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ABSTRACT

Artificial neural networks (ANNs) are very popular nowadays and offer reliable solutions to many

classification problems. Recent research indicates that these neural networks might be overparam-

eterized and different solutions have been proposed to reduce the complexity both in the number of

parameters and in the training time of the neural networks. Furthermore, some researchers argue

that after reducing the neural network complexity via weight selection or pruning, the remaining

weights are irrelevant and retraining the sub-network would obtain a comparable accuracy with

the original one. This may hold true in vision problems where we always enjoy a large number of

training samples and research indicates that most local optima of the convolutional neural networks

may be equivalent. However, in non-vision sparse datasets, especially with many irrelevant features

where a standard neural network would overfit, this might not be the case and there might be many

non-equivalent local optima. In this work, we present empirical evidence for these statements and

an empirical study of the learnability of neural networks (NNs) on some challenging non-linear real

and simulated data with irrelevant variables. Our simulation experiments indicate that the cross-

entropy loss function on XOR-like data has many local optima, and the number of local optima

grows exponentially with the number of irrelevant variables. We also introduce a novel efficient

weight or neuron node selection method to improve the capability of NNs to find a deep local

minimum even when there are irrelevant variables. Furthermore, we extend our approach to a net-

work pruning framework that is scalable in dealing with various kinds of deep convolutional neural

networks (DCNNs), both on structured and non-structured pruning without sacrificing inference

accuracy.
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CHAPTER 1

INTRODUCTION

1.1 Brief History of Machine Learning

Machine learning is a research field which aims at imitating using machines based and training

data the intelligent ability of humans to accomplish different tasks. The research topics of machine

learning span from the study of pattern recognition to computational learning theory. Machine

learning arises from the long-time study of artificial intelligence. In the early days when the study

of artificial intelligence began, some researchers were interested in utilizing machines to learn from

data. They tried to invent several particular machines that have the ability to learn from data

without the human’s direct help. That might be the earliest study of machine learning [Langley,

2011]. In 1959, when machine learning was still considered a branch of artificial intelligence, Arthul

Samuel presented a classical informal definition of it as “a field of study that gives computers

the ability to learn without being explicitly programmed” [McCarthy and Feigenbaum, 1990]. This

means that the main goal of machine learning was perceived to be to devise algorithms for machines

or computers that understand data, learn from data or predict with data automatically, without

human intervention and assistance. After great development over decades, machine learning was

reorganized as a separate research field from artificial intelligence, and started to flourish in 1990s.

Although machine learning is still the core part of the study of artificial intelligence, its focus has

been towards methods and models derived from mathematical optimization and probability theory.

Today, machine learning is a highly interdisciplinary research area, and intersects broadly with

other fields such as Mathematics, Statistics, Computer Science, Physics and more.

1.2 Categories of Machine Learning Tasks

Based on the casual structure of machine learning algorithms, we can typically divide the

learning tasks into two categories [Langley, 2011]. One is supervised learning, which involves

learning a statistical model that predicts an output based on input examples and desired outputs.

On the other side is unsupervised learning, in which there are inputs but no desired outputs.
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However, even so, one can still study structures or relationships in the data. That is, all the inputs

are assumed to be caused by latent variables of a casual chain. Figure.1.1 gives an illustration

about the difference between supervised and unsupervised learning.

Figure 1.1: Causal structure representation of supervised and unsupervised learning .

When considering the desired output of a machine learning system, one can categorize the

machine learning tasks [Bishop, 2006] as follows: 1) Classification, which it is the problem that

assigns unseen new data to a specified class, on the basis of inputs treated as a training set of

data points whose class memberships are known before hand; 2) Regression, which is similar to

classification but the output consists of continuous variables rather than discrete class labels; 3)

Clustering, which is the task that divides the unknown inputs into several groups, and with inputs

in the same group being more similar to each other than to those in other groups; 4) Density

estimation, which is to construct an estimate of the unknown distribution modes given the inputs;

5) Feature analysis, which aims at study the feature importance, interior structure of the data

feature, where some sub-domains of this area include feature selection, feature extraction and

dimensionality reduction.
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1.3 Overview of Neural Networks

In this section, we give an overview of neural networks, especially the Feedforward Neural

Networks we are going to study in our work.

Artificial neural networks are a very popular technique in the machine learning field this decade.

However, in history, it is not a young research sub-area of artificial intelligence. One of the earliest

works of artificial neural networks could trace back to 1943 when Warren McCulloch and Walter

Pitts developed a computational model called threshold logic [McCulloch and Pitts, 1943]. This

classical paper showed two ways to study neural networks. One lies in the biology part which

studies the processes in the brain. The other is focused on applying the neural networks in artificial

intelligence. During a similar time period, an algorithm for pattern recognition called the perceptron

has been created by Rosenblatt [1958]. In 1965, Ivakhnenko and Lapa [1965] proposed the world’s

first neural network with many layers. These early papers form the initial basis of the research in

artificial neural networks.

One of the most outstanding early works of learning neural networks occurred in 1975 when

Werbos [1974] published a paper that introduces the backpropagation algorithm, which significantly

improves the efficiency of training multi-layer neural networks. This learning technique stimulated

the research interest of neural networks for many years and is still the main technique for training

deep neural networks today.

The improvement progress of neural networks stagnated in the 1990s due to the gradient vanish-

ing problem in backpropagation [Bengio et al., 1994], which impedes training deep neural networks

with more than 4-5 layers. At the same time, other much easier to train machine learning models

such as support vector machines (SVM) [Cortes and Vapnik, 1995] took over the neural network’s

place in machine learning popularity. In 1998, LeCun et al. [1998] proposed a pioneering 7-level

neural network with several convolutional layers named as LeNet-5.

The true prosperity of neural networks came in the 2000s with the advance of computing

hardware. In 2012, AlexNet [Krizhevsky et al., 2012], a similar CNN architecture compared to

LeNet-5 but with deeper layers and new activation function, offered far better results than Support

Vector Machines (SVMs) in the ImageNet [Deng et al., 2009] competition. This is the starting point

of the advancements of deep convolutional neural networks. After that, the GoogLeNet [Szegedy

et al., 2015] is proposed, to be the winner of the ILSVRC2014 [Russakovsky et al., 2015] competition.
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The performance achieved by GoogLeNet was very close to the human-level performance. In the

same year, another deep learning model named VGGNet [Simonyan and Zisserman, 2014] was

developed, consisting of sixteen convolutional layers with a uniform architecture, and becoming one

of the most preferred choices for extracting features from images. In the same year, Goodfellow et al.

[2014] proposed a zero-sum game framework named generative adversarial network (GAN) in which

two neural networks train against each other, which can generate very realistic synthetic images

that are hard to tell by human eyes. In 2015, another breakthrough neural network architecture

named ResNet [He et al., 2016] leads the convolutional neural network models going deeper, with

152 layers but lower complexity than VGGNet, and achieving a classification accuracy that even

outperforms human beings for vision datasets. One year later, DenseNet[Huang et al., 2017] was

proposed based on the inspiration of ResNet and quickly became one of the most frequently used

deep convolutional neural networks at that time. Nowadays, many various kinds of deep convolution

neural networks are proposed.

The research in the application of neural networks has been widely studied these days. In the

meantime, the theoretical analysis of neural networks and even deep convolutional networks also at-

tracted more and more researchers. Livni et al. [2014] gave a theoretical study of the computational

complexity of training neural networks from a modern perspective. Janzamin et al. [2015] proposed

a novel algorithm to train a two-layer neural network based on tensor decomposition, in which gen-

eralization bounds are proved to be guaranteed. Zhang et al. [2017] showed the L1-regularized

neural networks are properly learnable in polynomial time.

1.4 Topic Concern and Thesis Structure

Among many attractive research topics in the machine learning area, what we are particularly

interested in is the supervised learning field — especially the study of the feature interactions and

pruning technique on artificial neural networks (ANNs). More particularly we are interested in how

to improve the neural network generalization power via neuron node selection and network pruning

methods on either highly nonlinear noisy sparse datasets or rich vision datasets. The dissertation

is organized as follows.

In chapter 2, we will study an extremely non-linear XOR-based data with irrelevant variables.

Through numerical experiments on the XOR-based classification problems, we will show that the

4



logistic energy landscape has many shallow local minima as well as some deep minima that are very

hard to find. We will also observe that the number of shallow local minima grows prohibitively

large as the number of irrelevant variables increase, and the chances of finding a deep minimum

decrease quickly with the number of irrelevant variables. This decrease is much faster for harder

problems (e.g. 5D XOR) than for easier problems (3D XOR). Based on the insight obtained from

our experiments, we propose a node and feature selection way to improve the capability of the

ANNs to find a good deep local minimum when ANNs almost lost its generalization capability. We

also discover the usefulness of boosted trees to propose multiple reduced feature sets to reduce the

number of irrelevant features to a certain extent that NNs can handle when there are hundreds of

irrelevant variables.

In chapter 3, we will extend our feature and neuron node selection approach derived in Chapter

2 to a network pruning framework that is scalable in dealing with various kinds of deep convolu-

tional neural networks (DCNNs) both on structured and non-structured pruning without sacrificing

prediction accuracy. We combine regularization techniques with sequential algorithm design and

direct sparsity level control to bring forward a novel network pruning scheme that could be suitable

for either non-structured pruning or structured pruning (particular for filter channel-wise pruning

of DCNNs). We investigate an estimation optimization problem with a L0-norm constraint in the

parameter space, together with the use of annealing to lessen the greediness of the pruning process

and a general metric to rank the importance of the weights or filter channels. Experiments on

extensive real vision datasets including the MNIST, CIFAR and SVHN provide empirical evidence

that the proposed network pruning framework can be comparable to or better than other state of

art pruning methods.

In Chapter 4, we will draw the final conclusions about what we have achieved so far for the

dissertation and explore the future works we can research.
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CHAPTER 2

A STUDY OF THE FEATURE INTERACTIONS ON

NEURAL NETWORKS

In many fields such as bioinformatics, high energy physics, power distribution, etc., it is desirable to

learn non-linear models where a small number of variables are selected and the interaction between

them is explicitly modeled to predict the response. In principle, artificial neural networks (ANNs)

could accomplish this task since they can model non-linear feature interactions very well. However,

ANNs require large amounts of training data to have a good generalization. In this section we

study the data-starved regime where an ANN is trained on a relatively small amount of training

data. For that purpose we study neuron node and feature selection for ANNs, which is known to

improve generalization for linear models. As an extreme case of data with feature interactions we

study the XOR-like data with irrelevant variables. We experimentally observed that the logistic

loss function on XOR-like data has many non-equivalent local optima, and the number of local

optima grows exponentially with the number of irrelevant variables. To deal with the local minima

and for feature selection we propose a novel node and feature selection approach that improves the

capability of ANNs to find better local minima even when there are irrelevant variables. Finally,

we show that the performance of an ANN on real datasets can be improved using our method,

obtaining compact networks on a small number of neurons and features, with good prediction and

interpretability.

2.1 Introduction

Many fields of science such as bioinformatics, high energy physics, power distribution, etc., deal

with tabular data with the rows representing the observations and the columns representing the

features (measurements) for each observation. In some cases, we are interested in predictive models

to best predict another variable of interest (e.g. catastrophic power failures of the energy grid).

In other cases, we are interested in finding what features are involved in predicting the response

(e.g. what genes are relevant in predicting a certain type of cancer) and the predictive power is
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secondary to the simplicity of explanation. Furthermore, in most of these cases, a linear model is

not sufficient since the variables have high degrees of interaction in obtaining the response.

Neural networks (NN) have been used in most of these cases because they can model com-

plex interactions between variables, however they require large amounts of training data. We are

interested in cases when the available data is limited and the NNs are prone to overfitting.

To get insight on how to train NNs to deal with such data, we will study the XOR data, which

has feature interactions and irrelevant variables. The feature interactions are hard to detect in this

data because they are not visible in any marginal statistics.

We will see that the loss function has many local minima that are not equivalent and that

irrelevant features make the optimization harder when data is limited. To address these issues we

propose a node and feature selection algorithm that can obtain a compact NN on a small number

of features, thus helping deal with the case of limited data and irrelevant features.

2.2 Related Work

Recent studies [Draxler et al., 2018, Garipov et al., 2018] have shown that the local minima

of some convolutional neural networks are equivalent in the sense that they have the same loss

(energy) value and a path can be found between the local minima along which the energy stays

the same. For this reason, we will focus our attention to fully connected neural networks and find

examples where the local minima have different loss values. Moreover, Soudry and Carmon [2016]

proves that all differentiable local minima are global minima for the one hidden layer ANNs with

piecewise linear activation and square loss. However, nothing is proved for nondifferentiable local

minima.

