their low 32x32 resolution. This forces the feature

extractor to produce representations from highly constrained input and provides a stringent test

of our SNR-based method’s ability to identify the most salient and robust features from a poten-

tially noisy, low-information signal. Therefore, strong performance on CIFAR-100, in particular,

demonstrates the framework’s effectiveness in a fine-grained, low-resolution setting, a common and

challenging scenario in practical applications.
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4.4.3 Deep Feature Extractors for Images

The success of modern machine learning systems is critically dependent on the quality of the

underlying feature representations. From a statistical perspective, raw image data, represented as a

grid of pixels, presents a formidable challenge for direct modeling due to its high dimensionality and

complex, non-linear dependencies. Deep learning models provide a principled, data-driven solution

to this representation learning problem [38]. These networks learn a hierarchical transformation,

Φ(·), mapping the raw pixel space into a high-level vector space where semantic relationships

are more explicit. By leveraging models pre-trained on massive datasets, we engage in a form

of large-scale transfer learning, using “off-the-shelf” features that have been proven to be highly

generalizable across a wide variety of downstream tasks [98]. This paradigm has been the driving

force behind the success for variety of vision related tasks [45, 107, 129]. Therefore, our approach

of extracting deep features is a principled method to obtain a state-of-the-art data representation

upon which our statistical feature selection techniques can be most effectively applied. Specifically,

we utilize two of the most influential models: Contrastive Language-Image Pre-training (CLIP)

[86] and a self-supervised Vision Transformer (DINOv3) [105].

CLIP. Contrastive Language-Image Pre-training (CLIP)[86] consists of two parallel encoders:

an image encoder (typically a Vision Transformer or a large ResNet) and a text encoder (a standard

text Transformer). The model was trained on a massive, web-scale dataset of 400 million image-

text pairs. The training objective is a contrastive loss: for a given batch of images and texts, the

model learns to maximize the similarity between the embeddings of correct image-text pairs. Its

immense popularity stems from its remarkable ability to classify images into categories it was not

explicitly trained on, by leveraging the natural language descriptions of those categories[87]. The

resulting image representations from CLIP consists of deep semantic meaning and are extremely

useful for vision related tasks [114, 81, 43].

The image CNN component of CLIP incorporates a prominent attention mechanism as its final

layer before the classification layer. For our purposes, we utilized a pretrained modified ResNet-50

classifier known as RN50x4 from the CLIP GitHub package [86]. The CLIP feature extractor is

trained with medium resolution 288×288 images. Therefore, prior to processing, input images were

resized to 288 × 288 for the ImaeNet-1k dataset. For CIFAR-10/100, we resize the original images

to 144 × 144. These images, when resized to 288 × 288, they will look very blurred. [114] showed

that the 144 × 144 input is the best setting for low resolution images from CIFAR-100 for CLIP
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feature extractor. Therefore, we have utilized the same resizing factor, 144 in our setup as well.

The extracted numerical features for ImageNet-1k is 640 dimensional and for CIFAR datasets, the

feature dimension is 2560.

DINOv3. Similarly, we employ DINOv3 as a second, recent and philosophically distinct fea-

ture extractor, representing the state-of-the-art in self-supervised visual representation learning

[105]. The model architecture is a large-scale Vision Transformer (ViT-L) that learns from a

massive, curated dataset of 1.7 billion images without any textual labels. Its training objective is

based on a sophisticated self-distillation and image token matching process within a student-teacher

framework. This forces the model to learn representations that are invariant to augmentations and

capture the fine-grained structure of visual content. This model has gained popularity in a short

period of time. It is being mostly utilized in areas like object detection [104], medical vision [73],

etc.

For feature extraction, we employ the powerful vitl16 model, pre-trained on the LVD−1.7B

dataset. The model is loaded into memory using the Hugging Face transformers library, which

ensures access to the official, pre-trained weights from the Meta AI repository.

Each image is first resized so that its shorter edge is 512 pixels, and then, a 512 × 512 pixel

patch is extracted from the center of the resized image. We extract the final, high-level feature

representation for these images, from the pooler output of the model. This output corresponds to

the 1024−dimensional embedding after it has been processed by the final layers of the transformer,

serving as a holistic representation of the entire image’s content.

