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ABSTRACT

Clustering is a widely used technique with a long and rich history in a variety of areas. However,

most existing algorithms do not scale well to large datasets, or are missing theoretical guarantees

of convergence. In this dissertation, we develop a provably clustering algorithm namely Scalable

Clustering by Robust Loss Minimization (SCRLM) that performs well on Gaussian Mixture Models

with outliers. We derive theoretical guarantees that SCRLM obtains high accuracy with high

probability under certain assumptions. Moreover, it can also be used as an initialization strategy for

k-means clustering. Experiments on real-world large-scale datasets demonstrate the effectiveness of

SCRLM when clustering a large number of clusters, and a k-means algorithm initialized by SCRLM

outperforms most classic clustering methods in both speed and accuracy, while scaling well to large

datasets such as ImageNet. We further extend SCRLM to Hierarchical SCRLM (HSCRLM) to

handle hierarchical structures while maintaining robustness and theoretical guarantees. These

advancements contribute to addressing modern clustering challenges.

xiii



CHAPTER 1

INTRODUCTION

1.1 Motivation, Problem and Thesis Statement

Clustering, or cluster analysis (Kaufman and Rousseeuw, 2009) is commonly defined as the

grouping of similar objects into classes called clusters or defined more specifically as an unsupervised

learning approach to classification of patterns into groups (clusters) based upon similarity, where

a pattern is a representation of features or attributes of an object.

Over the past few decades, clustering has been widely applied to many fields, including infor-

mation retrieval (Jardine and van Rijsbergen, 1971), image segmentation (Coleman and Andrews,

1979), pattern recognition (Diday et al., 1981), data mining (Mirkin, 2005) and disease diagnosis

(Alashwal et al., 2019). In terms of traditional clustering techniques, they are broadly categorized

into six main categories (Han et al., 2022): partitioning-based, hierarchical-based, density-based,

distribution-based, grid-based and graph-based methods.

However, as the dataset grows in scale, traditional clustering algorithms become impractical due

to their prohibitive computational cost and substantial memory requirements. To address these

challenges, scalable clustering techniques have been developed.

Scalable clustering methods can be classified into three main categories (Mahdi et al., 2021):

sampling-based (Zhao et al., 2019), projection-based (Thrun, 2018) and parallel-based (Brecheisen

et al., 2006). Though these techniques provide more efficient and effective ways to cluster large-

scale data, each type has its weakness. Sampling-based methods may not accurately capture the

underlying distribution of the data if the sample is not representative enough. In addition, choosing

an appropriate sample size can be challenging, and it may not be clear how many samples are needed

to produce reliable results. Projection-based methods will result in information loss and inaccurate

clustering results if the features of the data are not well captured. Parallel-based methods require

specialized hardware which is challenging to implement in practice.

A crucial aspect of any clustering algorithm is the characterization of its performance. This

requires efficient implementation and extensive well-designed empirical evaluation of model and

real world problems. Ideally, the clustering algorithm would also have theoretical performance
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guarantees in terms of guaranteed quality of the clustering and associated complexity bounds.

The combination of the guarantees, bounds and empirical evidence rigorously characterizes the

effectiveness and efficiency of the algorithm. Additionally, the combination provides guidance for

the use of the algorithm on appropriate application problems.

This dissertation asserts the following thesis statement: It is possible to develop a clustering

algorithm that

1. has theoretical performance guarantees for applications that satisfy reasonable assumptions

on its cluster/noise structure;

2. has computational complexity that scales well as the dimension of the space in which the

data resides, the number of clusters and the number of data grow to very large levels.

To support this assertion, new clustering algorithms called Scalable Clustering with Robust

Loss Minimization (SCRLM) and Hierarchical Scalable Clustering with Robust Loss Minimization

(HSCRLM) are proposed, analyzed and empirically evaluated in this dissertation.

1.2 Problem Model

The main application motivation is the problem of object recognition from images, where images

often contain multiple regions or objects of interest, along with background noise. Inspired by the

structure of such images and to facilitate the development of theoretical performance guarantees

for SCRLM, a Gaussian Mixture Model (GMM) with outliers is introduced, where each Gaus-

sian component represents one of the objects of interest (positives), while the outliers (negatives)

correspond to the background images that cannot be clustered together.

A Hierarchical Gaussian Mixture Model (HGMM) is an extension of GMM that introduces

a hierarchical structure to the model. In a GMM, the data is modeled as a mixture of several

Gaussian distributions. In a HGMM, these Gaussian distributions are organized in a hierarchical

manner, allowing for more complex and flexible representations of the data. Within each object of

interest in a HGMM with outliers, there are different levels of sub-clustering, represented as first-

level positives, second-level positives, up to the i-th level positives. Each level of sub-clustering

can be represented by its own set of Gaussian mixture components. The outliers (negatives) at

each level of sub-clustering can be identified as those instances that do not belong to any specific

sub-clusters. The flexibility of the i-level HGMM model makes it well-suited for object recognition

tasks involving images with complex object structures and multiple levels of classification. For

simplicity, a two-level HGMM with outliers is used in this dissertation.
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1.3 Related Work on Gaussian Mixture Models

The study of Gaussian Mixture Models can be traced back to Pearson (1894). The idea of

using Gaussian mixtures in unsupervised learning was popularized by Duda et al. (1973). The

Expectation Maximization (EM) algorithm (Dempster et al., 1977) was one of the first clustering

algorithms for GMM. Xu and Jordan (1996) analyzed the convergence of EM for well-separated

Gaussian mixtures. Dasgupta and Schulman (2007) proposed a two-round variant of the EM al-

gorithm and showed that, with high probability, it can recover the parameters of the Gaussians

to near-optimal precision. In recent years, approaches have been proposed to improve convergence

guarantees and applied to different kinds of GMMs. Dwivedi et al. (2018) provided theoretical

guarantees in two classes of misspecified mixture models and Segol and Nadler (2021) improved

sample size requirements for accurate estimation by EM and gradient EM. Researchers also in-

vestigated the theoretical performance of spectral clustering in GMM. Vempala and Wang (2004)

investigated the theoretical performance of spectral clustering in the isotropic GMM and proved

that with high probability, exact recovery of the underlying cluster structure was achieved under a

strong separation condition. Löffler et al. (2021) showed that spectral clustering is minimax optimal

in GMMs with isotropic covariance, when the number of clusters is fixed and the signal-to-noise

ratio is large enough.

An example of the proposed GMM with outliers in a 2D observation space is illustrated in

Figure 1.1. There are five clusters (fishes, tigers, birds, cats and dogs) that are represented by

colored dots and the remaining black squares that do not cluster together represent the outliers

(e.g. textures).

1.4 Related Work on Hierarchical Gaussian Mixture Models

One of the earliest papers on Hierarchical Gaussian Mixture Models was by Liu et al. (2002),

who proposed an efficient and effective method for speaker verification using HGMM. Experiments

on benchmark datasets showed that HGMM outperformed GMM by achieving an 18% relative

reduction in Equal Error Rate (EER). Since then, HGMMs have been applied to a wide range

of tasks in machine learning and object/scene recognition. Eckart et al. (2018) presented a novel

algorithm that achieves state-of-the-art speed and accuracy in adaptive 3D registration through its

use of a HGMM representation which leads to a significant increase in speed, surpassing traditional

GMM-based methods. In the area of environment perception and modeling for mobile autonomous

3



Figure 1.1: Gaussian Mixture Model with outliers in a 2D observation space.

systems, the use of HGMM (Srivastava and Michael, 2018) captured the structural dependencies

between spatially distinct locations in the environment, which improved the accuracy of the envi-

ronment representation which was important for mobile robots that need to navigate and interact

with their surroundings in a safe and effective manner. In image segmentation, Shi et al. (2020)

demonstrated the effectiveness of HGMM in improving accuracy for high-resolution remote sensing

image segmentation compared to traditional GMM.

An example of the two-level HGMM with outliers in a 2D observation space used in this disser-

tation is illustrated in Figure 1.2. The first-level observations are depicted as large black symbols,

with black squares representing first-level outliers (negatives) and black circles representing first-

level positives. The three large black circles represent three different types of animals: cats, dogs,

and horses, respectively. Meanwhile, the large black squares are textures that are not of interest.

The second-level positives and negatives are indicated by small dots and small squares, respectively.

For instance, in the cluster of dogs, there are three red dots that represent three different types

of dogs: Samoyed, Bichon Frise, and Pomeranian. The second-level outliers (negatives) in the dog

category are mutts, which will not be clustered together. Similarly, in the case of cats, there are

three different types: Ragdoll, Shorthair, and Turkish, while the second-level outliers (negatives)

are moggies.
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Figure 1.2: A two-level Hierarchical Gaussian Mixture Model with outliers.

1.5 Contributions of the Dissertation

The contributions of this dissertation are:

1. GMM and HGMM with outliers are introduced as two frameworks for characterizing applica-

tion datasets, including those from image classification problems in computer vision, for the

purpose of performance and complexity analysis.

2. Novel clustering algorithms, SCRLM and HSCRLM, are developed for GMM and HGMM

with outliers respectively.

3. Theoretical guarantees are drived that showing SCRLM and HSCRLM are able to correctly

cluster all the positives and detect all the negatives with high probability under certain

assumptions for data from GMM and HGMM with outliers respectively.

4. The performance predictions are validated with experiments using simulated data and real

data and it is shown that SCRLM outperforms other well-known algorithms when appropriate

assumptions are met.

5. Experiments on real data demonstrate that SCRLM is very effective when the number of

clusters and the data dimension are large, and it can be used as an initialization method for

k-means clustering, outperforming k-means++ (Arthur and Vassilvitskii, 2007) in accuracy

and computation time.
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1.6 Overview of the Dissertation Structure

The structure of this dissertation is as follows. Chapter 2 offers an in-depth literature review that

surveys a wide spectrum of traditional and scalable clustering techniques, providing a comprehensive

foundation for the subsequent research. Chapter 3 develops a novel algorithm, SCRLM, to address

the clustering problem in the proposed GMM with outliers, and the theoretical guarantees are

derived. In Chapter 4, HSCRLM is introduced as an extension of SCRLM to tackle the hierarchical

clustering problem, along with the theoretical guarantees within the framework of the proposed two-

level HGMM with outliers. Chapter 5 presents experimental results, demonstrating the scalability,

efficiency, and accuracy of both the proposed algorithms, SCRLM and HSCRLM, using synthetic

and real data. Finally, Chapter 6 summarizes the key findings and draws conclusions from the

research, with a discussion of future research work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Literature Review of Traditional Clustering Techniques

Traditional clustering methods are categorized into six groups: partitioning-based methods,

hierarchical-based methods, density-based methods, model-based methods, grid-based methods

and spectral graph-based methods. In this chapter, the state-of-the-art for each of these categories

is discussed and their key advantages and disadvantages are identified.

2.1.1 Partitioning-based Clustering

A partitioning-based algorithm is a method used to arrange a set of N different objects into k

partitions or clusters. The goal is to group the objects in such a way that each object belongs to

one and only one cluster, and the objects within each cluster share some common characteristics or

have a certain degree of similarity. An important characteristic of partitioning algorithms is that

the number of clusters k must be specified ahead of time.

k-means. The k-means algorithm is one of the most popular partitioning-based clustering

algorithms. It was initially proposed by Stuart Lloyd in 1957 for pulse-code modulation, but the

detailed algorithm was published in (Lloyd, 1982). The algorithm starts by randomly selecting k

initial cluster centroids. Each data point is assigned to the cluster whose centroid is closest to it.