There has been quite a lot of work recently studying of the intrinsic sub-network about neural

networks. Han et al. [2015a] proposed the ”Deep Compression”, a three stage technique, which

significantly reduces the storage requirement for training deep neural networks without affecting

their accuracy. Liu et al. [2018] showed that for structured pruning methods, directly training the

small target sub-network or pruned model with random initialization can achieve a comparable or

even better performance than retraining using the remaining parameters after pruning. They also

obtained similar results towards to a unstructured pruning method [Han et al., 2015b] after fine-

tuning the pruned sub-network on small-scale datasets. Frankle and Carbin [2019] introduced the
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Lottery Tickets Hypothesis which claims that a random initialized dense neural network contains a

sub-network that can be trained in isolation with the corresponding original initialized parameters

to obtain the same test accuracy of the original network after training for the same number of

iterations.

2.3 Problem Statement

To study the feature interactions on neural networks, we will look at an extreme case, the

highly nonlinear noisy exclusive-OR (XOR) data classification problem. The k-dimensional XOR

is a binary classification problem that can be formulated as

y(x) =

{
+1 if

∏k
i=1 xi < 0

−1 else
(2.1)

Where data vector x ∈ Rp is assumed to be sampled uniformly from [−1,+1]p. Observe that in

this formulation the XOR data is p dimensional but the degree of interaction is k-dimensional,

with k ≤ p. We call this data the k-D XOR in p dimensions. In this chapter we will work with

k ∈ {3, 4, 5}, since k = 2 is a very simple case.

The XOR problem is an example of data that can only be modeled by using higher order feature

interactions, and for which lower order marginal models have no discrimination power. This makes

it very difficult to detect what features are relevant for predicting the response y. Figure 2.1 gives

a visualization of the XOR data for the case p = k ∈ {2, 3}.

2.4 A Mathematical Formulation of Feed-Forward Neural
Networks

Our experimental results show that a fully connected neural network with one hidden layer,

ReLU activation for the hidden node and logistic for the loss can handle the non-noisy XOR data

(p = k ∈ {3, 4, 5}) very well given sufficiently many training samples and hidden nodes. Figure

2.2 displays the test AUC (Area Under Curve) on the non-noisy XOR data with trained neural

networks under the above setting. We can clearly see that, with sufficiently many training examples

and hidden nodes, the curves of the test AUC will closely reach 1.0 within 200 training epochs in

all cases. Thus, we are going to study and analyze these NNs on the same k cases but with sparse

data and many irrelevant (noise) features. And we will see that in these sparse and noisy cases they
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2D XOR with p = 2 3D XOR with p = 3

Figure 2.1: Visualization of 2D and 3D XOR data without noisy features.

have difficulties finding the global optimum that obtains a good fit of the data. This is especially

true when p� k.

p = k = 3, h = 20 p = k = 4, h = 100 p = k = 5, h = 500

Figure 2.2: Test AUC for non-noisy XOR data. n is the size of training and testing datasets. h is
the number of hidden neurons.

Before we move on, we first want to formulate the NNs we want to study in a formal math-

ematical way. The neural networks we use for the nonlinear noisy XOR data are fully con-

nected with one hidden layer and ReLU activation for the hidden node. Since we are study-

ing binary classification, the output layer consists of only one node. If the hidden layer has h

neurons and the input x ∈ Rp, we can represent the weights of the hidden nodes as vectors

wj = (wj1, ..., wjp, wjp+1)
T ∈ Rp+1, j = 1, ..., h, incorporating the bias term. The weights and bias
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of the output neuron are a vector β = (β1, ..., βh)T ∈ Rh, and β0 ∈ R, respectively. Denoting the

ReLU activation as σ(z) = max(0, z) we can formulate the neural network classifier function as:

f(x) =
h∑
j=1

βjσ(wT
j x) + β0 =

{
> 0 predict + 1

< 0 predict− 1
(2.2)

Training neural networks of the form (2.2) based on the logistic loss l(z) = log(1 + exp(−z)) can

be formulated as a non-convex unconstrained optimization problem as:

min
w,β,β0

L(w,β, β0) = min
w,β,β0


n∑
i=1

log

1 + exp

−yi
h∑
j=1

βjσ(wT
j xi) + β0



 , (2.3)

where (xi, yi), i = 1, ..., n are the training examples.

There is no closed form analytic solution for the minimization problem (2.3), so we will com-

monly use a gradient descent based optimizer via backpropagation Werbos [1974] to minimize the

loss in an iterative way.

Figure 2.3 shows a visualization example of a fully connected neural network for binary clas-

sification with one hidden layer and one output layer. The input layer is not a real layer with

parameters for the neural network, it consists of the data sample features which feed into the NN

for training or testing purpose.

2.5 The Loss Landscape of the NNs on the XOR Data

We follow Li et al. [2017] to visualize the loss landscape locally. First we find a deep optimum

then use two directions in the parameter space as a system of reference based on which to compute

the loss values on a grid. If we didn’t find any local optima then we used two random directions.

If we found exactly one other local optimum we used the direction towards the local optimum as

the first direction and a random direction as the second direction. If we found at least two local

optima different from the deep optimum, we used the directions towards the first two local optima

we found as the reference directions.

Based on this strategy we obtained the loss maps as shown in Figure 2.4 for the 4D XOR data.

We can clearly observe from the resulted figure that locally the loss landscape is smooth for non-
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Figure 2.3: Example of a neural network for binary classification with one hidden layer and one
output node.

noisy XOR data ( i.e. the case p = k = 4), but there are several local minima on the noisy XOR

data, especially for p� k.

To see the difference between the values of the various local minima, we ran the NNs for 1000

training epochs with 100 random initializations on a XOR dataset contains 3000 training and 3000

testing samples for k = 3, k = 4 and k = 5. We plotted in Figures 2.5, 2.6 and 2.7 the values of

the local minima sorted in increasing order and their corresponding training and testing AUCs.

From Figure 2.5, 2.6 and 2.7 we can observe that, under the same nonlinearity level of k, the

inequivalence degree of the local minima increases as the number of noisy features increases. For

example, in k = 4 case, when p = 4 we see that all the sorted local minima have almost equivalent

generalization power for NNs with one hidden layer complexities, to obtain a similar and very good

training and testing AUCs (above to 0.98). But when p = 27, we can see for the NNs with 64

hidden nodes that the local minima are very different, and render the testing AUC lie in a wide

range from 0.5 to 0.8. Increasing p to 100, we observe that the NNs can memorize the training data

very well but lost their efficiency to deal the testing data. This is because in the p = 100 case, the

XOR data becomes very sparse in the high dimensional space, and in such a sparse feature space,

a neural network will have no difficulties finding a good pattern from the numerous local minima

to fit the training data.
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p = 4 with 100 hidden units p = 14 with 100 hidden units

Figure 2.4: Loss landscape for 4D XOR (k = 4).

Besides observing in Figures 2.5, 2.6 and 2.7 that the difference between the local minima

increases as p increases, we also observe that the increasing of k will lead to an increasing of

local minima differences. Firstly we look at {k = 3, p = 3} case, the perfect training and testing

AUCs (exactly or close to 1.0) are obtained by almost all the local minima. Then we check case

{k = 5, p = 5}, we see the value of local minima fluctuates in a significant range and will not always

have a similar value, and this fluctuation is also reflected in the distribution of their testing AUC.

Not all the testing AUCs of those local minima will get perfect value of 1.0, but many of them will

still achieve very good values like 0.9 but with a clearly visible distance from the perfect case.

Finally, we observe that increasing the number of hidden nodes of NNs could improve the NN’s

capability to reach a deeper local optimum on XOR data from Figure 2.5, 2.6 and 2.7. In all three

different k cases, the NNs with 512 hidden nodes could always outperform or at least be in the

same level compared to the NNs with 64 hidden nodes in reaching a smaller values of of the loss

function.

2.6 The Trainability of Neural Networks

To see the change from an easily trainable NN to a poorly trained NN for each dimension p, we

train a NN with 512 hidden nodes starting from 10 random initializations and keeping the solution

with smallest loss value. Then we compute the test AUC of the obtained NN (the training dataset
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n = 3000, p = 3 n = 3000, p = 35 n = 3000, p = 100

Figure 2.5: Values of sorted local minima (top) and train and test AUC (bottom) for 3D XOR.

size n ∈ {1000, 3000, 10000}, testing dataset size is set to be n in each case). For each p we repeat

this process 10 times and display in Figure 2.8 the average test AUC vs p.

From Figure 2.8 we observe that the test AUC quickly drops from close to 1 to 0.5. The number

of variables p where the test AUC gets below a threshold (e.g. 0.8) depends on the number n of

training examples. This drop does resemble a phase transition, from an “easy to train” regime

where the local minima are easy to find, to the “hard to train” regime.

Finally, to see how hard to find are the local minima, we compute the hit time, which we define

as the average number of random initializations required to find a local minimum with a train AUC

of at least 0.95. The hit time is displayed in Figure 2.9 for NNs with 20 hidden nodes and n = 3000

training and test observations. Observe that the hit time quickly blows up as p increases. It is

impractical to learn NN models on 3D, 4D or 5D XOR data when there are hundreds of irrelevant

variables.

In summary, our observations from all above study are the following:

• If the training data is difficult (such as the XOR data), not all local minima are equivalent,

since in Figure 2.5, 2.6 and 2.7 there was a large difference between the loss value and the

test AUC of the best local minimum and the worst one.
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n = 3000, p = 4 n = 3000, p = 27 n = 3000, p = 100

Figure 2.6: Values of sorted local minima (top) and train and test AUC (bottom) for 4D XOR.

• For a fixed training size n, the number of shallow local minima quickly blows up as the number

of irrelevant variables increases and finding the deep local minima becomes extremely hard.

• If the number of irrelevant variables is not too large, an NN with a sufficiently large number

of hidden nodes will find a deep optimum more often than one with a small number of hidden

nodes.

These observations form the basis for the proposed node and feature selection methodology pre-

sented in Section 2.8.

2.7 Existence of Junk Nodes

The study from the previous sections showed how difficult it is to obtain a trained neural network

that can find a good deep local optimum on highly non-linear data with many noisy features. In

the following sections, we will introduce our methodology that tries to address this issue.

As we see from Figure 2.8 for k ∈ {3, 4, 5}, the NNs can handle the XOR data if p is small. For

example, in the training size n = 3000 case, the NNs still can work for p ≤ 50 with k = 3, p ≤ 35

with k = 4 and p ≤ 20 with k = 5. However even when p is in the range where the NN can work,
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n = 3000, p = 5 n = 3000, p = 10 n = 3000, p = 100

Figure 2.7: Values of sorted local minima (top) and train and test AUC (bottom) for 5D XOR.

the generalization power severely decreases as p increases, with a phase transition from ”easy to

train” to ”hard to train”.

Dropout [Hinton et al., 2012] is one of the most commonly used techniques to increase the

model generalization capability and reduce overfitting in neural network training nowadays. In

each step of the training process, it will randomly kill a pre-specified proportion of hidden nodes

and make the current neural network smaller than the original one. This technique can de-correlate

the unnecessary ”strong” connections between neurons and give a higher chance for all nodes to be

k = 3 k = 4 k = 5

Figure 2.8: Test AUC of best energy minimum out of 10 random initializations vs. data dimension
p for a NN with 512 hidden nodes.
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Figure 2.9: Hit time vs dimension p for different XOR problems with n = 3000 observations.

trained sufficiently. At the end of training, the original neural network is expected to obtain better

performance in prediction on unseen data. Hereby we also want to apply the Dropout method and

see whether it can help improve the generalization ability of NNs in the noisy XOR classification

problem beyond the phase transition regime.

We select 3 experiment cases in the ”easy to train” to ”hard to train” phase for each k ∈ {3, 4, 5}

with 3000 training samples respectively, and train a NN with 10 random initializations with Dropout

of the default dropping probability 0.5. Then we keep the best test AUC and its associated training

AUC among the 10 trials. We repeat this process 10 times and display Figure 2.10 the average

test and train AUC vs the number of hidden node. Comparing results between with and without

Dropout in Figure 2.10, we observe that the Dropout technique indeed can help to reduce the

overfitting and increase the NNs generalization power, especially in the k = 3 case. However as

the level of XOR data nonlinearity increases, the efficiency of the Dropout becomes weaker and

weaker. In the k = 5 case, we can hardly see the performance improvement of Dropout compared

to the naive NNs in Figure 2.7. We also observe that as the number of hidden nodes increases,

the training AUC becomes better and better to finally reach 1.0. But the test AUCs reach a peak

when the number of hidden nodes is relatively small, and then no further improvement happens as

the number of hidden nodes increases. This tells us that increasing the number of hidden nodes

will make too many irrelevant hidden nodes exist in NNs, and overfitting occurs so severely that

even Dropout can not handle it, making it very hard to find a deep local minimum.
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k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.10: Training and testing AUC with (top) and without (bottom) Dropout vs. number of
hidden nodes.

