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ABSTRACT

This research provides a thorough analysis of feature selection methods in machine learning. The
study addresses challenges associated with high-dimensional data and aims to alleviate the curse
of dimensionality. The research is conducted on enhancing model performance through feature
selection techniques. It systematically reviews existing feature selection approaches, including both
supervised and unsupervised methods. New strategies are proposed to improve robustness and
create sparsity in the feature selection process. Additionally, the research emphasizes the critical
evaluation of these methods within a multi-class classification framework, utilizing both simulated
and real-world datasets. Key contributions of the study include the development of a signal-to-
noise ratio (SNR)-based feature selection technique, the theoretical investigation of feature recovery
guarantees, the proposal of robust outlier handling methods, the integration of per-class feature
selection for multi-class classification, and the execution of comprehensive experiments to confirm

the effectiveness and robustness of the proposed methods.
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CHAPTER 1

INTRODUCTION

Feature selection involves identifying a relevant subset of features from a larger set to address the
challenge of dealing with too many dimensions in data. Features are individual, measurable prop-
erties of what is being studied. Machine learning algorithms utilize these features for classification,
regression, and other purposes. As machine learning has advanced, the number of features used
has also grown.

Machine learning methods are expected to perform better when they have more information.
However, dealing with high-dimensional data poses challenges known as the curse of dimensionality.
As the number of features increases, issues such as training time, algorithmic complexity, storage
space, and noise in datasets can worsen. Noise can be referred to as the set of variables that do not
influence the target variable and may introduce bias in the prediction, or as the set of dependent
variables that provide no additional information [24, 97]. The performance of a classifier depends on
the interrelationship between the number of samples and the number of features used. Interestingly,
adding more features to the dataset can improve accuracy while the signal dominates the noise.
Beyond that point, the model accuracy reduces. This phenomenon is called peaking [56].

Therefore, dimensionality reduction techniques have become popular. They involve reducing the
number of features in a model, potentially through transformation methods. Feature selection is a
type of dimensionality reduction that removes features from the model’s inputs. The key distinction
is that dimensionality reduction may require all data sources to transform and reduce features,
whereas feature selection avoids irrelevant data collection while still providing good predictive
results. It has several advantages, as suggested by [13], such as:

e Increase the speed and scalability of the model, which are desirable traits for large-scale

computation.

e Removes noise and nuisance dimensions from the data to recover genuine signals with high

probability.

Several challenges arise in constructing feature selection algorithms for big data, as noted in

[108] and [13]. Some of them are the following:



e The aim should be to select a smaller set of features while maintaining model accuracy,
ensuring that the accuracy of the chosen subset does not drop significantly compared to the

model trained on all features.

e The class distribution obtained for the selected features should closely resemble the original

class distribution, considering all features.
e Algorithms with simple implementations are preferred to avoid overfitting and ad-hoc designs.

e Consideration of nonlinear patterns of the features in the algorithm is also desirable.

Feature selection is integral to both supervised and unsupervised learning paradigms. In super-
vised learning, the primary aim is to differentiate between data points belonging to distinct classes
(classification) or to provide accurate predictions of regression targets. Conversely, unsupervised
feature selection addresses challenges in clustering. Instead of relying on labels, it seeks alterna-
tive metrics to measure the significance of available features. Feature selection can be achieved
through various approaches: they may operate independently of learning algorithms (filter meth-
ods), depend on learning algorithms iteratively to improve the quality of selected features (wrapper
methods), or integrate the feature selection phase into supervised /unsupervised learning algorithms
(embedded methods). Ultimately, in supervised setups, the trained classifier or regression model
employs the selected features to predict class labels or regression targets for test data points. In
contrast, in unsupervised scenarios, it provides the cluster structure of all data samples based on
the selected features using a standard clustering algorithm [40, 74].

The usual approach is to optimize a margin-maximizing loss function, which scales as O(C') with
the number of classes C'. Our work emphasizes individual class modeling, independently leveraging
a generative model and feature selection for each class. This class-specific modeling sets our method

apart from existing feature selection techniques for the following reasons:
e It captures the unique characteristics and distribution by tailoring the model to each class.

e The model for each class is wrapped tightly around the observations of that class, which

allows the introduction of new classes without retraining the existing class models and scales

as O(1).

e Additionally, preserving learned parameters for each class mitigates the risk of catastrophic

forgetting when new data is introduced.

In our first step, we propose using the signal-to-noise ratio (SNR) as a feature selection criterion,

where the signal represents relevant information that contributes to accurate predictions, and the
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noise represents irrelevant data. SNR quantifies the strength of the signal relative to noise, with
higher SNR features being more effective at distinguishing classes. Eliminating low SNR features
enhances computational efficiency and model interpretability. We employ low rank generative
models for individual class modeling and SNR estimation.

Recently, low-rank models have attracted considerable attention for feature selection, owing to
their capacity to capture underlying latent structures and disentangle informative signals from noise.
For instance, low-rank learning methods have been proposed for multi-label feature selection in [72],
demonstrating that low-dimensional latent representations can enhance discriminative performance.
Previously, factor analysis—a classical generative model—was applied to feature selection in the
context of Alzheimer’s disease diagnosis [96], where factor loadings identified relevant brain regions.
Collectively, these studies underscore the potential of low-rank and latent factor models for robust
feature extraction. However, they often lack formal non-asymptotic theoretical guarantees. This
thesis also takes an initial step toward analyzing the asymptotic properties and finite-sample bounds
for the signal variance, noise variance, and SNR estimation error, which are crucial for guaranteeing
true feature recovery. True feature recovery guarantees ensure that as we receive infinitely many
observations, the estimated SNRs should converge to the true counterparts.

In the next step, we also experiment with reduced-rank regression methods with sparsity con-
straints to perform feature selection. We also propose a novel robust loss-based rank optimiza-
tion further to reduce the impact of detrimental outliers in the dataset. In the simulation setup,
we have demonstrated how robust loss-based methods can effectively handle outliers when tradi-
tional ls-norm-based approaches completely break down. We have also employed these methods
for class-specific feature selection and conducted a performance comparison on real datasets with
the previously mentioned low-rank generative models.

In our next step, we apply the selected set of features within a multi-class classification frame-
work. Within this framework, the feature selection process is carried out independently for each
class. Subsequently, the selected features are used to compute the Bayesian probability for each
existing class for a new observation. The classification of the latest observation is then determined
by assigning it to the class with the highest posterior probability. This method is immune to catas-
trophic forgetting. Therefore, we have also employed our class-specific feature selection method
for class incremental learning using real data sets and have performed a comparative analysis with

contemporary techniques.



In our experiments, we analyzed the feature selection abilities and classification accuracy of
these techniques using a simulated dataset. Additionally, we have evaluated their classification
performance across different computer vision datasets, including CIFAR-10 [65] and CIFAR-100
[66], each with 60,000 training images and 10 and 100 categories, respectively, and ImageNet-1k
[94] with 1.2 million training images and 1000 classes.

This dissertation presents a comprehensive investigation into feature selection, culminating in
a novel framework that is robust, scalable, and theoretically sound. The research systematically
reviews existing paradigms while introducing new strategies to advance the state of the art. The

key contributions of this work are summarized as follows:

e A Novel SNR-Based Feature Selection Framework: It introduces a feature selection
method based on the Signal-to-Noise Ratio (SNR) criterion for a class of low-rank generative
models, including Probabilistic PCA (PPCA) [110], Latent Factor Analysis (LFA) [35], ELF
[59], and Heteroskedastic PCA [122].

e Rigorous Theoretical Guarantees: It provides a detailed asymptotic and non-asymptotic
analysis for the proposed feature selection methods. This work establishes theoretical guar-
antees for true feature recovery under certain assumptions, providing a principled foundation

that moves beyond heuristic approaches.

e A Robust Method for Handling Outliers: Recognizing that real-world datasets are often
contaminated with outliers, a robust feature selection method is developed. This approach
incorporates a sparsity constraint and robust loss functions to effectively select influential

features even in the presence of data that could otherwise degrade model performance.

e A Scalable Framework for Multi-Class and Incremental Learning: It shows how to
apply the proposed feature selection method to multi-class classification, resulting in a class-
incremental learning method that is structurally immune to catastrophic forgetting. This

allows for the seamless addition of new classes without retraining on the entire dataset.

e Comprehensive Experimental Validation: The efficacy and robustness of the proposed
methods are rigorously validated through comprehensive experiments on both simulated data
and large-scale, real-world computer vision benchmarks, including CIFAR-10 [65], CIFAR-100
[66], and ImageNet-1k [94].

e Comparative Performance Analysis: The proposed method is compared against stan-
dard linear model-based and recent state-of-the-art feature selection methods. The results
demonstrate that our approach significantly outperforms classic methods by a wide mar-
gin and shows competitive performance in class-incremental learning setups, validating its

practical applicability.



CHAPTER 2

SIGNAL TO NOISE RATIO (SNR) FOR FEATURE
SELECTION

This chapter introduces a feature selection technique that uses SNR as the criterion. This method
can be applied to various low-rank generative models, such as Probabilistic PCA and Latent Factor
Analysis. First, we describe these methods and their parameter estimation processes. We then use

these estimates to calculate the SNRs.

2.1 Related Work
2.1.1 PCA & LFA-Based and Hybrid Feature Selection

While many techniques leverage Principal Component Analysis (PCA) for dimensionality re-
duction, these approaches to feature selection differ significantly from the proposed SNR-based
method. Boutsidis et al. [18] focused on selecting a representative subset of features that preserves
the variance captured by top eigenfeatures. Our SNR-based method, however, evaluates each fea-
ture individually for its discriminatory power rather than selecting a collective subset to represent
the whole. The work by Niu and Qiu [82] on weighted PCA is conceptually extended by the SNR
approach, which formalizes the weighting by using the inverse of the noise covariance to distinguish
meaningful signals from noise systematically.

Several hybrid methods use PCA as a preliminary step before applying other selection tech-
niques. For instance, [112] employed a two-stage method combining Information Gain and a Genetic
Algorithm with PCA. Similarly, Ahmad [4], Alomari et al. [5], and Pushpalatha et al. [85] used
evolutionary algorithms such as the GA, Grey Wolf Optimizer, and ReliefF to refine a PCA-reduced
feature set. These multi-step approaches separate dimensionality reduction from feature selection,
whereas our SNR-based method provides an integrated solution in which the selection criterion is
inherent to the model.

Supervised PCA variants also differ in their core mechanism. Sharifzadeh et al. [99] and Rahmat
et al. [88] incorporate supervision by identifying features that are highly dependent on a response

variable. In contrast, our SNR-based method models each class independently and selects features



based on their ability to represent the unique characteristics of that class, not just their correlation

with an output variable.

2.1.2 Methods Based on Latent Factor Models

Feature selection using latent factor models has also seen diverse approaches. The Sparse
Estimation of Latent Factors (SELF) framework proposed by Aziz [8] achieves feature selection
by imposing sparsity directly on the model’s transformation matrix W. The SNR-based method
diverges from this by removing such structural constraints and instead using the signal-to-noise
ratio as a post-hoc criterion to rank features based on the learned model.

The work of Abbas and Sivaswamy [1] utilized latent factors to extract influential low-dimensional
features from medical images, followed by classification using Mahalanobis distance. This consti-
tutes a feature-extraction approach, creating new features rather than a feature-selection method
that ranks and chooses from the original set of features, which is the focus of the SNR method.
Similarly, Townes et al. [111] proposed a latent factor model for single-cell RNA-sequencing data
that ranks genes based on deviance, a metric tailored to count data. Our SNR-based method is
more general, defining the signal and noise based on the variance explained by the generative model,
making it applicable across various data types.

In conclusion, while PCA- and LFA-based methods often rely on hybrid frameworks or structural
constraints for feature selection, the SNR-based approach offers a distinct, unified methodology.
It evaluates features on a class-by-class basis using an intrinsic, theoretically grounded measure of

their signal content.

2.1.3 Signal-to-Noise Ratio (SNR)-Based Feature Selection

The Signal-to-Noise Ratio (SNR) is one of the simplest and most interpretable measures for
identifying discriminative features. It quantifies how strongly a feature separates classes relative to
within-class variation, making it an effective filter criterion in high-dimensional data.

The use of SNR as a feature selection criterion dates back to early work in neural networks.
[15] introduced an SNR-based saliency measure to identify and prune noisy inputs during training
by comparing each input’s contribution to that of a random noise feature. This approach proved
effective for dimensionality reduction on benchmark datasets, outperforming standard PCA-based

methods. Shortly after, the now-classic SNR formulation, SNR = (u1 —pu2)/(01+02), was employed



by [48] as a screening criterion for selecting features in binary classification tasks with probabilistic
neural networks, where (u;,0;) represent the mean and standard deviation of a feature for class 7.

The utility of SNR became particularly evident in bioinformatics, where microarray and gene
expression data are characterized by high dimensionality and significant noise. To improve feature
ranking, [79] and later [95] proposed hybrid clustering frameworks where SNR was used to select
the most informative genes within each cluster, effectively reducing redundancy and enhancing
classification accuracy.

In recent years, SNR-based methods have been hybridized with other machine learning tech-
niques to enhance their robustness and applicability across diverse domains. In engineering, [41]
used a PCA-based signal subspace approach to improve the SNR of noisy vibration signals for
early fault detection in ball bearings. For wireless positioning systems, [83] developed SNR-driven
feature reduction techniques to minimize model complexity while maintaining predictive power in
low-SNR environments.

In genomics, Weighted SNR (WSNR) methods have been developed, such as the one by [42],
which integrates SNR scores with Support Vector Machine (SVM) weights to emphasize the most
discriminative genes. To mitigate the influence of outliers in skewed datasets, [53] combined SNR
scores with the Mood median test, creating a robust ”Md-score” that balances class separation and
statistical significance. Beyond classification, SNR has been adapted for nonlinear regression in
physical systems. [16] introduced an ANN-SNR method with confidence interval stopping rules to
predict concrete shear strength, achieving high accuracy with a significantly reduced feature set.

The existing body of work demonstrates that SNR is a flexible and interpretable feature selection
strategy. However, these methods are often heuristic, lack theoretical guarantees, and typically use
all available data to compute a single SNR value for each feature. Our proposed approach introduces
several key novelties that address these limitations.

First, it defines a different SNR criterion based on the parameters of a generative latent factor
model, where the signal is captured by the variance explained by the latent factors, and the noise is
the unexplained variance. Second, it proposes a class-based feature selection paradigm in which the
SNR for each feature is computed using only the data available for that class. This class-specific
modeling makes the approach highly scalable, naturally suited for class-incremental learning, and
capable of capturing the unique characteristics of each class.

Finally —and most significantly —our work takes a firm step toward establishing a rigorous

theoretical foundation. We analyze the asymptotic properties of the parameter estimates used
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to compute the SNRs and provide a path to deriving non-asymptotic probability bounds for the
estimated signal, noise, and SNR values. This provides a theoretical basis for SNR-based feature
selection in latent factor models, moving the field beyond heuristic applications toward a more

principled, scalable, and theoretically grounded methodology.

2.2 Low-rank Generative Models

In this section, we are going to describe the four different methods based on low-rank generative
models that are included in this study, namely Probabilistic PCA (PPCA) [110], Latent Factor
Analysis (LFA)[35], Heteroskedastic PCA (HeteroPCA) [122] and Estimation of Latent Factors
(ELF). We have introduced the last method in [59], which is a nonparametric version of LFA.

PPCA, LFA, and our newly introduced method, ELF, share the same model structure but
have different assumptions associated with their model parameters. The model aims to find a
relationship between the observed x € R% and a hidden set of variables (latent variables) v € R”
with 7 << d and assumes the latent factors and noise variables are independent of each other. It

is as follows:
x=p+ Wvy+e with E(e) =0 and var(e) = W. (2.1)
The PPCA and LFA methods assume that -~ ESYe (0,1,) and that the noise variable € i

N(0,%) . Tt can be easily verified that for these two methods:

x|y ~ N (W~ + p, ¥), and by integration, (2.2)
X~ N(p,X),2=WWT 4@, (2.3)
Conversely, ELF does not make distributional assumptions about the parameters it estimates.

ELF assumes T' = (71,75, -+ ,7,,)7 to be semi-orthogonal (I''T = I,). LFA and ELF, while

sharing similar goals with PPCA, assume distinct noise variances across dimensions.

. (2.4)

o a’1, for PPCA,
B diag(o?,03,--+ ,02) otherwise.

p has been treated as a constant vector in the model (2.1) and estimated as: py; =1 370 | x;.



2.2.1 Parameter estimation for PPCA and LFA

Due to the isotropic nature of the ¥ in PPCA, a closed form of the Maximum Likelihood (ML)

estimates of the PPCA model parameters (W, 0?) has been derived in [110]. It is as follows:

1
j=r+1
Wi = U (S, — o3, 1)"R, (2.6)

where [; is the Gt largest eigenvalue and U, consists of the first 7 principal eigenvectors of the
sample covariance matrix, ﬁ), the matrix S, = diag(ly,l2, -+ ,l), while R is an arbitrary r x r
orthogonal rotation matrix.

As discussed in [110], an essential capability of PPCA is density modeling, whether through
individual or mixture models. PPCA can manage the model’s complexity by selecting a rank r
with r < d. This choice helps limit the number of parameters used to define the covariance in
the high-dimensional space. In situations where employing fully parameterized covariance matrices
would lead to excessive under-constraint due to data dimensionality, this approach becomes useful.
It allows one to avoid problems that can arise from constraining the covariance to be diagonal
or spherical, which may be inappropriate for specific datasets. Furthermore, when it comes to
classification tasks, modeling the densities associated with different classes makes sense even when
the data dimensionality is quite large.

Latent Factor Analysis (LFA) is a multivariate statistical technique commonly used for dimen-
sionality reduction. This analytical approach shares significant kinship with PCA, which aims
to find orthogonal components (principal components) that maximize the variance in the data. In
contrast, LFA seeks to discover factors that account for observed variations but does not necessarily
require orthogonality.

LFA parameters (W, W) can be estimated using an EM algorithm due to [35].

Theorem 1 (due to [35)). Assume that the data has been properly centralized and let 3 = W7 (¥ +
WWT)=L. The EM updates of (W, W®) for LFA are:

e E-step: Compute E(v|x;) and E(y~T|x;) for each data point x; as follows:

E(yx:) = Bxi, E(yv"|x;) =1, — BW + Bx;ix! g7



o M-step Update the LFA parameters as:

Wnew = Z;XZE(’Y‘X”T(Z; E(77T’Xi))_1? (27)
Uoe = — le ~ Woew E(v]%:)x7). (2.8)

2.2.2 Parameter estimation for ELF.

ELF estimates the model parameters (I', W) by optimizing the following:

~ ~ . _1
(WELFvI‘ELF) = argmin ”(X—I‘WT)\I’ 2”%, (29)
(r,W),r’'r=I1,

where X = (X1 — s, X2 — ML, >Xn — M), ie. properly centralized. We use o
as feature weights in (2.9) to reduce the impact of features with significant unexplained noise
variance, thereby significantly improving model accuracy. During model training, we estimate:
AJQ = ||X.; — X;||I3/(n — 1) and employ (&]2)7% as j feature weight for the estimation process.
To perform the minimization in (2.9), in every iteration, we first estimate (W, f‘) without the
constraint on I" using Theorem 2 and then adjust the estimated parameters to satisfy the constraint

using the Proposition 1 below.

Theorem 2. The ELF objective (2.9) without the constraint TTT = 1, is minimized w.r.t T and
W by
I =XU 'WW'e~"'W)tand W = XT (7)1, (2.10)

Proof. Let I(T') = (X — TWT)vV¥~!|2. Then

argmrinl(I‘) = arg n}in HX\/F - I‘WT\/FH%
= arg min Tr(X V¥~ - rw Ve H)T(XVe ! - WV o 1))
— argmin Tr VEIXTXVE ! - oV o IXITTWT Ve L+ Ve twrTTwT Ve )
= argmin Tr UIXTX — 20 IXTTWT + o 'wriTw?)

(
(P

= arg mm Tr(—2¢ ' XTTWT + ¢ 'wr'tw?)
(—

= arg min Tr oWT e IXTT + TTw'wrT).
I(T
88(11) ;I‘Tr( oW IXTT + 1T 'wWrT) = 2X ¥~ 'W + 2rwlo—'w.
r
8la(r) =0 = I=X¥ 'wwlie'w)!
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1Xj = 1“WTH2

= argmm E ,

J

which is minimized individually for each W as WT (r’'r)~'r’x. .j, which gives the result. [

Proposition 1. If UDVT = T is the SVD of T, then Ty = U, and W; = WVD satisfy
WT =TWT glong with TTT, =1,.
Proof. It is easy to verify that I‘lTI‘l =1.0

The W produced in (2.10) does not depend on the feature weights ¥. Algorithm 1 summarizes

the iterative estimation procedure.

Algorithm 1: Parameter Estimation for ELF
Input: X, x4, T' (number of iterations) and m
Output: W and ¥

Initialize

o feature weight matrix ¥ = Ig4
e T as the first r principal components of X
e W as the first r loading vectors from PCA of X
fort=1toT do
Update W as W = X'T(T7T)~!
Update T as T' = X&'W(WT¥~w)~!
Perform SVD on I', UpDp VL =T
Update I' = Upr and W = WVrDr
Update ¥ = diag(c?,03, - - - 02) with 0? = var(X; — TWY)
Check for convergence: || X — TWT||g is sufﬁmently small.