The closeness is typically measured using Euclidean distance, but other distance metrics can also

be used. Convergence occurs when the assignment of data points to clusters and the centroids no

longer change significantly. k-means is known for its simplicity and efficiency, making it a popular

choice for a wide range of clustering tasks. However, it is worth noting that the algorithm may

not always find the global optimum, and the quality of the clustering result depends on the initial

centroid selection. It is also sensitive to outliers, and the clusters it forms are typically spherical

and equally sized, which may not be suitable for all types of data.

k-means++. Since the initialization step of the k-means algorithm is indeed crucial for the

quality of the resulting cluster assignments, k-means++ proposed by Arthur and Vassilvitskii (2007)

provides a more principled way to initialize the centroids. The first cluster center is chosen uniformly
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at random from the dataset, the remaining k − 1 centers are selected by a weighted probability

distribution. Each data point is chosen as the next center with a probability proportional to the

squared distance to the closest already chosen center. In other words, points that are farther away

from existing centers are more likely to be selected as the next center. It also provides theoretical

guarantees that k-means++ is competitive with the optimal clustering. Specifically, it is proved

to be O(log k) competitive, meaning that the cost of the clustering obtained with k-means++

is at most a constant factor times the cost of the optimal clustering, where this constant factor

grows logarithmically with the number of clusters. Empirical investigations conducted by Fränti

and Sieranoja (2019) have revealed that the effectiveness of k-means hinges entirely on the quality

of its initialization where k-means++ outperforms other initialization methods, particularly in

well-separated clusters. Due to its speed, simplicity, and good empirical performance, k-means++

stands as the predominant choice for k-means clustering. However, it can be computationally

expensive when the number of clusters is large, and it is sensitive to outliers since the outliers may

be far away from the main cluster that affect the selection of the initial centroids.

k-means∥ (k-means Parallel). A scalable variant of k-means++ called k-means∥ (Bahmani

et al., 2012) is introduced by incorporating a parallel sampling process. It samples O(k) points in

each step and repeating for approximately O(logN) times. In the end, there are O(k logN) points

selected and they are re-clustered into k initial centers. This approach excels not only as a parallel

algorithm when compared to k-means++ but also exhibits slight improvements in performance

under uniprocessor conditions. However, it’s essential to note that the theoretical guarantees for

k-means∥ are notably less robust than those of k-means++.

k-means∥ER (k-means Parallel Exponential Race). Following the initial sampling phase

in the k-means| algorithm, a refined variant known as k-means|ER, as introduced by Makarychev

et al. (2020), incorporates an iterative refinement step. This step involves the reassignment of

data points to their closest cluster centers, updating the center locations, and removing empty

clusters. Notably, this refinement process operates on a reduced subset of data points compared

to the original dataset, resulting in computational efficiency without compromising the quality of

clustering. The theoretical guarantee is improved by showing that the expected cost of the solution

by k-means++ is bounded by a factor of at most 5(ln k+ 2) times the cost of the optimal solution

and demonstrate that k-means∥ outperforms k-means++ due to its center pruning strategy.
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Partitioning around Medoids. Compared to k-means, PAM (Kaufman, 1990) uses medoids

as cluster centers to make it less sensitive to noise and outliers. Instead of minimizing a sum of

squared Euclidean distances, it minimizes a sum of general pairwise dissimilarities. PAM is a

heuristic algorithm and does not guarantee finding the globally optimal solution. Therefore, to

obtain better clustering results, it is often necessary to run the PAM algorithm multiple times and

select the best of the clustering results produced.

CLARANS. Clustering Large Application Based upon Randomized Search (CLARANS) (Ng

and Han, 2002) is a clustering algorithm that relies on randomized search techniques. CLARANS

employs a strategy of random movement to search for optimal clustering solutions within the

dataset. It achieves this by iteratively generating candidate solutions and evaluating their quality

to find the optimal clustering configuration. The quality of its results cannot be guaranteed and

there is no theoretical guarantee on the number of steps required to reach a local optimum.

The advantages of partitioning-based clustering algorithms are their simplicity, ease of imple-

mentation, and efficiency. However, they are sensitive to the initial selection of cluster centers,

and the results may be influenced by the initial values. Additionally, partitioning-based clustering

algorithms are typically sensitive to outliers and noise, so data preprocessing and outlier handling

are necessary when using these algorithms.

Table 2.1: Comparison of k-means, k-means++, k-means∥ , k-means∥ER, PAM, CLARANS.

Clustering
Algorithm

Complexity Sensitive to
Outliers

Suitable for Non-
Convex Clusters

Theoretical
Guarantees

Scalability

k-means O(NkI) Yes No No Good

k-means++ O(NkI) Yes No Yes Good

k-means∥ N/A No Yes Yes Excellent

k-means∥ER N/A No Yes Yes Excellent

PAM O(k(N − k)2I) No Yes No Poor

CLARANS O(N2) No Yes No Good

2.1.2 Hierarchical-based Clustering

Hierarchical-based clustering is a method of clustering that organizes a dataset into a hierarchi-

cal structure, creating a tree-like structure of clusters. They are either agglomerative or divisive:

1. Agglomerative methods are bottom-up approaches to clustering clustering that starts with

each data point as a separate cluster and then repeatedly merges the closest clusters based
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on distance or similarity until all data points are merged into a single cluster or the speci-

fied number of clusters is reached. Different distance measures and merging strategies such

as minimum distance (single linkage), maximum distance (complete linkage), and average

distance (average linkage) can be used during the merging process.

CURE (Clustering Using REpresentatives). CURE (Guha et al., 1998) is a data clus-

tering algorithm for large databases that is more robust to outliers and captures clusters of

different shapes and sizes by working with a representative sample and using incremental

updates.

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies). BIRCH

(Zhang et al., 1996) excels in scalability, making it particularly well-suited for clustering large-

scale datasets. Its memory efficiency, achieved through the Clustering Feature (CF) approach,

minimizes storage and memory requirements. Furthermore, BIRCH introduces a hierarchical

structure in the form of the Clustering Feature Tree, enabling users to explore data at varying

levels of granularity, which adds flexibility to data analysis. However, it is sensitive to the

choice of parameters, such as the branching factor and may not perform well with datasets

containing outliers.

CHAMELEON. CHAMELEON (Karypis et al., 1999) is a hierarchical clustering algo-

rithm. It employs a two-step procedure: first, it creates a hierarchical tree structure, and

then it utilizes this structure to automatically generate clusters at multiple levels of granular-

ity. This hierarchical structure provides flexibility for users to explore data at various levels

of detail, thereby accommodating a wide range of data analysis needs.

2. Divisive methods are top-down approaches to clustering that starts with all the data points

as a single cluster and recursively dividing each cluster into smaller clusters until an accept-

able clustering assignment is obtained. However, divisive methods are less commonly used

primarily due to its complexity, the need for prior knowledge or assumptions about the data,

and limited adaptability to complex data structures.

DIANA (DIvisive ANAlysis Clustering). Introduced by Kaufman and Rousseeuw

(2009), DIANA is a divisive hierarchical clustering method that divides clusters by iden-

tifying the cluster with the largest diameter and splitting it into smaller clusters. It has

applications in pattern recognition and data mining.

2.1.3 Model-based Clustering

The basic idea of model-based clustering is to select a parametric model that represents the

data distribution, such as GMM described earlier. The goal is to estimate the parameters of the

GMM, including the means, variances, and mixture weights.
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EM (Expectation Maximization). EM (Dempster et al., 1977) follows a straightforward

two-step process, the Expectation (E-step) and Maximization (M-step). In the E-step, the algo-

rithm computes the expected values of the data. This step involves calculating posterior proba-

bilities, for each data point regarding its association with specific clusters within a probabilistic

model. The Maximization (M-step), on the other hand, focuses on updating the model parameters

to maximize the likelihood of the observed data. It takes into account the responsibilities obtained

in the E-step and aims to derive new parameter estimates that best explain the observed data,

given the expected values of the hidden variables.

Scaling EM. A scalable version of the Expectation-Maximization (EM) algorithm is intro-

duced in the study by Bradley et al. (1998). This approach acknowledges that data can be managed

in various ways: it can be compressed, stored in main memory, or discarded based on cluster mem-

bership certainty. If observations are confidently assigned to clusters, they are removed. If they

belong to tightly-knit sub-clusters but cannot be discarded, they are compressed. Otherwise, they

are kept in memory. Experimental results indicate that this Scalable EM approach outperforms

the full in-memory EM algorithm when dealing with databases that fit within memory constraints.

Model-based clustering offers several advantages. It excels in handling clusters of diverse shapes

and sizes, not confined by predefined distance or density metrics. It provides a robust probabilistic

framework, enabling uncertainty assessment and facilitating model selection. Moreover, it adeptly

manages missing data and extends its applicability to a wide spectrum of data types, including

continuous, categorical, and mixed data. However, model-based clustering also has some limita-

tions. It necessitates assumptions about data distributions, which might not consistently align

with real-world datasets. It can be sensitive to model choice and the determination of an optimal

cluster count, both of which present challenges. Furthermore, the computational complexity of

model-based clustering may surpass that of alternative clustering methods.

2.1.4 Density-based Clustering

The basic idea of density-based clustering algorithms is to discover clustering structures based

on the density of data points. Unlike partitioning-based methods, they do not require specifying

the number of clusters in advance. Instead, they automatically identify high-density regions of data

points to form clusters.

DBSCAN. The most representative density-based clustering algorithm is density-based spa-

tial clustering of applications with noise (DBSCAN) (Ester et al., 1996) which requires two param-
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eters, the cluster radius and the minimum number of points in each cluster, to form a dense region.

Therefore, it is robust to outliers and effective in discovering clusters of arbitrary shapes. However,

it is difficult to choose the appropriate parameter values if there is a large difference between the

densities of the clusters. Things become worse when the points are in a high dimensional space.

OPTICS (Ordering Points To Identify the Clustering Structure). OPTICS (Ankerst

et al., 1999) is an extension to DBSCAN. It stands out by providing more flexibility in input

parameters. The core idea behind OPTICS is the concept of reachability distance. This distance

metric combines both distance and density aspects, allowing it to adapt to different cluster densities

and shapes effectively. One of the most valuable features is the OPTICS plot, offering a graphical

representation of data density and clustering hierarchy. It aids in understanding the underlying data

patterns. However, OPTICS remains sensitive to parameter settings, particularly the neighborhood

radius, demanding careful tuning for optimal results.

DENCLUE (DENsity-based CLUstEring). DENCLUE (Hinneburg et al., 1998) works

by summing the influence functions of individual data points. Clusters are identified through the

determination of density-attractors, which are instrumental in characterizing clusters of arbitrary

shapes using a simple equation rooted in the overall density function. Within the DENCLUE

framework, two pivotal parameters, σ and ξ, play a crucial role. σ governs a point’s influence

within its neighborhood, and ξ dictates the significance of density attractors. This allows for a

reduction in the number of density attractors, enhancing the algorithm’s efficiency. DENCLUE

demonstrates its proficiency in clustering high-dimensional feature vectors.

Many variants have emerged in the past decades to overcome the disadvantages of DBSCAN such

as IDBSCAN (Borah and Bhattacharyya, 2004), ST-DBSCAN (Birant and Kut, 2007), DMDB-

SCAN (Elbatta and Ashour, 2013), and VDBSCAN (Liu et al., 2007). Table 2.2 contains a com-

parison of these algorithms in terms of four aspects: time complexity, required input parameters,

support of varied density and insensitive to order of inputs.

2.1.5 Grid-based Clustering

Grid-based approaches divide the data space into a grid of cells. Each cell in this grid either

contains data points or remains empty, forming a natural organization of the data. Grid-based

clustering methods are particularly suited for handling large datasets efficiently. They offer advan-

tages such as reduced computational complexity and the ability to discover clusters with varying
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Table 2.2: Comparison of different density-based spatial clustering algorithms (Ahmed
and Razak, 2014).

Name Complexity Input Parameters Insensitivity Varied Density

DBSCAN O(N logN) ε, MinPts No No

DENCLUE O(log |D|) σ, ξ No No

OPTICS O(N logN) ε, MinPts No No

IDBSCAN O(N logN) ε, MinPts No No

ST-DBSCAN O(N logN) ε1,ε2, MinPts, ∆ε No No

DMDBSCAN O(N logN) N/A Yes Yes

VDBSCAN O(N logN) N/A Yes Yes

shapes and densities. Some representative grid-based clustering algorithms are STING (WANG,

1997), WaveCluster (Sheikholeslami et al., 1998) and CLIQUE (Agrawal et al., 1998).

STING. STING operates by dividing the spatial domain into a grid structure and employs

statistical tests to detect regions of the grid with significantly different data point densities, indi-

cating potential spatial clusters. This grid-based, statistical approach makes STING adaptable to

various types of spatial data and scalable to handle large datasets efficiently.

WaveCluster. WaveCluster leverages the multi-resolution capabilities of wavelet transforms

to proficiently uncover clusters of arbitrary shapes at varying levels of precision. This approach

involves iterative applications of wavelet transforms, yielding clusters across a spectrum of scales,

from fine-grained to coarser representations. Notably, the wavelet transform filters play a pivotal

role in automatically eliminating outliers from the data. An additional strength of WaveCluster lies

in its robustness to variations in the order of the input observations, ensuring consistent and reliable

results regardless of input sequence. However, it is not suitable for high-dimensional datasets

(Andritsos et al., 2002).