We propose a tentative explanation of the failure of Dropout on noisy XOR data for large

numbers of hidden nodes. If we carefully check the formulation of the labels of the XOR data, we

could find that for any value of k, there exists a decision tree stacked by a set of rules to induce the

target label. Figure 2.11 is a visualization of this decision tree formed by such rules for the 2D XOR

data. This kind of decision tree gives the solution exactly, i.e. t can obtain the global minimum of

the loss function used in neural networks training. Unfortunately, it is not realistic to obtain this

global minimum during the NN training process, since the weight initialization is random and so

many local optima exist to trap us from getting the true global minimum. But this tree still shows

us some hints about approximately how many hidden neurons are needed to make the NN capable

to capture the true mode. That is, if we account for the internal nodes of the induced decision tree

as our neural nodes, roughly we could estimate how many hidden nodes we need in NNs — and

with a good weight initialization, we only need a small number of hidden nodes to power up the

NNs.

This observation is further demonstrated by checking the result we get in Fig 2.10. We can

see that all of the experimental cases can achieve roughly very good test AUC results with a small
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Figure 2.11: Decision tree generated by the label formulation of 2D XOR data.

number of hidden nodes (k = 3 with 16 hidden nodes, k = 4 with 32 hidden nodes and k = 5 with

128 hidden nodes). Increasing the number of hidden nodes on one hand indeed brings the NNs more

opportunities to find a deep local optimum, but it also introduces a lot of noisy nodes that have

no contribution to the NN in capturing the true mode. Dropout’s random node dropping ensures

that all hidden nodes in NNs are well trained, de-correlates some unnecessary connections among

the hidden nodes, which is highly useful for those NNs with a small number of hidden nodes. But

for the case of NNs with many hidden nodes, a large proportion of hidden nodes might be ”junk”

nodes, and training them well will not lead to any improvement in the NN’s capability, even it can

be harmful to the NN model.

2.8 Node Selection

In this section we introduce a node selection technique that gradually removes hidden nodes,

inspired by the Feature Selection with annealing (FSA) [Barbu et al., 2017] method, which will be

described next.

2.8.1 Overview of the FSA algorithm

Feature Selection with Annealing (FSA) [Barbu et al., 2017] is a recently proposed feature

selection method dealing mainly with the linear noisy data. It gradually removes features based

on the magnitude of their associated parameter weights in the linear classifier according to a
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Figure 2.12: The number of kept features Me vs iteration e for different schedules with p = 1000,
k = 10, N epoch = 500. Figure source comes from Barbu et al. [2017]

pre-specified annealing drop schedule Me during the training process. At the end of training,

only a certain number of relevant features with larger parameter weights will be kept, and the

features with smaller weights will be all dropped. This method can perform the feature selection

simultaneously with the training process, and has been shown to work quite well in linear regression

and classification problems.

Suppose we are given a training dataset {(xi, yi)}Ni=1 with xi ∈ Rp, yi ∈ {−1,+1}, and want to

train a binary linear classifier f(x) = βTx + β0. If we further define a differentiable loss function

L(β, β0) based on this training dataset, we can formulate the feature selection problem on such

classifier as a constrained optimization as following:

min
β,β0

L(β, β0)

s.t. ||β||0 ≤ k
(2.4)

where k is a preset hyperparameter that defines the upper limit of the total number of non-zero

feature weights.

The idea of FSA lies in: the feature selection can be performed at the same time with the loss

minimization that trains a classifier. The number of features kept at each epoch e is controlled by

a deterministic annealing plan Me. In every training step, this annealing schedule will eliminate a

certain number of irrelevant features based on the associated weight magnitudes and keep the total

number of features to be exactly Me. The feature dropping or killing schedule will continuously

be enforced unless the remaining total number of features at most k. The exact mathematical
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formulation of the annealing function Me is shown below:

Me = k + (p− k) max

(
0,

N epoch − 2e

2eµ+N epoch

)
(2.5)

where p is the dimension of the feature vectors, and the hyperparameter µ is prespecified by the

user to provide a balance between efficiency and accuracy. Figure 2.12 gives a visualization for Me

for six different choices of µ with p = 1000, k = 10 and N epoch = 500.

The FSA also enjoys theoretical guarantees of consistency and convergence. If both the learning

rate and feature dropping schedule are sufficiently slow, the FSA algorithm will find all the k true

feature variables with high probability. The detailed description of the FSA algorithm is displayed

in Algorithm 1.

Algorithm 1 Feature Selection with Annealing (FSA)

Input: Normalized training set {(xi, yi) ∈ Rp × R}Ni=1

Output: Trained model fβ(x) = βTx with parameter vector β.

1: Initialize β = 0.

2: for e = 1 to N iter do

3: Update β ← β − η ∂L(β)∂β

4: Keep only the Me variables corresponding to the highest |βj |.
5: end for

2.8.2 Node Selection with Annealing Schedule

A straightforward way to try to improve the NN’s model performance is to increase the number

of hidden nodes and to apply Dropout while training the NN. The experiments and analysis from

Section 2.7 indeed show that Dropout can improve to some extent the NNs’ generalization capability

for the nonlinear noisy XOR data. However this kind of improvement will significantly decrease

as the nonlinearity level of the XOR data increases. Moreover, our tentative explanation indicates

that as the number of hidden nodes increases, there will exist a lot of ”junk” nodes in the NN

model, leading to a degree of overfitting that even Dropout cannot handle. In Figures 2.5, 2.6 and

2.7 we also show that a NN with many hidden nodes can more easily find a deep local optimum

for which the training loss value is significantly smaller than a NN with a small number of hidden

nodes (although this deep local optimum might not have a very good generalization performance

to the test set). Thus if we can find a method to start training these NNs with many hidden nodes,
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and remove the so-called junk nodes, and only keep the important hidden neurons at the end of

training, we may obtain a neural network with better generalization performance in the ”easy to

train” to ”hard to train” phase for nonlinear noisy XOR data.

The noisy XOR data classification is a totally nonlinear problem and can not be handle by any

kind of linear classifier. However we should notice that a fully connected neural network can be

thought as a ensemble of many linear classifiers, one neuron could account for one linear classifier

in some sense. Mathematically, for these NNs with one hidden layer and one output neuron, if we

treat the activation σ(·) of hidden neurons as the input feature vector a of a linear classifier, we

can transform a binary NN classifier (2.2) into a binary linear classifier such as:

f(x) =

h∑
j=1

βjσ(wT
j x) + β0 =

h∑
j=1

βjaj + β0 = βTa+ β0, (2.6)

where aj is the activation of the j-th hidden node, and we treat it similarly as the input xj in a

linear classifier.

After this transformation, we now can train a NNs initialized with many hidden nodes, then

gradually drop the hidden nodes based on the magnitude of the associated weights |βj | of the

output neuron during the training, and finally keep a few relevant hidden nodes at the end. Since

training a neural network is non-convex optimization, it is better to pre-train the NNs to reach a

local optimum and then apply the node selection with annealing schedule to escape and go deeper.

Thus we can modify the annealing schedule Me as follows:

Me =

p 1 ≤ e ≤ Npretrain

k + (p− k) max
(

0, (Nepoch−Npretrain)−2e
2eµ+(Nepoch−Npretrain)

)
Npretrain < e ≤ N epoch

(2.7)

and the proposed method for selecting the nodes is presented in Algorithm 2.

In order to have a fair comparison with the Dropout method on neural networks, we follow the

same experiment pipeline as we did in Section 2.7. We train NNs with the same initial number of

hidden nodes as we tried in Dropout, and apply NSA during the training, to finally keep 8 hidden

nodes for k = 3, 16 hidden nodes for k = 4 and 64 hidden nodes for k = 5 at the end of training. We

display the comparison average test AUC results between NN+NSA and NN+Dropout in Figure

2.13.
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Algorithm 2 Node Selection with Annealing (NSA)

Input: Training set T = {(xi, yi) ∈ Rp × R}ni=1, desired number h of hidden neurons, starting

number H of hidden neurons, annealing schedule Me, e = 1, .., N iter.

Output: Trained NN with h hidden neurons.

1: Initialize a NN with H hidden neurons with random initialization

2: for e = 1 to N iter do

3: Update w, β and β0 via backpropagation with a gradient descent based optimizer

4: Remove hidden nodes to keep the Me nodes with largest |βj |
5: end for

k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.13: Average test AUC vs number of hidden nodes for NN+NSA and NN+Dropout.

From Figure 2.13, we can see that the NN+NSA can obtain a higher best test AUC than the

NN+Dropout in every case. With the procedure gradually removing the junk hidden nodes, the

NNs avoid to suffer the severe overfitting issue and prevent to be trapped in a shallow local optimum

or a bad deep optimum, and enjoy a far higher chance than Dropout to reach a optimum that has

good generalization. These results achieved by NN+NSA also prove our tentative explanation of

the failure of Dropout drawn in Section 2.7, that we only need to have a small number of hidden

nodes to capture the true mode for nonlinear XOR noisy data classification. However, we also see

some weird things happened with NN+NSA. For example in the {k = 4, p = 35} case, although

we see that the test AUC increases as the number of hidden nodes increases, the curve is not

a continuously increasing curve but has a zig-zag path, which indicates that the NSA could not

consistently power up these NNs in finding a good deep local optimum. Also in the {k = 5, p = 10}

and {k = 5, p = 15} cases, we do not see that the test AUCs increasing continuously or at least

remaining the same as the number of hidden nodes increases — we see that the AUCs go up for a
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k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.14: Test AUC of 100-run averaged and average of 10 best trials vs number of hidden nodes
for NN+NSA.

while as the number of hidden node increases, but then starts to go down with the further increase

in the hidden node number. We will discuss and analyze these kind of issues in the next section.

2.8.3 Neural Network Generalization Consistency with NSA

As training neural networks is a non-convex optimization problem, there are two aspects re-

garding the measurement of how good a technique is in improving the NN generalization capability:

one aspect is what is the best NN performance this technique can achieve; the other aspect is how

consistent or how often we can get such best performance using this method.

From Section 2.8.2, we can see that our node selection method NSA can always achieve a better

best test AUC than the Dropout in all k ∈ {3, 4, 5} cases. But we also see that NSA seems not very

stable in some cases such as the zig-zag test AUC curve for case {k = 4, p = 35} and the up-down

test AUC curve for cases {k = 5, p = 10} and {k = 5, p = 20}. These uncommon curves shown in

Figure 2.13 may indicate that NSA would not consistently obtain the best test AUC level results

among all the 10 random initializations in one trial of some ”hard to train” cases.

In order to see the consistency or frequency of NSA to get the best test AUC level results

reported in Figure 2.13, we perform another experiment. We compute the overall average test

AUC among all 100 trials for each tried number of hidden nodes, and make a comparison of the

NSA results from Figure 2.13, which are the average of best test AUC from 10 runs (each run

records the best test AUC from 10 random initializations). We want to see how close or how far

these two different average test AUCs is. The comparison results for all k ∈ {3, 4, 5} cases are

shown in Figure 2.14.
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k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.15: 100-run averaged test AUC vs number of hidden nodes for NN+NSA. The solid lines
are the means, dashed lines are mean ± std.

What we can see in Figure 2.14 are: for k = 3, the averaged test AUCs for different p cases all

increase as the number of hidden nodes increases. But the increase in p leads to a weaker increase in

the average AUC. We can see the difference between the 100-trial averaged test AUC and averaged

best test AUC of 10 runs for case p = 50 is much larger than the case p = 40. For k = 4, we

also see a similar phenomenon, the difference between the two averaged curves grows larger and

larger as the XOR data becomes more and more noisy. Especially for the p = 35 case, we can see

the 100-trial averaged test AUC is significantly worse than the averaged best test AUC of 10 runs

for any tried initial number of hidden nodes. For k = 5, in all p cases, the difference between the

two averaged curves does not get closer and closer as we should expect when the number of initial

hidden nodes increases — the value of difference first gets smaller and then gets larger.

To better check the consistency of the test AUC for different random initializations of NN with

NSA, we display in Figure 2.15 the average test AUC result from 100 random initializations plus

and minus the standard deviation of these 100 trials. It is more clear to see in Figure 2.15 that

for the ”hard to train” cases, such as {k = 3, p = 40}, {k = 4, p = 35} and {k = 5, p = 20}, the

NNs with NSA do not consistently have a good generalization capability as the number of initial

hidden nodes increases. We do not see the standard deviation continuously decreasing along with

the increase in the hidden node number.