2.2.3 Parameter Estimation for HeteroPCA.

Heteroskedastic PCA [122], also known as Hetero PCA, addresses the issue of performing PCA
when the data has heteroskedastic noise, meaning the noise variance differs across dimensions in a

spiked covariance model setup. It assumes the following setup:

Xaxn = Xo + €, E(Xy) =, Cov(Xg) = X, (2.11)

E(e) =0, U = Cov(e) = diag(o?,03,--- ,03). (2.12)

11



Here, Xy is the noise-free version (signal) of the given data matrix, X. Also, € and X are
independent. ¥y admits rank-r eigen-decomposition 3¢ = UDU? with U € R*" and D € R™*".
The goal is to estimate U.

Though the model is similar to LFA, there is a difference between the objectives of the two
models. LFA focuses on finding latent factors that explain the behavior of the observed variables,
but Hetero PCA aims to capture the principal components (PCs) (estimate U) of the underlying
data(Xyp), accounting for heteroskedasticity. This is useful when noise levels vary significantly
across samples and could bias traditional PCA.

The estimation of U using the classical PCA is equivalent to the estimation of eigenvectors of
the sample covariance matrix Cov(X) = 3. Since E(X) = Zg + ¥ and (07,03, -+ ,02) in the
diagonals of W are not necessarily same, there will be a significant difference between the principal
components of E(f)) and those of 3. To cope with the bias on the diagonal elements of the
covariance matrix, HeteroPCA iteratively updates the diagonal entries based on the off-diagonals,
so that the bias incurred on the diagonal is significantly reduced and more accurate estimation can
be achieved. The idea is originally inspired by diagonal deletion SVD [32], which states to set the
diagonal of the sample covariance matrix to zero before performing singular value decomposition.

In Algorithm 2, the estimate of U is iteratively updated by imputing the diagonal entries of the
sample covariance matrix > by the diagonal entries of its low rank r approximation N, to minimize

the following: N = argminy ,(ny<r A - N)|2.

2.3 Estimation of SNR

The estimated signal-to-noise ratio (SNR) for the available features is computed from the
(W, ¥) estimates obtained by the different methods. The SNR for the i-th feature is defined
as: . )

SNR; = Z”i‘gw”z e{1,2,--,d}. (2.13)
The SNR can be directly calculated using E(; (2.13) for PPCA, LFA, and ELF methods, due to
the assumption of var(y) = I or I''T" = I. For HeteroPCA, we obtain the r principal loading
vectors U, corresponding to Xg. To evaluate (2.13) for HeteroPCA, we execute the following steps
to obtain (W, 62, - - L2

e Estimation of signal strength: Our initial estimates are: T' = XU and W = U. Next,

we employ Proposition 1 to obtain semi-orthogonal I" and the corresponding W. Therefore,
X =TWT,

12



Algorithm 2: Heteroskedastic PCA

Input :3: Cov(X), r : the rank of 3, T : maximum number iterations
Output : Estimated rotation matrix fJ, 330: estimated rank-r approximation of X

Initialize: Initialize by setting the diagonal elements of 3 to 0: N = A(ﬁ))

fort=0toT do
Perform SVD on N and let N be the best rank-r approximation:

Ny =UpDy(Ve)' = Z(/\i)(t) (Ud) (Vi) M) < G2y < -+ (A

N = Z()\i)(t)(U'i)(t) (Vi)

i=1

Update N1y = D(Ny) + A(Ny)

Until convergence or maximum number of iterations reached.

The outputs are the first r columns of fJ(t): fJ(t) A4,d =1{1,2,---,r}

e Estimation of noise variance: Next, the estimation process of (Gf,i =1,2,---,d) is as
follows:
o? = ||(Xo)i- — Xil[3/(n — 1). (2.14)

The intuition for employing SNRs to identify key features in the latent factor model is based
on the assumption that the data originates from a lower-dimensional latent space. The signal is
represented as W+ with the assumption I''T' = I,. The variance of the corresponding signals is
captured by the diagonal elements of WWT or the row sum of squares of W. At the same time,
the unexplained noise variance is reflected in the diagonal elements of ¥. Therefore, features with
relatively high SNR values are identified as strongly associated with the latent variables, making
them prime candidates for representing objects within specific categories. Once we estimate the
SNRs, we perform feature selection by employing a simple thresholding technique, as described in

Algorithm 3.

Algorithm 3: SNR based Feature Selection

Input: (W,é}%, <0, 62), m

Output: J,,, the indices of m selected features.

Caleulate SNR; = =215 e (1,2, d}

Sort the SNR values: SNR(;) < SNRy < --- < SNR,)

Selected feature indices are: J,, = {i: SNR; > SNRy_p,41)}

13



2.4 Theoretical Guarantees

A central pursuit in modern high-dimensional statistics is to understand not only if an esti-
mator converges to its true value, but at what rate it converges and with what level of certainty.
Latent variable models, and in particular Latent Factor Analysis (LFA) and Probabilistic Principal
Component Analysis (PPCA), represent a foundational toolkit for modeling and dimensionality
reduction in complex datasets. For decades, the theoretical understanding of these models was
primarily dominated by classical asymptotic results, which guarantee consistency and efficiency as
the number of samples approaches infinity [37, 36, 6, 117].

However, while asymptotic results establish eventual consistency, they are insufficient for a
rigorous analysis of an estimator’s behavior in the non-limiting regime. A complete theoretical
understanding requires finite-sample bounds. It provides explicit, high-probability guarantees on
the estimation error for any given sample size n. Such bounds are not merely a practical refinement;
they are a mathematical necessity for validating the downstream application of any estimator.

In the context of our work, the reliability of any feature selection procedure based on ranking
estimated SNR values fundamentally depends on the fidelity of the SNR estimates themselves.
A finite-sample bound establishes a high-probability ”contract” that the estimated value SNR
lies within a quantifiable neighborhood of the actual, unobservable SINR. This is critical, as
it provides measurable confidence, ensuring that the estimated values used for any downstream
task are not artifacts of sampling noise but are instead meaningful approximations of the true
feature importance. Without such an explicit, non-asymptotic bound, the numbers produced by
the estimator lack formal validation, making any subsequent analysis heuristic.

This thesis makes an initial step toward deriving such a bound. We have conducted a rigorous
non-asymptotic analysis of the estimators for LFA and PPCA. We move beyond the traditional
asymptotic regime to analyze the explicit nature of the parameter estimation errors for moderate
values of n. Our theoretical framework is built upon the powerful tools of modern probability theory,
leveraging seminal results in matrix concentration inequalities and the behavior of quadratic forms
of sub-Gaussian random vectors [113, 126]. The primary contribution of this work is to translate
these abstract mathematical tools into concrete, interpretable guarantees for the key parameters
of latent factor models. The implications are significant: these bounds provide a formal basis for

model validation, enable a deeper understanding of the statistical difficulty of parameter estimation
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in the presence of noise, and offer a principled way to reason about the reliability of any downstream
task that depends on these models.

Our analysis begins with bounding the deviation of the sample covariance matrix

2:7112&.)(;

from its population counterpart ¥. This deviation directly governs the accuracy of estimated signal
and noise variances in PPCA and LFA.

We present two complementary results: a global bound on the operator norm ||ﬁ) — X||op, which
controls the spectral deviation of all eigenvalues collectively, and a local bound on the diagonal

elements |(3 — )/, which quantifies feature-wise deviations.

Theorem 3 (due to [126]). [Covariance Matriz Concentration] Assume that M, ..., M, are in-
dependent realizations of a d x d positive semi-definite symmetric random matric M with mean

E[M] =3X. Let M satisfy for some k > 1,
" Mx|y, <w*x"Zx, for all x € RY, (2.15)

where || - ||y, denotes the sub-exponential norm, defined as ||Y ||y, = inf{c > 0: Elexp(|Y|*/c*)] <
2}. Then, for any t > 0, with probability at least 1 — exp(—t), it holds that

1< 4r(X) +t
I X;M — Zllop < 206 Z|op — (2.16)
1=

whenever n > 4r(X) +t, where r(X) = tr(X)/||X||,p is the effective rank of 3.

For many latent variable models, the observed data vectors x; are assumed to be zero-mean
sub-Gaussian random vectors. In this case, we can set M; = xix;fr. For a centered Gaussian vector
x; ~ N(0,X), the condition of Theorem 3 is met with x? = 8/3. Considerable research [22, 3, 20,
63, 62] has focused on the problem of deriving non-asymptotic bounds for the operator norm error
|3 — 3||op- Theorem 3 is a special case of the deviation bound derived by [62], which provides a
dimension(d)-free upper bound, ensuring the stability of eigenvalue-based estimators such as PPCA
loadings. It implies that accurate signal recovery is possible whenever n > r(X), even if d > n.
The effective rank term r(3) naturally emerges as a dimension-corrected complexity measure.

While the global bound provides a powerful worst-case guarantee on the overall deviation of the

matrix in any direction, we also employ a tighter, more refined bound on the error of the individual
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diagonal elements, \ﬁu — X¥j;|. If the feature variances are highly heterogeneous, the global bound
can yield a loose bound for low-variance features. A tighter bound for individual diagonal elements,

|(ﬁ] — ¥)iil, can be obtained by applying a scalar concentration inequality directly.

Theorem 4 (Refined Bound for Sample Variance Error). Let Z = z2, — E[z3,] be i.i.d. zero-
mean random variables, where xy; ~ N(0,3;;). Let ¢ be the universal constant from Bernstein’s

inequality. For any failure probability § € (0,1), if the sample size n satisfies
8
n > —1In(4/9), (2.17)
c
then the sample variance error is bounded with probability at least 1 — /2 by:

< \/EE : wln(i/‘s). (2.18)

Proof. The term to be bounded is the average of n i.i.d. mean-zero random variables:

‘21'@' — 3y

n

o 1
i — X = Z (2% — Elz3i]) - (2.19)
k=1

Let Zy, = z}, — E[2%,]. From the LFA model, z; is a zero-mean Gaussian variable with variance
S = (WWT),; + 02, Thus, Zj, is a centered, scaled chi-squared random variable (24(x? — 1)),
which is sub-exponential.

To apply Bernstein’s inequality[113], we identify its parameters. The variance parameter v is:
v = Var(Zy) = Var(z},) = 2X2,. (2.20)

The sub-exponential scale parameter b is proportional to the variance of the underlying Gaussian,
so b = Cy3;; for some universal constant Cp. For a X% variable, a standard version of Bernstein’s
inequality uses parameters equivalent to v = 22?2- and b = 43;;.

Bernstein’s inequality for the average provides the following bound on the tail probability:

1 — . €2 €
P(nZZk 26) < 2exp <—c-n-mm<22%,42ii>), (2.21)

k=1
where ¢ is a universal constant. Setting the right-hand side to our desired failure probability ¢/2

and solving for € gives:

237 log(4/8) 4%;log(4/9)

(2.22)

€ > max
cn cn
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This can be rewritten as:

(2.23)

€ > Xj; - max ( 210g(4/5)’ 410g(4/5)> '
cn on

The ‘max‘ operator selects between the sub-Gaussian-like term (with y/1/n) and the sub-exponential-
like term (with 1/n). The first term is larger if and only if:

21og(4/0) - 4log(4/6) .

2.24
cn cn (2:24)
Squaring both sides (which are positive) yields:

21og(4 16(log(4/9))?

cn c2n?
Assuming log(4/6) > 0, we can simplify by multiplying by ¢?n? and dividing by cnlog(4/6):

_ 1610g(4/6)
n

2 (2.26)

Rearranging gives the constraint on n:
8
n > —log(4/9). (2.27)
c

Under the constraint in Eq. (2.27), the first term in Eq. (2.23) dominates. The bound on the

error simplifies to:

< 3y 210eld/0) (2.28)

‘Eii — Xy
cn

O]

This theorem ensures that the error in estimating the variance of a quiet, low-variance feature
will not be artificially inflated by the presence of a noisy, high-variance feature elsewhere in the

data. This local control will be the key to analyzing the parameter estimates of LFA.

24.1 PPCA

We now apply the concentration bounds to analyze the parameter estimates of the PPCA model.

The following are the assumptions of our consideration.
(A1) Let x1,...,%X, be d—dimensional n i.i.d. samples from the PPCA model x; = W+, + €.

(A2) v, ~N(0,1,) and €; ~ N(0,021;). The random vectors 7, and €, are independent for any
{k, k' € {1,2,...n}}.
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This isotropic noise variance assumption (o2I;) enables a closed-form Maximum Likelihood
(ML) solution based on an eigendecomposition of the sample covariance matrix 3 = UDUT =
Z;l:l Ajuju?. This estimation process has been described in (2.5). Our goal is to bound the
estimation error of the principal subspace, represented by WWT, by leveraging the bound on
12— 2.

To analyze the error in the estimated signal variance for a single feature, we first establish a

key identity.

Lemma 1. If the assumptions (A1-A2) hold, the i-th diagonal element of the PPCA signal esti-

mate (WWT);; can be written as:

(WWT);; = 3 — 67 — A,
(2.29)

(WWT)” — (WWT)“ + }5’2 — 0'2 + AZ‘ s

< ‘(2 — )i

where (W, 62) is defined in (2.5), l; is the j** eigenvalue and u; is the j** eigen vector of 3, and
A; = Z?:r—i—l(lj —62)(uy)? is a remainder term.

Proof. The i-th diagonal element of 3 is 33;; = Zj 1 lj(u)?. The eigenvectors form an orthonormal

basis, so Z?zl(uj)? = 1. The estimated signal variance is (WW )i = > (lj — 62)(uy)2.

(WWT)iiZZl w); -6 Z(UJ)?
7=1

d d
R R Sl P Ch:
j=r+1 j

Jj=r+1
. (2.30)
—62 > (wy);
j=r+1
=i —6" = Y (I —6")(w)7.
j=r+1
We have: ¥ = WW7T + 521,
Then, the difference is:
(WWT);; — (WWT)y
= |(2i; — ‘72) (211 — 67— Ayl
. (2.31)
=[(¥ —X)ii (02 - A2) + A
<[(2 = )il + [0” — 67| + |A]
O
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The isotropic noise variance assumption (02I4) enables us to break down |(WWT);; — (WWT),;
in two parts as represented in (2.29). We have already showcased the bound for the first part (i.e.
(2 —X)i

) in theorem 4. To bound the deviation in signal variance, we have to bound the second
term in (2.29). The following theorem provides an element-wise bound for the error in estimating

signal variances (i.e. (WW7T);).

Theorem 5 (PPCA Element-wise Estimation Error). Let the assumptions of Theorem 4 hold along
with the assumptions (A1-A2). For any § € (0,1), n > 2log(4/5), with probability at least 1 — §:

< 22'@‘\/211&6(3/6)

Lo HEHOP.\/T(E)JFIH(Q/‘S) (2.32)

n

(WWT),;, — (WWT),;

< €(0)

where €(6) = C - ||X]|op - r(E)+n1/9) r(X) = ") nd C is an constant.

n

Proof. We start from the error decomposition established previously in (2.29):

‘(WWT)ii — (WWT),; +]62 =02+ A

< ‘(ﬁ} — )i

We bound each of the two terms using a union bound, allocating a probability of failure of 6/2 to
the first term and §/2 to the events driven by the operator norm.

. This term represents the deviation of a single element of the sample

Term 1: ‘(f] — )i
covariance matrix. As established in 4, the average of the i.i.d. mean-zero sub-exponential variables

Z = (xx)? — Xy; is bounded by applying Bernstein’s inequality. For n > %log(4 /0), with a failure

< i/ 210%;5;1/5) (2.33)

probability of §/2, the bound is:

(X —3)i

19



Term 2: We want to bound |62 — o2 + A;].

* =t A= o Y o) |+ | D (=) ()
Jj=r+1 j=r+1
1 d d
i Z (ljf‘72> + Z (ZJ*JZ*(52*U ))(“3)12
j=r+1 j=r+1
d d
= (0"~ + Y (=P (w)i —(6°—0%) Y (w);
j=r+1 Jj=r+1
d d
=" =) (1= D W) |+ D G —o")w)i (2.39)
j=r+1 j=r+1

Using the identity 1 — Z?:T,_H(uj)? = Z;zl(uj)?, from (2.34), we have:

r d
= (62— o) (u)?+ > (Il — o*)(uy)?
i=1 j=r+1

Results like Weyl’s[113] inequality relate the eigenvalues [; of 3 to the eigenvalues \; of the
true covariance 3 = WW7 + ¢21,;. Specifically,

max |lj - )‘j(E)| < HSn - EHOJD'
j=1,....d

-----

This helps control the error in the estimated eigenvalues 5\]-. Also note that, for PPCA, \; = o2,
for j e {r+1,r+2,...,d}. Therefore, Using Weyl’s inequality, we get:

d d

1 1
6% — 0% = T Z I —o?| = T Z (Il; = \j)|  (since \j = o for j > r)
j=r+1 Jj=r+1
d

1 (2.35)
< LSy

—7r .

j=r+1
< < IS
= j:ﬂ&ﬁ.{..,dﬂj Ajl <12 = Xlop
Once again, we apply the triangle inequality and Weyl’s inequality[113]:
r d
67— 0® + Al <167 = | Y (w))i + D |l —o%|(wy)}
j=1 j=r+1
r d
IS = Sl S w2 18 = Sl 3 ()2 (due to(2.35))
j=1 j=r+1
T d d
=12 =Zllop | D_@)i+ D ()i | =11 =Zlop Y ()} =[5 = Sllop. (2:36)
j=1 j=r+1 j=1
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The bound for Term 2 depends on the operator norm bound || — %|,,. With a probability
of at least 1 — /2, we use the dimension-free bound from [126], which applies to sub-Gaussian
vectors. To achieve a failure probability of &' = §/2,we set §/2 = e~!, which implies ¢t = log(2/4).
Substituting this into the bound from that paper, we have that with probability at least 1 — §/2:

15— Bl < 20- 2 )y o HEL T B, (2.37)

n

The bound for Term 1 also holds with probability at least 1 — §/2 whenever n > %log(él/ J).
Therefore with probability at least 1 — o:

<y [2RE/) 160y [rELERCID)

O]

(WWT),; — (WWT),;

The non-asymptotic bound in Theorem 5 is composed of two distinct parts:

1. A local bound for ‘(2 — )i

feature 1.

: 2.3 \/( -+ ), which depends on the variance of the specific

: ‘ arises, as we try to bound !62 -0+ Ai}: The
op op
operator bound appears as we apply Weyl’s inequality from [113] to bound both |62 — 02| and

2. A global bound H(f] - %)

‘2—2

|l; — 0?|. As PPCA estimates the noise variance o2 by averaging information across all noise
dimensions, it couples the estimation error of feature 7 to the behavior of all other features

through the operator norm.

Before moving to the LFA error analysis, we present another lemma for the PPCA model to achieve

a somewhat more local bound for [(WW7),; — (W)u .

Lemma 2. Let the assumptions of Theorem 5 hold. For any ¢ € (0,1), when n > € log(4/6) with

probability at least 1 —§:

2In(4/6)
cn (2.39)
+ min{e(5/2), 22“}

(WWT); — (WWT);

<X

Proof. From the previous Theorem 5
(WWT)Z‘Z‘ =3 — 0'27 as o2 > 0, therefore (WWT)“ < X (2.40)
d r
(WWT)” = ﬁ)“ — Z lj(llj)% + 62 Z lj(llj)? (lj Z 0 for allj Z 1 as ﬁ] is de) (2.41)
j=r+1 j=1

(WWT)” < 211 (2.42)
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By applying triangle inequality we get:

IWWT - wwT|
< 3| + |2l

< |0 — Bl + 2|l (2.43)

Previously we proved: |[WW7T — WWT| < |3 — Zu| + |12 = Zlop

Combining the above two inequalities, we get: |[WW? — WWT| < |2 — 24| + min{|| —
EHOp’ 2%}

Therefore, the required bound can be obtained with probability at least (1 — d), by employing
Theorems 4 and 3 O

Lemma 2 shows that for small n, the estimation error for i** signal variance can be bounded

locally by X;; % + 23;;. It is a biased bound as 3; > 0 no matter how large the n value
2 2
is. Therefore, as n — oo, more precisely when n > max{ci@‘l”” (r(2) +1n(2/6)), 2log(4/6)}, the

11

lemma uses the global bound for

> ZHO , which goes to 0 for large values of n.

Large d, large n. In this type of resulits, both the number of features d and the number of
samples n tend to infinity, while the ratio %(: ~v > 0) is kept constant. This is also known as
the “ultra-high dimensional” or “big data” regime. The main challenge to drawing inferences on
asymptotic behaviors of eigenvalues and eigenvectors in this setup is that the sample covariance
matrix does not well approximate the population covariance matrix unlike the case when d was
fixed. There has been considerable effort to establish convergence results for sample eigenvalues
and eigenvectors in recent years. Some of these findings will be discussed below.

Recent theoretical advancements on the ’large d large n’ setup are based on the assumption
that the data matrix, X is generated from a spiked population covariance model. The notion of

the spiked population covariance model was first introduced by [58].

Definition 1. Spiked Covariance model. Under this model, the data matriz X, can be viewed
as XT = EA%Z, where E = [e1, €2, ,eq| is a d x d orthogonal matriz, A = diag(A1, A2, , Ag)
with A1 > Xg > -+ > A\g and Z is a d X n matriz constructed with iid random variables Z;; with
E(Z;;) =0, E(Z%j) =1 and E(Z;lj) < oo. The population covariance matriz is ¥ = EAET.

Here, \;.’s are assumed to follow a specific structure, \{ > Ao > -+ 2> Ay > A1 =+ = Ag = 1.
. T
The sample covariance matrix is 3 = X7 X /n = EA2ZZTAZE /n.

22



The spectral decomposition of the sample covariance matrix Sis, ¥ = USUT. Here, S =
diag(sy, s2, - - - 84) are the ordered sample eigenvalues and U = [u3,uz, - -, uq] is the corresponding
d x d sample eigenvector matrix. For the remaining of the section, we assume that lim,,_, . % = .
Also there are k population eigenvalues such that \; > 1+ /7, for i <k

The following result is due to [11].