CLIQUE. CLIQUE is known for its efficiency in identifying dense clusters within large spatial

databases. What sets CLIQUE apart is its focus on identifying high-density clusters with the

smallest possible dimensions, making it particularly well-suited for high-dimensional data. The

algorithm employs a step-by-step strategy that incrementally increases data dimensions, starting

from lower dimensions and gradually expanding to higher dimensions in order to uncover high-

density regions. This capability enables CLIQUE to identify clusters of various shapes and sizes,

irrespective of the data’s dimensionality.
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2.1.6 Spectral Graph-based Clustering

In contrast to many clustering methods that exclusively rely on distance measures, spectral clus-

tering capitalizes on the attributes of a graph representation derived from the pairwise relationships

within the data. Through harnessing the eigenvalues and eigenvectors of either the similarity ma-

trix or the Laplacian matrix linked with the data, spectral clustering facilitates a transformation of

the data into a reduced-dimensional space, thereby enhancing the distinctiveness and separability

of clusters.

The origins of spectral clustering trace back to the early work of Donath and Hoffman (1973),

who initially propose constructing graph partitions based on eigenvectors of the adjacency matrix.

Subsequently, it gain prominence through influential studies such as (Shi and Malik, 2000), (Meilă

and Shi, 2001), (Ng et al., 2002), and (Von Luxburg, 2007). This approach is characterized by its

straightforward implementation and efficient solvability through standard linear algebra software,

though computational demands escalate unless the graph is sparse.

From a theoretical standpoint, Kannan et al. (2004) utilizes the theorem from (Sinclair and

Jerrum, 1989) to establish a worst-case guarantee for the algorithm in (Shi and Malik, 2000).

Furthermore, Liu and Han (2018) introduces a self-tuning clustering method capable of automat-

ically computing the scale and number of groups, addressing previous challenges associated with

multi-scale data.

2.2 Literature Review of Scalable Clustering Techniques

Improving the computational efficiency and reducing the running time are key issues when

dealing with large scale data. This section discusses some scalable clustering techniques. From the

data perspective, we can either choose to reduce the sample size, which can be referred as sampling-

based clustering or to reduce the data dimension, which is called projection-based clustering. In

addition to these two methods, parallel clustering techniques, where the main idea is to divide the

original data into small pieces and process them on different machines simultaneously are also used.

2.2.1 Sampling-based Clustering

Sampling-based clustering refers to a class of clustering algorithms that utilize random sampling

techniques to handle large datasets efficiently. These algorithms aim to approximate the clustering

structure of the entire dataset by working with a representative subset of the data.
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The basic idea behind sampling-based clustering is to select a subset of the data points as

representatives or prototypes and perform clustering on this smaller subset. The clustering results

obtained from the subset are then used to infer the clustering structure of the entire dataset.

Sampling-based clustering algorithms have several advantages. They can handle large datasets

that do not fit into memory by working with a smaller subset. They also reduce the computational

complexity of clustering algorithms, making them more scalable. Additionally, sampling can help

mitigate the effect of outliers and noise in the dataset.

However, sampling-based clustering also has limitations. The quality of clustering results de-

pends on the representativeness and size of the sampled subset. If the sample is not representative

or too small, important clusters may be missed. Moreover, the sampling process introduces ran-

domness, which can lead to variations in the clustering results across different runs.

Overall, sampling-based clustering provides a trade-off between computational efficiency and

clustering accuracy. It is particularly useful for large datasets where traditional clustering algo-

rithms may be computationally expensive or memory-intensive.

Algorithms in this category are BIRCH (Zhang et al., 1996), CURE (Guha et al., 1998) and

CLARANS (Ng and Han, 2002). The complexities of BIRCH, CURE, and CLARANS have been

described in the previous sections.

2.2.2 Projection-based Clustering

Dimension reduction is a technique that aims to transform a high-dimensional dataset with

a potentially large number of variables or features into a lower-dimensional representation, while

preserving or maximizing relevant information. A large number of dimension reduction techniques

have been discussed in (Pratihar, 2009), which are mainly classified into two categories: linear

and non-linear methods. Nonlinear dimensionality methods are discussed in depth in (Lee and

Verleysen, 2007).

In terms of linear dimension reduction methods, simple linear functions are used to transform

high dimensional data into lower dimensions. Typical examples of linear projections include princi-

pal component analysis (PCA) (Pearson, 1901), projection pursuit mapping (Friedman and Tukey,

1974), factor analysis (Rummel, 1988), and independent component analysis (ICA)(Comon, 1991)

(Hyvärinen and Oja, 2000).

Typical examples of nonlinear dimension reduction techniques are multidimensional scaling

(Cox and Cox, 2008), curvilinear component analysis (CCA) (Demartines and Hérault, 1997),
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the t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten and Hinton, 2008),

neighborhood retrieval visualizer (NeRV) (Venna et al., 2010), and polar swarm (Pswarm) (Thrun

and Ultsch, 2021).

A comparative study of dimensionality reduction techniques is presented in (Ayesha et al., 2020).

PCA and its variants (i.e., robust PCA, sparse PCA) are still widely used due to their simplicity

and efficiency. The presence of outliers can adversely affect the performance of PCA. Table 2.3

summarizes the complexities of different methods to compute PCA. From the table, we observe that

only stochastic SVD and probabilistic PCA have an efficient time complexity of O(Npd). Moreover,

probabilistic PCA has a lower communication complexity compared to stochastic SVD. Therefore,

Elgamal et al. (2015) presents a scalable approach of PCA namely sPCA based on the probabilistic

PCA (PPCA) algorithm (Tipping and Bishop, 1999). It employs several optimizations to support

large datasets on distributed clusters. ICA works well with Gaussian data, but its variants have

the capability to deal with Gaussian and non-Gaussian data.

Table 2.3: Comparison of different methods for computing PCA of an N × p matrix to
produce d principal components (Elgamal et al., 2015).

Method to Compute PCA Time Complexity Communication Complexity

Eigen decomp. of covariance matrix O(Np×min(N, p)) O
(
p2
)

SVD-Bidiag O
(
Np2 + p3

)
O
(
max

(
(N + p)d, p2

))
Stochastic SVD (SSVD) O(Npd) O

(
max

(
Nd, d2

))
Probabilistic PCA (PPCA) O(Npd) O(pd)

2.2.3 Parallel-based Clustering

Parallel-based clustering process large datasets efficiently by harnessing the power of parallel

computing architectures. This approach seeks to leverage the inherent parallelism in clustering

algorithms to expedite their execution, making it particularly well-suited for big data applications.

One of the fundamental paradigms in parallel clustering is the MapReduce framework (Dean and

Ghemawat, 2008), which has been widely adopted in parallelizing clustering algorithms. Many clas-

sical clustering algorithms, including k-means and DBSCAN, have been adapted to run efficiently

in parallel MapReduce environments such as Multiplex k-means (Li et al., 2014) and MR-DBSCAN

(He et al., 2014). These adaptations enable the scalability of these algorithms to massive datasets

distributed across clusters of computers.
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In addition to MapReduce, other parallel computing paradigms, such as Spark (Zaharia et al.,

2010) and Peer-to-peer networks (Milojicic et al., 2002) have gained prominence in parallel clus-

tering. Apache Spark (Han et al., 2016), in particular, has become popular due to its in-memory

processing capabilities and ease of use for distributed data processing, making it a natural choice

for parallelizing clustering algorithms.

Recent advancements in parallel-based clustering have extended beyond parallelizing existing al-

gorithms. Novel clustering algorithms designed explicitly for parallel architectures have emerged, of-

ten taking advantage of the parallelism inherent in dense linear algebra operations, which are preva-

lent in many clustering techniques. Furthermore, hybrid approaches that combine the strengths of

parallel and distributed computing have shown promise. These approaches distribute data across

multiple clusters or nodes and then apply parallel algorithms locally, effectively achieving both

horizontal and vertical scalability which are presented in Figure 2.1.

Parallel-based clustering has opened new avenues for addressing computational challenges as-

sociated with massive datasets. However, most parallel clustering algorithms are only able to

deal with one single type of data, they fail to handle the real-time, heterogeneous, multi-view and

multi-model big data.

Figure 2.1: Parallel-based clustering algorithms (Dafir et al., 2021).
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CHAPTER 3

SCALABLE CLUSTERING BY ROBUST LOSS

MINIMIZATION IN GAUSSIAN MIXTURE MODEL

WITH OUTLIERS

3.1 Problem Formulation

Given a set X = {xi ∈ Rp, i = 1, . . . , N} of N points from a Gaussian Mixture Model with

outliers containing m Gaussians, the goal is to group these points into m compact subsets. In

this dissertation, only large and high-dimensional data and a reasonably large number of clusters,

specifically, N ≈ 106, p ≈ 103,m ≈ 103, are considered.

A Gaussian Mixture Model with outliers with parameters Θ = (w−1, w1, µ1,Σ1, ..., wm, µm,Σm)

is a weighted sum of m component Gaussian densities and outliers as given by the equation,

p(x | Θ) =
m∑
i=1

wiN (x | µi,Σi) + w−1O(x) (3.1)

where x ∈ Rp is a p-dimensional data point, wi, i ∈ {−1, 1, 2, . . . ,m}, are the mixture weights,

N (x | µi,Σi) , i = 1, . . . ,m, are the component Gaussian densities and O(x) is the distribution of

the outliers.

It is assumed that each component density is a p-variate isotropic Gaussian function of the

form,

N (x | µi,Σi) = N
(
x | µi, σ

2
i

)
=

1

(2π)p/2
∣∣σ2

i Ip
∣∣1/2 exp

{
−1

2
(x− µi)

T (σ2
i Ip)

−1 (x− µi)

}
(3.2)

with mean vector µi and covariance matrix Σi = σ2
i Ip.

Let l(x) ∈ {−1, 1, 2, . . . ,m} be the label of observation x, i.e. the mixture component from

which it was generated. The samples xi with l(xi) > 0 are called positives and the outliers (with

l(xi) = −1) are also called negatives.

Inspired by real data examples, where the observations are standardized feature vectors gener-

ated by a convolutional neural network (CNN) from real images of certain objects or background, in

this dissertation, it is assumed that them centers µi, i = 1, . . . ,m and all outliers are generated from

O(x) = N (0, Ip) and the label i positives are generated with frequency wi from N (µi, σ
2
i ), where
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(0, 1)

(µ1, σ1) (µ2, σ2) (µ3, σ3) . . .

. . .

(µm, σm) xi, l(xi) = −1

xi, l(xi) = 1 xi, l(xi) = 2 xi, l(xi) = 3 xi, l(xi) = m

w1 w2 w3 wm
w−1

Figure 3.1: Structure of the Gaussian Mixture Model with outliers used in this dissertation.

σi < 1,∀i. The structure of the Gaussian Mixture Model with outliers used in this dissertation is

shown in Figure 3.1.

The problem of interest is to cluster a set of unlabeled observations generated from such a

Gaussian Mixture Model with outliers and recover the labels l(xi) as well as µi.

3.2 Robust Loss Function

A loss minimization approach is taken, using the following loss function,

L(x; ρ) =

N∑
i=1

ℓ (xi − x; ρ) =
N∑
i=1

min

(
∥xi − x∥2

pρ2
− F, 0

)
(3.3)

where the per-observation loss, illustrated in Figure 3.2 is,

ℓ(d; ρ) = min

(
∥d∥2

pρ2
− F, 0

)
. (3.4)

The loss function ℓ(d; ρ) is zero outside a ball of radius Rρ = ρ
√
pF . The constant F is set in this

dissertation to F = 2.5 (See Remark 1). The idea of the algorithm is to find the cluster centers

µi, i = 1, 2, ...,m as local minima of the loss function (3.3). For computational reasons, the centers

µ are sought among a subsample S ⊂ {1, . . . , N} of the observations xi, i = 1, . . . , N ,

µ = xk, where k = argmin
i∈S

L (xi; ρ) . (3.5)
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a) p = 500 b) ρ = 3

Figure 3.2: The robust loss function ℓ(d; ρ) for different values of p and ρ.

After one cluster center µ = xk has been found, all samples from S within the radius ρ
√
pF

from the µ are considered as belonging to this cluster and are removed. The process is repeated

until min
j∈S

L (xj ; ρ) = −F . The process is illustrated in Figure 3.3. Suppose there are two clusters

and some outliers, as shown in Figure 3.3 a). The first cluster center is found as the sample with

minimum loss (3.3) among all subsamples. Then, all subsamples within the given radius R = ρ
√
pF

to this center are identified as belongings to this cluster (Figure 3.3 b)) and are removed. Then

the process is repeated to find another cluster center (Figure 3.3 c)) and all subsamples within the

same radius are removed. Now all the subsamples have loss values −F , which means there are no

clusters left, so the remaining subsamples are negatives (Figure 3.3 d)).

Once all the cluster centers are found, the label of each observation is assigned to its nearest

center based on the norm distances. If the nearest distance is greater than ρ
√
pF , it is classified as

a negative. The procedure is summarized in Algorithm 1.