Discussion. The core difference between CLIP and Dinov3 is their supervisory signals. CLIP

uses weak supervision from natural language, learning to map visual objects to concepts like “dog”.

DINOv3’s internal supervision recognizes objects by matching parts across views, understanding

what a “dog” looks like. Therefore, CLIP captures high-level semantics, while DINOv3 focuses

on detailed visual structure. Testing our feature selection on both models shows its effectiveness

across these distinct paradigms.

We would also like to discuss the training sets of CLIP and Dinov3 because our results on

ImageNet-1k and CIFAR can be less reliable if there is an overlapping between the training sets

and ImageNet. In both papers, they mentioned that their datasets are created from a variety of

publicly available sources on the Internet for CLIP and a large data pool of web images collected

from public posts on Instagram. Although the train split of ImageNet-1k is used for Dinov3 training,
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they do not employ the validation set for the same. More convincingly, both CLIP and Dinov3

have been evaluated on ImageNet-1k in their respective papers. In addition, an existing method

applied CLIP to CIL [43]. After considering the above evidence, using a CLIP-based encoder on

ImageNet benchmarks is reasonable.

4.4.4 Models for Comparison

We compare the feature selection efficiency of the proposed methods against two popular meth-

ods, Feature Selection with Annealing (FSA) [13] and TISP [101] with soft thresholding (L1

penalty), applied on the same data (features) as the other methods. FSA and TISP were im-

plemented as a fully connected one-layer neural network with cross-entropy loss. The models were

trained for 30 epochs using the Adam optimizer[61] (learning rate: 0.001).

Feature Selection Annealing(FSA). Feature Selection with Annealing (FSA) is an em-

bedded feature selection method that integrates sparsity enforcement directly into the iterative

optimization process [13]. For a standard regression problem of the form y = Xb + ϵ, FSA aims

to find a sparse estimate of the coefficient vector b. The method operates by alternating between

two steps at each epoch e:

b = b− η
∂ℓ(X,y,b)

∂b

me = k + (d− k) max

(
0,

epochs − 2e

2eµ+ epochs

)
. Keep only me variables with highest |bj |

(4.16)

Here k denotes the number of selected features, µ controls the convexity of the schedule, allowing

it to range from a linear decay (µ = 0) to a rapid, non-linear drop (µ > 0). me is defined as

the annealing schedule, which specifies the exact number of non-zero features to be retained at

epoch e. After the gradient update, the algorithm keeps only the me coefficients with the largest

magnitudes and sets all others to zero. The schedule is designed to gradually reduce the number of

active features from the total number d of features down to a desired final number, k. A key aspect

of FSA is the use of non-linear schedules that drop features aggressively in early epochs and more

slowly in later ones, a strategy designed to quickly eliminate irrelevant predictors while allowing

for more careful estimation of the remaining, more ambiguous features.

Thresholding-based Iterative Selection Procedure (TISP). The Thresholding-based

Iterative Selection Procedure (TISP) is a general and efficient algorithmic framework for solving
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a wide class of penalized optimization problems, making it a powerful tool for embedded feature

selection [103, 101]. The core of the method is to find a sparse coefficient vector b that minimizes a

composite objective function, which combines a data fidelity term with a sparsity-inducing penalty

term:

L(b) =
1

N

N∑
j=1

Ldata(b
Txj , yj) + λ

p∑
i=1

P (bi), (4.17)

where Ldata is a loss function such as squared error or logistic loss, and P is a θ induced penalty

function. In this case, Ldata is a cross-entropy loss.

TISP operates by iterating between two simple steps: a standard gradient descent step on

the data loss term, followed by the application of a thresholding operator Θ(·, λ) that is uniquely

determined by the penalty P . The general update rule for binary classification is given by:

b(t+1) = Θ

(
b(t) + ηXT

[
y − 1

1 + exp(−Xb(t))

]
, λ

)
, (4.18)

where y ∈ {0, 1}. The thresholding operator Θ is responsible for shrinking coefficients and, crucially,

setting some of them to exactly zero, thereby performing feature selection. For our benchmark, we

utilize the quantile thresholding function and the procedure effectively solves the penalized multi-

class logistic regression problem by selecting K features based on the magnitude of their learned

coefficients in every iteration until convergence is achieved.