Theorem 6. [due to [11]] For v € (0,1), the following holds:
4 o
35 6.2 P()‘z)a ifi <k
(1+7)* otherwise,
where p(z) = z(1 + -15).

z—1
It is evident from Theorem 6, the sample eigenvalues are not consistent estimates of the popula-
tion counterparts. However, a consistent estimator can be found for A; > 1 + « using the following

inverse function:

pl(x):x+1—7+\/(:;+l—7)2—4x (2.44)

Also, it has been shown in [10] that s; are asymptotically normal .

Although consistency could not be proved for v > 0, [69] proved consistency for v = 0.
Lemma 3 (due to [69]). If lim,_ % =~ =0, then,
as. | A ifi<m
S; —
1 otherwise.
For eigenvectors, the convergence of the angle between sample eigen vectors(u;) and population
eigenvectors(e;) has been proved for Gaussian Z;;’s in [84]. The author used the inner product

between two unit vectors to represent the cosine angle between u; and e;.

Theorem 7. [due to [84]] Under the assumption of multiplicity one , if limn_mo% =~ € (0,1),

and Z;j’s follow the standard normal distribution, then

’<e"U/>|a'—8>' (Z)()\Z) if)\i>1+ﬁ
0 fl<X <147

5

Here, < a, b > represents the inner product between two vectors @ and b, and ¢(x) = #7%11)2

[80] reached the same conclusion for v > 0 using a matrix perturbation approach under the
Gaussian random noise model. [69] generalized Theorem 7 by relaxing the distributional assumption
and proved a weaker convergence (in probability) for the angles between population and sample

eigenvectors, when v > 0.

23



Lemma 4 (due to [69]). Under the assumption of multiplicity one , if limn_mo% =7v>0

- 7

o) if N> 1+

|<ei,ui>\£> )
0 1< <1+,/7.

2.4.2 LFA

We now turn to the more general Latent Factor Analysis (LFA) model, where the idiosyn-

cratic noise W is diagonal but not necessarily isotropic. This flexibility prevents a simple closed-

form solution for the ML estimators, which are instead found using iterative algorithms such as

Expectation-Maximization (EM). The details of the EM-process have been presented in Theorem

1. Our goal is to analyze the behavior of the estimation error for feature-specific parameters: the

signal variances (WWT)” and the noise variances ¥;;. One of the foundational asymptotic the-

ories for the high-dimensional LFA problem was comprehensively established in the past by [9].

Their main contribution is the development of a complete asymptotic theory for the MLE of LFA

parameters when (n,d) — oo. To achieve this goal, they have considered some assumptions on the

model parameters:

(A3)

(A4)

(A5)

(A6)

The latent factors {v;,i = 1,2,...,n} are deterministic and non-random, with a sample
covariance matrix converging to a positive definite matrix Myy. This indicates that the

factors are "strong” and stable.

The noise {€;,i = 1,2,...,n} are iid random variables, also they are independent with {~,,7 =
1,2,...,n}. Also, E(e;) =0, E(e?) = ¥, E(e}) < C*, where ¥ = diag(0?,03,...03).

For some positive constant and ¢ € {1,2,...,n} and j € {1,2,...,d}:

IWlla < C,
— C72 <02 < C?, where var(€;)j; = 032-,
- WI'w—'w/d — C,
. d —
— iMooy Y 0—1 07 (W @ W) (WEe W) = q,
where (C, ) are positive definite matrices. This ensures that influential, detectable factors

are present in high dimensions.

The model parameters (specifically 0]2-) are estimated to lie within a compact set (C~2,C?), a

standard technical requirement for proving the consistency of complex, non-linear estimators.

The latent factor models are generally non-identifiable without additional constraints. There-

fore, authors have introduced additional constraints (IC1-IC5) in [9] to ensure the full identifia-

bility of the model parameters. Now we will state the theorem that proves the consistency of the

estimators and establishes their rates of convergence in the high high-dimensional data regime:
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Theorem 8 (due to [9]). Under Assumptions (A3-A6), when d,n — oo, with any one of the
identification conditions(IC1-IC5) mentioned in [9], we have:

1< 1 1
p > QHW@- - W, |* = Op(ﬁ), (2.45)
=1
1 1
pi > (67 -0} = Op(-) (2.46)

where, X,, = O, (%) means for any € > 0, there exists a finite, positive constant M such that for

alln>1: P(InX,| > M) <e.

The results of [9] provide a clear idea of the convergence rates for W and ¥. The four assump-
tions, defined in (A3-A6), collectively ensure the factor model is well-posed for high-dimensional
analysis and guarantee that a stable underlying factor signal can be consistently estimated because
it remains statistically detectable amidst well-behaved, feature-specific noise as the dimensions of
the data grow to infinity.

Specifically, the assumption A5 plays a significant role in ensuring this stability. It also tells us

how the SN Rs will behave for high-dimensional data. In our work SN Rs are defined as:

e

1 T
SNR; = — Y Wj,ic{1,2,-,d}. (2.47)
o; =

The condition in (A5), the fact that the limit im4 003 S0, 07 * (W @ W))(W,. @ W) = Q,

a fixed matrix, implies the following:

e The contributions of the features must, on average, be well-behaved. This prevents patho-
logical scenarios. For instance, it implies that the signal strengths {Z;Zl W?j,i e{l,...,n}
cannot be growing in a wild, unbounded way relative to the noise variances as we add more
features. If the SNRs were systematically exploding or behaving too erratically, this sum

would not converge to a stable limit.

e The weighting term o % is the strongest link to the SNR. Features with low idiosyncratic noise
(01-2) are weighted extremely heavily in this sum. These are the features that are likely to
have high SNRs. Therefore, the assumption can be rephrased more intuitively: The long-term
stability and learnability of the entire factor model is determined by the collective properties
of its most informative (highest-SNR) features. The noisy, low-SNR features contribute very

little to the sum and are effectively ignored.

e The condition that the resulting matrix 2 must be positive definite is a statement about non-

redundancy. For example, this condition would be violated if 90% of the high-SNR features
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were strongly related to Factor 1 but had almost no relation to Factors 2 through r. In such a
case, we would learn a lot about Factor 1, but the information about the other factors would

be weak, and the matrix 2 would become singular (not positive definite).

They have also shown that the same set of estimates has limiting distributions (i.e., asymptotic
normality). The entirety of their results — consistency, rates, and distributions — is asymptotic
i.e. when both d and n approach infinity. These results do not provide a quantifiable bound on the
estimation error for any fixed, finite sample size n. Their O,(1/n) rate tells us about the scaling in
the limit, but not the constants or higher-order terms that govern performance for a real-world n.

Now, we will prove the following lemma, which is a direct implication of Theorem 8:
Lemma 5. Under the assumptions A3-A6, as (d,n) — inf, max;_; 4|67 — o?| = Op <\/g>

Proof. Let ¥ = diag(6?,... ,62%) be the estimated noise variance matrix. From Theorem 5.1 of [9],

zj: = Op <1> (2.48)

From this, we can derive the Frobenius norm bound for the difference between ¥ and ¥:

B =36 o = (;imzag)?) —d-0p (i) _0p <Z>

=1 i=1

¥ — ¥ = Op (ﬁ) : (2.49)

From the Frobenius norm bound, we can directly derive a bound for the maximum element-wise

Taking the square root, we get:

deviation. Since the Frobenius norm is the square root of the sum of squared elements, the largest

squared element must be less than or equal to the sum of all squared elements:

d
max (62 — o2 Za — 02?2 = || ¥ - ®|2.
i=1,....d —

Substituting the Frobenius norm bound:

max (67 - a2 = 0 (1.

i=1,....d

Taking the square root, we get the bound for the maximum absolute deviation:

max |67 — o?| = Op ( d) . (2.50)

i=1,...,d n
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However, the constraints (IC1-IC5) to ensure identifiability have only been applied to prove
asymptotic results for [W — W/, not for |62 — ?|; therefore, the constraints (IC1-IC5) have also
not been considered in Lemma 5.

However, moving from asymptotic convergence to explicit, finite-sample bounds of order f(d, n)
presents a formidable theoretical challenge. The difficulty stems directly from the inherent struc-
ture of the LFA estimation problem. Unlike models with closed-form solutions, where errors can
be propagated directly, LFA parameters are the output of an iterative procedure, such as the
Expectation-Maximization (EM) algorithm [92]. This iterative process establishes a profound and
intricate relationship between the estimates of the signal loadings W and the noise variances W.
As a result, a simple error analysis is intractable. As we proceed, we will discuss the challenges one
faces when deriving tight bounds for the ML estimates of latent factor model parameters. For our

analysis, we will also consider the following assumptions:

(A7) {x;}I", be n ii.d. samples from a d-dimensional Latent Factor Analysis (LFA) model: x; =
W+, + €, € ~N(0,%),

(A8) v, ~N(0,I,) and ¥ = diag(0?,03,...,07). The random vectors ;, and € are independent
for any {k # k' € {1,2,...n}}

(A9) The true, underlying parameters of the LFA model are assumed to be well-behaved:

(i) [Will2 < Cw,
(ii) 0 < 0py, <07 < oy forall j e {1,...,d}.

min max

(A10) The parameter estimates (W, \il) produced by the estimation procedure in Theorem 1 are

assumed to be regular in the sense that their corresponding operator norms are bounded.
(i) [Will2 < Cy,
(i) [18;.]l2 < Cs, where B = WI(WW7 4 &)~1,
Now we prove a set of essential equations that hold when the EM algorithm for LFA converges.

Theorem 9 (Stationary Point Characterization of the LFA Log-Likelihood). The EM algorithm
for LFA converges to a point where the parameter estimates (W,\il) satisfy certain fized-point
equations, as characterized in Theorem 1. Suppose Assumptions (A7,A8,A9(ii) and A6) hold.
At a stationary point of the LFA log-likelihood (see [92]), the following two identities hold:

I-M 'MW =0, (2.51)

DM '3) =1, (2.52)
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where M = WW T + ¥, and D(X) denotes the diagonal matriz formed by the diagonal elements
of X.
Furthermore, the following identity holds for each coordinate i € {1,...,d}:

(WWT);; = 5 — 0. (2.53)

Consequently, we obtain the following inequalities:
‘(WWTM - (WWT)M‘ < ‘(2 - 2)“} + ‘lilzz -, (2.54)
“i’n’ -, < ‘(i — )| + }(WWT)H — (WWT)“} (2.55)

Proof. The M-step (of the EM algorithm) update equation for W is given in Theorem 1, with
converged W):

-1
n n
W (st ) (X ato)
i=1 i=1
Let’s simplify the terms:

e Numerator sum: Substituting E(v;|x;) = 8x;:
n n n
Y xiB(yx)T =D xi(Bxi) =) xx] g7
i=1 i=1 i=1
n
one)r i
i=1

e Denominator sum: Substituting E(v,77 |x;) = I, — BW + Bx;x! 37"

n n

S B xi) =Y (1 — BW + Bxx! B7)

=1 i=1
=n(l, — BW) + 3 (Z xixiT> B
i=1
=n(I, — BW) + B(n)57T
=n(I, — BW + BZ37).

Now, substitute these simplified sums back into the W equation:

W = (n2)8" (n(I, — BW + B25"))!
= ()67 (1, - BW + 5587
=38"(1, - W + gEa") 1.

28



Multiplying both sides by (I, — SW + 8387) from the right, we obtain:
W(I, — BW + 8387) = 237,

To further apply matrix algebra, we substitute 3 = WT(\i' + VAVVAVT)*l. Let M = ¥ —|—WWT,
so 3= WTM~!. Also note that WW7T = M — .
The identity becomes:
W - WaW + Wgsg! = 547,
W-WW'MHW + WW M HE(M W) = SM~'W,
W - (WWIHM'W + ( WWI M ISM~'W = SM~'W,
W-M-8M W+ (M-EMIEM W = IM W,
W-(I-¥M HYW + (I - ¢M HEM W = SM~'W,

W-W+ VM W+ 3IM W - dM I1SM W = SM~'W.

Simplifying, moving all terms to one side and factoring out M_lw, we obtain:

This simplifies to:

A

TI-M'Z)M W = 1.

Assuming W(A9(ii),A6) is invertible, we get

I-M'Z)M'W=1| (2.56)

This identity must hold at the maximum likelihood estimate for W and .
Next, let us discuss the identity for W. The M-step update equation for W is given as in Theorem

1, with converged N2

. 1 n .
¥=21D § XD — WE (v, |xi)x} 2.57
- <i:1 XiX; (valxa)x; ) (2.57)
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Let’s simplify the sum term inside D(-):

sz WE Vz‘xl ZXZ WZE VZ‘XZ) T

=1

=n3 - W zn:(ﬁxi)xl

—n3 - Wg (i XiXZT>

=1

Substitute this back into the ¥ equation:

A

&= %D(nﬁ] —WB(nE))

= D(X - WgS).

Now, substitute 3 = AVARY

Substitute WWZ = M — W:

U=DE-M-¥M ')
=D(E - (I-¥MHE)
= D(E -S4+ IM 1)

The 3 terms cancel out:

This is a critical identity. Given that Uis a diagonal matrix, we can state that its ¢-th diagonal
element is equal to the i-th diagonal element of TM-IS.
If ¥ is invertible (A6), we can imply a further identity by ”dividing” by N (element-wise on

the diagonal operation):

I=DM'%)| (2.58)

This identity states that the diagonal elements of the product M~ 13 must be equal to 1. Since

M3 is symmetric, this is equivalent to saying that (Mfli)ii =1foralli=1,...,d.
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Now we will proceed to prove the next part of the theorem. Let A = $—M. Then ¥ =M+A
and M3 =T+ M 1A so Eq. (2.56) becomes

M AM W =0,
which after multiplying to the left with M becomes
AM™'W =0.
Multiply by W7 to the right and we obtain
AM'WWT = AM™'(M - ¥) =0.

which means

A=AM'".
The identity from (2.58) becomes

(M71A>u‘ = 0.

But A = AT so (AM™!);; = 0. But in this case, since A = AM™'W¥, we also have that A;; = 0
for all 7.

This implies that:

(WWT); = 35 — &y, (2.59)

(2.60)

O]

This theorem is powerful because it allows us to decompose the error in the signal variance
estimate. The problem is now reduced to bounding the sample variance error (which we can do
with Theorem 4) and the noise variance estimation error. However, the derivation for the finite
sample bound for (WW ', ¥) is complicated and computation heavy.

Before that, we will derive some asymptotic bounds for signals and SNR estimation error in the

following theorem.
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Theorem 10. Under the assumption A5-A8, When (n,d) — oo, then

‘(WWT)Z-Z- ~ (WWT),| = 0,(\/d/n) (2.61)
’S/]\ﬁ%i — SNRy| = 0,(\/d/n) (2.62)
Proof. From Theorem 9, we get: ‘(WWT)” — (WWT)” < ‘(2 — )i + ’\i'” — Wl

From Theorem 4, we get ’(2 — )i

= 0p(1//n) and from Lemma 5, it can be derived that

“i’“ - ‘I’n == Op(\/d/n).
Therefore, |(WWT);; — (WWT),;| = O,(max(1/+/n, \/d/n)) = O,(\/d/n)

Now we, turn to SNRs. Let X, Y) be true values and X,Y be estimators. If 1/¢ <Y < ¢, for
some ¢ > 0 then,

(XY = Xo¥)/(YY0)| = |(X — Xo)¥o — Xo(¥ = Yo)| /(YY) < & (Y| X — Xo| + Xo|V — Yo).

We wish to bound the error |SNR; — SNR;|. Note that, SNR; = W:;]iTi = E“;U? =2y _1,

i g; i

Therefore, the numerator and denominator terms are:

e True Numerator: Xg = X;

A

e Estimated Numerator: X = X;;

2

e True Denominator: Yy = o3

e Estimated Denominator: Y = 67

Assumption A6 assures that there is a ¢, such that 1/¢ < o7 < ¢ for sufficiently large n. Therefore,

we get the following:

SNR, - SNRi| = |~ 20
Y Y
C
S?(Y0|X—X0!+X0|Y—Y0D
0
:c((iii_zii +SNR; |62 — o?|) (2.63)

c(0p(v/1/n) + SNR; x O,(\/d/n)) = O,(\/d/n). (2.64)
O]

Here we present the three remarks, which provide an upper bound for ’(WWT)“ - (WWT)M’,
|¥;; — ¥;], and |[SNR; — SNR;|.
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Remark 1. Let xy,...,%x, be d—dimensional n i.i.d. samples from the LFA model x;, = W=y, + €.
Suppose Assumptions (A5-A8, A10) hold.
For any 6 € (0,1), if n > In(6/9), then with probability at least 1 — &, the noise variance

estimation error is bounded by:

1 )
57 ot < i [0,

P~

and when, n > max{2n(4/6),n(12/6)}, with probability at least 1 — &, the signal variance estima-

tion error is bounded by:

< (Zav/ae+ &) ) (2:6)

(WWT),; — (W)ii -

where w; is defined as:
pi=(WwW7T), —(WBWWT),, — (WBE),; (2.66)
and ¢ is an universal constant. Also,
i < Bjie{l,...,n}

and d is fized and p; — 0 as n — oco. Here, the constant B; is defined in the proof and depends on

the assumed constants Cyw, C;,, Cg, and 02 s

Proof. The proof strategy is to decompose the error term into a sum of averages of i.i.d. mean-zero
random variables and then apply the appropriate concentration inequalities to each term using a
union bound.

Error Decomposition. The error is decomposed into three main terms:

R 1 S
67 —of = - [Gii + (Wy)? + 2(Wrn)ieri — (WAR)i (Wk)s + exi) — Uﬂ :
k=1
Rearrange:
1 & 1 &
67 —of = - (eri —07) + - {(W%)? — (WH)i(Wk)i + 2(Wrg)ier — (W%)ieki} :
k=1 k=1

Rewrite the second term:
(W37 = (W3):(W): = (Wi [ (Wi = (Wi

2(W*yp)i€ri — (WhewVk)i€ki = €ki [2(W k)i — (Whewk)i) -
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Define ug; = (Wng)i — (VAV’yk)Z Then:

2AW)i = (Wik)i = (W) + | (W) = (W] = (W), + e

Thus:
1 & 1 & 1 &
67 —o; = n Z (ks —of) + o [(Wyg)iaks] + - Z ki (Wr)i + ugi)], (2.67)
k=1 k=1 k=1
Te;rrn 1 Term 2a Term 2b

where uy; = (Wry,); — (VAV’A)/,C)Z We allocate a failure probability of §/3 to each term.
Term 1 (Noise Variance Error). This is the average of i.i.d. mean-zero variables Zj, = €2, — 02
Since eg; ~ N (0, 01-2), Z is a scaled centered chi-squared variable, which is sub-exponential with

parameters (v,b) = (202,407). Applying the two-sided Bernstein’s inequality ([113], Eq. 2.20),
with probability at least 1 —d/3:

n

1
n Z(E%z - Uz‘z)

k=1

n n

< Kj; - max ( log(6/9) log(6/5)> . (2.68)

Where Ky; = ca?, c is the constant from Bernstein’s inequality.
Term 2a (Signal-Signal Cross-Term)

We begin by defining Term 2a as the average of n i.i.d. random variables Tj:

1 n
T - .
erm 2a - Z T, (2.69)
k=1
where T}, is given by
Ty = (Wi | (Wi — (WAL - (2.70)

In general, the expectation of T} is non-zero. Let ua, = E[T}]. The error is bounded using the

triangle inequality:
n

% > (T = p2a) |-

k=1

|Term 2a| < |p2q] + (2.71)

We will bound the deterministic bias term |ug,| and the zero-mean fluctuation term separately.

Term 2a Bias Term. The expectation ps, is computed as:
H2q = E[Tk] = (WWT)” - (WBWWT)“ (2.72)
We bound its magnitude using the triangle inequality and properties of matrix norms:

|20l < [(WW )| + [(WBWWT)l. (2.73)
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Under the assumptions, we get the operator norms , the terms are bounded as follows:
(WWh)i| = W5 < Cy, (2.74)
(WBWWT);| < [WBWWT |2 < |W 2|82 WI3 < Cy, CsCii- (2.75)
Combining these gives the bound on the bias:
|2a| < (Cfy + Cyy CsCyy) = O(Ciyy + Cy CsCiy) =2 Kaapias: (2.76)

This constant is a polynomial in the assumed regularity constants and is independent of n and 4.
Term 2a Fluctuation Term. To bound the fluctuation term, we express the centered sum-
mands Ty, = T}, — g as a centered quadratic form and apply the Hanson-Wright inequality. First,

define the concatenated Gaussian vector z; € R™ T

zp = (Z’f) ~ N(0,0), (2.77)
k
where the covariance matrix C is
I, O
C = (0 \Il> . (2.78)

2

o ax) =: 0c. We define two deterministic

The operator norm of C' is bounded by ||C||op = max(1,o

row vectors, @, and b, :

al = (Wi, 0peq) € RIX0HD), (2.79)

b;r = (Wi,: - (WZ,B)W _WL:B) € RIX(T+d)' (280)
With these, the components of T}, are linear forms of zj, and T} is a quadratic form:
T, = (a;rzk)(b;zk) = z;—(aibg—)zk. (2.81)
We use the symmetric part of the matrix, defining A;:
1 T T
A, = 5 (a,;bi + biai > . (2.82)
Now, T}, = z] A;zk, and its expectation is E[T}] = tr(A;C) = psq. The centered variable is:

Tk =T — toqg = z;Aizk - tI‘(AZ'C). (283)

The Hanson-Wright inequality states that for a sum of such i.i.d. centered variables,

n B t2 t
P Tl >t ] <2exp | —cmin , , 2.84
( Z k| Z ) > p < (nHCl/QAlClﬂH% ||Cl/2Aicl/2||op)) ( )

k=1
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for some universal constant ¢ > 0. Let M; = Cl/QAiCl/Q. We need to bound the norms of M.