In clustering, accuracy is a measure that quantifies the similarity between the cluster assign-

ments (̂l) and the ground truth labels (l). It is calculated by considering all possible permutations

of cluster assignments and finding the permutation that maximizes the sum of correctly assigned

data points. The formula is defined as follows:

Accuracy(l, l̂) =
1

N
max
π∈P

N∑
i=1

I(π(̂li) = li)

where P is the set of all possible permutations of cluster assignments, π represents a permutation

of cluster assignments from the set P . I is an indicator function that evaluates to 1 if the cluster
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a) b)

c) d)

Figure 3.3: Diagram illustrating Algorithm 1.

assignment after applying permutation matches the true cluster label and 0 otherwise. The accuracy

can be computed in polynomial time using the Hungarian algorithm.

3.3 Theoretical Guarantees

In this section, it is proven that SCRLM obtains high accuracy with high probability under

Assumption 1 in the GMM with outliers. Corollary 1 to Corollary 6 are stated in Section 3.3.1

followed by basic propositions in Section 3.3.2. The main accuracy guarantees are stated as Theorem

1 and Corollary 7 in Section 3.3.3.

Let σmax = maxi≥0 σi be the maximum over the true standard deviations of the positive clusters.

The following is the main assumption that is needed for the theoretical guarantees.

Assumption 1. σmax ≤ ρ <
√
0.6, where ρ is the bandwidth parameter for the loss function (3.3).
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Algorithm 1 Scalable Clustering by Robust Loss Minimization (SCRLM)

1: Input: X = {x1, . . . ,xN} ⊂ Rp, the number of subsamples n, the bandwidth parameter ρ, the

desired number of clusters T .

2: Output: the number of clusters m, the centers µt for t = 1, . . . ,m, cluster labels l1, . . . , lN ∈
{−1, 1, 2, . . . ,m}.

3: Randomly select a set of n observations S = {xi1 , . . . ,xin} ⊂ X without replacement from X.

4: Compute L(xj ; ρ) =
N∑
i=1

ℓ (xi − xj ; ρ) ∀j ∈ S, where ℓ(d; ρ) = min
(
∥d∥2
pρ2
− F, 0

)
.

5: for t = 1 to T do

6: Find k = argmin
j∈S

L (xj ; ρ)

7: if L (xk; ρ) < −F then

8: Obtain one positive cluster center as µt = xk

9: Update S ← S −
{
x ∈ S, ∥x− µt∥ < ρ

√
pF
}

10: else

11: break

12: end if

13: end for

14: for i = 1 to N do

15: Compute k = argmin
j
∥xi − µj∥

16: if ∥xi − µk∥ < ρ
√
pF then

17: li = k

18: else

19: li = −1
20: end if

21: end for

3.3.1 Preliminaries

In this section, the basic separation and concentration results for pairs of training examples are

presented. These results use the following Lemma from Wainwright (2019).

Lemma 1. ((Wainwright, 2019), Example 2.5) If Z1, . . . , Zn are i.i.d Gaussian random variables

Zi ∼ N (0, 1), then for any ϵ ∈ (0, 1),

P

(∣∣∣∣∣ 1n
n∑

i=1

Z2
i − 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−nϵ2/8

}
.

Lemma 2. If Z1, . . . , Zn are i.i.d Bernoulli random variables Zi ∼ B(w), then for any ϵ ∈ (0, 1),

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi − w

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−2nϵ2

}
.
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Corollary 1. If x = (X1, . . . , Xp) is a multivariate Gaussian random variable x ∼ N (0, Ip), then

E
(
∥x∥2

)
= p and for any ϵ ∈ (0, 1),

P
(∣∣∣∣1p∥x∥2 − 1

∣∣∣∣ ≥ ϵ

)
≤ 2 exp{−pϵ2/8}.

Proof. Follows from Lemma 1 above taking Zi = Xi, i = 1, . . . , p.

Corollary 2. If x = (X1, . . . , Xp),y = (Y1, . . . , Yp) are independent multivariate Gaussian random

variables x,y ∼ N (0, Ip), then E
(
∥x− y∥2

)
= 2p and for any ϵ ∈ (0, 1),

P
(∣∣∣∣ 12p∥x− y∥2 − 1

∣∣∣∣ ≥ ϵ

)
≤ 2 exp{−pϵ2/8}.

Proof. Follows from Lemma 1 above taking Zi = (Xi − Yi)/
√
2, i = 1, . . . , p.

Using these results, it follows that with high probability the negatives are well-separated from

each other.

Corollary 3 (Separation between negatives). For two negatives xi and xk, with probability at least

1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > 1.5p, xi,xk ∈ H.

Proof. Since xk ∼ N (0, Ip) and xi ∼ N (0, Ip), then xi−xk ∼ N (0, 2Ip), thus E
(
∥xi − xk∥2

)
= 2p.

According to Corollary 2, it follows that

P
(∣∣∣∣∥xi − xk∥2

2p
− 1

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
,

then

P
(
∥xi − xk∥2 ≤ 2p(1− ϵ)

)
≤ 2 exp

{
−pϵ2/8

}
.

Then with high probability at least 1− 2 exp{−pϵ2/8}, the separation satisfies

∥xi − xk∥2 > 2p(1− ϵ).

Now take ϵ = 1/4 so that with high probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > 1.5p.
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It then follows that the positives from the same cluster are within a certain radius from each

other with high probability.

Corollary 4 (Concentration of positives in the same cluster). For any positive cluster Sj with

mean µj and covariance matrix σ2
j Ip, with probability at least 1−2 exp{−p/128}, the concentration

is bounded as

∥xi − xk∥2 < 2.5pσ2
j , xi,xk ∈ Sj .

Proof. Since xi ∼ N (µj , σ
2
j Ip) and xk ∼ N (µj , σ

2
j Ip), then xi − xk ∼ N (0, 2σ2

j Ip), thus

E
(
∥xi − xk∥2

)
= 2pσ2

j .

According to Corollary 1, it follows that

P

(∣∣∣∣∣∥xi − xk∥2

2pσ2
j

− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
,

then

P(∥xi − xk∥2 ≥ 2pσ2
j (1 + ϵ)) ≤ 2 exp{−pϵ2/8}.

Take ϵ = 1/4, yields

P(∥xi − xk∥2 ≥ 2.5pσ2
j ) ≤ 2 exp{−p/128}.

Therefore, with probability at least 1− 2 exp{−p/128}, the concentration is bounded as

∥xi − xk∥2 < 2.5pσ2
j .

Then, it is proven that the positives are well-separated from the negatives with high probability.

Corollary 5 (Separation between positives and negatives). For negative xi and positive xk from

cluster Sj with mean µj and covariance matrix σ2
j Ip, with probability at least 1 − 2 exp{−p/128},

the separation satisfies

∥xi − xk∥2 > p(1.5 + 0.75σ2
j ), xi ∈ H,xk ∈ Sj .

Proof. Since xk ∼ N (µj , σ
2
j Ip) and xi ∼ N (0, Ip), then xi−xk ∼ N (µj , σ

2
j Ip + Ip), thus xi−xk =

µj + ϵ1
√

σ2
j + 1 with ϵ1 ∼ N (0, Ip) . Since µj ∼ N (0, Ip), then xi − xk is a Gaussian with

E (xi − xk) = 0 and

E
(
∥xi − xk∥2

)
= E

[(
µj + ϵ1

√
σ2
j + 1

)T (
µj + ϵ1

√
σ2
j + 1

)]
= E(∥µj∥2) + (σ2

j + 1)E
(
ϵ1

T ϵ1
)
,
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thus

E
(
∥xi − xk∥2

)
= p+ (σ2

j + 1)E
(
∥ϵ1∥2

)
= (2 + σ2

j )p.

According to Corollary 1, it follows immediately that,

P

(∣∣∣∣∣∥xi − xk∥2

(2 + σ2
j )p
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
,

then

P
(
∥xi − xk∥2 ≤ p(2 + σ2

j )(1− ϵ)
)
≤ 2 exp

{
−pϵ2/8

}
.

Then with probability at least 1− 2 exp{−pϵ2/8}, the separation satisfies

∥xi − xk∥2 > p(2 + σ2
j )(1− ϵ).

Now take ϵ = 1/4, so that with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > p(1.5 + 0.75σ2
j ).

Moreover, positives from different clusters are also well-separated from each other with high

probability.

Corollary 6 (Separation between positives in different clusters). For positive xi from cluster Si

with true mean µi and covariance matrix σ2
i Ip and positive xk from another cluster Sj with true

mean µj and covariance matrix σ2
j Ip, with probability at least 1 − 2 exp{−p/128}, the separation

satisfies

∥xi − xk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j ), xi ∈ Si,xk ∈ Sj .

Proof. Since xk ∼ N (µj , σ
2
j Ip) and xi ∼ N (µi, σ

2
i Ip), then xi−xk ∼ N (µj −µi, σ

2
j Ip+σ2

i Ip), thus

xi − xk = µj − µi + ϵ1
√
σ2
j + σ2

i with ϵ1 ∼ N (0, Ip) . Since µj ∼ N (0, Ip) and µi ∼ N (0, Ip),

then µj − µi ∼ N (0, 2Ip), then xi − xk is a Gaussian with E (xi − xk) = 0 and

E
(
∥xi − xk∥2

)
= E

[(
µj − µi + ϵ1

√
σ2
j + σ2

i

)T (
µj − µi + ϵ1

√
σ2
j + σ2

i

)]
,

thus

E
(
∥xi − xk∥2

)
= E(∥µj −µi∥2) + (σ2

j + σ2
i )E

(
ϵ1

T ϵ1
)
= 2p+ (σ2

j + σ2
i )E

(
∥ϵ1∥2

)
= (2+ σ2

i + σ2
j )p.
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According to Corollary 1, it follows that

P

(∣∣∣∣∣ ∥xi − xk∥2

(2 + σ2
i + σ2

j )p
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
,

then

P
(
∥xi − xk∥2 ≤ p(2 + σ2

i + σ2
j )(1− ϵ)

)
≤ 2 exp

{
−pϵ2/8

}
.

Then with probability at least 1− 2 exp{−pϵ2/8}, the separation satisfies

∥xi − xk∥2 > p(2 + σ2
i + σ2

j )(1− ϵ).

Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j ).

Remark 1. Observed from Corollary 4 where we take ϵ = 1/4, so that we obtain F = 2.5.

The previous corollaries are used to prove that with high probability, all positives from each

cluster are within 2.5pρ2 of each other, and 2.5pρ2 away from the other clusters and from the

negatives.

Proposition 1. Given a set X of N samples from a GMM with outliers, and σmax ≤ ρ <
√
0.6,

then with probability at least 1− 6N2 exp{−p/128}, the distance between positives within a cluster

satisfies

∥xi − xj∥2 < 2.5pρ2, ∀xi,xj s.t. l(xi) = l(xj) > 0,

and the distance between positives from a cluster and other samples not in that cluster satisfies

∥xi − xj∥2 > 2.5pρ2 ∀xi,xj s.t. l(xj) ̸= l(xi) > 0.

Proof. From Corollary 4, with probability at least 1 − 2 exp{−p/128}, the distance between two

positives in the same cluster is bounded as

∥xi − xj∥2 < 2.5pσ2
l(xi)

, l(xi) = l(xj) > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distances between all

positives in the same cluster are bounded as

∥xi − xj∥2 < 2.5pσ2
l(xi)
≤ 2.5pρ2, ∀xi,xj s.t. l(xi) = l(xj) > 0.
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From Corollary 5, with probability at least 1−2 exp{−p/128}, the distance between a positive and

a negative satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
l(xi)

), l(xi) > 0, l(xj) = −1.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

positive and negative satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
l(xi)

), ∀xi,xj , s.t. l(xi) > 0, l(xj) = −1.

Given σmax ≤ ρ <

√
1.5+0.75σ2

k
2.5 , since 0 < σk < 1, therefore, with σmax ≤ ρ <

√
1.5
2.5 =

√
0.6, then

with probability at least 1 − 2N2 exp{−p/128}, the distance between any positive and negative

satisfies

∥xi − xj∥2 > 2.5pρ2, ∀xi,xj , s.t. l(xi) > 0, l(xj) = −1.

From Corollary 6, with probability at least 1− 2 exp{−p/128}, the distance between two positives

from different clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75(σ2
l(xi)

+ σ2
l(xj)

)), 0 < l(xi) ̸= l(xj) > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

two positives from different clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75(σ2
l(xi)

+ σ2
l(xj)

)), ∀xi,xj s.t. 0 < l(xi) ̸= l(xj) > 0.