4.4.5 Results

All the experiments were conducted on 11th generation Intel octa-core 2.30 GHz processor.

4.4.6 Feature Selection Accuracy

Table 4.1 presents the classification accuracy of all methods on real-world datasets using CLIP

features at different levels of feature sparsity. On CIFAR-10, the task is relatively simple, and most

methods achieve high accuracy. However, our proposed Robust Loss Minimization method (RLM)

described in Section 3.4 offers a clear efficiency advantage, reaching a peak accuracy of 91.1% with

only 1500 features. This indicates a superior ability to identify a compact, highly informative

feature set. The FSA and TISP baselines degrade more sharply when the number of features is

heavily reduced.

On the more challenging CIFAR-100 dataset, a clear performance gap emerges. All of our

proposed generative methods significantly outperform the FSA and TISP baselines, which peak

at around 70.9% using 2000 features. Among the generative models, PPCA performs surprisingly
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Table 4.1: Classification accuracy (%) for different methods on real datasets for CLIP features

Method # Selected Features

CIFAR-10, n = 60, 000, d = 2560

2560 2250 2000 1750 1500 1250 1000 750

FSA 91.1 91.3 90.8 90.7 89.9 89.4 88.6 87.2
TISP 91.1 90.9 91.2 90.3 90.4 89.19 88.28 87.11
ELF 91 90.95 90.98 90.97 91 90.74 90.61 89.41

HeteroPCA 91 90.89 90.76 90.66 90.21 89.61 89.2 88.33
LFA 91 90.9 90.69 90.68 90.28 89.77 89.34 88.56

PPCA 91 90.83 90.68 90.39 90.24 89.1 88.54 87.69
Selective PCA 91 90.42 90.83 90.91 90.98 90.01 89.76 89

RLM 91 90. 90.68 90.81 91.1 90.95 90.1 89.53

CIFAR-100, n = 60, 000, d = 2560

2560 2250 2000 1750 1500 1250 1000 750

FSA 69.63 70.5 70.09 70.92 69.43 69.28 67.72 63.24
TISP 69.63 69.94 70.82 70.42 69.36 68.58 68.29 63.25
ELF 72.81 72.7 72.35 72.18 71.31 70.02 68.01 65.11

HeteroPCA 72.81 72.01 71.51 71.36 70.28 68.9 67.06 64.51
LFA 72.81 72.67 72.14 72.01 71.22 70 67.09 65.01

PPCA 72.81 72.83 73.01 72.55 72.12 70.83 69.36 65.47
Selective PCA 72.48 72.82 72.95 72.77 72.55 71.02 69.21 66.23

RLM 72.81 72.94 72.95 73.08 72.47 71.33 69.73 67.24

ImageNet, n = 1.2 million, d = 640

640 600 550 500 450 400 350 300

FSA 71.37 71.6 71.68 71.2 69 67 65.98 64.15
TISP 71.37 71.72 71.49 70.34 69.04 67.34 65.06 63.3
ELF 73.73 73.60 73.27 72.95 72.62 71.97 71.3 70.24

HeteroPCA 73.73 73.38 73.14 72.8 72.48 71.81 71.06 69.88
LFA 73.73 73.49 73.23 72.94 72.53 71.94 71.11 70.14

PPCA 73.73 73.42 73.16 72.9 72.57 71.84 71.05 70
Selective PCA 73.73 73.5 73.3 72.91 72.52 71.90 71.06 70

RLM 73.73 73.53 73.33 72.94 72.55 71.87 71.19 70.22

well, achieving a peak accuracy of 73.01% using the same number of features. Our proposed RLM

method also performs strongly in this group, reaching a peak of 73.08% with 1750 features only.

This shows that, on complex, fine-grained tasks, our methods better preserve critical information.