From the experiments displayed in Figures 2.13, 2.14 and 2.15, we demonstrate that the NSA

method can significantly improve the NNs generalization power for nonlinear noisy XOR data in

the transition phase from the ”easy to train” to the ”hard to train” regime for k ∈ {3, 4, 5}. But in

the meantime, we also demonstrate that the naive NSA, which simply drops the hidden nodes with
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smaller associated weights connecting to the output neuron cannot consistently help the NNs find

a good deep optimum, especially for the ”hard to train” cases. We need to find a way to improve

the generalization consistency on the naive NSA.

2.8.4 Neural Node Normalization

The naive NSA comes out from the assumption that for a two layer neural network displayed

in Figure 2.3, the weights that connect the hidden neurons to the output node could represent

the importance levels of those hidden nodes in NN. By keeping the hidden neurons with larger

weight magnitudes and dropping those with smaller ones, we expect to preserve the most relevant

nodes that make a positive contribution and remove those junk nodes that may introduce noise

information to the neural network. After doing this, we hope to finally reduce overfitting and

improve the NN’s generalization capability.

This kind of assumption will hold true for the case of training a linear classifier, as the input

features are directly connected to the output neuron, and the training dataset would always hold

the same or similar statistical distribution (depending on how we do data preprocessing) for each

input feature. But in neural network training, it will not be the case since the activation of hidden

neurons will change as its internal weight vector will be updated in the backpropagation procedure

for every training step. Thus, it should be unreasonable to consider those weights connecting the

hidden neurons to the output node as the unique measure of the importance of hidden nodes in

such neural networks.

If we carefully look at the mathematical form of the neural network’s classifier function in Eq.

(2.2), we can notice that a hidden neuron’s effectiveness to the neural network should lie in two

parts:

f(x) =

h∑
j=1

 βj︸︷︷︸
I

·σ(wT
j x)︸ ︷︷ ︸
II

+ β0

The first part β is the weight we consider to be the hidden node importance measurement as in

naive NSA. The second part is the activation level of the hidden node, which was simply overlooked

before. In Section 2.8.2, we unintentionally treated the second part to be a fixed value for each

training sample during the node selection process. But in fact both parts will change their values

in the backpropagation update.
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That implies that the second part will also carry importance information about the hidden

node for keeping or dropping consideration. The value of the hidden node activation is mainly

determined by the inner product between the internal weight vector w and data vector x. As the

input vector x is fixed during every training step, the change of each hidden node activation roots

in the change of the internal weight w. We can see that when a test data sample goes through the

above two layer neural network shown in Figure 2.3, if we fix the value of β for all hidden nodes, a

hidden node with a larger magnitude value of the inner product should have a larger contribution

to the prediction than a smaller one. Thus, if we do not extract the importance information stored

in the activation of each hidden node and incorporate it into the weight β, we cannot truly keep

those hidden neurons carrying larger hidden node importance information via NSA.

Another thing we have to consider arises from the fact that the change in each hidden node

activation will not be at the same pace during the backpropagation update in the training process.

Some hidden nodes’ internal weights may change quickly, some may change slowly. This unbalanced

internal weight update pace of hidden nodes will lead the statistical distribution of the activation

based on the training dataset for each hidden node to be different. To achieve a better node

selection, we need to find a way to convert the activation of all the hidden nodes to the same scale.

At first glance, to extract the importance information from the hidden node activation and to

convert the activation of all hidden node to the same scale should be addressed totally separately.

However, if we carefully select the extraction criterion and scaling method, actually we could handle

this two issues simultaneously.

We see that the degree of importance information stored in the hidden node activation is mainly

determined by the inner product of the internal weight vector w and data vector x. Since the data

vector x is usually fixed during training, the magnitude of internal weight vector w should be the

main source account for how much importance information the activation carries. The L2-norm is

one of the best and most commonly used ways to measure the magnitude of a vector. So here we

will utilize the L2-norm to compute the node importance information carried by the hidden node

activation. Hereby, for the j-th hidden node, the node importance information number stored in

its activation is defined as following:

I(j) :=
∥∥wj

∥∥
2

=

√√√√p+1∑
l=1

w2
jl (2.8)
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Next we deal with the hidden node activation rescaling problem. In order to determine the

distribution of a hidden node activation based on the training dataset, we first need to derive the

value range of the inner product between internal weight vector w and data vector x as this is the

key source to cause the unbalanced update pace of different hidden nodes. As we assumed that the

XOR data is uniformly distributed in range [−1,+1]p, we calculate the norm of such inner product

for j-th hidden node as:

||wT
j x|| = ||wj || · ||x|| · cos θ︸︷︷︸

≤1

≤ ||wj || · ||x||︸︷︷︸
≤1

≤ ||wj ||

where θ is the angle between two vectors wj and x. One could clearly see from the derived inequality

that the value range of hidden node activation is determined by the magnitude of the internal weight

vector w. Thus, to rescale the activation of different hidden nodes for the training dataset to the

same scale is roughly equivalent to rescaling each hidden node’s internal weight vector w to the

same scale. For internal weight vectors with different magnitude, a commonly way to convert them

into the same scale is to divide the weight vector by its own L2-norm respectively. Therefore, the

rescaling factor for the j-th hidden node can be defined as:

S(j) :=
1∥∥wj

∥∥
2

=
1√∑p+1
l=1 w

2
jl

(2.9)

After we determined the extraction criterion and the rescaling factor for hidden node j ∈

{1, 2.., h}, we now are able to multiply βj by I(j) to incorporate the hidden node importance

information in one place, and multiply wj by S(j) to rescale all the hidden node to the same scale.

Furthermore, this two kinds of multiplication even will not change our neural network classifier

function but just transform it to another form due to the usage of the ReLU as our hidden node
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activation. The following shows the mathematical calculation in detail:

f(x) =
h∑
j=1

βjσ(wT
j x) + β0

=
h∑
j=1

βj ·
∥∥wj

∥∥
2
· 1∥∥wj

∥∥
2

· σ(wT
j x) + β0

=
h∑
j=1

(
βj ·

∥∥wj

∥∥
2

)
· 1∥∥wj

∥∥
2

·max(0,wT
j x) + β0

=
h∑
j=1

(
βj ·

∥∥wj

∥∥
2

)
·

max

(
0,

wT
j x∥∥wj

∥∥
2

)+ β0

=

h∑
j=1

(
βj · I(j)

)︸ ︷︷ ︸
incorporation

·
(

max
(

0, (wT
j x) · S(j)

))
︸ ︷︷ ︸

normalization

+β0

=

h∑
j=1

β̃jσ(w̃T
j x) + β0

Now we present the node selection with neural node normalization via annealing schedule in Algo-

rithm 3.

Algorithm 3 Node Selection with Normalization and Annealing (NSNA)

Input: Training set T = {(xi, yi) ∈ Rp × R}ni=1, desired number h of hidden neurons, starting

number H of hidden neurons, annealing schedule Me, e = 1, .., N iter.

Output: Trained NN with h hidden neurons.

1: Initialize a NN with H hidden neurons with random initialization

2: for e = 1 to N iter do

3: Update w, β and β0 via backpropagation with a gradient descent based optimizer

4: for j = 1 to h do

5: Normalize hidden node j and incorporate the normalizer to βj :

β̃j←‖wj‖βj , w̃j←
wj

‖wj‖
(2.10)

6: end for

7: Remove hidden nodes to keep the Me nodes with largest |β̃j |
8: end for

Figure 2.16 and 2.17 show the comparison result between NSNA and NSA, NSNA and Dropout.

The experiment pipeline to apply NSNA on NNs for nonlinear noisy XOR data is the same as we did
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k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.16: Average test AUC vs number of hidden nodes for NNs with NSNA or NSA.

k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.17: Average test AUC vs number of hidden nodes for NNs with NSNA or Dropout.

for NSA. Clearly to see for all cases, those NNs with NSNA can always obtain the best generalization

level capability among the three. Comparing NSNA to NSA, we can see that NSNA is more efficient

than NSNA in helping neural networks achieve good testing performance. For example in k = 3,

the NNs with NSNA could reach the best generalization level with fewer hidden nodes than NNs

with NSA. Moreover, unlike NSA which had a weird zig-zag AUC curve in case {k = 4, p = 35},

and up-down AUC curve in case {k = 5, p = 10} and {k = 5, p = 15}, the NNs’ generalization level

in NSNA continuously improves or at least stays the same as the initial number of hidden nodes

increases. This even holds true in the ”hard to train” case for each k.

In Figure 2.16 and 2.17, we have demonstrated that NSNA outperforms the NSA and the

Dropout in improving neural network generalization, when dealing with the nonlinear noisy XOR

data for cases k ∈ {3, 4, 5} and the number of features in the range where the NNs’ generalization

capability quickly decreases from an ”easy to train” to a ”hard to train” regime. Besides that,

we are also interested in how consistent is the NSNA method in assisting NNs reach a deep local
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k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.18: Test AUC of 100-run averaged and average of 10 best trials vs number of hidden nodes
for NN+NSNA.

k = 3, p = {40, 45, 50} k = 4, p = {25, 30, 35} k = 5, p = {10, 15, 20}

Figure 2.19: 100-run averaged test AUC vs number of hidden nodes for NN+NSNA. The solid lines
are the means, dashed lines are mean ± std.

optimum with good generalization. So we display the comparison result between 100-run averaged

test AUC and averaged test AUC of 10 best trials for each tried initial number of hidden nodes,

and the comparison result of 100-run averaged test AUC with the same curve but plus and minus

the standard deviation of such 100 runs in Figures 2.18 and 2.19 respectively.

From above figures, we see that the result is much better than the naive NSA from the previous

section. In all cases, as the number of initial hidden nodes increases, the difference between the

two averaged curves becomes smaller and smaller and the variances, which measure the fluctuation

of those 100 runs, also get closer and closer to zero. Having more hidden nodes at the beginning

helps the NNs with more chances to reach a deep local optimum, and the NSNA procedure truly

keeps those most important ones and drops the irrelevant hidden nodes, consistently leading to an

improvement in neural network generalization at the end of training.
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2.9 Idea on Selecting Features

In the previous section we saw that we can use the node selection with normalization and

annealing to train better NNs than by random initialization when there are irrelevant variables.

However, the irrelevant variables will still have a negative influence in the obtained model, and an

even better model can be obtained by removing the irrelevant features. We can use two different

kinds of measurements to determine whether a feature should be kept or dropped during.

The first choice we call group criterion, which compute the group weight (relevance) of each

feature using the L2-norm of the corresponding variables in the h weight vectors wj :

rl = ||w.,l||2 =

√√√√ h∑
j=1

w2
jl (2.11)

Figure 2.20: Feature weights ri from (2.11) for the p = 20 features for 10 random 4D XOR datasets
of size n = 3000.

An example for these group weights rj for NNs trained on 10 different datasets with k = 4, p = 20

and n = 3000 is shown in Figure 2.20. We can clearly see in Figure 2.20 that the relevant variables

1 to 4 have larger group weights than the rest. Using this group criterion we can use Feature

Selection with Annealing [Barbu et al., 2017] to select the relevant features for a NN.

The second choice we call separate criterion, which uses a similar procedure we do in deter-

mining the importance of a hidden node. In this measurement, we compute the magnitude of the

weight for all connections between features and hidden nodes.

rj,l = |wj,l| (2.12)
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We will remove a feature for the network during the training procedure once all of the connections

to the hidden nodes are dropped for that feature.

The selecting feature procedure is described in Algorithm 4.

Algorithm 4 Feature Selection with Annealing and NSNA for Neural Networks
(FSA+NSNA)

Input: Training set T = {(xi, yi) ∈ Rp×R}ni=1, desired number k of features, annealing schedule

Me, e = 1, .., N iter.

Output: Trained NN depending on exactly k features.

1: Train a NN using Algorithm 3.

2: for e = 1 to N iter do

3: Train the NN for 1 epoch

4: Normalize the hidden nodes using β̃j←‖wj‖βj , w̃j← wj

‖wj‖
5: Compute the feature weights either using rl or rj,l

6: Keep the Me features with largest rl or rj,l

7: end for

2.10 Experiments

In this section, we present experiments on XOR-related artificial datasets and real datasets to

demonstrate the effectiveness of our proposed NN generalization capability improvement technique.

2.10.1 XOR Simulated Datasets

In this section, we present experiments on 3D, 4D, 5D XOR datasets with a 3000 observations

training set and 3000 different testing samples. The total number p of features for each dataset

will be selected such that the neural network almost lost all its generalization capability. For the

3D XOR dataset, we selected p = 60, for 4D XOR is p = 40 and 5D XOR is p = 20. Figure 2.8

shows that a one hidden layer NN without regularization can only obtain a test AUC close to 0.5

for these cases, which means it has nearly no generalization power.