Given σmax ≤ ρ <

√
1.5+0.75(σ2

i +σ2
j )

2.5 , since 0 < σi, σj < 1, therefore, with σmax ≤ ρ <
√
0.6,

then with probability at least 1− 2N2 exp{−p/128}, the distance between any two positives from

different clusters satisfies

∥xi − xj∥2 > 2.5pρ2, ∀xi,xj s.t. 0 < l(xi) ̸= l(xj) > 0.

Therefore, with probability at least 1 − 4N2 exp{−p/128}, the distance between any positive and

any sample not from that cluster satisfies

∥xi − xj∥2 > 2.5pρ2, ∀xi,xj s.t. l(xj) ̸= l(xi) > 0.

Therefore, with probability at least 1−6N2 exp{−p/128}, the following bounds on positives within

a cluster and between clusters are satisfied

∥xi − xj∥2 > 2.5pρ2, ∀xi,xj s.t. l(xj) ̸= l(xi) > 0,

27



and

∥xi − xj∥2 < 2.5pρ2, ∀xi,xj s.t. l(xj) = l(xi) > 0.

Finally, a bound for the probability that a sample S has at least k elements from each positive

cluster is proven.

Lemma 3. If the clusters have weights w1, ..., wm, with
∑m

k=1wk ≤ 1, then the probability that a

sample S of size |S| = n contains at least one observation from each cluster is at least

P(|{x ∈ S, l(x) = k}| ≥ 1, ∀k = 1,m) ≥ 1−
m∑
k=1

(1− wk)
n.

Proof. The probability that S contains no elements from cluster k is

P(l(x) ̸= k,∀x ∈ S) = (1− wk)
n.

Then using the union bound, the probability that there is a k such that S does not contain any

elements from cluster k is

P(∃k, l(x) ̸= k, ∀x ∈ S) ≤
m∑
k=1

(1− wk)
n,

which implies the result.

Lemma 4. With probability at least 1 − 2 exp
{
−2(wn− k + 1)2/n

}
, a subset S of size |S| = n

samples contains at least k observation from positive cluster with weight w.

Proof. According to Lemma 2,

P

(∣∣∣∣∣ 1n
n∑

i=1

Zi − w

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−2nϵ2

}
.

Take ϵ = w − (k − 1)/n,

P

(∣∣∣∣∣
n∑

i=1

Zi − nw

∣∣∣∣∣ ≥ nw − k + 1

)
≤ 2 exp

{
−2nϵ2

}
.

P

(
n∑

i=1

Zi − nw ≥ nw − k + 1 or

n∑
i=1

Zi − nw ≤ −nw + k − 1

)
≤ 2 exp

{
−2nϵ2

}
.

P

(
n∑

i=1

Zi ≤ k − 1

)
≤ 2 exp

{
−2(wn− k + 1)2/n

}
.

Therefore, with probability at least 1− 2 exp
{
−2(wn− k + 1)2/n

}
,
∑n

i=1 Zi ≥ k.
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3.3.2 Loss Bounds

In this section, the concentration and separation results are used to obtain bounds on the loss

function values. First, it is proven that, with high probability, the loss value of a negative is −F .

Proposition 2. Given a set X of N samples from a GMM with outliers, randomly select a set

S of |S| = n subsamples from it, with σmax ≤ ρ <
√
0.6, then for a negative sample xj ∈ S with

l(xj) = −1, with probability at least 1− 4N exp{−p/128}, the loss satisfies L(xj ; ρ) = −F.

Proof. From Corollary 3, for xi, l(xi) = −1, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xj − xi∥2 > 1.5p, l(xi) = −1, i ̸= j.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 1.5p, ∀xi, l(xi) = −1, i ̸= j.

Given σmax ≤ ρ <
√
0.6, then with probability at least 1−2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 1.5p > 2.5pρ2, ∀xi, l(xi) = −1, i ̸= j.

From Corollary 5, for xi, l(xi) > 0, with probability at least 1 − 2 exp{−p/128}, the separation

satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
l(xi)

), l(xi) > 0.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
l(xi)

), ∀xi, l(xi) > 0.

Given σmax ≤ ρ <
√
0.6, then with probability at least 1−2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
l(xi)

) > 2.5pρ2 ∀xi, l(xi) > 0.

Therefore, with probability at least 1− 4N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 2.5pρ2, ∀i ̸= j.

Therefore, with probability at least 1− 4N exp{−p/128}, it follows that

ℓ(∥xj − xi∥ ; ρ) = min

(
∥xj − xi∥2

pρ2
− 2.5, 0

)
= 0, ∀i ̸= j.
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Therefore, with probability at least 1− 4N exp{−p/128}, the loss satisfies

L(xj ; ρ) =

N∑
i=1

ℓ (∥xj − xi∥ ; ρ) = −F,

since ℓ (∥xj − xj∥ ; ρ) = ℓ(0; ρ) = −F .

Next, it is proven that, with high probability, the loss value of a positive is less than −F.

Proposition 3. Given a set X of N samples from a GMM with outliers, randomly select a set S of

|S| = n subsamples from it, then with σmax ≤ ρ <
√
0.6, then for a positive sample xj ∈ Sk, l(xj) =

k > 0, then with probability at least 1− 2 exp{−p/128} − exp{−(N − 1)wk}, the loss is bounded as

L(xj ; ρ) < −F.

Proof. The probability that a sample of size N − 1 contains no elements from cluster Sk is

(1− wk)
N−1 ≤ exp{−(N − 1)wk}.

Therefore, with probability at least 1 − exp{−(N − 1)wk}, there is at least one more sample

xa ∈ X, a ̸= j besides xj in cluster Sk.

From Corollary 4, with probability at least 1− 2 exp{−p/128}, the distance between xa and xj is

bounded as

∥xj − xa∥2 < 2.5pσ2
k.

Given σmax ≤ ρ <
√
0.6, with probability at least 1− 2 exp{−p/128}, the distance between xa and

xj is bounded as

∥xj − xa∥2 < 2.5pσ2
k ≤ 2.5pσ2

max ≤ 2.5pρ2.

Therefore, with probability at least 1− 2 exp{−p/128} − exp{−(N − 1)wk}, the following equality

holds

ℓ(∥xj − xa∥ ; ρ) = min

(
∥xj − xa∥2

pρ2
− 2.5, 0

)
< 0.

Therefore, with probability at least 1 − 2 exp{−p/128} − exp{−(N − 1)wk}, the loss is bounded

above as

L(xj ; ρ) =

N∑
i=1

ℓ (∥xj − xi∥ ; ρ) ≤ ℓ (∥xj − xa∥ ; ρ) + ℓ (∥xj − xj∥ ; ρ) < −F.
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Proposition 4. Given a set X of N samples from a GMM with outliers, with wi ≥ a/m, i = 1,m

for some a > 0 and σmax ≤ ρ <
√
0.6, randomly select a set S of |S| = n subsamples from it, then

with probability at least 1 − 2m exp{−p/128} −m exp{−na/m} −m exp{−a(N − 1)/m} for each

k = 1,m there exists xj ∈ Sk = {x ∈ S, l(x) = k} such that L(xj ; ρ) < −F .

Proof. According to Lemma 3, the probability that a sample S of size n contains at least one

observation from each cluster is

1−
m∑
i=1

(1− wi)
n ≥ 1−m(1− a/m)n ≥ 1−m exp{−na/m},

and without loss of generality let xj be the observation from cluster Sk, k = 1,m. Applying

Proposition 3 repeatedly to these m samples and using the union bound, with probability at least

1− 2m exp{−p/128} −
m∑
i=1

exp{−(N − 1)wi},

the loss is bounded as L(xj ; ρ) < −F.

Since ∀wi ≥ a/m, therefore
∑m

i=1 exp{−(N − 1)wi} ≤ m exp{−a(N − 1)/m}. Therefore, with

probability at least

1−m exp{−na/m} − 2m exp{−p/128} −m exp{−a(N − 1)/m},

for each k = 1,m there exists xj ∈ Sk such that L(xj ; ρ) < −F.

3.3.3 Accuracy Guarantees

The following theorem guarantees that Algorithm 1 (SCRLM) can detect all outliers and cluster

all positives correctly with high probability.

Theorem 1. Given a set X of N samples from a GMM with outliers, with wi ≥ a/m, i = 1,m for

some a > 0 and σmax ≤ ρ <
√
0.6, then the SCRLM Algorithm 1 that selects n subsamples has 100%

accuracy with probability at least 1 − 10N2 exp{−p/128} − m exp{−na/m} − 2m exp{−p/128} −

m exp{−a(N − 1)/m}.

Proof. From Proposition 2, with probability at least 1 − 4N exp{−p/128}, for a negative sample

xj , L(xj ; ρ) = −F , then for all the negatives, with probability at least 1 − 4N2 exp{−p/128}, the

loss satisfies L(xj ; ρ) = −F.

From Proposition 4, with probability at least

1−m exp{−na/m} − 2m exp{−p/128} −m exp{−a(N − 1)/m},

31



for each k = 1,m there is xj ∈ Sk, L(xj ; ρ) < −F .

Combining Proposition 2 and Proposition 4, with probability at least

1− 4N2 exp{−p/128} −m exp{−na/m} − 2m exp{−p/128} −m exp{−a(N − 1)/m},

only positives will be selected at step 8 of SCRLM.

From Proposition 1, with probability at least 1 − 6N2 exp{−p/128}, all positives are correctly

identified in Steps 9 and 17 and removed from negatives.

So with probability at least

1− 10N2 exp{−p/128} −m exp{−na/m} − 2m exp{−p/128} −m exp{−a(N − 1)/m},

SCRLM will have 100% accuracy.

Based on Theorem 1, Corollary 7 establishes theoretical bounds for parameters p and n.

Corollary 7. Given a set X of N samples from a GMM with outliers, with wi ≥ a/m, i = 1,m

for some a > 0 and σmax ≤ ρ <
√
0.6, then for any δ, if

p > 128(2 logN + log
40

δ
),

n >
m

a
(logm+ log

4

δ
),

p > 128(logm+ log
8

δ
),

N >
m

a
(logm+ log

4

δ
) + 1,

the SCRLM Algorithm 1 that selects n subsamples will have 100% accuracy with probability at

least 1− δ.

Proof. The condition

p > 128(2 logN + log
40

δ
)

is equivalent to

10N2 exp{−p/128} < δ

4
.

The condition

n >
m

a
(log 4m− log δ)

is equivalent to

m exp(−na/m) <
δ

4
.
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The condition

p > 128(log 8m− log δ)

is equivalent to

2m exp{−p/128} < δ

4
.

Finally, the condition

N >
m

a
(log 4m− log δ) + 1.

is equivalent to:

m exp{−a(N − 1)/m} < δ

4
.

These conditions together imply that

1− 10N2 exp{−p/128} −m exp(−na/m)− 2m exp{−p/128} −m exp{−a(N − 1)/m} > 1− δ.

According to Theorem 1, SCRLM has 100% accuracy with probability at least 1− δ.

3.4 Computational Complexity

Computing L(xj ; ρ), j ∈ S in Step 4 of Algorithm 1 is O(nNp). Each iteration of steps 6-12 is

O(np), so steps 5-13 take O(nmp). Similarly, steps 14-21 take O(Nmp). Therefore, the computation

complexity of Algorithm 1 is O(nNp + nmp + Nmp) = O(nNp + Nmp). From Corollary 7 one

could see that the subsample size n should be chosen on the order of O(m logm). Therefore, the

computational complexity of Algorithm 1 is O(mpN logm), it is linear in the dimension p and the

number of observations N and log-linear in the number of clusters m.
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CHAPTER 4

HIERARCHICAL SCALABLE CLUSTERING BY

ROBUST LOSS MINIMIZATION IN

HIERARCHICAL GAUSSIAN MIXTURE MODEL

WITH OUTLIERS

4.1 Problem Formulation

A Hierarchical Gaussian Mixture Model (HGMM) with outliers is a probabilistic model that

assumes data is generated from a multi-level hierarchical structure of Gaussian mixture components.

In the model, each level of the hierarchy represents a different granularity of the data distribution.

At every level, the data is described by a mixture of Gaussian components and outlier components.

At each level, the Gaussian components capture the characteristics of the data, while the outlier

components account for noise. For simplicity, this dissertation focuses on a two-level HGMM with

outliers.

Given a set X = xi ∈ Rp, i = 1, . . . , N of N points sampled from a two-level HGMM with

outliers, the model has m1 Gaussian mixture components at the first level of the hierarchy, and

each component at the first level is further decomposed into m2 mixture components at the second

level of the hierarchy. The goal is to group these points into m = m1 ×m2 compact subsets.