On the large-scale ImageNet-1k dataset, the robustness of the generative methods is most evi-

dent. The FSA and TISP baselines suffer a severe drop in performance under aggressive pruning,

falling to around 63-64% accuracy with 300 features. In contrast, all of our proposed methods

remain highly stable. The ELF method is remarkably resilient, maintaining the highest accu-

racy of 70.24% with just 300 features. Our RLM and Selective PCA methods also deliver robust

performance, confirming their suitability for large-scale, high-dimensional problems.
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Table 4.2: Training time (seconds) for FSA and TISP on the datasets evaluated for CLIP features.

Dataset Method # Selected Features
2560 2250 2000 1750 1500 1250 1000 750

CIFAR-10
FSA 25 21 20 19 18 18 17 16
TISP 25 20 20 20 19 18 17 15

Selective PCA 52 48 48 46 45 42 40 40
RLM 78 65 59 56 53 51 51 51

CIFAR-100
FSA 45 43 41 35 31 29 27 25
TISP 45 44 42 37 34 28 26 25

Selective PCA 432 420 419 415 414 410 407 401
RLM 563 542 540 528 521 516 516 504

640 600 550 500 450 400 350 300

ImageNet-1k
FSA 2293 1335 1329 1176 921 898 819 779
TISP 2293 1236 1022 996 877 776 769 737

Selective PCA 1285 1190 1124 1060 975 882 798 730
RLM 1500 1380 1250 1130 1010 900 790 710

Table 4.3: Training time (seconds) for low-rank generative methods on the datasets evaluated for
CLIP Features.

Dataset # Features Methods
PPCA LFA ELF HeteroPCA

CIFAR-10 2560 10 30 40 58

CIFAR-100 2560 12 90 42 200

ImageNet-1k 640 46 102 248 80

Table 4.4 presents the classification accuracy results when applying our feature selection frame-

work to the state-of-the-art DINOv3 embeddings. The use of these compelling features elevates the

overall performance of all methods to a new, higher baseline, allowing us to analyze the robustness

and efficiency of each selection technique in a near-optimal feature space. On the CIFAR-10 dataset,

the DINOv3 features prove to be remarkably effective, pushing the accuracy for all methods close

to 99%. In this high-performance scenario, the primary differentiator between methods is their

ability to maintain this accuracy under aggressive feature pruning. A clear pattern emerges: the

discriminative FSA and TISP methods, while achieving high peak accuracy, are the most brittle.

When the feature set is reduced to just 200 (an 80% reduction), their performance collapses by

over 4% points. In contrast, all generative methods demonstrated superior stability. In particular,

methods such as HeteroPCA, LFA, and PPCA maintain accuracies above 98.2%, demonstrating

graceful degradation. This highlights the inherent robustness of modeling class-specific distribu-
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Figure 4.1: Test accuracy on real-world datasets for different methods using CLIP features

Figure 4.2: Test accuracy on real-world datasets for different methods using Dinov3 features

tions for identifying a core, information-rich feature subset. This trend is even more pronounced

on the more challenging CIFAR-100 dataset. The performance gap between the discriminative

baselines and the generative methods is stark. Under aggressive pruning to 200 features, FSA and

TISP’s accuracy plummets by over 8% points. The generative methods, however, remain remark-

ably stable. PPCA is the standout performer in this high-compression regime, achieving 90.36%

accuracy, while our proposed RLM method is close behind at 90.18%.

This represents a performance advantage of approximately 7-8 percentage points over the dis-

criminative baselines, providing definitive evidence that, as task complexity increases, the ability

of generative models to identify stable, class-representative features is a significant advantage over

methods that focus solely on the classification boundary. The LFA method achieves the highest

accuracy 92% for this data using 800(78%) features out of 1024. The HeteroPCA method achieved

91.67% accuracy with only 600 (58%) features. Finally, on the large-scale ImageNet-1k bench-
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Table 4.4: Classification accuracy (%) for different methods on real datasets for Dinov3 features