The norms of M; depend on the norms of a; and b;.

laills = [Well2 < Wiz < Cus. (2.85)
For b;, we have:
6113 = [1W . — Wi BW 3 + W13 (2.86)
~ ~ 2 ~ N 2
< (IWidlla + 1WscllollBllop W lop )+ (IW3.211B1lop ) (2.87)
< (CW + Cwoﬁcw)Q + (chﬁ)2 . (2.88)

Let Cp be the square root of the right-hand side, which is a polynomial in the constants.

1bil[2 < Ch. (2.89)
The norms of A; are bounded by:
[Aillop < llaill2l|bs]|2 < CwCh = O(Cw CsCw Cyyy), (2.90)
AillF < V2[laill2|[bill2 < V2Cw Cy. (2.91)
Finally, we bound the norms of M;:
[Miflop < ICllopll Aillop < 00CwCh =: Ka,0p, (2.92)
M|l < ICllopll AillF < 0cV2CwCh =: Kap. (2.93)

We now solve for the bound on the average fluctuation. Let € = t/n. For a failure probability
of §/3, the Hanson-Wright inequality is:

L ( i < ¢ ¢ >> (2.94)
= exp|—c-n-min|{ ———,—— | | . .

Solving for € yields two conditions that must be met:

- Kar log(6/9)

2.
€> NG > (2.95)
¢ > Kaoplog(6/0) (2.96)
C n

To satisfy both, ¢ must be at least the maximum of the two lower bounds. We define a constant

K2zz,ﬂuc5

(2.97)

Kair Kao
Pyp— ) p
Koq fluc 1= max < .

Vel e
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This gives the high-probability bound on the fluctuation term:

< Ko fiue Max ( log(6/9) 1og(6/ 6)> . (2.98)

n

% > (Th = p2a)

k=1

n n

Final Bound for Term 2a. By combining the bounds for the bias and the fluctuation, we

arrive at the final bound for Term 2a, which holds with probability at least 1 — §/3:

1 1

| Term 2a] < Kag bias + K2afue max ( ng/ J) Og(:/ 5)> : (2.99)
Term 2b (Signal-Noise Cross-Term)
We define Term 2b as the average of n i.i.d. random variables Y%:
1 n
T == .
erm 2b = >, (2.100)
k=1
where Y}, is given by

Yie = e (Wp)i + i) = e (20070 — (WA ) (2:101)

The expectation of Yy is generally non-zero. Let pg, = E[Yy]. We bound the error using the triangle

inequality:
n

% > (Vi — pizw)

k=1

|Term 2b| < |uap| + . (2.102)

We proceed by bounding the deterministic bias |ugp| and then the zero-mean fluctuation term.
Term 2b Bias Term The expectation pgp is computed by taking the expectation over ~,, and

€. The terms involving products of independent zero-mean variables vanish:

o = EIYi] = E | (20W); — (WB(W, + )| (2.103)
— E 26 (W, )i] — E {eki(W,@W'yk)i} ) {eki(Wﬁek)i} (2.104)

d
=0-0-FE |ex; > (WPB)ijens| - (2.105)

7j=1

Since W is diagonal, Eleg;ex;] = o7 if j =i and 0 otherwise. This simplifies to:
piop = — (W B)i0?. (2.106)
We bound its magnitude using the regularity assumptions:

| pon| = \(Wﬁ)iﬂff@z

< [[W|2]|Bll202ax < CiyCao2iax =t Kobpias-

max max

(2.107)
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Term 2b Fluctuation Term. We express the centered summands ffk = Y} — uop as a centered
quadratic form of the concatenated Gaussian vector zj = (v], €} )T ~ N(0,C). The variable Y},

is a product of two linear forms, Y, = (ciTzk)(diT zr). The first form represents eg;:

¢ = (01, e]) e RXUFD) (2.108)

()

where e; is the i-th standard basis vector in R%. The second form represents 2(W=;); — (W4})::
dl = 2W;, — (W, B)W -W,;.3) e R+, (2.109)

Thus, Y}, is the quadratic form:
Yy = 2} (eid] )z (2.110)

We use the symmetric matrix B;:

1
Bi=3 (cid;r + dic;r> . (2.111)

Now, Y}, = szBizk, and its expectation is E[Yy] = tr(B;C) = ug. The centered variable is:
Yi = Yi — pop = 2 Bizy, — tr(B;C). (2.112)

We apply the Hanson-Wright inequality to the sum >, _, }7;.3, which requires bounding the norms
of the matrix N; = C'/2B;C"/2.

The norms of IN; depend on the norms of ¢; and d;.

leillz = lleiflz = 1. (2.113)
For d;, we have:
dil|3 = [[2W i, — W BWI3 + || — W83 (2.114)
A A 2 o A 2
< (Wil + W Bl W o)+ (1911201 (2.115)
< (20w + CyyCsCw)” + (G, C5)* = O(C2,C3CE) (2.116)

We assume that C%/C%Cgv is much larger than C3,. Let Cy be the square root of the right-hand

side, which is a polynomial in the constants.

[dill2 < Ca. (2.117)
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The norms of B; are bounded by:

[Billop < lleill2lldill2 < Ca, (2.118)

IBillr < V2cill2|ldill2 < V2Ca. (2.119)
Finally, we bound the norms of N; = C’l/zBiC’l/2:

[ Nillop < [|Cllopl|Billop < 0cCa =: Kp op, (2.120)

INi|lp < |Cllopl|BillF < 0cvV2Cs =: Kpp. (2.121)

Final Bound for Term 2b. By combining the bounds for the bias and the fluctuation, we

arrive at the final bound for Term 2b, which holds with probability at least 1 — §/3:

» log(6/9) log(6/6
|Term 2b| < Kb a5 + Kap fluc max ( g(n/ ), g(n/ )> . (2.122)
Where,
K K
Kop fine := max (jEF i")p) : (2.123)

Final Combination. By the union bound, all three bounds((2.68),(2.99),(2.122)) hold simulta-

neously with probability at least 1 — §. Summing the bounds, we get:

62 — 02| < K; - max ( 108(6/0) 1og(6/0) ) Kb pias + Koapss: (2.124)
For n > log(6/90),
log(6/0
62 — 02| < K; - og(:j/)er. (2.125)

Defining the final constant K; := Ki; + Koq fluc + Kop luc and p; = (WwW),; — (WBWWT)“ —

(WB\II)“ From the bias term analysis we get: for i € {1,...,n}, ;i < Koppias + K2q,bias = Bi.
When d is fixed and n — oo, we get ML estimates (W, ,5’) which are consistent estimators of

W, 3 (ie. (VV,B) TN (W, 3)). Therefore, for sufficiently large n, if we replace (W, B) with (W, 3),

we get the following:

:U’éa + Méb

(
(
=WWliIy -7 - ¥)) - (WBP)); (2.126)
(
(



which completes the proof of the noise estimation error bound.
Now we will prove the next part. The result follows directly from the error decomposition in

Equation (2.60). We bound the two terms on the right-hand side separately.

, (f] — X¥)iil|, is the element-wise covariance error. By Theorem 4, this is bounded
by %ii/21og(4/8)/cn with probability at least 1 — §/2, whenever n > 2 log(4/9).

The second term, i — Py, is the noise variance estimation error. By Theorem 1, this is

bounded by Kj - M + B; with probability at least 1 — 6/2, whenever n > log(12/4).
Applying a union bound to combine these two events and absorbing constants gives the final

result. O

Now we will present our following remark, which will connect the estimation error associated

with (2;,07) with the estimation error of SN R;.

Remark 2 (SNR Estimation Error Bound). For the i-th feature in the LFA model, let the true
SNR be SNR; = (WWT)Z-Z-/Gf and its estimate be g\f?iz = (\V\VT)”/&Z2 Let the assumptions of
Remark 1 hold.

If the sample size n satisfies n > (Uiﬁ%l (%) then with probability at least 1 — §, the SNR

estimation error is bounded by:

ISNR; — SNR1\< N 4/5 QSNR ,/log 12/0) , (2.127)

where (K, B;) are defined in Theorem 1.

Proof. From theorem 10, we observe that bound of ]SN R; — SN R;|, depends upon |0? — 52|. We
assume that, ‘&i — J?} < cri2 /2 Therefore, we require the sample size n to be large enough so that
this bound is less than or equal to o2 /2:

log(12/4)

n

K- +B; < = nz

al 2K;log(4)
2 = (02 —2B;)?

This is the sample size condition stated in the theorem. Assuming this condition holds, we can
proceed, we want the error bound hold with probability (1 — g)

Note [62 — 02| < 02/2 — |SNR;— SNR;| < ((%2) 1 — X |+ 25N

(97)
get the required bound by replacing the ‘ﬁ)” — Eii‘ and ‘6? - (722}, with their finite sample bound,

o — 02} Now we will

derived in Theorem 4 and Remark 1 UJ
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Discussion of the SNR Estimation Error Bound and its Implications. The implications
of this result can be deconstructed into several key points.

First and foremost, the theorem provides the critical transition from an asymptotic promise
to a finite-sample guarantee. The convergence guarantees in our previous work assured us that
with enough data, we would eventually identify the correct features. This result quantifies that pro-
cess, providing a non-asymptotic error bound that holds for any given n. The explicit dependence
on n via the 1/4/n term establishes the rate of convergence, confirming that the estimator behaves
as expected, with the statistical error diminishing at the standard parametric rate. This allows a
user to understand how the precision of their SNR estimates will improve with the collection of
more data.

Second, the structure of the bound is deeply informative. It is composed of two distinct parts:
a systematic bias term (B) and a statistical fluctuation term that scales with 1/y/n. The
statistical term represents the random error from finite sampling. The bias term, however, is a finite
sample correction. It represents an error component that does vanish as the number of samples
n increases. This bias arises from using the estimated parameters themselves within the iterative
EM estimation procedure, coupling the estimates in a way that introduces a persistent, systematic
deviation. Our analysis makes this bias explicit, demonstrating that while the LFA-derived SNR
is a statistically stable estimate, it is not, in general, an unbiased one for finite n. This is a critical
piece of knowledge for anyone using LFA for precise quantitative modeling.

Finally, and most importantly, this theorem provides the formal justification for our feature
selection methodology. It proves that the SNR we compute from data is not an arbitrary, noisy
value but a statistically stable quantity that is explicitly and controllably close to the true SNR.
This guarantee is what allows us to confidently rank features based on their estimated SNR values,
knowing that this ranking is a meaningful reflection of the features’ true, underlying importance.
It elevates our method from a successful heuristic to a theoretically grounded and provably reliable

engineering solution.

2.5 Simulations

We test the efficiency of previously discussed latent factor models through simulations. The
methods employ dimension reduction through feature selection, and these simulations enable the
measurement of the accuracy in recovering the true features. This is tested over varying sample

sizes n and noise levels d,pise.
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2.5.1 Simulation Procedure

The simulated sample has the following form:

Xxd = (X(” x? ) (2.128)

nx100 “*nXdnoise

Here, the d-dimensional observation vector X is a concatenation of relevant X1 and noisy
(irrelevant) X () dimensions. In this simulation setup, the number of relevant features (i.e., the
dimension of X(l)) is fixed at 10, and we have experimented with different numbers of noisy di-
mensions, dneise- The simulation procedure is described in detail in the following steps:

1. We assume the SNR values corresponding to X1 are positive. It is intuitive to generate

X @ based on a pre-fixed set of positive SNR values. For a given set of signals, smaller SNRs

correspond to large error variances. To make the true feature recovery more challenging, we
choose SNRs to range from 0.5 (small) to 1.4 (large): SNR*[i] = (15 —14)/10,i € {1, ...,10}.

2. Generate the coefficient matrix W associated with ;s and used for computing signals.

iid
(a) Wigxr = [Wy5], Wy ~ N(0,1)

3. Generate the error vector e) € R0, egl) by N0, TW*) Here )" = diag(c12, 032, -+ ,072)
%2 et sz
and 0% = SRETT

iid

4. Generate the latent factors ; € R" associated with XZ(,D: Yi S N(0,1,),i=1,2,--- ,n. We

used r = 3 in experiments.

5. Generate the relevant features as (XEI))T = W~,; + egl), i=1,2,---,n.

For the noisy variables, we assume the signal is equal to 0. Therefore, the generation of noise

2)

is sufficient. Following are the steps to generate X~ ,

1. Generate noise variances, ¥*) = diag(037,073,--- ,032) and

. id .
0(120+j) ~ Uniform(r/1.4,r/0.5), ; j =1, -+ dnoise

2. Generate (X§2))T id N, T ) i=1,--- n.

Also, let us denote W* = [&*() w*?)] and «* = diagonal elements of (¥*) and
sig* = diagonal elements of (WW?7) for future use.

Smaller SNRs usually correspond to larger error variances. Therefore, the true SNRs range
from 0.5 (small) to 1.4 (large) to make true feature recovery more challenging. The noise variable
variances for the irrelevant dimensions are made comparable to those of the signal dimensions using

the uniform distribution, as specified above.
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Figure 2.1: Generated plots using n = 1000 and d = 110, for err(sig) in (a), err(+)) in (b)
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Figure 2.2: Comparison of SNR vs SNR* for n = 1000 and d = 110

Parameter Estimation Evaluation. We compare the estimation error of the model param-
eters for the four SNR-based methods (i.e., PPCA, LFA, ELF, HeteroPCA).

Within a simulated dataset, we analyzed the estimation error for the signals (sig) and error
variances (t) across multiple dimensions (denoted as d) for various iteration counts. For an esti-
mate 9dx1 corresponding to the parameter, 7, ,, we measure the mean absolute deviation (MAD)

A~

between those two over the d dimensions, denoted as err(0). It is defined below:
. 1l .
0) =MAD(0) = - 07 — 0, 2.129
err(6) 0) =5 ;I i —0il (2.129)

where 6 could be one of (sig, ).
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Figure 2.1 displays the estimation errors of the signal and noise variances as err(s;lg) and
err(zzy) respectively for different iteration counts for all the SNR based methods. In contrast to
other methods, which stabilize at a value higher than 0, those of the LFA method consistently
decrease, eventually converging towards zero within 100 iterations. The performance of ELF and
HeteroPCA methods closely resembles each other. ELF exhibited slightly superior performance
over HeteroPCA in estimating the signal (sig), while HeteroPCA outperformed ELF in estimating
1. Both methods reached stability within the initial 5 iterations. The PPCA method exhibits the
maximum estimation error for s;lg among all the SNR-based methods. However, the estimation of
4 is considerably lower than the ELF and HeteroPCA methods.

In Figure 2.2 are plotted the estimated SNRs SNR along with the true SNRs SINR* for all
SNR-based methods. All the methods provided estimates close to 0 for the noisy dimensions (i.e.,
11,12, -+ ,110) except for PPCA. There are several dimensions with significant noise levels where
PPCA provided SNR considerably above 0, whereas there are several crucial dimensions where
PPCA produced SN R near zero. From the plot, it’s evident that LFA has the most accurate
estimation of SNR*. Regarding ELF, we observed that its SN R values are above 0 and close
to corresponding positive values of SINR*, although they do not precisely align with the values
of SNR* as effectively as LFA does. Conversely, HeteroPCA tends to overestimate the positive
values of SINR* the most, compared to other methods. However, S NR provided by HeteroPCA
still captures the pattern of SINR* more efficiently than ELF.

Furthermore, we have simulated 50 datasets for various sample size choices (denoted as n), to
measure the estimation errors for (sig,v:b,SN R) using the average of MAD over d dimensions. We

have already defined err(0) in (2.129) as the mean AD over d-dimensions. For multiple datasets

A~ A~

with fixed value of n and d = 110, we will use the average of err(@),denoted as err(0). Let

A~ A~

err;(6),i =1,2,---p be the estimation errors using p different samples. Then €77(0) is defined as:

(@) = =3 erni(0). (2.130)
p =1

In our case, p = 50.

Figure 2.3 presents the average estimation error W(é) plotted against the sample size n, where
6 belongs to the set of parameters {sig, ¥, SNR}.

Across all three graphs, an observable trend is evident, suggesting that the LFA method provides

maximum reliability as the sample size increases. Specifically, for LFA, as we gather more data,
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Figure 2.3: Generated plots using d = 110 and different values of n, for W(S'Zg) in (a), W({b) in
(b) and err(SNR) in (c)

the errors in estimating all parameters decrease. Notably, the LFA method exhibits the smallest
estimation error across all parameters when compared to the other methods.

Additionally, the ELF and HeteroPCA methods, both nonparametric variants of LFA, operate
on SNR. The performance of these two methods is very close in terms of estimation error corre-
sponding to the set of parameters {sig, ¥, SNR}. Conversely, PPCA represents a parametric
alternative, predicated upon the assumption of uniform error variance across dimensions. In Fig-
ure 2.3 (a), the ELF signal estimates exhibit the smallest approximation error after LFA, and is
marginally better than HeteroPCA. The PPCA provides the largest average error for estimating
stg among all other methods.

In Figure 2.3 (b), HeteroPCA shows a slight advantage by consistently providing smaller W('{p)
values across all sample sizes compared to ELF and PPCA, with the latter two exhibiting similar
performance. LFA stands out as significantly superior in estimating ¥ compared to all other
methods.

In Figure 2.3 (c), LFA, HeteroPCA, and ELF demonstrate comparable performance, with ELF
and HeteroPCA showing slightly higher W(S’N R) values than LFA. Conversely, PPCA falls be-
hind due to its assumption of homoscedasticity, which poses a challenge in accurately estimating
model parameters.

Table 2.1 displays the average (standard deviation) of ern(é),i =1,2,---,50 for varying sample
sizes n. Overall, the mean values for PPCA tend to be higher compared to those of the other
methods. Additionally, we observed that the standard deviations of erm(SN R),i=1,2,--- 50,
for small values of n using the LFA method are notably higher than those of other methods, which
eventually decrease as the sample size increases.

Figures 2.4 and 2.5 provide a comprehensive empirical validation of our theoretical analysis.

Figure 2.4 showcases the comparison between W(s%g) and the corresponding theoretical bound
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Table 2.1: Mean and standard deviation of parameter estimate errors for SNR based methods.

’ ‘ Mean (std) ‘
n ELF HeteroPCA LFA PPCA
sig 50 | 0.23(0.022) 0.24(0.014) 0.45(0.568) 0.23(0.007)
100 | 0.17(0.019) 0.19(0.015)  0.24(0.217)  0.19(0.006)
300 | 0.11(0.003)  0.12(0.008) 0.07(0.007) 0.15(0.003)
500 | 0.11(0.002) 0.11(0.003) 0.04(0.004) 0.15(0.002)
1000 | 0.10(0.002) 0.10( 0.004) 0.03(0.003) 0.14(0.001)
1\ 50 | 0.98(0.014)  0.95(0.01) 0.74(0.038) 0.97(0.01)
100 | 0.96(0.014) 0.93(0.009) 0.50(0.044) 0.96(0.007)
300 | 0.94(0.002) 0.91(0.007) 0.26(0.008) 0.95(0.003)
500 | 0.94(0.001) 0.91(0.002) 0.20(0.006) 0.94(0.002)
1000 | 0.94(0.001) 0.91(0.001) 0.14(0.005) 0.94(0.002)
SNR| 50 0.19(0.002) 0.19(0.002) 0.41(0.059)  0.20(0.002)
100 | 0.09(0.002) 0.12(0.001)  0.14(0.04)  0.15(0.001)
300 | 0.04(0.001) 0.04(0.001) 0.03(0.021) 0.11(0.001)
500 | 0.04(0.001) 0.04(0.001) 0.02(0.015) 0.11(0.001)
1000 | 0.03(0.001) 0.03(0.001) 0.01(0.009) 0.10(0.001)

vs n on a log-log scale for PPCA. This figure empirically validates our non-asymptotic analysis
for the signal variance estimator, sig. The near-linear slope of both curves on the log-log scale
visually demonstrates the expected 1/y/n rate of convergence. Similarly, Figure 2.5 illustrates
the average estimation error, its corresponding theoretical bound, and the systematic bias for
the LFA estimators (sig,v, SINR) vs. the n. Across all three subplots, the key observations
confirm the soundness of our framework: the empirical error consistently lies below our derived
theoretical bound, demonstrating that our bound is valid and correctly upper-bounds the true
error. A closer comparison reveals important structural details. The estimation behaviors for the
(stg, 1) are nearly identical, as shown by the parallel trends in plots (a) and (b). Furthermore,
the plots highlight the significance of the systematic bias (green dashed line). This bias constitutes
a substantial component of the overall error. It converges much more slowly than the stochastic
error, underscoring the need to analyze it as a distinct, non-vanishing term. While the convergence
rate of the empirical SINR error is comparable to that of the signal and noise, its structure is

different. The lower magnitude of its bias term relative to its overall bound suggests that the final

error is more heavily influenced by the stochastic component, which diminishes rapidly with n.
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Figure 2.5: Estimation errors, Theoretical Bounds and Biases vs. number of observations (n) of
LFA for (a) the signal variance, sig, (b) the noise variance, v, and (c) the SNRs, SN R, when
d = 110.

Feature Recovery Evaluation. Feature Recovery Evaluation. In this experiment, we
consider feature selection accuracy a pivotal aspect of method assessment. To measure how accu-
rate the feature selection process is, we compare the set of indices of the features that are truly
relevant(signals), denoted as Jiqe with the ones each method has predicted as relevant, denoted
as Jpreq- The feature selection accuracy is defined as the average percentage of features that are
correctly recovered:

Ace = E(|Tmrue N Ipreal) /| Teruel (2.131)

where the expected value is computed over 50 independent runs. We conducted 50 simulations for
each n and d,,;s combination and recorded the Acc values in Table 2.2.