The probability density function (pdf) of a two-level HGMM with outliers can be expressed as:

p(x | Θ) =

m1∑
i=1

wi

m2∑
j=1

wijN (x|µij ,Σij) + wi,−1O1(x)

+ w−1O(x) (4.1)

where x ∈ Rp is a p-dimensional data point, m1 is the number of Gaussian components at the first

level, andm2 is the number of Gaussian subcomponents within each first-level Gaussian component.

The weights wi and wij represent the mixing proportions of the Gaussian components at the first and

second levels, respectively. Outliers are introduced at the first level with the components denoted

by O(x) and its mixing proportion represented by w−1. The second-level outlier components are

denoted by O1(x), with their mixing proportions represented by wi,−1. The Gaussian distributions
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at the second level are N
(
x | µij ,Σij

)
, i = 1, . . . ,m1, j = 1, . . . ,m2 where

N
(
x | µij ,Σij

)
= N

(
x | µij , σ

2
ij

)
=

1

(2π)p/2
∣∣∣σ2

ijIp

∣∣∣1/2 exp
{
−1

2

(
x− µij

)T
(σ2

ijIp)
−1
(
x− µij

)}
(4.2)

with mean vector µij and covariance matrix Σij = σ2
ijIp.

Let l(x) ∈ {−1 ∪ (i, j) | i ∈ {1, 2, . . . ,m1}, j ∈ {−1, 1, 2, . . . ,m2}} be the label of observation

x. The samples xi with l(xi) = −1 are called first-level outliers (negatives), the samples xi with

l(xi) = (i,−1) are called second-level outliers (negatives) belonging to the first-level positive cluster

i and the samples xi with l(xi) = (i, j) where j > 0 are called second-level positives.

The two-level HGMM with outliers (Figure 4.1) used in this dissertation is generated as follows:

1. The first-level cluster centers µi, i = 1, . . . ,m1 and first-level negatives are generated from

O(x) = N (0, Ip) with weights wi, i = −1, 1, . . . ,m1.

2. The second-level cluster centers µij , i = 1, . . . ,m1, j = 1, . . . ,m2 and second-level negatives

are generated from O1(x) = N (µi, σi) with weights wij , i = 1, . . . ,m1, j = −1, 1, . . . ,m2

around each first-level center µi.

3. Then, second-level positives are generated from N (µij , σij), i = 1, . . . ,m1, j = −1, 1, . . . ,m2.

The problem of interest is to cluster a set of unlabeled observations generated from such a two-level

hierarchical Gaussian Mixture Model with outliers and recover the labels l(xi) and µi.

4.2 Hierarchical Scalable Clustering by Robust Loss
Minimization

Algorithm 2 Hierarchical Scalable Clustering by Robust Loss Minimization (HSCRLM)

1: Input: X = {x1, . . . ,xN} ⊂ Rp, the number of subsamples n1 and n2, the bandwidth param-

eter ρ1 and ρ2, the desired number of cluster T .

2: Output: the number of first-level clusters m1, the number of second-level clusters m2 per

first-level, cluster labels l1, . . . , lN ∈ {−1, (1,−1), (1, 1), (1, 2), . . . , (m1,m2)}.
3: Apply SCRLM(X,n1, N, ρ1, T ) to set X to obtain li, i = 1, . . . , N

4: for i = 1 to m1 do

5: Let Ii = {j ∈ 1, N, lj = i} and denote Xi = XIi .

6: Apply SCRLM(Xi, n2, |Xi|, ρ2, T ) to obtain qj , j ∈ Ii .

7: lj = (i, qj), j ∈ I

8: end for
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(0, 1)

µ1, σ1 µ2, σ2 µ3, σ3 . . . µm1
, σm1 xi, l(xi) = −1

xi, l(xi) = (1, 1) . . . . . . . . .xi, l(xi) = (1,m2) xi, l(xi) = (m1, 1) xi, l(xi) = (m1,m2)

w1 w2 w3 wm1
w−1

µ11, σ11 . . . µ1m2
, σ1m2 xi, l(xi) = (1,−1) . . .

w11 w1m2
w1,−1

µm11, σm11 . . . µm1m2
, σm1m2 xi, l(xi) = (m1,−1)

wm11
wm1m2 wm1,−1

Figure 4.1: Structure of the two-level HGMM with outliers used in this dissertation.

4.3 Hierarchical Classification

Once the first-level and second-level cluster centers have been obtained through the preceding

Algorithm 2, the subsequent Algorithm 3 presents a powerful approach for the efficient hierarchical

classification of data points. This methodology offers a substantial reduction in computational

complexity compared to exhaustive searching, especially when dealing with a large number of

cluster centers. In contrast to the computationally intensive process of computing distances between

the input vector and all cluster centers, Algorithm 3 adopts a judicious strategy. It begins by

discerningly selecting the top k closest first-level clusters, chosen based on their proximity to the

input vector, thereby effectively pruning less relevant clusters from consideration. This initial

step alone significantly diminishes the computational burden. Subsequently, within these selected

first-level clusters, a refinement procedure is applied to pinpoint the nearest second-level cluster

center. This two-tiered selection process further enhances computational efficiency, as it reduces

the number of distance calculations required.
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Algorithm 3 Hierarchical Classification

1: Input: x, the number of first-level clusters m1, the number of second-level clusters per first-

level cluster m2, the first-level cluster centers µi for i = 1, . . . ,m1, the second-level cluster

centers µij for i = 1, . . . ,m1, j = 1, . . . ,m2.

2: Output: label of x, l(x) ∈ {−1, (1,−1), (1, 1), (1, 2), . . . , (m1,m2)}.
3: Compute k = argmin

i
∥x− µi∥

4: if ∥x− µk∥ > ρ1
√
pF then

5: l(x) = −1
6: else

7: Find indices J of top k closest super class centers: J = {i1, i2, ..., ik} corresponding to the

first k smallest distances, let U = J × {1, ...,m2}, compute (i, j) = argmin
(i,j)∈U

∥x− µij∥

8: if ||x− µij || > ρ2
√
pF then

9: l(x) = (i,−1)
10: else

11: l(x) = (i, j)

12: end if

13: end if

4.4 Theoretical Guarantees

In this section, two theorems are proven:

1. SCRLM obtains high accuracy with high probability under Assumption 2 in the two-level

HGMM with outliers.

2. HSCRLM obtains high accuracy with high probability under Assumption 3 and 4 in the

two-level HGMM with outliers.

4.4.1 Assumptions

Let σmax,2 = maxi,j>0 σij represent the maximum standard deviation among all second-level

positive clusters, and σmin,1 = mini>0 σi denote the minimum standard deviation among all first-

level positive clusters. Based on these values, the following are the main assumptions required for

the theoretical guarantees to hold.

Assumption 2. σmax,2 ≤ ρ <
√
0.6σmin,1, where ρ is the bandwidth parameter for the loss function

(3.3).

Assumption 3.
√
σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6, where ρ1 is the bandwidth parameter for the loss

function (3.3).
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Assumption 4. σmax,2 ≤ ρ2 <
√
0.6σmin,1, where ρ2 is the bandwidth parameter for the loss

function (3.3).

4.4.2 Preliminaries

Corollary 8 (Separation between first-level negatives). For two first-level negatives xi and xk ,

with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > 1.5p, xi,xk ∈ H1.

Proof. Same as Corollary 3

Corollary 9 (Separation between second-level negatives from different first-level clusters). For

two second-level negatives xi and xk from different first-level clusters, with probability at least

1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > p(1.5 + 0.75(σ2
i + σ2

j )), xi ∈ H2i,xk ∈ H2j .

Proof. Same as Corollary 6.

Corollary 10 (Separation between second-level negatives from the same first-level cluster). For

two second-level negatives xi and xk from the same first-level cluster, with probability at least

1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > 1.5pσ2
i , xi,xk ∈ H2i.

Proof. Since xi ∼ N (µi, σ
2
i Ip) and xk ∼ N (µi, σ

2
i Ip), then xi − xk ∼ N (0, 2σ2

i Ip). According to

Corollary 1, it follows that

P
(∣∣∣∣∥xi − xk∥2

2pσ2
i

− 1

∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
,

then

P(∥xi − xk∥2 ≤ 2pσ2
i (1− ϵ)) ≤ 2 exp{−pϵ2/8}.

Take ϵ = 1/4, yields

P(∥xi − xk∥2 ≤ 1.5pσ2
i ) ≤ 2 exp{−p/128}.

Therefore, with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > 1.5pσ2
i .

38



Corollary 11 (Separation between first-level negatives and second-level negatives). For first-level

negative xi second-level negative xk, with probability at least 1 − 2 exp{−p/128}, the separations

satisfies

∥xi − xk∥2 > p(1.5 + 0.75σ2
i ), xi ∈ H1,xk ∈ H2i.

Proof. Same as Corollary 5.

Corollary 12 (Concentration of second-level positives in the same cluster). For any second-

level positive cluster Sij with mean µij and covariance matrix σ2
ijIp, with probability at least

1− 2 exp{−p/128}, the concentration satisfies

∥xi − xk∥2 < 2.5pσ2
ij , xi,xk ∈ Sij .

Proof. Since xi ∼ N (µij , σ
2
ijIp) and xk ∼ N (µij , σ

2
ijIp), then xi − xk ∼ N (0, 2σ2

ijIp), thus

E
(
∥xi − xk∥2

)
= 2pσ2

ij . According to Corollary 1, it follows that

P

(∣∣∣∣∣∥xi − xk∥2

2pσ2
ij

− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
,

then

P(∥xi − xk∥2 ≥ 2pσ2
ij(1 + ϵ)) ≤ 2 exp{−pϵ2/8}.

Take ϵ = 1/4, yields

P(∥xi − xk∥2 ≥ 2.5pσ2
ij) ≤ 2 exp{−p/128}.

Therefore, with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 < 2.5pσ2
ij .

Corollary 13 (Separation between second-level positives from the same first-level cluster). For

second-level positive xij from cluster Sij with true mean {µij and covariance matrix σ2
ijIp and

second-level positive xik from another cluster Sik with true mean µik and covariance matrix σ2
ikIp,

where cluster Sij and Sij are both from the same first-level cluster Si with true mean µi and

covariance matrix σ2
i Ip, with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xij − xik∥2 > p(1.5σ2
i + 0.75(σ2

ij + σ2
ik)), xij ∈ Sij ,xik ∈ Sik
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Proof. Since xij ∼ N (µij , σ
2
ijIp), xik ∼ N (µik, σ

2
ikIp), then xij − xik ∼ N (µij −µik, σ

2
ijIp + σ2

ikIp),

thus xij − xik = µij − µik + ϵ1
√

σ2
ij + σ2

ik with ϵ1 ∼ N (0, Ip) . Since µij ∼ N (µi, σ
2
i Ip), µik ∼

N (µi, σ
2
i Ip), then µij−µik ∼ N

(
0, 2σ2

i Ip
)
, then xij−xik is a Gaussian with E (xij − xik) = 0 and

E
(
∥xij − xik∥2

)
= E

[(
µij − µik + ϵ1

√
σ2
ij + σ2

ik

)T (
µij − µik + ϵ1

√
σ2
ij + σ2

ik

)]
,

thus

E
(
∥xij − xik∥2

)
= E(∥µij − µik∥2) + (σ2

ij + σ2
ik)E

(
ϵ1

T ϵ1
)

= 2σ2
i p+ (σ2

ij + σ2
ik)E

(
∥ϵ1∥2

)
= (2σ2

i + σ2
ij + σ2

ik)p.

According to Corollary 1, the probabilities are bounded

P

(∣∣∣∣∣ ∥xij − xik∥2

2σ2
i p+ σ2

ijp+ σ2
ikp
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp{−pϵ2/8},

then

P
(
∥xij − xik∥2 ≤ p(2σ2

i + σ2
ij + σ2

ik)(1− ϵ)
)
≤ 2 exp

{
−pϵ2/8

}
.

Then with high probability at least 1− 2 exp{−pϵ2/8}, the separation satisfies

∥xij − xik∥2 > p(2σ2
i + σ2

ij + σ2
ik)(1− ϵ).

Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xij − xik∥2 > p(1.5σ2
i + 0.75σ2

ij + 0.75σ2
ik).