Method # Selected Features

CIFAR-10, n = 60, 000, d = 1024

1024 1000 800 600 400 200

FSA 98.87 98.93 98.84 98.79 97.67 94.24
TISP 98.93 98.93 98.78 98.7 97.78 94.53
ELF 98.88 98.9 98.92 98.84 98.74 98.08

HeteroPCA 98.88 98.93 98.91 98.86 98.83 98.36
LFA 98.88 98.93 98.94 98.87 98.78 98.2

PPCA 98.88 98.91 98.91 98.91 98.81 98.36
Selective PCA 98.88 98.82 98.72 98.66 98.60 98.37

RLM 98.88 98.85 98.78 98.71 98.63 98.39

CIFAR-100, n = 60, 000, d = 1024

1024 1000 800 600 400 200

FSA 91.74 91.31 91 90.72 88.93 83.68
TISP 91.68 91.61 91.47 90.48 88.93 82.68
ELF 91.8 91.8 91.8 91.52 91.25 89.67

HeteroPCA 91.8 91.87 91.77 91.76 91.25 89.75
LFA 91.8 91.8 92 91.51 91.18 89.17

PPCA 91.8 91.8 91.82 91.7 91.4 90.36
Selective PCA 91.8 91.78 91.70 91.54 91.11 90.0

RLM 91.8 91.72 91.78 91.67 91.3 90.18

ImageNet, n = 1.2 million, d = 1024

1024 1000 800 600 400 200

FSA 83.05 82.8 82 78.93 70.35 46
TISP 83.05 82.13 81.67 78.67 71.3 45.01
ELF 83.93 83.92 83.92 83.75 83.1 80.76

HeteroPCA 83.93 83.92 83.92 83.73 83.13 80.71
LFA 83.93 83.93 83.87 83.66 83.13 80.78

PPCA 83.93 83.94 84.03 83.91 83.76 81.7
Selective PCA 83.93 83.89 83.92 83.82 82.61 81.15

RLM 83.93 83.95 83.97 83.8 82.7 81.6

mark, the FSA and TISP accuracies dropped by nearly 40 percentage points when reduced to 200

(19%) features. PPCA once again demonstrates best-in-class performance, achieving its peak ac-

curacy of 84.03% with a reduced set of 800 features—outperforming the full-feature baseline—and

maintaining an impressive 81.7% accuracy with only 200 features. Our proposed RLM method
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Table 4.5: Training time (seconds) for low-rank generative methods on the datasets evaluated for
Dinov3 features

Dataset # Features Methods
PPCA LFA ELF HeteroPCA

CIFAR-10 1024 5 18 9 57

CIFAR-100 1024 9 24 12 59

ImageNet 1024 133 476 916 611

Table 4.6: Training time (seconds) for FSA and TISP on the datasets evaluated for Dinov3 features.

Dataset Method # Selected Features
1024 1000 800 600 400 200

CIFAR-10
FSA 24 23 23 22 22 21
TISP 26 26 26 25 25 24

Selective PCA 22 21 21 20 19 18
RLM 32 31 30 29 29 28

CIFAR-100
FSA 27 26 26 26 25 25
TISP 30 29 28 27 26 26

Selective PCA 175 172 168 165 162 160
RLM 225 221 218 214 211 210

1024 1000 800 600 400 200

ImageNet
FSA 3963 3786 2479 1222 1024 1018
TISP 3963 3863 2326 1136 1034 1022

Selective PCA 2060 1995 1880 1750 1640 1510
RLM 2400 2320 2180 2020 1850 1780

closely tracks this performance, achieving 81.6% at the 200-feature level. This massive, greater-

than-35-point performance advantage over the discriminative baselines confirms that for large-scale,

high-dimensional problems, a feature selection strategy grounded in robust, class-specific generative

modeling is overwhelmingly superior.