Our experimentation involved varying dyeise within {10, 50,100} and n within {50, 100, 300, 500, 1000}.
Table 2.2 presents the accuracies of variable selection for six methods discussed in previous chapters.

A clear and consistent trend across all methods is a direct relationship between sample size and

47



Table 2.2: Feature selection accuracy for outlier-free data.

‘ Noise n Methods ‘
| PPCA LFA ELF HeteroPCA |
50 712 90.6 876 84.4
100 824  97.0 940 93.0
300 8.0 100.0 98.0 98.8
10 500 924  100.0 99.0 99.2
1000 95.6  100.0 99.2 99.8
50 554 704 73.4 65.6
100 726 918 92.8 87.0
300 798  100.0 98.6 94.4
50 500 864  100.0 99.4 98.6
1000 914  100.0 99.0 99.2
50  49.0 574 59.0 55.8
100 628  87.4 872 75.6
300 820  99.6 99.6 96.4
100 500  82.6  100.0 99.4 95.2
1000 90.0  100.0 99.4 99.6

accuracy. As the number of observations n increases from 50 to 1000, the feature recovery accuracy
of all models improves significantly. This validates the statistical consistency of the SNR-based ap-
proach, confirming that with more data, the models become progressively better at distinguishing
true signal from noise. Conversely, for a fixed sample size, increasing the number of noise features
from 10 to 100 generally degrades performance, highlighting the challenge of identifying relevant
signals in a higher-dimensional, noisier space.

The central finding of this simulation is the clear stratification in performance among the
different generative models, with LFA demonstrating overwhelmingly superior performance. Across
nearly all conditions, LFA achieves the highest accuracy, often reaching perfect (100%) or near-
perfect feature recovery with only n = 300 samples, even in the most challenging scenario with 100
noise features. The ELF method proves to be a very strong second, with performance that is highly
competitive with LFA, particularly in the low-sample-size regime (n = 50 and n = 100), where
it occasionally outperforms all other methods. HeteroPCA also performs robustly, consistently

surpassing PPCA, but it generally lags behind the top-tier performance of LFA and ELF.
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CHAPTER 3

FEATURE SELECTION USING SPARSITY
INDUCING PENALTIES

3.1 Related Work

The use of sparsity inducing penalties in high-dimensional data analysis is one of the most
popular research directions. To select features in a high-dimensional dataset, sparse penalty-based
methods reduce prediction errors by setting many feature coefficients to zero. This helps simplify
the model.

In the case of binary classification or regression, one way of performing feature selection is to use
a special penalty term called ”p-norm sparsity-inducing penalty” on the coefficient matrix W, where
p can be any number from 0 to 1. The goal is to minimize a loss L(W) = loss(y, WX) + a||W||,.
The penalty term encourages most features to be small or even zero. The parameter « helps balance
between making accurate predictions versus simplifying the model. Even though p = 0 would be
ideal in this case, it is not feasible for optimization. Often p = 1 is used instead, which usually
results in a convex optimization problem. This method, called LASSO [109], has become popular
among feature selection methods.

Sparsity has also been introduced into PCA methods, such as Sparse PCA [130]. Regular PCA
identifies the most informative directions in the data, but these directions can involve many features
while sparse PCA does the same by introducing sparsity. Sparse principal components often rely
on only a few features, making them easier to interpret and potentially reducing model complexity.
It also outperforms traditional PCA in the presence of data correlation. In recent years, sparse
PCA has been widely used for feature selection across many fields [57, 21]. These algorithms seek
sparse loading vectors separately and progress sequentially. The loading matrix obtained may lack
optimality and contain too many variables. On the other hand, [102] proposes joint sparsity across
all loading vectors, to ensure dimension reduction even when constructing a number of factors.
This turns out to be particularly helpful in rank-constrained variable screening. We will discuss
this approach in detail in the following section. In recent years, [78] has introduced sparse PCA

by adding ”False Discovery Rate” (FDR) control. FDR limits the chance of accidentally picking
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irrelevant variables (false positives) while selecting the important ones. They use a tool called the
T-Rex selector to achieve this, which automatically handles selection without requiring manual
tweaking of how "sparse” (few variables) the model should be. [124] reformulates convex SPCA
with PSD cone constraints for faster optimization via two-step PSD projection. They also include
regularization (penalty) strategies to fine-tune sparsity.

Sparsity constraints have also been combined with other models to identify important features
during a particular task. [49] tackle cancer classification using gene expression by introducing a
hybrid L 1 + Lo regularization for sparse logistic regression. This technique leverages the L1 penalty
for feature selection (finding key genes) and the L2 penalty for stability (grouping correlated genes).
[12] proposes an online feature selection method suitable for massive datasets. It uses sparse
gradients to promote sparsity in its feature weights during classifier training. Therefore, features
with minimal influence will have their weights driven towards zero and will be removed from the

model eventually.

3.2 Selective Reduced Rank Regression

In this section, we will introduce the Selective Reduced Rank Regression (SRRR) proposed by
[102]. We will then propose a robust version of it in the following section. SRRR is an approach for
extracting selective factors from a parsimonious set of features in a multivariate regression setup.
First, we will describe the original problem of SRRR. Eventually, we will make some adjustments
and add more constraints to make it suitable for feature selection in the unsupervised setup.

The original optimization problem (in a supervised setup) uses a low-rank representation of the

data X, x4 to predict a response matrix Y.

d
Wrgﬂi@gxd F(W,)), where F(W,\) = %HY — XW||% + ZlP(|Wj|2, A), and 7(W) <r. (3.1)
j=
Here W is the loading matrix, A and r are the regularization parameters that control the sparsity
and rank of the loading matrix respectively, » < min{p,d}, K denotes the scaling parameter for
(3.1) and P is a sparsity promoting, possibly non-convex penalty function, which is associated with
some thresholding function © defined in Definition 3 below. First we will introduce the definition

of a thresholding function ©.
Definition 2. A Thresholding Function is a function ©(; ) : R — R with 0 < A < oo that

satisfies:
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o O(—t;\) = —O(t; N),
e O(t; ) <Ot A\) fort <t
o limy oo O(t; \) = o0,

e 0<O(A) <t for0<t<oo.

©(t; A) is an odd monotone unbounded shrinkage rule for ¢. A vector version, ©(t; A) is defined

componentwise.

Definition 3. © induced P: Given any thresholding function O(-; \), we say penalty P is induced
by © if:

P(t; \) — P(0;A) = Po(t; ) +q(t; ),

I¢]
Po(t:3) = [ 107 i) = uldu.
O Hu; \) = sup{s : O(s; \) < u},

for some non negative q(0, \) : ¢{O(t; A\)} = 0,t € R.

The ©— induced property enables us to substitute the penalty function P with the corresponding
thresholding function O, to directly control the sparsity of each row in W. This not only streamlines
the feature selection process but also enhances the model’s interpretability. This optimization
problem is a modified version of reduced rank regression[54], which aims to find a low rank solution
for W, while considering two parsimonies jointly: 1) low rank constraint of W and 2) sparsity
constraint on W.

The author shows that the proposed method enjoys sharp oracle inequalities even when the

number of input features is much larger than the number of response variables.

Theorem 11. [due to [102]] Let Ypxp = XnxaW™* + E, with all entries of E, independent and
identically distributed as N(0,0%). Let W be a selective reduced rank regression estimator that
minimizes equation |[Y — XW|% + X2|W||2,0, subject to r(W) < r. Then, under X = Ao(r +
log(d))%, where A is a large enough constant, the following oracle inequality holds for any W € R4*P
with (W) <r:

E(|XW — XW*|2) S | XW — XW*||% + X2[Wla0 + (p — 7)ro? + o> (3.2)

Here, 7<” means that the inequality holds up to a multiplicative constant.
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Theorem 11 establishes non-asymptotic oracle inequalities for the prediction error of the selective
reduced rank regression estimator. The estimator minimizes the squared Frobenius norm loss
Y — XW|% augmented with group sparsity penalties on the coefficient matrix W, subject to a
rank constraint (W) < r. E(|| XW — XW*||2) is bounded, up to a universal constant, by | XW —
XW*||% (bias) plus a penalty term involving the number of non-null rows, plus (p — r)ro? + o2.
The resulting error rate for the true model (W = W*) is O((||[W*||2,0 +p — r*)r* + ||[W*||2,0 log ),
which is sharper than rates computed in several other contemporary works [19, 77].

This theorem is crucial because it rigorously justifies the benefit of joint variable selection and
rank reduction, demonstrating that simultaneous regularization achieves lower prediction error than
applying either technique alone.

This joint regularization simultaneously controls the number of active predictors via A and
the dimensionality of the factor space via r, enabling interpretable factor extraction from high-
dimensional multivariate data. To adaptively tune these parameters without cross-validation, the
author introduces the predictive information criterion (PIC), defined as P,(W) = o2[{g A7(W) +
p—r(W)}r(W) + J(W)log(ed/J(W))], where ¢ = r(X),J(W) = [[W||zo and o2 is the noise
variance. The PIC integrates a degrees-of-freedom term for rank reduction with a risk inflation
term for variable selection uncertainty. The paper established a non-asymptotic oracle inequality
showing that minimizing |[Y — XW||% + AP,(W) yields prediction error within a constant factor
of the minimax optimal rate over all candidate models, without assumptions on X or W*. A
scale-free variant of P,(W) eliminates o2 estimation, ensuring practical applicability. Unlike BIC
or cross-validation, which lack theoretical support in joint sparse low-rank settings, the PIC is
minimax optimal and naturally adapts to unknown sparsity and rank structures. This scale free
version of PIC is given by: ||[Y — XW||%/{pn — AP,(W)/o?}

The ©—induced penalties enable a universal algorithmic treatment via iterative thresholding
[101], with convergence guarantees even for nonconvex penalties. Examples include: (i) convex
penalties such as the group 11(O(s;A) = (s — A)4), which induces (P(s;\) = As); (ii) nonconvex
penalties like SCAD[31], MCP[123] etc., all of which induce hard-thresholding-like behavior(©(s; \) =
s-I(|s| > X)) for large signals while smoothly shrinking small ones. Algorithm 4 demonstrates the

iterative optimization process for the SRRR problem.
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Algorithm 4: Selective Reduced Rank Regression Methods (Supervised Case):

Input
e Rank r , 1 <7 < p and thresholding parameter A : A > 0.

e O : Thresholding rule
o Minner : Maximum number of inner iterations

o Myyuter : Maximum number of outer iterations

Output : Estimated matrices W= W, S = S(t),v =V

Initialize: Reduced Rank Regression Estimate has been used here to initialize.
e V(o) =V,,V, is formed by first r eigen vectors of Y/ X(XTX)*X"Y
e S = (XTX)"XTYV,
e W = (XTX)*XTYV, V]

Calculate K = || X |3

for t =0 to Myyter do
Calculate M = YTXS(t_l), compute the reduced rank UTDTVTT = M by SVD

Compute V() = UTV;T

To update S, set [ =0, S'(O) = Si-1)

for [ =0 to M;ner do
Compute Z ) = XTYVy_1y/K + (I — XTX/K)S;_)
Su = O0(Z(,): )
if {HSU) — S(l,l)H is sufficiently small}  break

Compute S'(t) = S'(l)

Compute W(t) = S(t)V(f)

if {||W () — W(,_pll2 is sufficiently small}  break
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3.3 Feature Selection for Selective PCA

SRRR stands as a valuable tool for feature selection, efficiently optimizing the problem defined
in Eq. (3.1), by integrating several parsimonies: low-rank constraint and row-wise sparsity. In our
methodological framework, we do not include class label information in the optimization problem,
thereby enhancing computational efficiency and scalability. In this unsupervised setup, the data
matrix is X € R™? and the design matrix can be assumed to be I. The new method has
been named ’Selective Principal Component Analysis’. The objective function along with variable

screening is formulated in the following way, with sparsity control and variable screening constraints:

. 1
min —
SeRrdxr Veonxr 2K

IX =SV + 2IS|[3 subject to [S]l2 < m. (3.3)

The matrix V can be regarded as the unobserved latent factor matrix, which is accountable for
variation in the data matrix X, and S can be interpreted as the coefficient matrix, which transforms
the r-dimensional latent vector into a d-dimensional observation. Therefore, S plays an important
role in the variable selection procedure.

Here, rank(S) = r < m (number of selected features) facilitates the projection of the cho-
sen features into a lower-dimensional space, as the chosen features may not be independent from
each other. Additionally, the low-rank constraint ensures a reduction in the effective number of
parameters, thereby improving estimation efficiency.

Furthermore, the cardinality constraint on S, rather than a penalty, enables the direct control
of the number of predictors selected and is very intuitive. One can use the quantile thresholding
function 6 to optimize the new objective function to handle the row-wise sparsity.

Quantile Thresholding: Given 1 < i < d, for any S = (s1,82,---5¢)7 € R¥", to get m

features, the thresholding function can be defined as,

h/(1 if1<j<
O(s.m) = 4 S0/ (L+m) Afl<j<m, (3.4)
0 otherwise.
Here {s(;),i = 1,2, ,d} are the ordered row vectors of S based on |[s;|2. To get m features,

we will use ©(Z(; ), m) in Algorithm 5.
We will exclude a feature from X if it corresponds to an entire row of S set to 0, determined
by the thresholding rule. The computation becomes much lighter in the unsupervised case for the

identity design matrix. Note that the Selective PCA enjoys all the theoretical properties of SRRR,
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as the oracle theorem or any other theorem following that in [102], does not impose any condition

on X, W*.

Algorithm 5: Feature Selection with Selective PCA
Input : Rank r, 1 <r <d, desired number of features m, maximum number of

iterations Miter.
Output : Set J of indices corresponding to the m most important features

Initialize: Initialize S,V and W similar to Algorithm 4 with Y = X7 and X =1

for t =1 to Mjze, do
Calculate M = X S(;_1), compute the reduced rank SVD, M = UrDrVrT
Compute V() = UTVTT
Compute B4y = XTV(t_l)
Calculate S(*) = O(E(t); m) using Eq. (3.4).
Compute W(t) = S(t)V(f)
B if {|W () — W(,_pll2 is sufficiently small}  break
Obtain selected set of indices corresponding to the m most important features,

Jm:{iisi#O}

3.4 Robust Loss Minimization

We will now propose a robust version of Selective PCA to handle extreme values in high-
dimensional datasets effectively, along with feature selection and rank optimization. The mean
squared error (MSE) is sensitive to outliers as the squared differences can be heavily influenced,
leading to significant errors and affecting the model’s overall performance. Robust loss functions,
on the other hand, are designed to handle outliers more effectively by being less sensitive to extreme
values. Here are some challenges with the MSE loss in the presence of outliers and some ways in

which robust loss functions can address these issues:

e The MSE loss amplifies the influence of outliers by squaring errors, but robust loss functions

mitigate this effect by downweighting the impact of significant errors.

e The optimization process with the MSE loss becomes unstable due to the linear increase
in gradient with outliers. In contrast, robust loss functions can limit such influence on the

gradient to prevent extensive updates.

To obtain robust estimates of location, the M-estimation method in linear regression setup

was proposed by [50]. Instead of minimizing ||y — X3||?, in a linear regression setup, the author
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suggested using a general loss function p, and a robust location estimate can be found by minimizing

the following:

mln Z p(yli] — xI'B). (3.5)
Here, X = (x1,X2,--- ,%,)’. As a consequence, we replace the following score equation in OLS:
X"(XB-y)=0
with the corresponding score equation in the M-estimation method:

Z xip(y[i] —x; B) = 0,

where ¢(z) = a%p@). But the score function ¢ can be defined more generally than a derivative
function.
Here, we are going to use a Lorentzian loss [17] as p and explore feature selection methods

similar to the Selective PCA setup afterwards. Originally, the Lorentzian loss was defined as:

Definition 4 (due to [17]). The Lorenzian Loss is defined as:

2
r
pr(r, 02) = log(1 + ;)

The Lorenzian loss function with o2 = 2¢, where ¢ > 0 is a scaling factor, can be viewed as a

special case of the following general family of robust loss functions [14].

Definition 5. [due to [1/]] The general family of robust loss function p(z,a,c) is defined as:

1o fa=2
(z,a,c) = log(3(£)* +1) ifa=0,
AEROT 1 mem(hE) e o

|a;2\ ((I(%)QI )% —1) otherwise.

c% if a =2,
5 xzi% if a =0,
8xp(l‘,0[vc) = W%% C) - C%GXP(_%(%)2> if a = —o0,
z)2 a
C%(% +1)271  otherwise.
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Figure 3.1: Several loss functions (left) and their corresponding derivatives (right) from Definition
5.

This family of loss functions is smooth with respect to x and has bounded first and second order
derivatives for a < 1. More specifically,
(%5)
dp L(ez2) " <L ifasy,

|7('T’avc)|§ a1

Ox

lz| if a <2.

C2
To get an idea about how the robust losses behave, it is crucial to look at the corresponding
gradients .

e o =2 (L2 loss): In this case, the gradient 1 is linear. It means a larger error yields a larger

gradient, which is not a desirable property of a robust loss function.

e a = 1 (Charbonnier loss [25], pseudo-Huber loss [52] ): The 1 function saturates, which

means the large errors have as much effect as moderate errors on the gradients.

e o = 0 (Lorentzian Loss [17]): The 9 begins to redescend toward 0 as the error gets larger.

This means the large errors have less influence than the moderate errors.

e a < 0 (Geman-McClure loss [34], Welsch loss [27, 68] ): As a gets smaller, the rate at which
1 redescends towards O increases. Therefore, the effects of outliers on the gradient become

even smaller.

Therefore, it is evident that the Lorenzian loss is more robust to outliers compared to many
other loss functions with > 0. Therefore, if the data contains a significant number of outliers,
the Lorenzian loss might be a better choice to minimize their influence on the loss calculation as

¥ (t)/t decreases sharply.
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Now, we will define finite sample breakdown points, which are a crucial measure for quantifying
the robustness of an estimator in the presence of outliers in the dataset. It can be defined in many

ways, but we will use the definition from [51].

Definition 6. Finite Sample Breakdown Points [due to [51]] Let x = {x1,x9, - ,xn} be

a finite sample of size n. We can corrupt this sample by performing € contamination: Lety =

{y1,92, - ,ym} be m arbitrary values, then the corrupted sample is X' = x Uy of size m +n and
contains a fraction € = 2 of bad values. Let T'(x) be a robust estimator and b(e,x,T) be the

mazximum bias associated with it. Therefore, b(e,x,T) = sup ||T(x") — T'(x)||, where the supremum
is taken over all e-corrupted samples x'.

The finite sample breakdown point €* is defined as:
€' (x,T) = inf{e|b(e,x,T) = oo}

The breakdown point can take the highest value of 1 for a constant statistic or a Bayes estimate
with a prior that has compact support. It can also approach 0, for example, when T is the sample

mean.

e Sample Mean: The sample mean has a breakdown point of € = 1/n. Replacing just a single
data point with an infinitely large value will cause the mean to become infinite. As n — oo,

its breakdown point is 0. It is not robust.

e Sample Median: The sample median has a breakdown point of € &~ 1/2. To make the
median arbitrarily large, one must corrupt at least half of the data points. This is the highest
possible breakdown point for any translation-equivariant location estimator, making it highly

robust.

The breakdown point of an M-estimator is directly related to its score function .

e M-estimators with monotone i-functions (like Huber’s) have a breakdown point that is

positive but strictly less than 1/2.

e M-estimators with redescending -functions (like the Lorentzian loss) can achieve the opti-
mal breakdown point of 1/2. This is because their ability to ignore extreme outliers completely

prevents those outliers from driving the estimate to infinity.

There are multiple estimation methods available in the literature to obtain estimates with high
breakdown points. Some of them are the Least median of squares (LMS)[91], Least trimmed squares

(LTS)[91], and Least trimmed absolute values (LTA)[44]. All these estimation methods provide

58



robust estimates of location with high breakdown points, but they also have some drawbacks. LMS
is proven to be less efficient statistically compared to LTS. This means that a larger sample size is
required to arrive at the same conclusion in probabilistic terms when the distribution of errors is
normal, due to its low statistical efficiency relative to LTS.

Redescending 1) in the M estimation methods yields estimates with potentially high breakdown.
Like the trimming estimators LMS, LTS, and LTA, they can ignore observations that appear to
deviate from the model. One of the main advantage of using Redescending 1) is, unlike the trimming
estimators, the data drive the amount of trimming; only cases with extreme residuals will be

trimmed.

Theorem 12 (due to [51]). Let p be a loss function satisfying the following properties:
e p is symmeltric,
e p(0) =0,
(x) 0.

d hm\x|—>oo =

Further, we assume that the corresponding 1 is continuous and there exists an xo such that 1 (z) is
weakly increasing for 0 < x < x¢ and weakly decreasing for o < x < co. Then, the e-contamination

breakdown point of an M-estimate is %

Therefore, the robust loss function and its corresponding derivative that we will be working

with are the following:

pu(z) = log(1 + 7a?) (3.6)
Vi) = 5 (3.7

When py, is applied to a matrix M, we will perform the following operation to calculate the output:

n d
1
pL(Mpsa) =Y Y log(1 + §M¢2j)-
i=1 j=1

Our initial optimization goal is to find a low-rank r and row-wise sparse matrix W that mini-
mizes the given loss. It can be defined in the following way:

min  F(W) with [[W|20 <m,r(W) <r
WeRnxd

: A 2 .
= yin  pr(X = W)+ o [Wle with [Wilao <m,r(W) <r (3.8)

A
= min X — VST) + Z|IS|I% with ||S
SGRdXT,VGOnXTpL( ) 2H 7 |

l2,0 <m.
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Although the employed loss exhibits nice robustness properties, its nonconvex nature makes it

difficult to optimize. We will implement a surrogate function to optimize the problem in Eq. (3.8).