Corollary 14 (Separation between second-level positives from different first-level clusters). For

second-level positive xik from cluster Sik with true mean µik and covariance matrix σ2
ikIp and

second-level positive xjk from another cluster Sjk with true mean µjk and covariance matrix σ2
jkIp,

where cluster Sik is from the first-level cluster Si with true mean µi and covariance matrix σ2
i Ip, and

Sjk from the first-level cluster Sj with true mean µj and covariance matrix σ2
j Ip, with probability

at least 1− 2 exp{−p/128}, the separation satisfies

∥xik − xjk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij + 0.75σ2

ik), xik ∈ Sik,xjk ∈ Sjk
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Proof. Since xik ∼ N (µik, σ
2
ikIp), xjk ∼ N (µjk, σ

2
jkIp). then xik−xjk ∼ N (µik−µjk, σ

2
ikIp+σ2

jkIp),

thus xik − xjk = µik − µjk + ϵ1
√
σ2
ik + σ2

jk with ϵ1 ∼ N (0, Ip) . Since µik ∼ N (µi, σ
2
i Ip), µjk ∼

N (µj , σ
2
j Ip), then µik −µjk ∼ N

(
µi − µj , σ

2
i Ip + σ2

j Ip

)
, thus µik −µjk = µi −µj + ϵ2

√
σ2
i + σ2

j

with ϵ2 ∼ N (0, Ip). So xik − xjk = µi − µj + ϵ1
√

σ2
ik + σ2

jk + ϵ2
√

σ2
i + σ2

j . Since µi ∼ N (0, Ip)

and µj ∼ N (0, Ip), then xik − xjk is a Gaussian with E (xij − xik) = 0 and E
(
∥xik − xjk∥2

)
=

E
[(

µi − µj + ϵ1
√

σ2
ij + σ2

ik + ϵ2
√
σ2
i + σ2

j

)T (
µi − µj + ϵ1

√
σ2
ij + σ2

ik + ϵ2
√
σ2
i + σ2

j

)]
, thus

E
(
∥xik − xjk∥2

)
= (2 + σ2

i + σ2
j + σ2

ij + σ2
ik)p.

According to Corollary 1, the probabilities are bounded

P

(∣∣∣∣∣ ∥xik − xjk∥2

2p+ σ2
i p+ σ2

j p+ σ2
ikp+ σ2

jkp
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp{−pϵ2/8},

then

P
(
∥xik − xjk∥2 ≤ (1− ϵ)(σ2

ikp+ σ2
jkp+ σ2

i ++σ2
j + 2p)

)
≤ 2 exp{−pϵ2/8}

Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the bound becomes

∥xik − xjk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij + 0.75σ2

ik)

Corollary 15 (Separation between first-level negatives and second-level positives). For second-level

negative xij and first-level negative xk, with probability at least 1− 2 exp{−p/128}, the separations

satisfies

∥xij − xk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij)

Proof. Since xij ∼ N (µij , σ
2
ijIp) and xk ∼ N (0, Ip), then xij − xk ∼ N (µij , σ

2
ijIp + Ip), thus

E
(
∥xij − xk∥2

)
= E(∥µij∥2)+(σ2

ij+1)p = E(∥µi∥2)+σ2
i p+(σ2

ij+1)p = 2p+σ2
i p+σ2

ijp. According

to Corollary 1,

P

(∣∣∣∣∣ ∥xij − xk∥2

2p+ σ2
i p+ σ2

ijp
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
so

P
(
∥xij − xk∥2 ≤ (2p+ σ2

i p+ σ2
ijp)(1− ϵ)

)
≤ 2 exp

{
−pϵ2/8

}
Then with probability at least 1− 2 exp{−pϵ2/8}, the separation satisfies

∥xij − xk∥2 > (2p+ σ2
i p+ σ2

ijp)(1− ϵ)
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Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij)

Corollary 16 (Separation between second-level negatives and second-level positives from the same

first-level cluster). For second-level negative xij and second-level negative xk, with probability at

least 1− 2 exp{−p/128}, the separations satisfies

∥xij − xk∥2 > p(1.5σ2
i + 0.75σ2

ij)

Proof. Since xij ∼ N (µij , σ
2
ijIp) and xk ∼ N (µi, σ

2
i Ip), then xij − xk ∼ N (µij − µi, σ

2
ijIp + σ2

i Ip),

thus E
(
∥xij − xk∥2

)
= E(∥µij − µi∥2) + (σ2

ij + σ2
i )p.Since µij ∼ N (µi, σ

2
i Ip), then µij − µi ∼

N (0, σ2
i Ip), thus E(∥µij − µi∥2) = σ2

i p, then E
(
∥xij − xk∥2

)
= σ2

i p + (σ2
ij + σ2

i )p = 2σ2
i p + σ2

ijp.

According to Corollary 1,

P

(∣∣∣∣∣ ∥xij − xk∥2

(2σ2
i + σ2

ij)p
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
so

P
(
∥xij − xk∥2 ≤ (2σ2

i p+ σ2
ijp)(1− ϵ)

)
≤ 2 exp

{
−pϵ2/8

}
Then with probability at least 1− 2 exp{−pϵ2/8}, the separation satisfies

∥xij − xk∥2 > (2σ2
i p+ σ2

ijp)(1− ϵ)

Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > p(1.5σ2
i + 0.75σ2

ij)

Corollary 17 (Separation between second-level negatives and second-level positives from different

first-level clusters). For second-level positive xij and second-level negative xk, with probability at

least 1− 2 exp{−p/128}, the separations satisfies

∥xij − xk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij)

42



Proof. Since xij ∼ N (µij , σ
2
ijIp) and xk ∼ N (µj , σ

2
j Ip), then xij − xk ∼ N (µij −µj , σ

2
ijIp + σ2

j Ip),

thus E
(
∥xij − xk∥2

)
= E(∥µij −µj∥2)+ (σ2

ij +σ2
j )p = E(∥µi∥2)+σ2

i p+ p+(σ2
ij +σ2

j )p = (2+σ2
i +

σ2
j + σ2

ij)p. According to Corollary 1,

P

(∣∣∣∣∣ ∥xij − xk∥2

2p+ σ2
i p++σ2

i p+ σ2
ijp
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
so

P
(
∥xij − xk∥2 ≤ (2p+ σ2

i p++σ2
i p+ σ2

ijp)(1− ϵ)
)
≤ 2 exp

{
−pϵ2/8

}
Then with probability at least 1− 2 exp{−pϵ2/8}, the separation satisfies

∥xij − xk∥2 > (2p+ σ2
i p++σ2

j p+ σ2
ijp)(1− ϵ)

Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij)

Corollary 18 (Concentration of second-level negatives). For second-level negatives xi and xk from

the same first-level cluster, with probability at least 1− 2 exp{−p/128}, the concentration satisfies

∥xi − xk∥2 < 2.5pσ2
j , xi,xk ∈ H2i.

Proof. Same as Corollary 4

Corollary 19 (Concentration of second-level positives). For second-level positive xij from cluster

Sij with true mean µij and covariance matrix σ2
ijIp and second-level positive xik from another

cluster Sik with true mean µik and covariance matrix σ2
ikIp, where cluster Sij and Sij are both from

the same first-level cluster Si with true mean µi and covariance matrix σ2
i Ip, with probability at

least 1− 2 exp{−p/128}, the concentration satisfies

∥xij − xik∥2 < p(2.5σ2
i + 1.25(σ2

ij + σ2
ik)), xij ∈ Sij ,xik ∈ Sik

Proof. Since xij ∼ N (µij , σ
2
ijIp), xik ∼ N (µik, σ

2
ikIp), then

E
(
∥xij − xik∥2

)
= E(∥µij − µik∥2) + (σ2

ij + σ2
ik)p = 2σ2

i p+ (σ2
ij + σ2

ik)p = (2σ2
i + σ2

ij + σ2
ik)p.
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According to Corollary 1, the probabilities are bounded

P

(∣∣∣∣∣ ∥xij − xik∥2

2σ2
i + σ2

ijp+ σ2
ikp
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp{−pϵ2/8}

P

(
∥xij − xik∥2

2σ2
i + σ2

ijp+ σ2
ikp
≥ 1 + ϵ

)
≤ 2 exp{−pϵ2/8}

so

P
(
∥xij − xik∥2 ≥ (1 + ϵ)(2σ2

i + σ2
ijp+ σ2

ikp)
)
≤ 2 exp{−pϵ2/8}

Therefore, with probability at least 1− 4 exp{−pϵ2/8}, the concentration is bounded below as

∥xij − xik∥2 < p(2σ2
i + σ2

ij + σ2
ik)(1 + ϵ)

Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the bound becomes

∥xij − xik∥2 < p(2.5σ2
i + 1.25(σ2

ij + σ2
ik))

Corollary 20 (Concentration of second-level negatives and second-level positives from the same

first-level cluster). For second-level positive xi and second-level negative xk from the same first-level

cluster, with probability at least 1− 2 exp{−p/128}, the concentration satisfies

∥xi − xk∥2 < p(2.5σ2
i + 1.25σ2

ij)

Proof. Since xi ∼ N (µij , σ
2
ijIp) and xk ∼ N (µi, σ

2
i Ip), then xi − xk ∼ N (µij − µi, σ

2
ijIp + σ2

i Ip),

thus E
(
∥xi − xk∥2

)
= (σ2

ij + 2σ2
i )p. According to Corollary 1,

P

(∣∣∣∣∣ ∥xi − xk∥2

(σ2
ij + 2σ2

i )p
− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

{
−pϵ2/8

}
so

P
(
∥xi − xk∥2 ≥ (σ2

ijp+ 2σ2
i p)(1 + ϵ)

)
≤ 2 exp

{
−pϵ2/8

}
Then with probability at least 1− 2 exp{−pϵ2/8}, the concentration satisfies

∥xi − xk∥2 < (σ2
ijp+ 2σ2

i p)(1 + ϵ)

Now take ϵ = 1/4 so that with probability at least 1− 2 exp{−p/128}, the separation satisfies

∥xi − xk∥2 < p(2.5σ2
i + 1.25σ2

ij)
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Proposition 5. Given a set X of N samples from a two-level HGMM with outliers and σmax,2 ≤

ρ <
√
0.6σmin,1, then with probability at least 1− 12N2 exp{−p/128}, the distance between second-

level positives within a cluster satisfies

∥xi − xj∥2 < 2.5pρ2, ∀xi,xj s.t. l(xi) = l(xj) = (a, b), a > 0, b > 0,

and the distance between second-level positives from a cluster and other samples not in that cluster

satisfies

∥xi − xj∥2 > 2.5pρ2 ∀xi,xj s.t. l(xj) ̸= l(xi).

Proof. From Corollary 12, with probability at least 1 − 2 exp{−p/128}, the distance between two

positives in the same cluster is bounded as

∥xi − xj∥2 < 2.5pσ2
ij , l(xi) = l(xj) = (a, b), a > 0, b > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distances between all

positives in the same cluster are bounded as

∥xi − xj∥2 < 2.5pσ2
ij ≤ 2.5pσ2

max,2 ≤ 2.5pρ2, ∀xi,xj s.t. l(xi) = l(xj) = (a, b), a > 0, b > 0.

From Corollary 13, with probability at least 1−2 exp{−p/128}, the distance between two positives

from the same first cluster but different second-level clusters satisfies

∥xi − xj∥2 > p(1.5σ2
i + 0.75(σ2

ij + σ2
ik)), l(xi) = (a, b), l(xj) = (a, d), b ̸= d, a, b, d > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

two positives from the same first cluster but different second-level clusters satisfies

∥xi − xj∥2 > p(1.5σ2
i + 0.75(σ2

ij + σ2
ik)), ∀xi,xj s.t. l(xi) = (a, b), l(xj) = (a, d), b ̸= d, a, b, d > 0.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1− 2N2 exp{−p/128}, the distance

between any two positives from the same first cluster but different second-level clusters satisfies

∥xi − xj∥2 > 1.5pσ2
min,1 > 2.5pρ2, ∀xi,xj s.t. l(xi) = (a, b), l(xj) = (a, d), b ̸= d, a, b, d > 0.

From Corollary 14, with probability at least 1− 2 exp{−p/128}, the distance between two second-

level positives from different first clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij + 0.75σ2

ik),
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where

l(xi) = (a, b), l(xj) = (c, d), a ̸= c, a, b, c, d > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

two second-level positives from different first clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij + 0.75σ2

ik),

where

∀xi,xj s.t. l(xi) = (a, b), l(xj) = (c, d), a, b, c, d > 0.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1− 2N2 exp{−p/128}, the distance

between any two second-level positives from different first clusters satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ2, ∀xi,xj s.t. l(xi) = (a, b), l(xj) = (c, d), a, b, c, d > 0.

From Corollary 15, with probability at least 1−2 exp{−p/128}, the distance between a second-level

positive and a first-level negative satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij), l(xi) = (a, b), l(xj) = −1.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positive and any first-level negative satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij), ∀xi,xj s.t. l(xi) = (a, b), l(xj) = −1, a, b > 0.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1− 2N2 exp{−p/128}, the distance

between any second-level positive and any first-level negative satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ2, ∀xi,xj s.t. l(xi) = (a, b), l(xj) = −1, a, b > 0.