4.4.7 Analysis of Computational Efficiency

Tables 4.2 and 4.3 provide a comprehensive overview of the computational costs associated

with the feature selection methods evaluated in this study. Table 4.2 details the training times

for FSA, TISP, and our proposed Selective PCA and RLM methods. For these methods, a time

is reported for each level of feature sparsity. This is because these frameworks, as evaluated here,

require a separate and complete training cycle for each desired number of features. For FSA and

TISP on ImageNet, a single run on the complete feature set takes 2,293 seconds (approximately

38 minutes), making a complete analysis extremely time-consuming. Our proposed methods, when
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Figure 4.3: Training time (seconds) for different methods using the CLIP features

run in this same iterative manner, exhibit a similar computational profile. On ImageNet, RLM

requires 1,500 seconds for its initial run, which, while faster than the full-feature FSA/TISP run,

remains computationally intensive and comparable in magnitude.

In stark contrast, Table 4.3 illustrates the profound efficiency of the standard low-rank gen-

erative methods (PPCA, LFA, ELF, HeteroPCA). These methods operate on a one-shot, upfront

computation paradigm. The time reported is the total time required to model the data and calculate

the Signal-to-Noise Ratio (SNR) for all features once. After this single computation is complete,

selecting any number of top features and updating the model parameters by restricting it to the

selected features is an instantaneous operation. This architectural advantage results in a massive

efficiency gain. For instance, on the ImageNet dataset, PPCA ranks all 640 features in a mere 46
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Figure 4.4: Training time (seconds) for different methods using the Dinov3 features

seconds. This is nearly 50 times faster than the 2,293 seconds required for just one of the multiple

training runs needed by FSA or TISP.

Therefore, the comparison between the two tables reveals a clear trade-off. While our proposed

Selective PCA and RLM methods demonstrate strong classification accuracy, their computational

cost, when framed in an iterative selection process, is substantial and comparable to the expensive

discriminative baselines. The standard generative methods, particularly PPCA and LFA, offer a

vastly more scalable and practical solution.

The computational times for experiments using DINOv3 features are presented in Tables 4.6

and 4.5. These results confirm the same fundamental efficiency differences that were observed with

the CLIP features. Table 4.5 shows that the standard generative methods (PPCA, LFA, etc.) are
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very fast. They perform a single, one-time computation to rank all features. For example, PPCA

completes its entire analysis for ImageNet in just 133 seconds. In contrast, Table 4.6 shows the times

for the iterative methods, including our proposed Selective PCA and RLM. These methods require

a separate, time-consuming training run for each feature subset. On the large ImageNet dataset,

a single run of our RLM method takes 2400 seconds, and the FSA baseline takes 3963 seconds.

This is substantially slower than the entire one-time analysis performed by the standard generative

models, confirming that they offer a much more scalable and efficient approach for feature ranking.

4.4.8 Class Incremental Learning Experiments

Our framework is architecturally designed to be inherently immune to catastrophic forgetting.

This stems from the complete decoupling of class-specific knowledge: we train an independent gen-

erative model (e.g., PPCA or LFA) for each class using only its data, and these models remain

unmodified thereafter. When new classes arrive, we train separate models exclusively for them.

Similarly, feature selection follows an additive paradigm—features with high SNR are identified for

the new classes and appended to the overall feature pool, preserving all prior selections. Since nei-

ther the parameters of existing models nor the selected features for previous classes are altered, the

framework’s performance on old classes cannot degrade, ensuring zero forgetting without additional

mechanisms such as replay buffers or regularization.

To validate this property, we adopt the standard CIL protocol from [47], a widely used bench-

mark for evaluating incremental methods [114, 128, 81]. The protocol proceeds as follows: We

initialize the model on a random subset comprising half the dataset’s classes (e.g., 50 for CIFAR-

100, 500 for ImageNet-1K). The remaining classes are divided into 5 or 10 equal incremental tasks,

introduced sequentially. At each step b:

• Train independent generative models for the new classes in the task b.

• Apply SNR-based feature selection to identify the top discriminative features for these classes.

• Add the selected set of features to the existing feature pool, and also keep track of the selected

set of features for every class.

Evaluation occurs after each step on a held-out test set encompassing all classes seen thus

far, using only the selected features for classification via the Mahalanobis distance. No exemplars

from prior classes are stored or replayed, aligning with the exemplar-free setting [128]. To ensure

robustness, we repeated the process over 5 independent runs with different random seeds for class
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splitting and report the average incremental accuracy : the mean accuracy across all evaluation

steps.