We also train a one hidden layer neural network starting from a large number of hidden nodes,

then gradually reduce the nodes to some target number, with the purpose of finding a deeper local

optimum that can make the NN generalize better. We perform node selection in the hidden layer

(NN-NSNA-hidden), and leave the input connections which connect the features to the hidden

neurons untouched. After that we prune connections to the input layer using FSA. After searching
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through a number combination of hyper-parameters, we obtained the best initial number of hidden

nodes as 1024 for 3D XOR, 2048 for 4D XOR, and 4096 for 5D XOR, and the final number of

hidden nodes as 8, 16 and 64 respectively. The obtained test AUC (Area Under the ROC curve)

results using a default Adam optimizer and L2 penalty 0.001 are displayed in Table 2.1.

Table 2.1: Comparison between the standard NN, pruned sub-networks on the hidden layer and
all layers, and retrained pruned networks with random weights and the initial weights from the
beginning.

Test AUC(%)

NN NN+NSNA NN+FSA+NSNA NN+NSNA NN+NSNA
Dataset best hidden all retrained random retrained initial wts

3D-XOR p = 60 82.53 96.58 99.58 70.47 71.68
4D-XOR p = 40 72.17 95.31 98.31 52.83 69.32
5D-XOR p = 20 66.24 80.03 96.83 53.21 66.29

In Table 2.1 are also displayed the best test AUC of a standard one hidden layer NN, the best

result of a pruned sub-network that was retrained after the node selection stage using a random

initialization, and the best result of a pruned sub-network that was retrained after the node feature

selection stage using the initial weights used before pruning. Clearly, we see that our NSNA

that preserved the trained weights helps the NN have a far better generalization than the others

networks, and the sub-network does not seem to find a good local optimum when retrained.

We further examine whether or not we can recover the performance of the sub-network after

the pruned sub-network was obtained, either via retraining from scratch or from the corresponding

initial original weights. In each case, we repeat 100 times the process of pretraining a fully connected

neural network, applying NSNA to prune the hidden nodes, and retraining the sub-network using

random initialization and initial weights, using the best combination of hyper parameters described

above. We sorted the runs by the test AUC and displayed the obtained resulting curves in Figure

2.21.

From Figure 2.21 we see that for these three cases on the XOR data, neither retraining from

scratch nor using the original initial weights can achieve the performance of the corresponding sub-

network that was obtained by pruning the fully connected dense neural network. The retraining

using initial weights seems works a little better than retraining from a random initialization, as

sometimes the sub-network retrained with initial weights can obtain a test AUC beyond 0.6, but

still way behind the sub-network obtained form large network pruning.
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k = 3, p = 60 k = 4, p = 40 k = 5, p = 20

Figure 2.21: Testing AUC vs number of trials.

Besides selecting the hidden nodes, we also select features to the input layer to remove irrelevant

features, shown as NN+FSA+NSNA(all) in Table 2.1. This may further improve the performance

for the XOR data. The obtained results are also displayed in Table 2.1, and almost perfectly match

the best result we could obtain from training the same XOR data without irrelevant features.

Figure 2.22 displays a complete training and test loss obtained during training a NN with

FSA+NSNA on the 4D XOR data with p = 40. Also shown is the AUC evolution, which indicates

that a good sub-network was obtained in the end, performing well on both training and testing data.

The fully connected neural network was first trained for 1200 iterations to reach a local optimum

with a training AUC of 1.0 but a bad test AUC. After selecting the relevant hidden nodes, the

training AUC went back to 1 and the test AUC improved considerably. Finally, after selecting

the features to the input layer to remove irrelevant features, the test AUC obtains a comparable

performance to the training AUC, which means this is a good deep local optimum. This figure is a

good illustration of how the loss and AUC evolve during the training procedure. In most cases the

number of training iterations can be reduced to have same final testing performance.

2.10.2 Parity Data

The parity data with noise is a classical problem in computational learning theory [Zhang et al.,

2017]. It is a simpler case of the XOR data: it has the same labels as the XOR data but each

variable in the feature vector x is uniformly drawn from two values {−1,+1}. Like in Zhang et al.

[2017], we made the classification problem harder by randomly selecting 10% of the data points

and switching their labels to the opposite values. Thus the best classifier would have a prediction
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Figure 2.22: Loss and AUC evolution for training a pruned sub-network using NN+FSA+NSNA
for k = 4, p = 40 XOR data.

error of 0.1.

y =

xi1xi2 ...xik with probablity 0.9

− xi1xi2 ...xik with probablity 0.1

This kind of dataset is frequently used to test different optimizers and regularization techniques

on the NN model. We perform the experiment in p = 50 dimensional data with parities k = 5. The

training set, valid set, and testing set contain respectively 15,000, 5,000 and 5,000 data points. We

train a one hidden layer neural network with default stochastic gradient descent (SGD) optimizer,

Adam [Kingma and Ba, 2014] optimizer and Adam + NSNA. For NN with Adam + NSNA, we

start with 256 hidden nodes, and down to a hidden node number B in the range B ∈ [1, 16] using

annealing schedule Me. We report the best result out of 10 independent random initializations.

Recently, a neural network based boosting method named BoostNet [Zhang et al., 2017] significantly

outperformed a normal NN on this data. As Zhang et al. [2017]’s experiment setting is very similar

to us but with more training data, so we directly extract their results and report together with our

experimental outcomes.. The comparison of the test errors is shown in Figure 2.23.

We can see that the ANN with the SGD optimizer cannot learn any good model with less than

100 hidden nodes on this data, while an ANN with the Adam optimizer can learn some pattern when

the number of hidden nodes is greater than 25, but still mostly cases are trapped in shallow local

optima. The BoostNet can learn well if the hidden node number is greater than about 45 hidden

nodes. The best performance is achieved by ANN with Adam + NSNA, with 256 starting hidden

nodes. After applying NSNA during the ANN training, we only needed to keep as few as 6 hidden
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Figure 2.23: Test error vs number of hidden nodes. Comparison between single hidden layer neural
networks trained by NN + Adam + NSNA starting with 256 hidden nodes, NN + Adam, NN +
SGD and BoostNet.

nodes to get the best possible prediction error. This observation implies The NSNA algorithm has a

good capability to find a global or deep enough local optimum by gradually removing unimportant

nodes.

2.10.3 Madelon Data

The Madelon dataset, featured in the NIPS 2003 feature selection challenge [Guyon et al., 2004],

is a generalization of classical XOR dataset to five dimensions. Each vertex of a five dimensional

hypercube contains a cluster of data points randomly labeled as +1 or -1. The five dimensions

constitute 5 informative features and 15 linear combinations of those features were added to form

a set of 20 redundant but informative features. Additionally, 480 distractor features with no

predictive power were added at random locations. So the total number of variables of the Madelon

data is 500.

Screening using Boosted Trees. When the number of irrelevant features is very large, even

the FSA Algorithm 4 described above has a hard time finding the true features. In this case we
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can employ boosted trees to generate a number of candidate feature sets. The boosted trees have a

different behavior on the XOR data. To see that, we trained 100 boosted tree models with between

1 and 100 boosting iterations and sorted them in decreasing order of their training AUC.

n = 3000, p = 100, k = 3 n = 3000, p = 100, k = 4

Figure 2.24: Train and test AUC of boosted trees with 1-100 boosted iterations, sorted by decreasing
train AUC.

In Figure 2.24 are shown the training and test AUC of the 100 models for 3D and 4D XOR with

n = 3000, p = 100, averaged over 10 independent datasets. We see that the boosted trees severely

overfit the training data, and cannot learn any model that would generalize to the test data.

However, we observed that they are still capable of sometimes finding the correct features. We

again trained boosted trees with maximum d depth on 80% of the training data sampled randomly.

We then looked at each tree to see whether all k true features were among the total features used

by the tree. If they were, we consider the features were found by the boosted tree.

In Figure 2.25 are shown the percent times all features were found vs tree depth out of 10

independently generated datasets. For each dataset we used 100 trials with 30 boosting iterations

each, with maximum depth d = {2, 3, 4, 5, 6}. We see that if the maximum tree depth is deep

enough (4 for k = 4 and 5 for k = 5) at least one of the 3000 feature sets contains all k true

features.

Using this screening procedure we introduce our proposed algorithm for training NNs with

feature selection. The procedure is described in Algorithm 5.
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k = 3, p = 100 k = 4, p = 100 k = 5, p = 100

Figure 2.25: Variable detection rate. Percent of the runs all k features were found together in one
of the 3000 subsets generated by FSBT with 30 boosting iterations.

Algorithm 5 Feature Selection using Boosted Trees (FSBT)

Input: Training set T={(xi, yi) ∈ Rp × R}ni=1, number N trial of trials, number B of boosting

iterations, max tree depth d, number k of selected features

Output: Trained NN on k selected features

1: for j = 1 to N trial do

2: Subsample 80% of the training examples without replacement.

3: Train a boosted tree with B boosted iterations and maximum d depth for each tree

4: for i = 1 to B do

5: Set Sij as the set of features used in the i-th boosted tree.

6: Train a NN model mij on feature set Sij , obtaining training AUC aij .

7: end for

8: end for

9: Output the model mij with largest training AUC aij

Experiment Results. This is a high-dimensional, non-linear, sparse dataset with only 2000

training points. The test set predictions cannot be evaluated online anymore so we used the

validation set (containing 600 data points) as the test set for our experiment. We compared our

method with the boosted trees, random forest, a regular single hidden layer NN and a tree-rule

induced NN called neural rule ensembles (NRE) [Dawer et al., 2020]. For boosted trees, we used

the Xgboost package [Chen and Guestrin, 2016], searched for the best test error for the number

of boosting iterations i ∈ {10, 20, 30}, maximum tree depth d ∈ {2, 4, 6, 8, 10}. For the random

forest, we searched for the best test error for number of trees n ∈ {100, 200, 400}, maximum tree

depth d ∈ {2, 4, 6, 8, 10}, maximum splitting features m ∈ {√p, 0.2p, 0.4p, 0.6p, 0.8p}. For the one
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single hidden layer NN, we executed 10 independent random initializations and searched for the

best result in number of hidden nodes h ∈ {32, 64, 128, 512, 1048, 2048}. For the NRE, we directly

extract the best result from the original paper [Dawer et al., 2020]. For our method, we first used

FSBT with N trial = 10 trials, B = 20 boosting iterations and maximum tree depth d ∈ {4, 5}

to obtain a list of 400 reduced feature sets. Then for each feature set we applied 10 independent

random initializations of FSA+NSNA starting with H = 2048 hidden nodes, and pruned down to

h ∈ {64, 128} hidden nodes and selected k ∈ {5, 10, 15, 20} features. Like the other methods, we

reported the best result out of these 2× 4 = 8 parameter combinations.

Table 2.2: Comparison of the test error of Xgboost, NN, RF, NRE and FSBT+FSA+NSNA on
the Madelon dataset.

Method Xgboost NN RF NRE FSBT+FSA+NSNA

Test error % 15.50 40.13 12.19 10.30 7.83

The results are shown in Table 2.2. Due to the high-dimensional character of the Madelon

data, the learnability of a normal NN is poor, with the worst test performance among the four.

Xgboost and RF can handle this data to some extent, achieving a test error of 15.50% and 12.19%

respectively. The NRE, which uses a pre-trained decision tree to construct a one hidden layer

neural network, can get a test error of 10.30%. Our FSBT+FSA+NSNA algorithm works best,

outperforming the other four by a clear margin, learns a model with test error of 7.83%.

2.10.4 Real Datasets

In this section, we perform an evaluation on a number of real multi-class datasets to compare

the performance of a fully connected NN and the compact NN obtained by FSA+NSNA. The real

datasets were carefully selected from the UCI ML repository [Dua and Graff, 2017] to ensure that

the dataset is not too large (the number of data points less than 10000) and that a standard fully

connected neural network (with one hidden layer) can have a reasonable generalization power on

this data. If a dataset is large, then the loss landscape is simple and the neural network can be

trained easily, so there is no need for pruning to escape bad optima. If a dataset is such that a

neural network can rarely be trained on it successfully, it means that the loss might not have any

good local optima, then again pruning might not make sense. The details about the datasets are

displayed in Table 2.3.
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Table 2.3: Datasets used for evaluating the performance of fully connected NN and sparse NN with
FSA+NSNA.