Definition 7. Surrogate Function. Given argming f(83), a surrogate function is defined as
9(B, 87) with the following properties:
p1) 9(B,67) = f(B),
p2) g(B~,87) = f(B7).
We can reformulate the original problem using a surrogate function, and the predefined prop-

erties (pl and p2) ensure the convergence of the optimization algorithm. Let us define g**! =

argming g(3, B;). It can be easily seen that:

F(Bev1) < g(B™,B) < g(BY,Br) < f(By).

For a smooth function, a popular choice of a surrogate function is:

9(8,87) = F(B)+ < Vsf(B7), 8- 8" > +5 8B I3- (3.9)

If 8 is replaced by S~ in Eq. (3.9), p2 holds and to satisfy pl, we should choose a in the
following way:

o> L Vaf(BY) — Vaf(8)lr < LI — B2 for all B, 62.

In our case, Vg f(B) = Vgpr(B) = ¥r(B) = % The Lipschitz continuity for v (3) can be

verified, since the magnitude of 2%2 is not larger than 1 for any g € R. Therefore, it follows from

2+
the mean value theorem that for any 8,52 € R :

12 (8Y) =L (B)llr < 18" = B2.
Let, pr(X — W) = p(W). Our solution strategy is the following:

e Construct a surrogate function:
9W. W) = p(W )4 < Vwp(W )W =W~ > +2[W - W[5+ B(W)  (3.10)
= a5 IW ~ W L (W) + AW, (3.11)
where W™ is the update of W from the previous time point, 1/« is the step size, and

0 ifr(W)<r [Wlzo<m,

oo otherwise.

Py(W) = {

e Let Z=W~ — LVwp(W").
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e The optimization problem in Eq. (3.10) for ¢-th time point looks like the following:
Wi = argmin g(W, Wy) (3.12)
W

1 1
= argmin - |W — Z||% + —Py(W). (3.13)
W 2 (0%

e The problem in Eq. (3.12) looks similar to the one in the Selective PCA setup in Section 3.3.
At the t-th time step, we will first calculate Z; for a fixed Wy and then employ Algorithm 5
to update V and S correspondingly.

This strategy is detailed in Algorithm 6.

Algorithm 6: Feature Selection using Robust Loss Minimization(RLM)

Input : Rank r, 1 <r <d, desired number of features m, maximum number of
iterations Mjter.
Output : Set J of indices corresponding to the m most important features

Initialize: Initialize S,V and W
for t =1 to M, do
Compute Z; = Wy — éva(Wt)
Get Sit1, Viy1 using Selective PCA with Z, as data matrix.
Compute Wy 41 = V18],
if {HW(tH) — W(t)Hg is sufficiently small}  break
Obtain selected set of indices corresponding to the m most important features,
J={i:S; #0}
Obtain the selected set of features F,,, = X [J,,]

Here we have chosen ¢ = 1, assuming the data has been properly standardized. Otherwise,
the estimation of scale parameter ¢ in the Lorentzian loss function, py(r) = log(1 + r?/(2c)), can
be integrated directly into the iterative robust loss minimization algorithm 6. The recommended
approach is to update ¢ at each iteration based on a robust measure of the current model’s residuals.
After updating the model parameters at iteration ¢, the residuals are computed as { R};11 = X—Wy.
The scale for the next iteration, ciy1, is then set using the square of the median of the derived
residuals:

i1 = k - (median(|vec(Ry11)]))? (3.14)

where k is a constant (e.g., k ~ 2.2 for consistency with Gaussian noise). This iterative refinement
creates a virtuous cycle: a better model yields a more accurate estimate of the inlier noise scale,
which in turn allows the robust loss to better down-weight outliers in the subsequent iteration,

leading to a more stable and accurate final model.
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3.5 Simulations

In this section, we conduct a simulation study to evaluate the robustness of our proposed
methods against the presence of outliers in the data. The primary goal is to assess how accurately
each method can perform variable selection when the dataset is contaminated with extreme values.

All datasets are generated according to the procedure described in Section 2.5.1. To introduce
outliers, 2% of the samples in each generated dataset are randomly replaced with outlier data
points. These outliers are simulated by drawing d-dimensional random vectors from a Cauchy
distribution, characterized by its heavy tails. Specifically, we used a Cauchy distribution with a
location parameter 1 = 0 and a scale parameter o2 = 2.

For each contaminated dataset, we apply the different feature selection methods. For the Signal-
to-Noise Ratio (SNR) based methods (PPCA, LFA, etc.), the SNR is computed from the estimated
coefficient matrix W and error variance matrix ¥ to rank and identify the top 10 most influential
features. For the Selective PCA and our proposed Robust-Loss-based methods (RLM), the set of
relevant features is directly determined from the inherent sparsity in the rows of their respective
coefficient matrices.

To quantify the variable selection accuracy, we compare the set of indices of the true relevant
features, denoted as Ziye, with the set of indices predicted as relevant by each method, denoted as
Zpred- The performance is then measured using the measure, described in (2.131).

We will first showcase the true feature recovery accuracy for the clean datasets (outlier-free)
and then we will showcase the same for contaminated datasets.

A comparative analysis of Table 2.2 (reproduced as Table 3.1 along with Selective PCA and
RLM), and Table 3.2 reveals the profound impact of outliers on the performance of different fea-
ture selection methods and unequivocally demonstrates the superior robustness of our proposed
Robust-Loss based approach. Table 3.1 establishes the baseline performance in an ideal, outlier-
free environment, while Table 3.2 presents the results from an identical setup but with 2% of the
data contaminated by extreme values from a heavy-tailed Cauchy distribution.

In the clean data scenario, the results confirm the findings from our initial simulation. The
methods designed to handle heteroscedastic noise—LFA and ELF—emerge as the clear top per-
formers, consistently achieving the highest feature selection accuracy across nearly all conditions.
LFA, in particular, demonstrates remarkable efficiency, often achieving near-perfect recovery of the

10 true signal features with only 300 to 500 samples. Our proposed Robust-Loss method, while
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Table 3.1: Feature selection accuracy for outlier-free data.

‘ Noise n Methods ‘
‘ PPCA LFA ELF HeteroPCA Selective PCA RLM ‘
50 71.2 90.6 &7.6 84.4 73.2 72.6
100 82.4 97.0 94.0 93.0 82.2 79.6
300 88.0 100.0 98.0 98.8 90.2 93.6
10 500 92.4 100.0 99.0 99.2 93.6 95.2
1000 95.6 100.0 99.2 99.8 96.2 97.0
50 55.4 70.4 73.4 65.6 57.8 38.6
100 72.6 91.8 92.8 87.0 71.2 57.8
300 79.8 100.0 98.6 94.4 2.4 79.0
50 500 86.4 100.0 994 98.6 86.8 84.6
1000 91.4 100.0 99.0 99.2 91.2 95.6
50 49.0 574  59.0 55.8 48.2 21.6
100 62.8 87.4 87.2 75.6 62.4 29.8
300 82.0 99.6 99.6 96.4 83.2 74.6
100 500 82.6 100.0 994 95.2 81.2 85.6
1000 90.0 100.0 994 99.6 92.8 94.6

not the top performer in this ideal setting, still delivers competitive results, generally better than
those of standard generative models like PPCA and HeteroPCA. This confirms that the robust loss
function does not significantly compromise performance when no outliers are present.

The introduction of outliers dramatically changes the performance landscape. The performance
of all standard generative methods, including the previously dominant LFA and ELF, collapses
catastrophically. In the most challenging scenario (100 noise features), their accuracy plummets
to barely above chance (around 10% of features). This demonstrates their extreme sensitivity to
outliers; the squared-error loss inherent in their likelihood-based estimation is heavily skewed by
the extreme values, leading to a complete failure in identifying the actual signal.

In stark contrast, our proposed RLM method demonstrates exceptional resilience. It consis-
tently and overwhelmingly outperforms all other methods in every single outlier condition. Even in
the most challenging scenario (100 noise features, 1000 samples), the Robust-Loss method correctly

identifies 60% of the true features, whereas all other methods fail to identify more than 12%.
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Table 3.2: Feature selection accuracy for data with outliers from Cauchy(0,2).

‘ Noise n

Methods

‘ PPCA LFA ELF HeteroPCA Selective PCA RLM ‘

50 56.2 58.8  53.8 52.6 56.4 64.8

100 55.0 57.0 53.2 53.0 55.2 69.4

300 52.0 60.4  52.0 53.6 52.2 76.0

10 500 51.6 57.6  52.6 54.4 51.4 77.4
1000 52.0 55.0 51.2 51.8 52.6 80.2

50 16.0 15.5 17.0 16.0 16.5 25.0

100 16.5 16.5 16.0 17.5 16.0 33.5

300 19.0 14.5 175 16.0 18.0 52.5

50 500 14.5 17.0 14.0 14.0 15.0 57.0
1000 16.5 17.0 17.0 19.0 17.5 60.0

50 6.0 9.0 7.0 5.0 4.0 20.0

100 8.0 7.0 7.0 7.0 10.0 33.0

300 9.0 9.0 7.0 10.0 9.0 43.0

100 500 8.0 11.0 8.0 11.0 8.0 52.0
1000 12.0 10.0 12.0 12.0 12.0 60.0
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CHAPTER 4

FEATURE SELECTION FOR CLASS
INCREMENTAL LEARNING

4.1 Related Work

One of the foundational techniques in feature selection is Correlation-Based Feature Subset Se-
lection (CFSS). This method evaluates and ranks subsets of features by maximizing their collective
relevance to the target class while simultaneously minimizing inter-feature redundancy [60]. While
effective for identifying synergistic feature groups, a key limitation of CFSS is its inability to assess
the individual relevance of a feature to a specific class in a multi-class setting.

More recently, feature selection has been framed as a network pruning problem. An efficient
pruning method was proposed by [39] using an [y sparsity constraint, allowing direct specification of
the desired sparsity level. This approach iteratively removes parameters based on criteria similar to
those in Feature Selection Annealing (FSA) [13]. Another powerful technique is the Thresholding-
based Iterative Selection Procedure (TISP) [103, 101], which provides direct control over model
sparsity by applying a thresholding function to network parameters. A related approach, inspired
by deep networks, was proposed by [7], in which autoencoders are first used to extract features, and
a pruning algorithm then constructs a subset by minimizing the input reconstruction error. While
powerful, these methods’ selection criteria are based on sparsity or reconstruction error rather than
a direct, model-based measure of a feature’s discriminatory signal for a particular class.

Principal Component Analysis (PCA) has been widely adopted for supervised feature selection.
Supervised PCA, introduced by [120], incorporates class labels to identify principal components
that capture both high variance and strong class separation. However, this method faces significant
scalability challenges, as the entire model must be retrained whenever a new data class is introduced.

To address this, recent work [114] has explored the use of Probabilistic PCA (PPCA) for
multi-class classification. Their approach models each class separately, enabling class-incremental
learning, but their work did not include a feature selection mechanism.

Hybrid methods, such as the PCA-Logistic regression framework used by [127] for facial recog-

nition, have also been proposed. A significant drawback of such approaches is their reliance on
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accessing the entire dataset for dimensionality reduction. More importantly, these methods per-
form feature transformation (or extraction), not selection. The resulting principal components
are linear combinations of all original features, meaning that even when using a reduced set of
components, one must still measure every original feature, which can be impractical and harms
interpretability.

Our proposed method offers a distinct and practical alternative to the techniques reviewed
above. It is founded on three core principles: class-specific modeling and feature selection via a
Signal-to-Noise Ratio (SNR) criterion, and a unique classification mechanism based on the Maha-
lanobis distance over class-specific feature sets.

To classify a new observation, we compute its Mahalanobis distance to each class. Crucially,
the distance to a given class j is calculated only using the feature subset selected for that class
j. This means that for a single new data point, the classification process involves projecting it
onto multiple, distinct feature subspaces—one for each potential class—and evaluating its distance
within each subspace, accounting for that class’s unique covariance structure.

This approach represents a fundamental departure from feature transformation methods. Our
method performs true feature selection, identifying a parsimonious subset of original features for
each class. This is a critical advantage over PCA-based techniques, which create new features
from linear combinations of all original variables. By not relying on any transformation, our
method ensures that only the selected features need to be measured for classification, leading to a
truly reduced and interpretable model. This makes it highly efficient and practical for real-world

applications where data acquisition is costly.

4.2 Multi-class Classification

After selecting the relevant features, we next conduct multi-class classification using them. For
each class, we will individually train the model, estimate the parameters, perform feature selection
based on these estimates, and store the results. When predicting the class for a new observation,
we will compute the posterior probability that the new observation belongs to each class using
the selected features, ultimately assigning the new observation to the class with the maximum
likelihood.

First, we will define certain variables before proceeding to technical details in this section. Y

represents the class label (Y € {1,2,3,--- ,C}). Let m and n denote the number of selected features

66



for every class and the total number of training samples from all the classes, respectively, and n;
be the number of training observations in the i** class. The random vector corresponding to the
set of all features is denoted as x = (x1, 9, -+ ,xq), whereas x() and x(-9) represents the random
vector corresponding to selected set of feature and the remaining features for class j. Let J denote
the m indices of selected features for class j, i.e. J C {1,2,---,d}. Therefore, x) = x[dJ] and

(=9 = z[{1,2,--- ,d} nJ].
4.2.1 PPCA

In this section, to perform multi-class classification, we will calculate the probability score

associated with every class. For class j, the selected set of features will follow a normal distribution:

xU) ~ N(p;, %)) (4.1)
¥ =WOWOT 4 621, and (4.2)
X(_]) ~ N(l"’—]: JfIdfm) (43)

Here, x9) and x(=7) are independent from each other. W) and [7? can be achieved from the
closed form of ML estimates, detailed in equation (2.5).

The following lemma describes how to make class predictions for a new observation x™¢"* using

PPCA.

Lemma 6. For a new set of features, x™", we will assign it to class k,if,

k= argmin { SJ (Xnew, L Zj) EfPCA (Xnew)
j€{1,2,"',8} 2 2

. ‘ Dy VT (x(=D) —py
where S;(x, p;, ;) = (xU) — uj)TEJ-_l(X(J) — W), EPPCA(x) = ) ) g aj =

3+ (log || + (d —m) log(ajz)) —logn;.
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new

Proof. For a new set of features, x™“", we will assign it to class k, if:

k= argmax P(Y = jlx =x")
j€{1727""c}
Plx=x""Y =j)P(Y =j)

= argmax
je{1,2,+ ¢} P(x = x"ew)

= argmax P(x=x""|Y =j)P(Y =)
j€{1727""c}

= argmax P(x) = x"v0))p(x(=1) = x"ew( =Py = j)
j6{1,2,~--7c}

= js{rlgé?_i{lc}{;(log 1]+ (x"0) — ) T2 (x0) — ) + (d - m) log(oF)+
vl — )T — )

o}
v (S B) | B
je{1,2, e} 2 2

) —log(*2)}

—I—aj}

and logn is a constant which can be omitted. Here P(Y = j) has been approximated by utilizing
the ratio of sample observations n; relative to the total number of observations n i.e. P(Y = j) =

Ly O

n

If the the number m of selected features is large (e.g., m = 4096), the computation of S;(x),
for each observation, involves multiplication with a large m x m matrix, which can be expensive.

Hence, to simplify the computational burden in equation (4.4), an alternative theorem will be
employed. In this scenario, we will perform SVD on the estimated covariance matrix 2(; to obtain

the rank-r estimate of it.

~ 0 T
>, = VDV, (4.5)
3 = L;D;LY + AL, (4.6)

where X has been considered as 0.01, L;j(€ R™*",r << m) consists of first r columns of V and D;
is the diagonal matrix with r largest singular values from D.
Now we will define the alternative score variable denoted as 7;(x), and subsequently present a

theorem that employs the same variable.

rj(x) = r(xV; py, L, Dj) = x9 = pg13/4 = u(xD)|3/A (4.7)
T

vV L (x — p;) and d; € R" is the vector consisting of the diagonal

where, u(x) = diag(\/ﬁ) j

elements of D;. The tall matrix L;, makes the matrix multiplication procedure less time consuming.

68



Theorem 13. (due to [114]) The score variable in Lemma 6 can also be written as: Sj(x, p;, 3j) =
ri(x), and log |Z;| = (m —r)log A + >1_, (d;[I] + X), where, d;[l] denotes the I element of d;.

4.2.2 LFA

Multi-class classification using LFA is similar to PPCA. The only difference being the involve-
ment of ¥; instead of O'JQ-Id in the probability score for the j* class.

Similar to PPCA, using the model in eq.(2.1), the distribution of x() is:

xU) ~ N(pj, ) (4.8)

2;_ = WOWOT L ) (4.9)

x) ~ N(p_j, @), (4.10)

The estimated W(j ) and \il(j), and \i!(_j) can be obtained after convergence of the EM algorithm,

in Theorem 1.

Lemma 7. For a new observation X", we will assign it to class k with

Sj (Xnew’ llfj, 2;) EJLFA (Xnew)

k = argmin +0b; (4.11)
(1,2, ¢} 2 2
where S;(x", w;, 23) has been defined in Lemma 6,
LFA _ new(—j T —I\— new(—j
E; (x) = (x ( ])—H—j) (‘I'( ])) (x ( J)—N—j) and
1 .
bj = i(log 35| + log 1wI)|) —logn,. (4.12)
Proof. Using Lemma 6, we get:
k= argmax P(xU) =x"v0))p(y = j)
je{1,2, ¢}
= argmax P(xV) = x""0))p(x(=) = x"w(= Py = j)
je{1,2, ,c}
: 1 new(j - new(J
= argmin [5(log [Xf] + (x D — )" () (x"0) — )
je{1,2, ,c}

D = TR CD) T o) — ) - log [#C7)) ~ log |
S. Xnew7 . > ELFA
= argmin i s J) +

(x
j6{1727“'7c} 2 2

TLG’LU)

+b.
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4.2.3 Unified Approach

In this section, we propose a unified approach for multi-class classification to compare model

new(j)

performance. We will only employ the selected features for a new observation, x , and calculate

the Mahalanobis distance over all the given classes. It is defined as the following:

MD(x"% class;) = (x"°0) — ﬂj)TZ_ (xmewld) — i) (4.13)

with fi; and flj are the sample mean and estimated covariance of the signals for class j, respectively.

There are a few advantages of using the Mahalanobis distance over the Frobenius norm:

e In the previous section, we have seen that the estimated posterior probability corresponding to
class prediction k, P(Y = k|x = x"¢"), yields a minimum in M D(x"?, class;) +EJPPCA +a;
for PPCA and M D(x"", classj) + EjLFA + bj, for LFA. Here, (a;,b;) are constants (do not
depend on x"") and EJP PCA E]-LF A attributed to noise variables for class j and do not have
meaningful contribution to this equation. Hence, it is rational to compute the Mahalanobis
distance and exclude EJJ:D PCA and EjLF 4 while focusing solely on relevant features for multi-

class classification.

e In high-dimensional scenarios, the Mahalanobis distance is preferred over the Frobenius norm
because it considers the covariance structure of the data. The Frobenius norm may struggle
to accurately capture variable relationships in high-dimensional spaces accurately, whereas
the Mahalanobis distance normalizes differences by variances and covariances, making it more

robust. This enhances its accuracy in task classification.

To classify a new observation(x""), our unified approach consists of two steps:
e Calculate the score for every class j: M D; = MD(x"", class;).

e Predicted class(k) will be the one that results in a minimum value of the score variable,

k= argminje{l’z,,, Y MD;

When dealing with multiclass classification, where the feature count (m) is high, computing
MD(x"", classj) becomes time-consuming due to the matrix multiplication of size m x m. To
overcome this computational burden, we can substitute it with the r-score r;(x"*").

For PPCA, we assume the same noise variance over all the dimensions. SRRR and Robust loss
minimization seek a low-rank, sparse representation while screening essential variables. Therefore,

these methods can be viewed as non-parametric versions of PPCA with an added sparsity constraint.

new new)

For these three methods, we can directly replace M D(x"", class;), with 7;(x
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LFA, ELF, and HeteroPCA are the methods based on the latent factor model. They share the
assumption that the noise covariance structure (¥) is not isotropic. Therefore, the PPCA r-score
(3.4) is not valid in such cases. Here, we present a general version of the PPCA r-score that reduces
the computation time of the MD-score while using LFA models for feature selection in multi-class
classification.

To make use of Theorem 13 for LFA models with non-isotropic noise variance ¥, we employ

the following theorem to make the Mahalanobis distance computation faster.

Theorem 14. If
> =LDL” + ¥, (4.14)

with L € R™*", and diagonal matrices D € R™" and ¥ € R™*™ with positive entries, the

Mahalanobis distance can be computed as:

MD(x,p, ) = r(¥ 2x; ¥ 2, L/, D', 1) (4.15)
where r(x; p, L, D, \) is defined in (4.7), and L' and D' are obtained by SVD on X' = EED! Tl
Proof. We consider the following transformation:

x = \Il_%x,
/ _1
po=¥ 2,
> = (B2 W)(E 2 WT) £ 1,

3’ looks similar to (4.1), with A = 1. Therefore, using the Proposition 13, we get: M D(x', '/, ¥') =
r(x'; w1/, D, 1). Here, ' = #~2X¥ 2 = L'D'LT. Also,

1 _1 PRy
=r(Pex; P2 L' D 1).0
Therefore, when incorporating the r-score into the computation of classification scores for these
methods, the following steps are performed:
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. ()1
1. Consider the transformation: u) = \Il(j) 2

2. Calculate the score for every class j: M D(x"", class;) = M D(u™*", class;) = r;j(u"™").

4.3 Class Incremental Learning

4.3.1 Introduction

Class Incremental learning is a machine learning paradigm that enables a model to continu-
ously learn from new data without requiring retraining on the entire dataset from scratch. This
approach is essential for large-scale, dynamic environments where new classes or tasks are intro-
duced sequentially over time. The primary goal is to update an existing model to incorporate new
information while retaining the knowledge it has already acquired from previous data. It is the
process of adding new classes to a model without losing the understanding of previously learned
classes, thereby facilitating learning on massive datasets with lower computational and memory
costs. This paradigm is crucial for building scalable systems that can adapt and evolve without
the prohibitive expense of repeated, full-scale training sessions.