Table 4.7: Comparison of average incremental accuracy (%) and final accuracy on CIFAR-100 and
ImageNet-1K in the class-incremental learning setting (exemplar-free).

Method
CIFAR-100 ImageNet-1K

ā10 a10 ā5 a5 ā10 a10 ā5 a5

iCaRL(2017) [89] 52.57 50 57.17 45.5 46.72 45.6 51.36 39.89
BiC(2019) [118] 53.21 - 56.86 40.21 84.02 73.2 - -
UCIR (NME)(2019) [47] 60.12 - 63.12 - 59.92 - 61.56 -
UCIR (CNN)(2019) [47] 60.18 43.39 63.42 - 61.28 - 64.34 -
PODNet(2020) [30] 63.19 41.05 64.83 - 64.13 - 66.95 -
PPCA-CLIP(2023)[114] 69.71 72.81 69.71 72.81 71.25 73.73 71.25 73.73
LwF (2018) [70] 82.88 77.57 88.10 84.28 - - - -
L2P (2022) [116] 89.48 84.47 91.02 86.27 - - - -
DualPrompt (2022) [115] 88.86 84.23 89.78 84.76 - - - -
ACIL (2022) [119] 91.96 90.33 94.00 90.73 - - - -
CODA-Prompt (2023) [106] 91.19 87.24 92.20 88.67 - - - -
LAE (2023) [76] 86.97 81.13 88.50 82.76 - - - -
DS-AL (2024) [26] 83.50 86.05 88.82 85.91 - - - -
SimpleCIL (2024) [128] 82.31 76.21 81.12 76.21 - - - -
Aper (2024) [128] 90.91 85.81 91.56 87.51 - - - -
EASE (2024) [71] 92.01 87.25 92.81 89.22 - - - -

CLIP-(ELF+SNR)(640/640) - - - - 76 73.73 76 73.73
CLIP-(ELF+SNR)(1750/2560) 77.37 72.81 77.37 72.81 - - - -
Dinov3-(LFA+SNR)(800/1024 features) 93.44 92 93.44 92 - - - -

Table 4.7 provides a comprehensive and detailed comparison of our proposed frameworks against

a wide array of state-of-the-art (SOTA) methods in the challenging exemplar-free class-incremental

learning setting. The table reports two distinct performance metrics for the CIFAR-100 and the

large-scale ImageNet-1K benchmarks: the average incremental accuracy (ā), which is the aver-

age performance across all incremental steps, and the final accuracy (a), which is the performance

at the final step on all classes seen so far. These metrics are evaluated for both 5-step and 10-step

incremental learning scenarios to assess performance under different learning granularities.

An analysis of historical and recent SOTA methods reveals a clear upward trend in performance

over time, particularly on the CIFAR-100 benchmark. Early methods like iCaRL and BiC es-

tablished baselines in the 50-60% accuracy range. The field saw significant improvement with the

advent of prompt-based learning methods designed for large PTMs, such as L2P, DualPrompt, and
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Figure 4.5: Comparison of the CIL accuracy on CIFAR100 and ImageNet-1k datasets using different
methods

CODA-Prompt, which consistently pushed performance to around 90%. As of the latest results, the

top-performing SOTA methods in this comparison are ACIL and EASE, with ACIL achieving the

highest average accuracy (ā5 = 94.00%) and EASE achieving a strong final accuracy (a5 = 89.22%).

Against this highly competitive landscape, our ‘Dinov3-(LFA+SNR)‘ framework demonstrates

a significant performance leap, establishing a new state-of-the-art on CIFAR-100. Our method

achieves a final accuracy (a5) of 92.00%, substantially outperforming the previous top method,

EASE, by nearly 3 percentage points. Furthermore, our average accuracy (ā5) of 93.44% is highly

competitive with the best reported result. Critically, this superior performance is achieved not with

the full feature set, but with a reduced subset of 800 out of 1024 features, as determined by our

SNR criterion. This simultaneously validates our feature selection methodology and demonstrates

its ability to improve accuracy by removing noisy or redundant information.