Dataset Number of classes Number of features Number of observations

Car Evaluation 4 21 1728
Image Segmentation 7 19 2310
Optical Recognition of Handwritten Digits 10 64 5620
Multiple Features 10 216 2000
ISOLET 26 617 7797

Our real dataset experiments are not aimed at comparing the performance with other classifi-

cation techniques, but to test the effectiveness of FSA+NSNA in guiding neural networks to find

better local optima. For this reason we will combine all the samples including training, validation

and testing data to form a single dataset for each data type first, and then divide them into a

training and testing set with a ratio 4 : 1. The obtained training dataset will be used in a 10-run

averaged 5-fold cross-validation grid search training process to find the best hyper-parameter set-

tings of a one hidden layer fully connected neural network. After getting the best hyper-parameter

setting from the cross-validation, we use them to retrain the fully connected NNs with the entire

training dataset 10 different times, and each time we record the best test accuracy. This procedure

is used for the fully connected NN, and the NN with FSA+NSNA with different sparsity levels and

record the best sparsity level and testing accuracy. Finally, we will also train a so-called ”equiv-

alent” fully connected neural network with roughly the same number of connections as the best

sparse neural network we get from FSA+NSNA.

The number of hidden nodes was searched in {16, 32, 64, 128, 256, 512}, the L2 regularization

coefficient was searched in {0.0001, 0.001, 0.01, 0.1}, the batch size was searched in {16, 32, 64}.

Other NN training techniques like Dropout [Srivastava et al., 2014] and Batch Normalization [Ioffe

and Szegedy, 2015] were not used in our experiments due to the simplicity of the architecture of

experimented NNs. The comparison results are listed in Table 2.4. The sorted loss values and test

accuracys of the models with 200 random initializations are shown in Figure 2.26 and 2.27.

We see from Table 2.4 that using NN+FSA+NSNA to guide the search for a local optimum leads

to NNs with good generalization on all these datasets, easily outperforming a NN of an equivalent

size (with a similar number of weights) and in most cases even the standard NN with the best

generalization to unseen data. We see from Fig.2.26 and Fig.2.27 that the NN+FSA+NSNA can

obtain lower loss values and higher test accuracy than the other networks in nearly all cases.
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Table 2.4: Performance results of NN(best), NN(equivalent) and NN+FSA+NSNA for each dataset.

NN(best) NN(equivalent) NN+FSA+NSNA

Car Evaluation, p = 21, n = 1728, 4 classes.

Number of weights (nodes) 1600 (64) 150 (6) 120+32 = 152
Test Accuracy 100.0±0.00 98.23±0.06 100.0±0.00
Image Segmentation, p = 19, n = 2310, 7 classes.

Number of weights (nodes) 6656 (256) 364 (14) 266+98 = 364
Test Accuracy 96.87±0.72 96.27±0.58 98.40±0.32
Optical Recognition of Handwritten Digits, p = 64, n = 5620, 10 classes.

Number of weights (nodes) 37888 (512) 1998 (27) 1792+160 = 1952
Test Accuracy 98.80±0.29 98.25±0.19 99.01±0.20
Multiple Features, p = 216, n = 2000, 10 classes.

Number of weights (nodes) 14464 (64) 904 (4) 583+320 = 903
Test Accuracy 97.85±0.80 95.45±0.98 98.15±0.82
ISOLET, p = 617, n = 7797, 26 classes.

Number of weights (nodes) 41152 (64) 5787 (9) 4683+1118 = 5801
Test Accuracy 96.73±0.50 94.31±0.61 96.91±0.54

The experiments show that the XOR data is indeed an extreme example where deep local

optima are be hard to find, but even the real datasets exhibit some non-equivalent local optima

and the things we learned from the XOR data carry over to these datasets to help us train NNs

with better generalization.

2.11 Conclusion

In this chapter, we presented an empirical study of the trainability of neural networks and the

connection between the amount of training data and the loss landscape. We observed that when

the training data is large (where ”large” depends on the problem), the loss landscape is simple

and easy to train. When the training data is limited, the number of local optima can become very

large, making the optimization problem very difficult. For these cases we introduce a method for

training a neural network that avoids many local optima by starting with a large model with many

hidden neurons and gradually removing neurons to obtain a compact network trained in a deep

minimum. Moreover, the performance of the obtained pruned sub-network is hard to achieve by

retraining using random initialization, due to the existence of many shallow local optima around
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the deep minimum. Experiments also show that our node and feature selection method is useful in

improving generalization on the XOR data and on a number of real datasets.
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Figure 2.26: Sorted loss values for 200 initializations obtained on the five real datasets.
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Figure 2.27: Sorted test accuracy values for 200 initializations obtained on the five real datasets.
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CHAPTER 3

A NETWORK PRUNING FRAMEWORK FOR

DEEP CONVOLUTIONAL NEURAL NETWORKS

VIA ANNEALING AND DIRECT SPARSITY

CONTROL

Deep convolutional neural networks (DCNNs) have proved to successfully offer reliable solutions to

many vision problems. However, the use of DCNNs is widely impeded by their intensive computa-

tional and memory cost. In this chapter, we propose a novel efficient network pruning framework

that is suitable for both non-structured and structured channel-level pruning. Our proposed method

tightens a sparsity constraint by gradually removing network parameters or filter channels based on

a criterion and a schedule. The attractive fact that the network size keeps dropping throughout the

iterations makes it suitable for the pruning of any untrained or pre-trained network. Because our

method uses a L0 constraint instead of the L1 penalty, it does not introduce any bias in the training

parameters or filter channels. Furthermore, the L0 constraint makes it easy to directly specify the

desired sparsity level during the network pruning process. Finally, experimental validation on real

datasets show that the proposed framework with a certain pruning criterion and schedule obtains

better or competitive performance compared to other states of art network pruning methods.

3.1 Introduction

In recent years, artificial neural networks (ANNs) especially deep convolutional neural networks

(DCNNs) are widely applied and have become the dominant approach in many computer vision

tasks. These tasks include image classification [Krizhevsky et al., 2012, Simonyan and Zisserman,

2014, He et al., 2016, Huang et al., 2017], object detection [Girshick et al., 2014, Ren et al., 2015],

semantic segmentation Long et al. [2015], 3D reconstruction [Dou et al., 2017], etc. The quick

development in the deep learning field leads to network architectures that can go nowadays as deep

as 100 layers and contain millions or even billions of parameters. Along with that, more and more

computation resources must be utilized to successfully train such a deep modern neural network.
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The deployment of DCNNs in real applications is largely impeded by their intensive computa-

tional and memory cost. With this observation, the study of network pruning methods that learn

a smaller sub-network from a large original network without losing much accuracy has attracted a

lot of attention. Network pruning algorithms can be divided into two groups: non-structured prun-

ing and structured pruning. The earliest work for non-structured pruning is conducted by LeCun

et al. [1990], the most recent work is done by Han et al. [2015a,b]. The non-structured pruning

aims at directly pruning parameters regardless of the consistent structure for each network layer.

This renders modern GPU acceleration technique unable to obtain computational benefits from the

irregular sparse distribution of parameters in the network, only specialized software or hardware

accelerators can gain memory and time savings. The advantage of non-structured pruning is that

it can obtain high network sparsity and at the same time preserve the network performance as

much as possible. On the other side, structured pruning aims at directly removing entire convolu-

tional filers or filter channels. Li et al. [2016] determines the importance of a convolutional filter

by measuring the sum of its absolute weights. Liu et al. [2017] introduces a L1-norm constraint

in the Natch Normalization layer to remove filter channels associated with smaller γ. Although

structured pruning cannot obtain the same level of sparsity as non-structured pruning, it is more

friendly to modern GPU acceleration techniques and independent of any specialized software or

hardware accelerators.

Unfortunately, many of the existing non-structured and structured pruning techniques are con-

ducted in a layer-wise way, requiring a sophisticated procedure for determining the hyperparameters

of each layer in order to obtain a desired number of weights or filters/channels in the end. This

kind of pruning manner is not effective nor efficient.

We combine regularization techniques with sequential algorithm design and direct sparsity level

control to bring forward a novel network pruning scheme that could be suitable for either non-

structured pruning or structured pruning (particular for filter channel-wise pruning of DCNNs

with Batch Normalization layers). We investigate a parameter estimation optimization problem

with a L0-norm constraint in the parameter space, together with the use of annealing to lessen the

greediness of the pruning process and a general metric to rank the importance of the weights or filter

channels. An attractive property is that parameters or filter channels are removed while the model

is updated at each iteration, which makes the problem size decrease during the iteration process.
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Experiments on extensive real vision data, including the MNIST, CIFAR, and SVHN provide

empirical evidence that the proposed network pruning scheme obtains a performance comparable

to or better than other state of art pruning methods.

3.2 Related Work

Network pruning is a very active research area nowadays, it provides a powerful tool to accelerate

the network inference by having a much smaller sub-network without too much loss in accuracy.

The earliest work about network pruning can be dated back to 1990s, when LeCun et al. [1990]

and Hassibi and Stork [1993] proposed a weight pruning method that uses the Hessian matrix

of the loss function to determine the unimportant weights. Recently, Han et al. [2015b] used

a quality parameter multiplied by the standard deviation of a layer’s weights to determine the

pruning threshold. A weight in a layer will be pruned if its absolute value is below that threshold.

Guo et al. [2016] proposed a pruning method that can properly incorporate connection slicing into

the pruning process to avoid incorrect pruning. These pruning schemes mentioned above are all

non-structured pruning, needing specialized hardware or software to gain computation and time

savings.

For structured pruning, there are also quite a few works in the literature. Li et al. [2016]

determined the importance of a convolutional filter by measuring the sum of its absolute weights.

Hu et al. [2016] computed the average percentage of zero activations after the ReLu function and

determine to prune the corresponding filter if its this percentage score is high. He et al. [2017]

proposed an iterative two-step channel pruning method by a LASSO regression based channel

selection and least square reconstruction. Liu et al. [2017] introduced a L1-norm constraint in the

Batch Normalization layer to remove filter channels associated with smaller |γ|. Zhou et al. [2018]

imposed an extra cluster loss term in the loss function that forces filters in each cluster to be similar

and only keep one filter in each cluster after training. Yu et al. [2018] utilized a greedy algorithm

to perform channel selection in a layer-wise way by constructing a specific optimization problem.

3.3 Network Pruning via Annealing and Direct Sparsity Control

Given a set of training examples D = {(xi, yi), i = 1, ..., N} where x is an input and y is a

corresponding target output, with a differentiable loss function L(·) we can formulate the pruning
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problem for a neural network with parameters W = {(Wj,bj), j = 1, ..., L} as following con-

strained problem

min
W

L(W) s.t. ||W||0 ≤ K (3.1)

where the L0 norm bounds the number of non-zero parameters in W to be less than or equal to a

specific positive integer K.

For non-structured pruning, we directly address the pruning problem in the whole W space.

The finalW will have an irregular distribution pattern of the zero-value parameters across all layers.

For structured pruning, suppose the DCNN is with convolutional filters or channels C = {Cj , j =

1, ...,M}, we can replace the constrained problem (3.1) by

min
W

L(W) s.t. ||C||0 ≤ K (3.2)

By solving the problem (3.2), we will obtain theW on the convolutional layers having more uniform

zero-value parameter distribution, specialized in some filters or filter channels.

These constrained optimization problems (3.1) and (3.2) facilitate parameter tuning because

our sparsity parameter K is much more intuitive and easier to specify in comparison to penalty

parameters such as λ in λ||W||1 and λ||C||1.

In this work, we will focus on the study of the weight-level pruning (non-structured pruning) for

all neural networks and channel-level pruning (structured pruning) particularly for neural networks

with Batch Normalization layers.

3.3.1 Basic Algorithm Description

Some key ideas in our algorithm design are: a) We conduct our pruning procedures in the

specified parameter spaces; b) We use an annealing plan to directly control the sparsity level in

each parameter space; c) We gradually remove the most ”unimportant” parameters or channels

to facilitate computation. The prototype algorithms, summarized in Algorithm 6 and 7, show our

ideas. It starts with either an untrained or pre-trained model and alternates two basic steps: one

step of parameter updates towards minimizing the loss L(·) by gradient descent and one step that

removes some parameters or channels according to a ranking metric R.

The intuition behind our DSC algorithms is that during the pruning process, each time we

remove a certain number of the most unimportant parameters/channels in each parameter/channel
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Algorithm 6 Network Pruning via Direct Sparsity Control - Weight-Level (DSC-1)

Input: Training set T = {(xi, yi)}ni=1, desired parameter space {Wj |∪Wj =W & ∩Wj = ∅}Bj=1,

desired number {Kj}Bj=1 of parameters, desired annealing schedule {M e
j , e = 1, .., N iter}Bj=1, an

ANN model.

Output: Pruned ANN depending on exactly {Kj}Bj=1 parameters in each parameter space

{Wj}Bj=1.

1: If the ANN is not pre-trained, train it to a satisfying level.

2: for e = 1 to N iter do

3: Sequentially update W ←W − η ∂L(W)
∂W via backpropagation.

4: for j = 1 to B do

5: Keep the M e
j most important parameters in Wj based on ranking metric R.