Catastrophic forgetting is the primary challenge in incremental learning, a phenomenon in which
a model’s performance on previously learned tasks drastically deteriorates after it is trained on a
new task. When a neural network is fine-tuned on new classes, its parameters (weights) are adjusted
to minimize the error for those new classes. This optimization process often overwrites or interferes
with the parameter configurations that were essential for correctly classifying the old courses. This
is a particular problem for conventional classifiers, leading to a severe drop in accuracy for the old

classes.

4.3.2 Literature Review

The literature has explored two primary schools of thought to mitigate this issue: (1) methods
that aim to preserve the knowledge of old classes, typically through regularization or the use of
exemplars, and (2) methods that focus on correcting the inherent bias towards new classes that
emerges in the classifier.

One of the popular works for regularization based approaches includes knowledge distilla-
tion(KD) application by [46]. KD preserves a model’s prior behavior by adding a loss term that
minimizes the difference between the softened output probabilities of the current model and a stored

(or previous) version of itself on old classes—typically using temperature-scaled softmax outputs.
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This regularization encourages stability in decision boundaries without requiring raw old data. The
following methods, reviewed chronologically, leverage KD or alternative approaches to address for-
getting. Early and influential approaches to incremental learning focused on preserving the learned
feature representations. [121] proposed paying attention to specific activation maps to distill knowl-
edge from teacher to student models effectively. This approach laid the foundation for subsequent
works that incorporate attention mechanisms to prevent changes in feature representations during
continual learning. Building on these ideas, the Incremental Classifier and Representation Learning
(iCaRL) framework, introduced by [89], dynamically updates these exemplars after each training
stage and employs a nearest-class-mean classifier along with knowledge distillation loss to mitigate
forgetting. Additionally, iCaRL integrates task-specific parameters and builds a mechanism to store
representative samples, ensuring balanced performance across old and new classes. [28] employs
an attention distillation loss to transfer knowledge without needing data from base classes. To
maintain performance on prior tasks, they use a gradient that incorporates information which does
not change features of old classes significantly. [30] introduced a multi-scale feature distillation
strategy that applies knowledge distillation to pooled outputs at different spatial resolutions in a
CNN. By enforcing consistency across feature map levels, it preserves spatial and semantic infor-
mation from old tasks. It achieves strong performance in exemplar-free and low-exemplar regimes,
outperforming iCaRL in several benchmarks.

While the aforementioned methods focus on preserving the feature extractor, another line of
research focuses on a strong bias towards the most recently seen classes. [47] identified the imbalance
between old and new classes as a primary cause of catastrophic forgetting and proposed UCIR. to
address task recency bias. They replace the standard softmax layer with a cosine normalization
layer to mitigate this imbalance. This bias-correction method aims to create a unified classifier
that performs well across all classes by rebalancing the learning process. [118] discovered a strong
bias towards new classes in the last fully connected layer of CNNs and introduced BiC to correct
this task bias. Their method adds an additional layer for bias correction and divides training into
two stages: one for model training and another using a validation set to estimate and adjust the
bias.

Some of the modern approaches employ pre-trained Models(PTM). [81] proposed a k-Nearest
Neighbor (KNN) classifier based on CLIP[86]. This method evaluates the classifier on several
popular benchmarks and achieves state-of-the-art performance in continual learning settings. By

leveraging CLIP’s robust features, it dynamically handles old and new classes without severe forget-
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ting. Following a similar philosophy, [114] also proposed using a frozen, pre-trained self-supervised
feature extractor to ensure feature consistency across all incremental tasks. However, instead of
a non-parametric classifier, they train a separate, generative Probabilistic Principal Component
Analysis (PPCA) model for each class and structurally prevent catastrophic forgetting. This do-
main of PTM based research in class incremental learning is gaining popularity. PTM based works
utilize CLIP or Dinov2 as the backbone to extract deep features from images and incorporate pro-
totype classifiers [128], knowledge rumination[33] to enhance generalization and adaptability while

keeping the amount of catastrophic forgetting minimal in the class incremental setup.

4.3.3 A Generative and Feature-Selective Approach to CIL

Our proposed framework aligns with the modern school of thought in Class-Incremental Learn-
ing, leveraging powerful pre-trained Models (PTMs) to provide a stable feature space. However, it
introduces a critical and novel extension by integrating a class-specific feature selection mechanism.
Building on the philosophy of works such as [114], which use a frozen feature extractor and separate
generative models per class, our approach not only learns a unique distribution for each class but
also identifies the most salient original features necessary for its recognition. This architecture
offers a fundamental and structural solution to catastrophic forgetting, contrasting sharply with
the preservation and bias-correction methods discussed previously. Unlike regularization-based ap-
proaches [46, 89] that require exemplars or knowledge distillation to approximate past knowledge,
our method perfectly preserves it. It also sidesteps the need for complex bias-correction layers [47,
118] that re-balance a shared classifier. The suitability of our framework for CIL is rooted in its
class-specific design for the following reasons:

e Structural Immunity to Forgetting: The core challenge of catastrophic forgetting arises
from the overwriting of shared parameters in a monolithic model. By dedicating a separate,
independent generative model to each class, we eliminate this issue by design. The parameters
learned for a new class have no architectural pathway to interfere with the parameters of

previously learned classes. Preserving these learned parameters ensures prior knowledge is

fully retained, not just approximated.

e Constant-Time Model Expansion: Traditional classifiers often require retraining on a
growing dataset, with complexity scaling as O(C') with the number of classes C. Our approach
is significantly more scalable. The model for each class is ”wrapped” tightly around its own
observations. When a new class is introduced, we train a new, independent model for it. This
allows the system to expand its knowledge with a computational cost that scales as O(1) per

new class, making it ideal for dynamic, large-scale environments.
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o Adaptive and Interpretable Feature Selection: The key novelty of our extension is the
integration of Signal-to-Noise Ratio (SNR)-based feature selection. As each new class model
is trained, we also identify the most discriminative subset of features from the PTM’s output
space for that specific class. This ensures that the system learns not only what a new class
looks like (its distribution) but also which features matter most for identifying it. This adds

a layer of adaptability and interpretability that is not present in prior generative CIL work.

While a comprehensive methodological exploration of CIL is beyond the primary scope of this
dissertation, the inherent properties of our framework make it a powerful and elegant solution to
the CIL problem. We apply it in a CIL setting primarily to empirically validate its structural
robustness against catastrophic forgetting, with a detailed comparative analysis presented in the

results section.

4.4 Real Data Experiments

We evaluate the proposed feature selection for multi-class classification methods on three widely
utilized popular image classification datasets: CIFAR-10 [65], CIFAR-100 [66] and ImageNet-1k
[94].

4.4.1 ImageNet-1k

The ImageNet-1k dataset, formally known as the dataset for the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) classification task, stands as one of the most influential
benchmarks in the history of computer vision [93]. The ”1k” designation refers to its core task:
classifying images into one of 1000 distinct object categories. The dataset is massive, comprising
approximately 1.28 million high-resolution images for training, 50,000 for validation, and 100,000
for testing.

ImageNet-1k’s importance is immense; it sparked the deep learning revolution. AlexNet’s suc-
cess at ILSVRC 2012 showcased deep CNNs’ capabilities and influenced two decades of research
[67]. Its scale and complexity made ImageNet-1k the benchmark in image classification. Generally,
good performance on it is considered a model’s ability to learn robust, generalizable visual features
[98, 45, 29, 75].

From a statistical and machine learning perspective, the primary challenges of ImageNet-1k
stem from its class structure and data properties. These create two key difficulties: high intra-

class variance, where instances of the same class (e.g., chair) can appear in vastly different poses,
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lighting conditions, etc., and low inter-class variance, where different classes (e.g., Siberian husky vs.
Eskimo dog) can be almost visually indistinguishable. An effective model must learn representations
invariant to diverse appearances within a class while sensitive to subtle differences distinguishing
closely related classes. ImageNet-1k serves as a key testbed for scalability and robustness. Its large
scale tests the efficiency of our feature selection framework, and its fine-grained classes evaluate
our SNR-based criterion’s ability to identify subtle, discriminative features crucial for accurate

classification.

4.4.2 CIFAR 10/100

The CIFAR-10 and CIFAR-100 datasets are cornerstone benchmarks in the field of computer
vision and image classification [65, 66]. Both datasets consist of 60,000 32x32 pixel color (RGB)
images, which are partitioned into a standard training set of 50,000 images and a test set of 10,000
images. Due to their manageable size and well-defined structure, they have become ubiquitous in
the machine learning literature [125, 100] and serve as a standard testbed for evaluating the ability
to learn meaningful representations from low-resolution data [23, 55, 90, 2, 64].

The primary distinction between the two datasets lies in their class granularity and hierarchical
structure. CIFAR-10 divides its images into 10 coarse, mutually exclusive object classes: “air-
plane”, “automobile”, “bird”, “cat”,etc. This presents a general object recognition task where the
categories are semantically distinct. In contrast, CIFAR-100 presents a more significant challenge
in fine-grained classification. It contains 100 distinct classes, which are further grouped into 20
superclasses. For example, the superclass “trees” contains subclasses such as “oak tree”, “maple
tree”, “pine tree”, while the superclass “aquatic mammals” includes “beaver”, “dolphin”, etc. This
hierarchical structure makes CIFAR-100 an excellent benchmark for testing a model’s ability to
learn nuanced and detailed feature representations.

In the context of this dissertation, the CIFAR allows us to evaluate our feature selection frame-
work on tasks of varying classification complexity (10 vs. 100 classes) before scaling up to ImageNet.
The primary challenge posed by these datasets is their low 32232 resolution. This forces the feature
extractor to produce representations from highly constrained input and provides a stringent test
of our SNR-based method’s ability to identify the most salient and robust features from a poten-
tially noisy, low-information signal. Therefore, strong performance on CIFAR-100, in particular,
demonstrates the framework’s effectiveness in a fine-grained, low-resolution setting, a common and

challenging scenario in practical applications.
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4.4.3 Deep Feature Extractors for Images

The success of modern machine learning systems is critically dependent on the quality of the
underlying feature representations. From a statistical perspective, raw image data, represented as a
grid of pixels, presents a formidable challenge for direct modeling due to its high dimensionality and
complex, non-linear dependencies. Deep learning models provide a principled, data-driven solution
to this representation learning problem [38]. These networks learn a hierarchical transformation,
®(-), mapping the raw pixel space into a high-level vector space where semantic relationships
are more explicit. By leveraging models pre-trained on massive datasets, we engage in a form
of large-scale transfer learning, using “off-the-shelf” features that have been proven to be highly
generalizable across a wide variety of downstream tasks [98]. This paradigm has been the driving
force behind the success for variety of vision related tasks [45, 107, 129]. Therefore, our approach
of extracting deep features is a principled method to obtain a state-of-the-art data representation
upon which our statistical feature selection techniques can be most effectively applied. Specifically,
we utilize two of the most influential models: Contrastive Language-Image Pre-training (CLIP)

[86] and a self-supervised Vision Transformer (DINOv3) [105].

CLIP. Contrastive Language-Image Pre-training (CLIP)[86] consists of two parallel encoders:
an image encoder (typically a Vision Transformer or a large ResNet) and a text encoder (a standard
text Transformer). The model was trained on a massive, web-scale dataset of 400 million image-
text pairs. The training objective is a contrastive loss: for a given batch of images and texts, the
model learns to maximize the similarity between the embeddings of correct image-text pairs. Its
immense popularity stems from its remarkable ability to classify images into categories it was not
explicitly trained on, by leveraging the natural language descriptions of those categories[87]. The
resulting image representations from CLIP consists of deep semantic meaning and are extremely
useful for vision related tasks [114, 81, 43].

The image CNN component of CLIP incorporates a prominent attention mechanism as its final
layer before the classification layer. For our purposes, we utilized a pretrained modified ResNet-50
classifier known as RN50x4 from the CLIP GitHub package [86]. The CLIP feature extractor is
trained with medium resolution 288 x 288 images. Therefore, prior to processing, input images were
resized to 288 x 288 for the ImaeNet-1k dataset. For CIFAR-10/100, we resize the original images
to 144 x 144. These images, when resized to 288 x 288, they will look very blurred. [114] showed
that the 144 x 144 input is the best setting for low resolution images from CIFAR-100 for CLIP
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feature extractor. Therefore, we have utilized the same resizing factor, 144 in our setup as well.
The extracted numerical features for ImageNet-1k is 640 dimensional and for CIFAR datasets, the

feature dimension is 2560.

DINOv3. Similarly, we employ DINOv3 as a second, recent and philosophically distinct fea-
ture extractor, representing the state-of-the-art in self-supervised visual representation learning
[105]. The model architecture is a large-scale Vision Transformer (ViT-L) that learns from a
massive, curated dataset of 1.7 billion images without any textual labels. Its training objective is
based on a sophisticated self-distillation and image token matching process within a student-teacher
framework. This forces the model to learn representations that are invariant to augmentations and
capture the fine-grained structure of visual content. This model has gained popularity in a short
period of time. It is being mostly utilized in areas like object detection [104], medical vision [73],
etc.

For feature extraction, we employ the powerful vitll6 model, pre-trained on the LVD—1.7B
dataset. The model is loaded into memory using the Hugging Face transformers library, which
ensures access to the official, pre-trained weights from the Meta Al repository.

Each image is first resized so that its shorter edge is 512 pixels, and then, a 512 x 512 pixel
patch is extracted from the center of the resized image. We extract the final, high-level feature
representation for these images, from the pooler output of the model. This output corresponds to
the 1024—dimensional embedding after it has been processed by the final layers of the transformer,

serving as a holistic representation of the entire image’s content.

Discussion. The core difference between CLIP and Dinov3 is their supervisory signals. CLIP
uses weak supervision from natural language, learning to map visual objects to concepts like “dog”.
DINOv3’s internal supervision recognizes objects by matching parts across views, understanding
what a “dog” looks like. Therefore, CLIP captures high-level semantics, while DINOv3 focuses
on detailed visual structure. Testing our feature selection on both models shows its effectiveness
across these distinct paradigms.

We would also like to discuss the training sets of CLIP and Dinov3 because our results on
ImageNet-1k and CIFAR can be less reliable if there is an overlapping between the training sets
and ImageNet. In both papers, they mentioned that their datasets are created from a variety of
publicly available sources on the Internet for CLIP and a large data pool of web images collected

from public posts on Instagram. Although the train split of ImageNet-1k is used for Dinov3 training,
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they do not employ the validation set for the same. More convincingly, both CLIP and Dinov3
have been evaluated on ImageNet-1k in their respective papers. In addition, an existing method
applied CLIP to CIL [43]. After considering the above evidence, using a CLIP-based encoder on

ImageNet benchmarks is reasonable.

4.4.4 Models for Comparison

We compare the feature selection efficiency of the proposed methods against two popular meth-
ods, Feature Selection with Annealing (FSA) [13] and TISP [101] with soft thresholding (L1
penalty), applied on the same data (features) as the other methods. FSA and TISP were im-
plemented as a fully connected one-layer neural network with cross-entropy loss. The models were

trained for 30 epochs using the Adam optimizer[61] (learning rate: 0.001).

Feature Selection Annealing(FSA). Feature Selection with Annealing (FSA) is an em-
bedded feature selection method that integrates sparsity enforcement directly into the iterative
optimization process [13]. For a standard regression problem of the form y = Xb + €, FSA aims
to find a sparse estimate of the coefficient vector b. The method operates by alternating between

two steps at each epoch e:

H(X,y,b
b—p_y2t%y.b)
b
(4.16)
. epochs — 2e . . . .
m¢ =k + (d — k)max | 0, ——— | . Keep only m® variables with highest |b;]
2ep + epochs

Here k denotes the number of selected features, u controls the convexity of the schedule, allowing

€ is defined as

it to range from a linear decay (4 = 0) to a rapid, non-linear drop (¢ > 0). m
the annealing schedule, which specifies the exact number of non-zero features to be retained at
epoch e. After the gradient update, the algorithm keeps only the m¢ coefficients with the largest
magnitudes and sets all others to zero. The schedule is designed to gradually reduce the number of
active features from the total number d of features down to a desired final number, k. A key aspect
of FSA is the use of non-linear schedules that drop features aggressively in early epochs and more

slowly in later ones, a strategy designed to quickly eliminate irrelevant predictors while allowing

for more careful estimation of the remaining, more ambiguous features.

Thresholding-based Iterative Selection Procedure (TISP). The Thresholding-based

Iterative Selection Procedure (TISP) is a general and efficient algorithmic framework for solving
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a wide class of penalized optimization problems, making it a powerful tool for embedded feature
selection [103, 101]. The core of the method is to find a sparse coefficient vector b that minimizes a
composite objective function, which combines a data fidelity term with a sparsity-inducing penalty

term:

N P
1
L(b) = N Z ‘Cdata(bTXja yj) +A Z P(bl), (4.17)
J=1 i=1

where Lgata is a loss function such as squared error or logistic loss, and P is a # induced penalty
function. In this case, Lgata 1S a cross-entropy loss.

TISP operates by iterating between two simple steps: a standard gradient descent step on
the data loss term, followed by the application of a thresholding operator ©(-, A) that is uniquely

determined by the penalty P. The general update rule for binary classification is given by:

1
b =@ (b® + nXT |y — A 4.18

where y € {0,1}. The thresholding operator © is responsible for shrinking coefficients and, crucially,
setting some of them to exactly zero, thereby performing feature selection. For our benchmark, we
utilize the quantile thresholding function and the procedure effectively solves the penalized multi-
class logistic regression problem by selecting K features based on the magnitude of their learned

coefficients in every iteration until convergence is achieved.

4.4.5 Results

All the experiments were conducted on 11" generation Intel octa-core 2.30 GHz processor.

4.4.6 Feature Selection Accuracy

Table 4.1 presents the classification accuracy of all methods on real-world datasets using CLIP
features at different levels of feature sparsity. On CIFAR-10, the task is relatively simple, and most
methods achieve high accuracy. However, our proposed Robust Loss Minimization method (RLM)
described in Section 3.4 offers a clear efficiency advantage, reaching a peak accuracy of 91.1% with
only 1500 features. This indicates a superior ability to identify a compact, highly informative
feature set. The FSA and TISP baselines degrade more sharply when the number of features is
heavily reduced.

On the more challenging CIFAR-100 dataset, a clear performance gap emerges. All of our
proposed generative methods significantly outperform the FSA and TISP baselines, which peak
at around 70.9% using 2000 features. Among the generative models, PPCA performs surprisingly
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Table 4.1: Classification accuracy (%) for different methods on real datasets for CLIP features

‘ Method ‘ # Selected Features ‘
CIFAR-10, n = 60,000, d = 2560
2560 | 2250 | 2000 1750 1500 | 1250 | 1000 750

FSA 91.1 | 91.3 90.8 90.7 89.9 89.4 88.6 87.2
TISP 91.1 90.9 91.2 90.3 90.4 | 89.19 | 88.28 | 87.11
ELF 91 90.95 | 90.98 | 90.97 91 90.74 | 90.61 | 89.41
HeteroPCA 91 90.89 | 90.76 | 90.66 | 90.21 | 89.61 | 89.2 | 88.33
LFA 91 90.9 | 90.69 | 90.68 | 90.28 | 89.77 | 89.34 | 88.56
PPCA 91 90.83 | 90.68 | 90.39 | 90.24 | 89.1 | 88.54 | 87.69
Selective PCA 91 90.42 | 90.83 | 90.91 | 90.98 | 90.01 | 89.76 89
RLM 91 90. 90.68 | 90.81 91.1 | 90.95 | 90.1 | 89.53

CIFAR-100, n = 60,000, d = 2560
2560 | 2250 | 2000 1750 1500 | 1250 | 1000 750

FSA 69.63 | 70.5 | 70.09 | 70.92 | 69.43 | 69.28 | 67.72 | 63.24
TISP 69.63 | 69.94 | 70.82 | 70.42 | 69.36 | 68.58 | 68.29 | 63.25
ELF 72.81 | 727 | 7235 | 7218 | 71.31 | 70.02 | 68.01 | 65.11
HeteroPCA | 72.81 | 72.01 | 71.51 | 71.36 | 70.28 | 68.9 | 67.06 | 64.51
LFA 72.81 | 72.67 | 72.14 | 72.01 | 71.22 70 67.09 | 65.01
PPCA 72.81 | 72.83 | 73.01 | 72.55 | 72.12 | 70.83 | 69.36 | 65.47
Selective PCA | 72.48 | 72.82 | 72,95 | 72.77 | 72.55 | 71.02 | 69.21 | 66.23
RLM 72.81 | 72.94 | 72.95 | 73.08 | 72.47 | 71.33 | 69.73 | 67.24

ImageNet, n = 1.2 million, d = 640
640 600 550 500 450 400 350 300

FSA 71.37 | 71.6 | 71.68 71.2 69 67 65.98 | 64.15
TISP 71.37 | 7172 | 7149 | 70.34 | 69.04 | 67.34 | 65.06 | 63.3
ELF 73.73 | 73.60 | 73.27 | 72.95 | 72.62 | 71.97 | 71.3 | 70.24
HeteroPCA | 73.73 | 73.38 | 73.14 72.8 7248 | 71.81 | 71.06 | 69.88
LFA 73.73 | 73.49 | 73.23 | 7294 | 7253 | 71.94 | 71.11 | 70.14
PPCA 73.73 | 73.42 | 73.16 72.9 72.57 | 71.84 | 71.05 70
Selective PCA | 73.73 | 73.5 73.3 7291 | 7252 | 71.90 | 71.06 70
RLM 73.73 | 7353 | 73.33 | 7294 | 7255 | 71.87 | 71.19 | 70.22

well, achieving a peak accuracy of 73.01% using the same number of features. Our proposed RLM
method also performs strongly in this group, reaching a peak of 73.08% with 1750 features only.
This shows that, on complex, fine-grained tasks, our methods better preserve critical information.