On the more challenging, large-scale ImageNet-1K benchmark, the field is less crowded, as

many recent methods do not report results for this task due to overlap between PTM training

sets and ImageNet-1K. The strongest baseline in this comparison is PPCA-CLIP, which achieves

an average accuracy of 71.25% and a final accuracy of 73.73%. Our ‘CLIP-(ELF+SNR)‘ method
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clearly surpasses this baseline, achieving an average accuracy (ā5) of 76%. This represents a

significant improvement of nearly 5 percentage points in overall learning stability throughout the

incremental process. The final accuracy (a5) of 73.73% matches the baseline, confirming that

our method maintains top-tier final performance while demonstrating substantially better learning

dynamics.

In summary, the results unequivocally establish the superiority of our proposed frameworks. By

synergistically combining powerful pre-trained features, robust generative modeling (LFA/ELF),

and principled SNR-based feature selection, our methods advance the state of the art in exemplar-

free incremental learning across both standard and large-scale benchmarks.

91



CHAPTER 5

CONCLUSION

This dissertation presented a comprehensive investigation into feature selection for high-dimensional

data, developing a novel, theoretically-grounded, and scalable framework to address the challenges

of the ’curse of dimensionality,’ robustness to outliers, and class-incremental learning. Our work

systematically moved from foundational principles to practical, state-of-the-art applications, deliv-

ering a unified toolkit for modern data analysis.

Our research began by establishing a feature selection methodology based on the Signal-to-

Noise Ratio (SNR), derived from a family of low-rank generative models including PPCA and

LFA. A cornerstone of this work was the development of rigorous theoretical guarantees, including

not only asymptotic consistency results but also explicit, non-asymptotic probability bounds on

the estimation errors of the signal, noise, and SNR. This theoretical analysis provides a principled

foundation that moves beyond heuristic approaches, offering quantifiable confidence in the reliability

of our method in practical, finite-sample scenarios.

Recognizing that real-world data is often contaminated, we then introduced a second family of

methods based on sparsity-inducing penalties, culminating in a novel Robust Loss Minimization

(RLM) approach. This method was specifically designed to be resilient to extreme outliers by

integrating a robust loss function directly into the optimization objective.

Finally, we demonstrated the immense practical utility of our generative framework by applying

it to the challenging problem of class-incremental learning (CIL). We showed that, by training

independent, class-specific models, our approach is structurally immune to catastrophic forgetting,

enabling seamless, scalable adaptation to new data.

Throughout this work, we explored two philosophically distinct approaches to feature selection:

low-rank generative modeling and sparsity-inducing penalized models. Low-rank generative meth-

ods first learn the underlying distribution of each class’s data and then use the learned parameters

to perform a post-hoc feature ranking using the SNR. In contrast, our sparse models, such as RLM,

integrate feature selection directly into the optimization objective along with a low-rank constraint,

forcing the model to learn a sparse representation that minimizes a chosen loss function. While
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our RLM method demonstrated unmatched robustness to outliers, a central finding of this thesis

is the remarkable effectiveness of the simpler generative models.

Across extensive experiments on large-scale, real-world datasets, the **Probabilistic Princi-

pal Component Analysis (PPCA)** model consistently delivered outstanding results. It not only

achieved classification accuracy that was highly competitive with — and often superior to—far

more complex methods, but also did so with an incredible degree of computational efficiency. The

one-shot feature ranking process of PPCA was frequently orders of magnitude faster than the iter-

ative training required by both the discriminative baselines and our more complex robust models,

making it a powerful and highly practical tool.

In the class-incremental learning setting, our generative frameworks, particularly ‘Dinov3-

(LFA+SNR)‘, established a new state of the art, validating our core thesis that a class-specific

generative approach provides a superior solution for scalable, adaptive learning. Future work may

focus on extending the non-asymptotic theory to our robust models and exploring hybrid methods

that combine the resilience of the RLM with the profound efficiency of PPCA.
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