6: end for

7: end for

8: Fine-tune the pruned ANN with exactly {Kj}Bj=1 parameters in each parameter space {Wj}Bj=1.

space based on an annealing schedule. This ensures that we do not inject too much noise in the

parameter/channel dropping step so that the pruning procedure can be conducted smoothly. Our

method directly controls the sparsity level obtained at each parameter/channel space, unlike many

layer-wise pruning methods where a sophisticated procedure has to be used to control how many

parameters are kept, because pruning the weights or channels in all layers simultaneously can be

very time-consuming.

Algorithm 7 Network Pruning via Direct Sparsity Control - Channel-Level (DSC-2)

Input: Training set T = {(xi, yi)}ni=1, desired channel space {Cj |∪Cj = C & ∩Cj = ∅}Bj=1, desired

number {Kj}Bj=1 of channels, desired annealing schedule {M e
j , e = 1, .., N iter}Bj=1, a DCNN model.

Output: Pruned DCNN depending on exactly {Kj}Bj=1 channels in each channel space {Cj}Bj=1.

1: If the DCNN is not pre-trained, train it to a satisfying level.

2: for e = 1 to N iter do

3: Sequentially update W ←W − η ∂L(W)
∂W via backpropagation

4: for j = 1 to B do

5: Keep the M e
j most important channels in Cj based on ranking metric R.

6: end for

7: end for

8: Fine-tune the pruned DCNN with exactly {Kj}Bj=1 channels in each parameter space {Cj}Bj=1.

49



Through the annealing schedule, the support set of the network parameters or channels is

gradually shrunken until we reach ||W||0 ≤ K or ||C||0 ≤ K. The keep-or-kill rule is based on

the ranking metric R and does not involve any information of the objective function L. This is in

contrast to many ad-hoc networking pruning approaches that have to modify the loss function and

can not easily be scaled up to many existing pre-trained models.

3.3.2 Implementation Details

In this part, we provide implementation details of our proposed DSC algorithms.

First, the annealing schedule Me is determined empirically. Our experimental experience shows

that the following annealing plans can perform well to balance the efficiency and accuracy:

Me =


(1− p0) + p0(

N1 − e
µe+N1

))M, 1 ≤ e < N1

(1−min(p, p0 +

⌊
e−N1

N c

⌋
ν))M, N1 < e ≤ N iter

Here M is the total number of parameters or channels in the neural network. Our Me consists two

parts. The first part can be used to quickly prune the unimportant parameters with a reasonable

value of µ down to a percentage p0 of the parameters. The second part can further refine our

pruned sub-network to a more compact model. µ is the pruning rate and we will set it to µ = 10

for all experiments. p0 ∈ [0, 1] denotes the percentage of parameters or channels to be pruned in the

first part. p ∈ [0, 1] denotes the final pruning percentage goal at the end of the pruning procedure,

thus the number of remaining parameters is K = M(1 − p). The parameter N c specifies how

many epochs to train before performing another pruning. We will select N c ∈ {1, 2}. ν denotes the

incremental pruning percentage as the annealing continues and will be set to ν ∈ {0.005, 0.01, 0.02}.

An example of an annealing schedule Me (with M = 1 for clarity) with N1 = 10, N iter = 20, N c = 1,

p0 = 0.8, p = 0.9, and ν = 0.02 is shown in Figure 3.1.

Second, as the convolutional layers and fully connected layers have very different behavior in a

DCNN, we will prune them separately during the structured and non-structured pruning process,

i.e. we will fix the convolutional layer parameters while pruning the fully connected layer, and vice

versa.

Third, the ranking metric R we select for structured and non-structured pruning is different.

For non-structured pruning, the parameter dropping procedure based on the magnitude of the
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Figure 3.1: Annealing schedule with N1 = 10, N iter = 20, N c = 1, p0 = 0.8, p = 0.9, ν = 0.02.

parameter yields quite good pruning results in our experiments. Therefore we will select it as our

metric to rank the importance of parameters for all our non-structured pruning experiments:

R(w) = |w|, w ∈ W (3.3)

For structured channel pruning, various dropping criteria are proposed. One family of channel

pruning metrics are based on the value of the channel weights. Li et al. [2019] uses the L1-norm

by summing up the magnitude of all channel weights to rank the importance of the metric in

a channel space; Wen et al. [2016] suggests the use of the L2-norm. Another family of channel

pruning metrics [Liu et al., 2017] lies in the absolute value of the Batch Normalization scales, as

Batch Normalization [Ioffe and Szegedy, 2015] has been widely adopted by most modern DCNNs

to accelerate the training speed and convergence. Assume zin and zout to be the input and output

of a Batch Normalization layer, we can formulate the transformation of that BN layer performs as:

BN(zin) =
zin − µB√
σ2B + ε

; zout = γ ·BN(zin) + β

where B denotes the mini-batch statistic of input activations, µB and σB are the mean and standard

deviation over B, γ and β are trainable scale and shift parameters of the affine transformation. Liu

et al. [2017] directly leverages the parameters γ in the Batch Normalization layers as the scaling
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factors they need for channel pruning. They impose a L1 norm on each Batch Normalization layer

for the γ to reformulate the training loss function. Here we combine the metrics of these two

families to enjoy wider flexibility on the DCNNs and define our ranking metrics as follows:

RB(C) = |γC |

RL(C) = (||C||L1 + ||C||L2)/2

R(C) = α · RB(C)
RmaxB (C)

+ (1− α) · RL(C)
RmaxL (C)

(3.4)

where γC is the scale parameter of the BN for channel C, α ∈ [0, 1] is a hyper-parameter that needs

to be specified to balance the two ranking terms RB and RL. The main differences from the other

pruning methods are that we do not make any modifications to the loss function, but utilize a L0

norm constraint and we use an annealing schedule to gradually eliminate channels and lessen the

greediness.

Fourth, after the pruning process, we will conduct a fine-tuning procedure to gain back the

performance lost during the pruning period. Before we start the fine-tuning, we can remove for

non-structured pruning the neurons that have zero incoming or outgoing degree and mask the

convolution filter channels with all zero parameters by adding a channel selection layer [Liu et al.,

2017] to form a more compact network for later inference use.

3.4 Experiments

In this section, we conduct non-structured pruning with Lenet-300-100 and LeNet-5 [LeCun

et al., 1998] on MNIST [LeCun and Cortes, 2010] dataset and conduct our structured channel

pruning experiments with VGG-16 [Simonyan and Zisserman, 2014] and DenseNet-40 [Huang et al.,

2017] on the CIFAR [Krizhevsky et al., 2009a] and SVHN [Netzer et al., 2011] datasets.

3.4.1 Non-structured Pruning on MNIST

The MINIST dataset provided by LeCun and Cortes [2010] is a handwritten digits dataset that

is widely used in evaluating machine learning algorithms. It contains 50K training observations,

10K validation and 10K testing observations respectively. Some digit visualization examples are

displayed in Figure 3.2. In this section, we will test our non-structured pruning method DSC-1

on two network models: LeNet-300-100 and LeNet-5.
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Figure 3.2: Examples of handwritten digits in the MNIST dataset.

LeNet-300-100 [LeCun et al., 1998] is a classical fully connected neural network with two hidden

layers. The first hidden layer has 300 neurons and the second has 100. The LeNet-5 is a conventional

convolutional neural network that has two convolution layers and two fully connected layers. LeNet-

300-100 consists of 267K learnable parameters and LeNet-5 consists of 431K.

To have a fair comparison with Han et al. [2015b], we follow the same experimental setting

by using the default SGD method, training batch size and initial learning rate to train the two

models from scratch. After a model with similar performance was obtained, we stop the training

and directly apply our DSC-1 pruning algorithm to compress the model. During the pruning and

retraining procedure, a learning rate with 1/10 of the original network’s learning rate is adopted.

A momentum with value of 0.9 is used to speed up the model retraining.

Table 3.1: Non-structured pruning comparison on LeNet-300-100 and LeNet-5.

Model Error Params Prune Rate

Lenet-300-100 (Baseline) 1.64% 267k -
Lenet-300-100 ([Han et al., 2015b]) 1.59% 22K 91.8%
Lenet-300-100 (Ours) 1.57% 17.4K 93.5%

Lenet-5 (Baseline) 0.8% 431K -
Lenet-5 ([Han et al., 2015b]) 0.77% 36k 91.6%
Lenet-5 (Ours) 0.77% 15.8k 96.4%

In LeNet-300-100, a total of 20 epochs were used for both pruning and fine-tuning. For the

annealing schedule, p0 is directly set to 0.85 without using any annealing schedule. Then we
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Table 3.2: Layer by layer compression comparisons on LeNet-300-100 and LeNet-5.

Model Layer Params. Han % Ours %

fc1 236K 8% 4.6%
Lenet-300-100 fc2 30K 9% 20.1%

fc3 1K 26% 68.5%
Total 267K 8.2% 6.5%

conv1 0.5K 66% 75%
conv2 25K 12% 29.1%

Lenet-5 fc1 400K 8% 1.8%
fc2 5K 19% 17.2%
Total 431K 8.4% 3.6%

follow the fine-grain pruning annealing schedule which N c = 1 and ν = 0.05 to reach at the final

percentage goal p = 0.935. The remaining epochs are used for fine-tuning purposes.

In LeNet-5, the pruning for fully connected layers and convolutional layers are treated separately.

For pruning on fully connected layers, we directly set at p0 = 0.9 and then reach p = 0.98 with

N c = 1, ν = 0.05. For the convolutional layers we start with p0 = 0, N c = 1 and ν = 0.05 to reach

at p = 0.7. The total number of pruning and retraining epochs for LeNet-5 is 40 epochs. After

several experimental trials, we output our best result in Table 3.1 .

From the result table shown above, one can observe that our proposed non-structured prun-

ing algorithm can learn a more compact sub-network for both LeNet300-100 and LeNet-5 with

comparable performance with Han et al. [2015b].

By using a hyperparameter we can directly control the sparsity level to get close to the most

compact model achievable. It is not hard to conjecture that using a quality factor times the variance

as a pruning threshold in each layer as proposed by Han et al. [2015b] cannot exactly determine how

many parameters should be kept. Our method can directly control the sparsity level and therefore

enjoy a higher possibility to reach the position of the most compact sub-network.

Table 3.2 shows the layer-by-layer compression comparisons between ours and Han et al. [2015b].

It is interesting to see that although two different pruning algorithms yield a similar performance

result, the network architecture is quite different. Our DSC-1 algorithm controls the directly

specified sparsity level in the parameter space with an annealing schedule, this ensures the target

sub-network can learn its pattern in an automatic way. For LeNet300-100, the most parameter

killing comes from the first layer, which is quite reasonable as the images in the MNIST dataset are
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grayscale containing a large portion of pure black pixels. This large portion of black pixels almost

has nothing to contribute to the neural network learning of useful information. The least parameter

percentage dropping comes from the output layer, preserved as high as 68.5%. We can conjecture

the reason for this behavior could be that as the most unrelated features are removed from the first

fully connected layer, the output layer should remain a considerable number of parameters to bear

the weight of those kept and useful features. For LeNet-5, the most parameter preservation occurs

in the first convolutional layer. This is again really very reasonable, as indeed the first layer should

be the most important layer that directly extracts relevant features from the raw input image

pattern. Our direct sparsity control strategy lets the network itself decide which part is more

important, and which part contains most irrelevant or junk connections that could be removed

safely. The parameter percentage distribution of the two fully connected layers in LeNet-5 has a

similar behavior as in LeNet-300-100.

3.4.2 Structured Channel Pruning on the CIFAR and SVHN Datasets

The CIFAR datasets (CIFAR10 and CIFAR100) provided by Krizhevsky et al. [2009a] are well

established computer vision datasets used for image classification and object recognition. Both

CIFAR datasets consist of a total of 60K natural color images and are divided into a training

dataset with 50K images and a testing dataset with 10K images. The CIFAR-10 dataset is drawn

from 10 classes with 6000 images per class. The CIFAR-100 dataset is drawn from 100 classes

with 600 images per class. The color images in the CIFAR datasets have resolution 32× 32. Some

visualization examples of CIFAR dataset are displayed in Figures 3.3 and 3.4.

The SVHN dataset [Netzer et al., 2011] is a real-world image dataset for developing machine

learning classification and object recognition algorithms. Similar to MNIST it consists of cropped

digit images, but has as many as 600K training samples and 26K testing images in total. Each

digit image is 32×32 and extracted from natural scenes. Some visualization examples of the SVHN

dataset are displayed in Figure 3.5.