On the large-scale ImageNet-1k dataset, the robustness of the generative methods is most evi-
dent. The FSA and TISP baselines suffer a severe drop in performance under aggressive pruning,
falling to around 63-64% accuracy with 300 features. In contrast, all of our proposed methods
remain highly stable. The ELF method is remarkably resilient, maintaining the highest accu-
racy of 70.24% with just 300 features. Our RLM and Selective PCA methods also deliver robust

performance, confirming their suitability for large-scale, high-dimensional problems.

81



Table 4.2: Training time (seconds) for FSA and TISP on the datasets evaluated for CLIP features.

Dataset Method # Selected Features
2560 [ 2250 | 2000 | 1750 [ 1500 | 1250 | 1000 | 750
FSA 25 21 20 19 18 18 17 | 16
CIFAR-10 TISP 25 20 20 20 19 18 17 | 15
Selective PCA | 52 48 48 46 45 42 40 | 40
RLM 78 65 59 56 53 51 51 | 51
FSA 45 43 41 35 31 29 27 | 25
CIFAR-100 TISP 45 44 42 37 34 28 26 | 25
Selective PCA | 432 | 420 | 419 | 415 | 414 | 410 | 407 | 401
RLM 563 | 542 | 540 | 528 | 521 | 516 | 516 | 504
640 | 600 | 550 | 500 | 450 | 400 | 350 | 300
ImageNet-1k FSA 2293 [ 1335 | 1329 | 1176 | 921 | 898 | 819 | 779
TISP 2293 | 1236 | 1022 | 996 | 877 | 776 | 769 | 737
Selective PCA | 1285 | 1190 | 1124 | 1060 | 975 | 882 | 798 | 730
RLM 1500 | 1380 | 1250 | 1130 | 1010 | 900 | 790 | 710

Table 4.3: Training time (seconds) for low-rank generative methods on the datasets evaluated for
CLIP Features.

Dataset # Features Methods
PPCA | LFA | ELF | HeteroPCA
CIFAR-10 2560 10 30 40 58
CIFAR-100 2560 12 90 42 200
ImageNet-1k 640 46 102 | 248 80

Table 4.4 presents the classification accuracy results when applying our feature selection frame-
work to the state-of-the-art DINOv3 embeddings. The use of these compelling features elevates the
overall performance of all methods to a new, higher baseline, allowing us to analyze the robustness
and efficiency of each selection technique in a near-optimal feature space. On the CIFAR-10 dataset,
the DINOv3 features prove to be remarkably effective, pushing the accuracy for all methods close
to 99%. In this high-performance scenario, the primary differentiator between methods is their
ability to maintain this accuracy under aggressive feature pruning. A clear pattern emerges: the
discriminative FSA and TISP methods, while achieving high peak accuracy, are the most brittle.
When the feature set is reduced to just 200 (an 80% reduction), their performance collapses by
over 4% points. In contrast, all generative methods demonstrated superior stability. In particular,
methods such as HeteroPCA, LFA, and PPCA maintain accuracies above 98.2%, demonstrating

graceful degradation. This highlights the inherent robustness of modeling class-specific distribu-
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Accuracy on CLIP Features vs. Feature Set Size
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Figure 4.1: Test accuracy on real-world datasets for different methods using CLIP features
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Figure 4.2: Test accuracy on real-world datasets for different methods using Dinov3 features

tions for identifying a core, information-rich feature subset. This trend is even more pronounced
on the more challenging CIFAR-100 dataset. The performance gap between the discriminative
baselines and the generative methods is stark. Under aggressive pruning to 200 features, FSA and
TISP’s accuracy plummets by over 8% points. The generative methods, however, remain remark-
ably stable. PPCA is the standout performer in this high-compression regime, achieving 90.36%
accuracy, while our proposed RLM method is close behind at 90.18%.

This represents a performance advantage of approximately 7-8 percentage points over the dis-
criminative baselines, providing definitive evidence that, as task complexity increases, the ability
of generative models to identify stable, class-representative features is a significant advantage over
methods that focus solely on the classification boundary. The LFA method achieves the highest
accuracy 92% for this data using 800(78%) features out of 1024. The HeteroPCA method achieved
91.67% accuracy with only 600 (58%) features. Finally, on the large-scale ImageNet-1k bench-
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Table 4.4: Classification accuracy (%) for different methods on real datasets for Dinov3 features

| Method | # Selected Features
CIFAR-10, n = 60,000,d = 1024
1024 1000 800 600 400 200

FSA 98.87 | 98.93 | 98.84 | 98.79 | 97.67 | 94.24
TISP 98.93 | 98.93 | 98.78 | 98.7 | 97.78 | 94.53
ELF 98.88 98.9 98.92 | 98.84 | 98.74 | 98.08
HeteroPCA 98.88 | 98.93 | 98.91 | 98.86 | 98.83 | 98.36
LFA 98.88 | 98.93 | 98.94 | 98.87 | 98.78 | 98.2
PPCA 98.88 | 98.91 | 98.91 | 98.91 | 98.81 | 98.36
Selective PCA | 98.88 | 98.82 | 98.72 | 98.66 | 98.60 | 98.37
RLM 98.88 | 98.85 | 98.78 | 98.71 | 98.63 | 98.39

CIFAR-100, n = 60,000, d = 1024
1024 1000 800 600 400 200

FSA 91.74 | 91.31 91 90.72 | 88.93 | 83.68
TISP 91.68 | 91.61 | 91.47 | 90.48 | 88.93 | 82.68
ELF 91.8 91.8 91.8 | 91.52 | 91.25 | 89.67
HeteroPCA 91.8 | 91.87 | 91.77 | 91.76 | 91.25 | 89.75
LFA 91.8 91.8 92 91.51 | 91.18 | 89.17
PPCA 91.8 91.8 91.82 | 91.7 91.4 | 90.36
Selective PCA | 91.8 91.78 | 91.70 | 91.54 | 91.11 90.0
RLM 91.8 91.72 | 91.78 | 91.67 | 91.3 | 90.18

ImageNet, n = 1.2 million, d = 1024
1024 1000 800 600 400 200

FSA 83.05 82.8 82 78.93 | 70.35 46
TISP 83.05 | 82.13 | 81.67 | 78.67 | 71.3 | 45.01
ELF 83.93 | 83.92 | 83.92 | 83.75 | 83.1 | 80.76
HeteroPCA | 83.93 | 83.92 | 83.92 | 83.73 | 83.13 | 80.71
LFA 83.93 | 83.93 | 83.87 | 83.66 | 83.13 | 80.78
PPCA 83.93 | 83.94 | 84.03 | 83.91 | 83.76 | 81.7
Selective PCA | 83.93 | 83.89 | 83.92 | 83.82 | 82.61 | 81.15
RLM 83.93 | 83.95 | 83.97 | 83.8 82.7 81.6

mark, the FSA and TISP accuracies dropped by nearly 40 percentage points when reduced to 200
(19%) features. PPCA once again demonstrates best-in-class performance, achieving its peak ac-
curacy of 84.03% with a reduced set of 800 features—outperforming the full-feature baseline—and

maintaining an impressive 81.7% accuracy with only 200 features. Our proposed RLM method
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Table 4.5: Training time (seconds) for low-rank generative methods on the datasets evaluated for

Dinov3 features

Dataset # Features Methods
PPCA | LFA | ELF | HeteroPCA
CIFAR-10 1024 5 18 9 57
CIFAR-100 1024 9 24 12 59
ImageNet 1024 133 476 | 916 611

Table 4.6: Training time (seconds) for FSA and TISP on the datasets evaluated for Dinov3 features.

Dataset Method # Selected Features
1024 | 1000 | 800 | 600 | 400 | 200
FSA 24 23 23 22 22 21
CIFAR-10 TISP 26 26 26 25 25 24
Selective PCA | 22 21 21 20 19 18
RLM 32 31 30 29 29 28
FSA 27 26 26 26 25 25
CIFAR-100 TISP 30 | 29 | 28 | 27 | 26 | 26
Selective PCA | 175 | 172 | 168 | 165 | 162 | 160
RLM 225 | 221 | 218 | 214 | 211 | 210
1024 | 1000 | 800 | 600 | 400 | 200
ImaceNot FSA 3963 | 3786 | 2479 | 1222 | 1024 | 1018
& TISP 3963 | 3863 | 2326 | 1136 | 1034 | 1022
Selective PCA | 2060 | 1995 | 1880 | 1750 | 1640 | 1510
RLM 2400 | 2320 | 2180 | 2020 | 1850 | 1780

closely tracks this performance, achieving 81.6% at the 200-feature level. This massive, greater-
than-35-point performance advantage over the discriminative baselines confirms that for large-scale,

high-dimensional problems, a feature selection strategy grounded in robust, class-specific generative

modeling is overwhelmingly superior.

4.4.7 Analysis of Computational Efficiency

Tables 4.2 and 4.3 provide a comprehensive overview of the computational costs associated
with the feature selection methods evaluated in this study. Table 4.2 details the training times
for FSA, TISP, and our proposed Selective PCA and RLM methods. For these methods, a time
is reported for each level of feature sparsity. This is because these frameworks, as evaluated here,
require a separate and complete training cycle for each desired number of features. For FSA and
TISP on ImageNet, a single run on the complete feature set takes 2,293 seconds (approximately

38 minutes), making a complete analysis extremely time-consuming. Our proposed methods, when
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Figure 4.3: Training time (seconds) for different methods using the CLIP features

run in this same iterative manner, exhibit a similar computational profile. On ImageNet, RLM
requires 1,500 seconds for its initial run, which, while faster than the full-feature FSA /TISP run,
remains computationally intensive and comparable in magnitude.

In stark contrast, Table 4.3 illustrates the profound efficiency of the standard low-rank gen-
erative methods (PPCA, LFA, ELF, HeteroPCA). These methods operate on a one-shot, upfront
computation paradigm. The time reported is the total time required to model the data and calculate
the Signal-to-Noise Ratio (SNR) for all features once. After this single computation is complete,
selecting any number of top features and updating the model parameters by restricting it to the
selected features is an instantaneous operation. This architectural advantage results in a massive

efficiency gain. For instance, on the ImageNet dataset, PPCA ranks all 640 features in a mere 46
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Figure 4.4: Training time (seconds) for different methods using the Dinov3 features

seconds. This is nearly 50 times faster than the 2,293 seconds required for just one of the multiple

training runs needed by FSA or TISP.

Therefore, the comparison between the two tables reveals a clear trade-off. While our proposed
Selective PCA and RLM methods demonstrate strong classification accuracy, their computational
cost, when framed in an iterative selection process, is substantial and comparable to the expensive

discriminative baselines. The standard generative methods, particularly PPCA and LFA, offer a

vastly more scalable and practical solution.

The computational times for experiments using DINOv3 features are presented in Tables 4.6
and 4.5. These results confirm the same fundamental efficiency differences that were observed with

the CLIP features. Table 4.5 shows that the standard generative methods (PPCA, LFA, etc.) are
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very fast. They perform a single, one-time computation to rank all features. For example, PPCA
completes its entire analysis for ImageNet in just 133 seconds. In contrast, Table 4.6 shows the times
for the iterative methods, including our proposed Selective PCA and RLM. These methods require
a separate, time-consuming training run for each feature subset. On the large ImageNet dataset,
a single run of our RLM method takes 2400 seconds, and the FSA baseline takes 3963 seconds.
This is substantially slower than the entire one-time analysis performed by the standard generative

models, confirming that they offer a much more scalable and efficient approach for feature ranking.

4.4.8 Class Incremental Learning Experiments

Our framework is architecturally designed to be inherently immune to catastrophic forgetting.
This stems from the complete decoupling of class-specific knowledge: we train an independent gen-
erative model (e.g., PPCA or LFA) for each class using only its data, and these models remain
unmodified thereafter. When new classes arrive, we train separate models exclusively for them.
Similarly, feature selection follows an additive paradigm—features with high SNR are identified for
the new classes and appended to the overall feature pool, preserving all prior selections. Since nei-
ther the parameters of existing models nor the selected features for previous classes are altered, the
framework’s performance on old classes cannot degrade, ensuring zero forgetting without additional
mechanisms such as replay buffers or regularization.

To validate this property, we adopt the standard CIL protocol from [47], a widely used bench-
mark for evaluating incremental methods [114, 128, 81]. The protocol proceeds as follows: We
initialize the model on a random subset comprising half the dataset’s classes (e.g., 50 for CIFAR-
100, 500 for ImageNet-1K). The remaining classes are divided into 5 or 10 equal incremental tasks,

introduced sequentially. At each step b:

e Train independent generative models for the new classes in the task b.
e Apply SNR-based feature selection to identify the top discriminative features for these classes.
e Add the selected set of features to the existing feature pool, and also keep track of the selected

set of features for every class.

Evaluation occurs after each step on a held-out test set encompassing all classes seen thus
far, using only the selected features for classification via the Mahalanobis distance. No exemplars
from prior classes are stored or replayed, aligning with the exemplar-free setting [128]. To ensure

robustness, we repeated the process over 5 independent runs with different random seeds for class
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splitting and report the average incremental accuracy: the mean accuracy across all evaluation

steps.

Table 4.7: Comparison of average incremental accuracy (%) and final accuracy on CIFAR-100 and
ImageNet-1K in the class-incremental learning setting (exemplar-free).

Method | CIFAR-100 | ImageNet-1K

‘ a1o a1o ‘ as as ‘ a1o a1o as as
iCaRL(2017) [89] 52.57 50 | 57.17 455 | 46.72  45.6 | 51.36  39.89
BiC(2019) [118] 5321 - | 56.86 40.21 | 84.02 732 | - -
UCIR (NME)(2019) [47] 60.12 - | 6312 - |5992 - |6156 -
UCIR (CNN)(2019) [47] 60.18 4339 | 6342 - | 61.28 - |64.34 -
PODNet(2020) [30] 63.19 41.05| 6483 - | 6413 - |66.95 -
PPCA-CLIP(2023)[114] 69.71 72.81 | 69.71 72.81 | 71.25 73.73 | 71.25 73.73
LwF (2018) [70] 82.88 77.57 | 88.10 84.28 - - - -
L2P (2022) [116] 89.48 84.47 | 91.02 86.27| - - - -
DualPrompt (2022) [115] 88.86 84.23 | 89.78 84.76 - - - -
ACIL (2022) [119] 91.96 90.33 | 94.00 90.73 | - - - -
CODA-Prompt (2023) [106] 91.19 87.24 | 92.20 88.67 | - - - -
LAE (2023) [76] 86.97 81.13 | 88.50 82.76 - - - -
DS-AL (2024) [26] 83.50 86.05 | 88.82 85.91 - - - -
SimpleCIL (2024) [128] 82.31 76.21 | 81.12 76.21 - - - -
Aper (2024) [128] 90.91 85.81 | 91.56 87.51 | - - - -
EASE (2024) [71] 92.01 87.25 | 92.81 89.22 | - - - -
CLIP-(ELF+SNR)(640,/640) - - - - 76 73.73| 76 73.73
CLIP-(ELF+SNR)(1750/2560) 7737 7281 | T7.37 7281 | - - - -
Dinov3-(LFA+SNR)(800/1024 features) | 93.44 92 | 93.44 92 - - - -

Table 4.7 provides a comprehensive and detailed comparison of our proposed frameworks against
a wide array of state-of-the-art (SOTA) methods in the challenging exemplar-free class-incremental
learning setting. The table reports two distinct performance metrics for the CIFAR-100 and the
large-scale ImageNet-1K benchmarks: the average incremental accuracy (a), which is the aver-
age performance across all incremental steps, and the final accuracy (a), which is the performance
at the final step on all classes seen so far. These metrics are evaluated for both 5-step and 10-step
incremental learning scenarios to assess performance under different learning granularities.

An analysis of historical and recent SOTA methods reveals a clear upward trend in performance
over time, particularly on the CIFAR-100 benchmark. Early methods like iCaRL and BiC es-
tablished baselines in the 50-60% accuracy range. The field saw significant improvement with the

advent of prompt-based learning methods designed for large PTMs, such as L2P, DualPrompt, and
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Figure 4.5: Comparison of the CIL accuracy on CIFAR100 and ImageNet-1k datasets using different
methods

CODA-Prompt, which consistently pushed performance to around 90%. As of the latest results, the
top-performing SOTA methods in this comparison are ACIL and EASE, with ACIL achieving the
highest average accuracy (a5 = 94.00%) and EASE achieving a strong final accuracy (a5 = 89.22%).

Against this highly competitive landscape, our ‘Dinov3-(LFA+SNR)‘ framework demonstrates
a significant performance leap, establishing a new state-of-the-art on CIFAR-100. Our method
achieves a final accuracy (asz) of 92.00%, substantially outperforming the previous top method,
EASE, by nearly 3 percentage points. Furthermore, our average accuracy (as) of 93.44% is highly
competitive with the best reported result. Critically, this superior performance is achieved not with
the full feature set, but with a reduced subset of 800 out of 1024 features, as determined by our
SNR criterion. This simultaneously validates our feature selection methodology and demonstrates
its ability to improve accuracy by removing noisy or redundant information.

On the more challenging, large-scale ImageNet-1K benchmark, the field is less crowded, as
many recent methods do not report results for this task due to overlap between PTM training
sets and ImageNet-1K. The strongest baseline in this comparison is PPCA-CLIP, which achieves
an average accuracy of 71.25% and a final accuracy of 73.73%. Our ‘CLIP-(ELF+SNR)‘ method
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clearly surpasses this baseline, achieving an average accuracy (as) of 76%. This represents a
significant improvement of nearly 5 percentage points in overall learning stability throughout the
incremental process. The final accuracy (as) of 73.73% matches the baseline, confirming that
our method maintains top-tier final performance while demonstrating substantially better learning
dynamics.

In summary, the results unequivocally establish the superiority of our proposed frameworks. By
synergistically combining powerful pre-trained features, robust generative modeling (LFA/ELF),
and principled SNR-based feature selection, our methods advance the state of the art in exemplar-

free incremental learning across both standard and large-scale benchmarks.
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CHAPTER 5

CONCLUSION

This dissertation presented a comprehensive investigation into feature selection for high-dimensional
data, developing a novel, theoretically-grounded, and scalable framework to address the challenges
of the ’curse of dimensionality,” robustness to outliers, and class-incremental learning. Our work
systematically moved from foundational principles to practical, state-of-the-art applications, deliv-
ering a unified toolkit for modern data analysis.

Our research began by establishing a feature selection methodology based on the Signal-to-
Noise Ratio (SNR), derived from a family of low-rank generative models including PPCA and
LFA. A cornerstone of this work was the development of rigorous theoretical guarantees, including
not only asymptotic consistency results but also explicit, non-asymptotic probability bounds on
the estimation errors of the signal, noise, and SNR. This theoretical analysis provides a principled
foundation that moves beyond heuristic approaches, offering quantifiable confidence in the reliability
of our method in practical, finite-sample scenarios.

Recognizing that real-world data is often contaminated, we then introduced a second family of
methods based on sparsity-inducing penalties, culminating in a novel Robust Loss Minimization
(RLM) approach. This method was specifically designed to be resilient to extreme outliers by
integrating a robust loss function directly into the optimization objective.

Finally, we demonstrated the immense practical utility of our generative framework by applying
it to the challenging problem of class-incremental learning (CIL). We showed that, by training
independent, class-specific models, our approach is structurally immune to catastrophic forgetting,
enabling seamless, scalable adaptation to new data.

Throughout this work, we explored two philosophically distinct approaches to feature selection:
low-rank generative modeling and sparsity-inducing penalized models. Low-rank generative meth-
ods first learn the underlying distribution of each class’s data and then use the learned parameters
to perform a post-hoc feature ranking using the SNR. In contrast, our sparse models, such as RLM,
integrate feature selection directly into the optimization objective along with a low-rank constraint,

forcing the model to learn a sparse representation that minimizes a chosen loss function. While
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our RLM method demonstrated unmatched robustness to outliers, a central finding of this thesis
is the remarkable effectiveness of the simpler generative models.

Across extensive experiments on large-scale, real-world datasets, the **Probabilistic Princi-
pal Component Analysis (PPCA)** model consistently delivered outstanding results. It not only
achieved classification accuracy that was highly competitive with — and often superior to—far
more complex methods, but also did so with an incredible degree of computational efficiency. The
one-shot feature ranking process of PPCA was frequently orders of magnitude faster than the iter-
ative training required by both the discriminative baselines and our more complex robust models,
making it a powerful and highly practical tool.

In the class-incremental learning setting, our generative frameworks, particularly ‘Dinov3-
(LFA+SNR)¢, established a new state of the art, validating our core thesis that a class-specific
generative approach provides a superior solution for scalable, adaptive learning. Future work may
focus on extending the non-asymptotic theory to our robust models and exploring hybrid methods

that combine the resilience of the RLM with the profound efficiency of PPCA.
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