In this section, we will test our structured channel pruning method DSC-2 on two network

models: VGG-16 [Simonyan and Zisserman, 2014] and DenseNet-40 [Huang et al., 2017]. The

VGG-16 [Simonyan and Zisserman, 2014] is a deep convolutional neural network containing 16

layers which was mainly designed for the ImageNet dataset. Initially, we planned to use the same

variation of the original VGG-16 designed for CIFAR datasets studied in Liu et al. [2017] to have
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Figure 3.3: Example images in the CIFAR10 dataset [Krizhevsky et al., 2009b].

an identical comparison of our channel pruning method DSC-2 with theirs. However, we had a hard

time training it from scratch to obtain a similar baseline performance. So here we adopt another

variation of VGG-16 also designed for CIFAR datasets, which was used in Li et al. [2016] and has

a smaller number of total parameters, to conduct our experiments and compare with other state

of art pruning algorithms. For DenseNet [Huang et al., 2017] we adopted the DenseNet-40 with a

total of 40 layers and a growth rate of 12.

We first train all the networks from scratch to obtain similar baseline results compared to Liu

et al. [2017]. The total epochs for training was set to 250 epochs for CIFAR, 20 epochs for SVHN,

for all networks. The batch size used was 128. A Stochastic Gradient Descent (SGD) optimizer

with an initial learning rate of 0.1, weight decay of 5× 10−4 and momentum of 0.9 was adopted. A

division of the learning rate by 5 occurs at every 25%, 50%, 75% training epochs. For these datasets,

standard data augmentation techniques like normalization, random flipping, and cropping may be

applied.
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Figure 3.4: Example images in the CIFAR100 dataset [Krizhevsky et al., 2009b].

During the pruning and fine-tuning procedure, the same number of training epochs is adopted

in total. We use an SGD optimizer with an initial learning rate of 0.005 and no weight decay or

very small weight decay for pruning and fine-tuning purposes. Similarly, a division of the learning

rate by 2 occurs at every 25%, 50%, 75% training epochs. For the annealing schedule, a grid search

is utilized here to determine the best p0, N
c and α for different p. After the first part of the

pruning schedule when we reach the pruning target p0, we conduct the fine-grain pruning for each

final pruning rate p. We output our best results in Table 3.3 for CIFAR 10, Table 3.4 for CIFAR

100 and Table 3.5 for SVHN.

The experimental results displayed in Tables 3.3, 3.4 and 3.5 demonstrate the effectiveness of

our proposed channel DSC-2 pruning algorithm . It can be observed that our DSC-2 method can

obtain results competitive with or even better than Liu et al. [2017]. What’s even better, our DSC-

2 pruning method does not introduce any extra term in the training loss function. By using the

annealing schedule to gradually remove the ”unimportant” channels based on a specified channel

importance ranking metric R, we could successfully find a compact sub-network without losing
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Figure 3.5: Example images in the SVHN dataset [Netzer et al., 2011].

any model performance. Our DSC-2 is easy to use and can be easily scaled up to any untrained

or existing pre-trained model. The results of the FLOPs ratio between the original DCNNs and

pruned sub-networks are shown in Figure 3.6.

Figure 3.7 displays two 70% channel-pruned network models for the CIFAR-10 dataset. Due

to the significant differences in network architecture between the VGG-16 and DenseNet-40, the

resulting distribution of the percentage of remaining channels is quite different. For VGG-16, only

a very small number of channels are kept in the last five CONV layers. This is reasonable as the

last five CONV layers are those layers that initially have 512 input channels. Evidently, we do not

need so many channels in each of the last five layers. The high pruning percentage may suggest

that the VGG-16 network is over-parameterized in a layer-wise way for the CIFAR 10 dataset. For

DenseNet-40 with a growth rate of 12, the kept channel percentage is relatively evenly distributed

in each CONV layer except the two transitional layers. This is again very reasonable based on

the special architecture of DenseNet. With a growth rate of 12, every 12 consecutive layers are

correlated with each other, and outputs of those previous CONV layers will be concatenated to be
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Table 3.3: Channel pruning performance results comparison on CIFAR-10.

DCNN Model Error (%) Channels Pruned Params Pruned
Base-unpruned [Liu et al., 2017] 6.34 5504 - 20.04M -
Pruned [Liu et al., 2017] 6.20 1651 70% 2.30M 88.5%

VGG-16 Base-unpruned (Ours) 6.34 4224 - 14.98M -
Pruned (Ours) 6.14 1689 60% 4.40M 70.6%
Pruned (Ours) 6.20 1267 70% 2.88M 80.7%
Base-unpruned [Liu et al., 2017] 6.11 9360 - 1.02M -

DenseNet-40 Pruned [Liu et al., 2017] 5.65 2808 70% 0.35M 65.2%
Pruned (Ours) 5.48 3744 60% 0.45M 55.9%
Pruned (Ours) 5.57 2808 70% 0.34M 66.7%

Table 3.4: Channel pruning performance results comparison on CIFAR-100.

DCNN Model Error (%) Channels Pruned Params Pruned
Base-unpruned [Liu et al., 2017] 26.74 5504 - 20.08M -

VGG-16 Pruned [Liu et al., 2017] 26.52 2752 50% 5.00M 75.1%
Base-unpruned (Ours) 26.81 4224 - 15.02M -
Pruned (Ours) 26.55 2112 50% 6.01M 60.0%
Base-unpruned [Liu et al., 2017] 25.36 9360 - 1.06M -

DenseNet-40 Pruned [Liu et al., 2017] 25.72 3744 60% 0.46M 54.6%
Pruned (Ours) 25.66 3744 60% 0.47M 55.6%

the inputs of the following CONV layer inside the growth rate period. Only the transitional layers

do not hold that property. Overall, our channel-level pruning algorithm DSC-2 can automatically

detect the reasonable sub-network without performance loss for VGG-16 and DenseNet-40 on the

CIFAR and SVHN datasets.

Figure 3.8 displays the best results we obtained for just using one single global pruning rate

p ∈ {0.1, 0.3, 0.5, 0.7} to perform the channel pruning in the whole channel space. We can observe

Table 3.5: Channel pruning performance results comparison on SVHN.

DCNN Model Error (%) Channels Pruned Params Pruned
Base-unpruned [Liu et al., 2017] 2.17 5504 - 20.04M -
Pruned [Liu et al., 2017] 2.06 2201 60% 3.04M 84.8%

VGG-16 Base-unpruned (Ours) 2.18 4224 - 14.98M -
Pruned (Ours) 2.06 1689 60% 4.31M 71.2%
Base-unpruned [Liu et al., 2017] 1.89 9360 - 1.02M -

DenseNet-40 Pruned [Liu et al., 2017] 1.81 3744 60% 0.44M 56.6%
Pruned (Ours) 1.80 3744 60% 0.46M 54.9%
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Figure 3.6: FLOPs ratio between the original DCNNs and pruned sub-network for VGG-16 and
DenseNet-40 on CIFAR and SVHN dataset.

that even using a single target pruning rate parameter, we can still obtain very good sub-networks

that generalize to CIFAR-10 test data well. A large portion of our best results displayed in Tables

3.3, 3.4 and 3.5 are obtained just using a single global pruning rate to guide the network pruning

procedure. This observation makes our annealing pruning algorithm very easy to use, without

worrying about channel subspace partitions. We also tested three different values for the parameter

α of Eq. (3.4). For DenseNet-40, all of the choices of α can yield satisfactory performance for the

pruned sub-network. For VGG-16, when α is set to 0, that is when the magnitude of γ is used as

the ranking metric for channel pruning, gives the best results. This implies that different α values

may be suitable for different network architectures.
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70% channel pruned VGG-16 70% channel pruned DenseNet-40

Figure 3.7: The remaining channel distribution for each CONV layer for pruned networks on CIFAR
10. The first CONV layer is not displayed as our channel pruning algorithm DSC-2 will not act on
this layer, thus contain the full percentage of channels.

3.5 Conclusions

This chapter presented a neural network pruning framework that is suitable for both structured

and non-structured pruning. The method directly imposes a L0 sparsity constraint on the network

parameters, which is gradually tightened to the desired sparsity level. This direct control allows us

to obtain the precise sparsity level desired, as opposed to other methods that obtain the sparsity

level indirectly through either a quality factor times the variance or the use of penalty parame-

ters. Experiments on extensive image classification real data, including the MNIST, CIFAR, and

SVHN provide empirical evidence that the proposed network pruning scheme obtains a performance

comparable to or better than other state of art pruning methods.
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VGG-16 DenseNet-40

Figure 3.8: The test error for various channel pruned percentage using one single global pruning
rate for CIFAR-10.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

In this work, we studied the feature interactions and pruning problems on neural networks. The

major contributions of this dissertation are:

1. We presented an empirical study of the learnability of neural networks on some non-linear,

particularly XOR-based data with extra irrelevant variables. Our experiments show that the

logistic loss function on this data has many local optima, and the number of local optima

grows exponentially with the number of irrelevant variables. We also observe that there exists

a phase transition from an ”easy to train” regime where the local minima are easy to find, to

the ”hard to train” regime with the increasing of the total noisy features.

2. We presented a node selection method for training a neural network that avoids many lo-

cal optima by starting with a model with many hidden neurons and gradually removing the

weaker ones to obtain a compact model trained in a deep minimum of the loss function. We

used a neural rule normalization technique to further improve the correctness and keep the

important hidden neurons during the dropping procedure. We also proposed a feature selec-

tion procedure inspired by our node selection technique by either using the ”group criterion”

or ”separate criterion” to select the most important features.

3. The performance of the obtained pruned sub-network is hard to achieve by retraining the

pruned nework from a random initialization or from the original network initial values, due

to the existence of many shallow local optima around the deep minimum. Experiments also

show that the node selection method is useful in improving generalization of fully connected

neural networks on the parity data with irrelevant noisy features compared to those neural

networks trained by using the traditional SGD, Adam or a newly proposed BoostNet method,

and on a number of real datasets compared to normal fully connected neural networks and

so-called ”equivalent” neural networks.

4. We extended our method to a network pruning framework that is suitable for dealing with

various kinds of deep convolutional neural networks (DCNNs). We combined regularization

techniques with sequential algorithm design and direct sparsity level control to bring forward

a novel network pruning framework that could be applicable to either non-structured pruning
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or structured pruning (particular for filter channel-wise pruning of DCNNs). This direct

control allows us to obtain the precise sparsity level desired, as opposed to other methods

that obtain the sparsity level indirectly through either a quality factor times the variance or

the use of penalty parameters.

5. An attractive property of our network pruning framework is that the parameters or filter

channels are removed while the model is updated at each iteration, which makes the problem

size decrease during the iteration process. Extensive experiments on real vision datasets,

including MNIST, CIFAR and SVHN, provide empirical evidence that the proposed network

pruning framework has performance comparable to or better than other state of art pruning

methods.

Neural network techniques are more and more popular nowadays, and studies of how to reduce

the complexity of the neural network architectures have drawn much attention recently. Our pro-

posed pruning algorithm based on an annealing schedule can be easily applied to compress many

neural network architectures. The pruned neural networks, which do not sacrifice much accu-

racy, can be deployed to various computing resource-limited devices such as cell-phones, embedded

systems, etc.

Other possible applications of this work are in learning complex non-linear models for non-vision

data, e.g. bio-informatics, power systems, physics, etc, where irrelevant variables are present and

thus feature selection is essential.

4.2 Future Work

The future research will be explored in several directions:

• We would like to extend our work to deal with the recurrent neural networks like LSTM

[Hochreiter and Schmidhuber, 1997] and GRU [Cho et al., 2014]. We have demonstrated that

our annealing pruning algorithms work well for feedforward fully connected neural networks

and deep convolutional neural networks. It is natural to extend our work to deal with the

neural network with recurrent loops, but there are challenges related to how to actually do

it the right way.

• We would like to study the application of our work in the Dictionary Learning [Tosic and

Frossard, 2011] field. Dictionary learning aims at obtaining a sparse linear representation for

high dimensional data in the image processing area. Our annealing algorithm is proved to

be useful to train a sparse neural network at the end, so there exists the possibility that we
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can apply our algorithms to obtain a sparse representation for high dimensional image data

effectively in an unsupervised setting.

• Another future direction for exploration is Kernel Density Estimation, where probability den-

sity functions are constructed using many Gaussian kernels around the training observations.

Our annealing procedure could be applied to keep a small number of most relevant kernels

while minimizing the KL divergence to the original p.d.f.

• Another direction is to study how to add parameters or convolutional channels back from

heavily pruned sub-neural networks. Our node selection and network pruning algorithms

are top-down approaches: We first train large over-parameterized neural networks to enjoy

a higher probability to learn the desired pattern from the training data, then we gradually

remove those redundant parameters or channels to obtain a more compact sub-network with-

out performance sacrifices. It is quite interesting to think about in opposite directions: given

a sparse neural network with just a few parameters or channels, how feasible is to gain per-

formance or generalization power by adding more parameters or channels to the model but

still keep it compact. This bottom-up way to study a sparse neural network may be more

challenging than the top-down approaches.
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