From Corollary 16, with probability at least 1−2 exp{−p/128}, the distance between a second-level

positive and a second-level negative from the same first-level cluster satisfies

∥xi − xj∥2 > p(1.5σ2
i + 0.75σ2

ij), l(xi) = (a, b), l(xj) = (a,−1), a, b > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positive and any second-level negative from the same first-level cluster satisfies

∥xi − xj∥2 > p(1.5σ2
i + 0.75σ2

ij), ∀xi,xj s.t. l(xi) = (a, b), l(xj) = (a,−1), a, b > 0.
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Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1− 2N2 exp{−p/128}, the distance

between any second-level positive and any second-level negative from the same first-level cluster

satisfies

∥xi − xj∥2 > 1.5pσ2
min,1 > 2.5pρ2, ∀xi,xj s.t. l(xi) = (a, b), l(xj) = (a,−1), a, b > 0.

From Corollary 17, with probability at least 1−2 exp{−p/128}, the distance between a second-level

positive and a second-level negative from different first-level clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij), l(xi) = (a, b), l(xj) = (c,−1), a, b, c > 0, a ̸= c.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positive and second-level negative from different first-level clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij),

where

∀xi,xj , s.t. l(xi) = (a, b), l(xj) = (c,−1), a, b, c > 0, a ̸= c.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1− 2N2 exp{−p/128}, the distance

between any second-level positive and second-level negative from different first-level clusters satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ2, ∀xi,xj , s.t. l(xi) = (a, b), l(xj) = (c,−1), a, b, c > 0, a ̸= c.

Therefore, with probability at least 1− 10N2 exp{−p/128}, the distance between any positive and

any sample not from that cluster satisfies

∥xi − xj∥2 > 2.5pρ2, ∀xi,xj s.t. l(xj) ̸= l(xi) = (a, b).

Therefore, with probability at least 1 − 12N2 exp{−p/128}, the following bounds on second-level

positives within a cluster and between clusters are satisfied

∥xi − xj∥2 > 2.5pρ2, ∀xi,xj s.t. l(xj) ̸= l(xi) = (a, b), a > 0, b > 0,

and

∥xi − xj∥2 < 2.5pρ2, ∀xi,xj s.t. l(xj) = l(xi) = (a, b), a > 0, b > 0.

47



4.4.3 Loss Bounds

Proposition 6. Given a set X of N samples from a two-level HGMM with outliers and σmax,2 ≤

ρ <
√
0.6σmin,1, then for a first-level negative sample xj , l(xj) = −1, with probability at least

1− 6N exp{−p/128}, the loss satisfies L(xj ; ρ) = −F.

Proof. From Corollary 8, for xi, l(xi) = −1, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xj − xi∥2 > 1.5p, l(xi) = −1, i ̸= j.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 1.5p > 2.5pρ2, ∀xi, l(xi) = −1, i ̸= j.

From Corollary 11, for xi, l(xi) = (a,−1), a > 0, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i )

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
i ) > 2.5pρ2, ∀xi, l(xi) = (a,−1),m > 0.

From Corollary 15, for xi, l(xi) = (a, b), a, b > 0, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij)

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij) > 1.5p > 2.5pρ2, ∀xi, l(xi) = (a, b), a, b > 0.

Therefore, with probability at least 1− 6N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 2.5pρ2, ∀i ̸= j.

Therefore, with probability at least 1− 6N exp{−p/128}, it follows that

ℓ(∥xj − xi∥ ; ρ) = min

(
∥xj − xi∥2

pρ2
− 2.5, 0

)
= 0, ∀i ̸= j.

Therefore, with probability at least 1− 6N exp{−p/128}, the loss satisfies

L(xj ; ρ) =

N∑
i=1

ℓ (∥xj − xi∥ ; ρ) = −F,

since ℓ (∥xj − xj∥ ; ρ) = ℓ(0; ρ) = −F .
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Proposition 7. Given a set X of N samples from a two-level HGMM with outliers and σmax,2 ≤

ρ <
√
0.6σmin,1, then for a second-level negative sample xj , l(xj) = (a,−1), a > 0, with probability

at least 1− 8N exp{−p/128}, the loss satisfies L(xj ; ρ) = −F.

Proof. From Corollary 9, for xi, l(xi) = (c,−1), c > 0, a ̸= c, with probability at least 1 −

2 exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75(σ2
i + σ2

j )), l(xi) = (c,−1), a ̸= c.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75(σ2
i + σ2

j )), ∀xi, l(xi) = (c,−1), a ̸= c.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1−2N exp{−p/128}, the separation

satisfies

∥xj − xi∥2 > 1.5p > 2.5pρ2, ∀xi, l(xi) = (c,−1), a ̸= c.

From Corollary 10, for xi, l(xi) = (a,−1), with probability at least 1− 2 exp{−p/128}, the separa-

tion satisfies

∥xj − xi∥2 > 1.5pσ2
i , l(xi) = (a,−1), i ̸= j.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 1.5pσ2
i , ∀xi, l(xi) = (a,−1), i ̸= j.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1−2N exp{−p/128}, the separation

satisfies

∥xj − xi∥2 > 1.5pσ2
min,1 > 2.5pρ2 ∀xi, l(xi) = (a,−1), i ̸= j.

From Corollary 16, for xi, l(xi) = (a, b), b > 0, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xi − xj∥2 > p(1.5σ2
i + 0.75σ2

ij), l(xi) = (a, b), b > 0.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5σ2
i + 0.75σ2

ij), ∀xi, l(xi) = (a, b), b > 0.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1−2N exp{−p/128}, the separation

satisfies

∥xj − xi∥2 > 1.5p > 2.5pρ2 ∀xi, l(xi) = (a, b), a, b > 0.
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From Corollary 17, for xi, l(xi) = (c, d), c, d > 0, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij) l(xi) = (c, d), c, d > 0.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij), ∀xi, l(xi) = (c, d), c, d > 0.

Given σmax,2 ≤ ρ <
√
0.6σmin,1, then with probability at least 1−2N exp{−p/128}, the separation

satisfies

∥xj − xi∥2 > 1.5p > 2.5pρ2 ∀xi, l(xi) = (c, d), c, d > 0.

Therefore, with probability at least 1− 8N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 2.5pρ2, ∀i ̸= j.

Therefore, with probability at least 1− 8N exp{−p/128}, it follows that

ℓ(∥xj − xi∥ ; ρ) = min

(
∥xj − xi∥2

pρ2
− 2.5, 0

)
= 0, ∀i ̸= j.

Therefore, with probability at least 1− 8N exp{−p/128}, the loss satisfies

L(xj ; ρ) =
N∑
i=1

ℓ (∥xj − xi∥ ; ρ) = −F,

since ℓ (∥xj − xj∥ ; ρ) = ℓ(0; ρ) = −F .

Proposition 8. Given a set X of N samples from a two-level HGMM with outliers and σmax,2 ≤

ρ <
√
0.6σmin,1, then for a second-level positive sample xj , l(xj) = (a, b), a > 0, b > 0, with

probability at least 1−2 exp{−p/128}− exp{−(N −1)wiwij}, the loss is bounded as L(xj ; ρ) < −F.

Proof. The probability that a sample of size N − 1 contains no elements from cluster Sij is

(1− wiwij)
N−1 ≤ exp{−(N − 1)wiwij}.

Therefore, with probability at least 1 − exp{−(N − 1))wiwij}, there is at least one more sample

xa, a ̸= j besides xj in cluster Sij .

From Corollary 12, with probability at least 1− 2 exp{−p/128}, the distance between xa and xj is

bounded as

∥xj − xa∥2 < 2.5pσ2
ij .
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Given σmax,2 ≤ ρ, with probability at least 1− 2 exp{−p/128}, the distance between xa and xj is

bounded as

∥xj − xa∥2 < 2.5pσ2
ij ≤ 2.5pσ2

max,2 ≤ 2.5pρ2.

Therefore, with probability at least 1−2 exp{−p/128}−exp{−(N−1)wiwij}, the following equality

holds

ℓ(∥xj − xa∥ ; ρ) = min

(
∥xj − xa∥2

pρ2
− 2.5, 0

)
< 0.

Therefore, with probability at least 1− 2 exp{−p/128}− exp{−(N − 1)wiwij}, the loss is bounded

above as

L(xj ; ρ) =
N∑
i=1

ℓ (∥xj − xi∥ ; ρ) ≤ ℓ (∥xj − xa∥ ; ρ) + ℓ (∥xj − xj∥ ; ρ) < −F.

Proposition 9. Given a set X of N samples from a two-level HGMM with outliers, with wi ≥

a1/m1, i = 1,m1 for some a1 > 0, wij ≥ a2/m2, j = 1,m2 for some a2 > 0 and σmax,2 ≤ ρ <
√
0.6σmin,1, randomly select a set S of |S| = n subsamples from it, then with probability at least

1−m exp{−na1a2/m}− 2m exp{−p/128}−m exp{−a1a2(N − 1)/m} for each i = 1,m1, j = 1,m2

there exists xk ∈ Sij = {x ∈ S, l(x) = (i, j)} such that L(xk; ρ) < −F .

Proof. According to Lemma 3, the probability that a sample S of size n contains at least one

observation from each cluster is

1−
m1∑
i=1

m2∑
j=1

(1− wiwij)
n ≥ 1−m1m2(1− a1a2/m1m2)

n ≥ 1−m exp{−na1a2/m},

and without loss of generality let xk be the observation from cluster Sij , i = 1,m1, j = 1,m2.

Applying Proposition 8 repeatedly to m samples and using the union bound, with probability at

least 1−2m exp{−p/128}−
∑m1

i=1

∑m2
j=1 exp{−(N−1)wiwij}, the loss is bounded as L(xj ; ρ) < −F.

Since ∀wi ≥ a1/m1, ∀wij ≥ a2/m2, therefore
∑m1

i=1

∑m2
j=1 exp{−(N −1)wiwij} ≤ m exp{−a1a2(N −

1)/m}. Therefore, with probability at least

1−m exp{−na1a2/m} − 2m exp{−p/128} −m exp{−a1a2(N − 1)/m},

for each i = 1,m1, j = 1,m2 there exists xj ∈ Sij such that L(xj ; ρ) < −F.
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4.4.4 Accuracy Guarantees

Theorem 2. Given a set X of N samples from a two-level HGMM with outliers, with wi ≥

a1/m1, i = 1,m1 for some a1 > 0, wij ≥ a2/m2, j = 1,m2 for some a2 > 0 and σmax,2 ≤ ρ <
√
0.6σmin,1, then SCRLM Algorithm 1 that selects n subsamples has 100% accuracy with probability

at least 1−26N2 exp{−p/128}−m exp{−na1a2/m}−2m exp{−p/128}−m exp{−a1a2(N−1)/m}.

Proof. Combining Proposition 6 and Proposition 7, for a negative sample xj , with probability at

least 1 − 14N exp{−p/128}, L(xj ; ρ) = −F , then for all the negatives, with probability at least

1− 14N2 exp{−p/128}, the loss satisfies L(xj ; ρ) = −F.

From Proposition 9, with probability at least

1−m exp{−na1a2/m} − 2m exp{−p/128} −m exp{−a1a2(N − 1)/m}

there is xk ∈ Sij , L(xj ; ρ) < −F.

Combining Proposition 6, Proposition 7 and Proposition 9, with probability at least

1− 14N2 exp{−p/128} −m exp{−na1a2/m} − 2m exp{−p/128} −m exp{−a1a2(N − 1)/m},

only positives will be selected at step 8 of SCRLM.

From Proposition 5, with probability at least 1 − 12N2 exp{−p/128}, all positives are correctly

identified in Steps 9 and 17 and removed from negatives.

So with probability at least

1− 26N2 exp{−p/128} −m exp{−na1a2/m} − 2m exp{−p/128} −m exp{−a1a2(N − 1)/m},

SCRLM will have 100% accuracy.

Based on Theorem 2, Corollary 21 establishes theoretical bounds for parameters p and n.

Corollary 21. Given a set X of N samples from a two-level HGMM with outliers, with wi ≥

a1/m1, wij ≥ a2/m2, i = 1,m1, j = 1,m2 for some a1, a2 > 0 and σmax,2 ≤ ρ <
√
0.6σmin,1, then

for any δ, if

p > 128(2 logN + log
104

δ
),

n >
m

a1a2
(logm+ log

4

δ
),

the SCRLM Algorithm 1 that selects n subsamples will have 100% accuracy with probability at least

1− δ.
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Proof. The condition

p > 128(2 logN + log
104

δ
)

is equivalent to

26N2 exp{−p/128} < δ

4
.

The condition

n >
m

a1a2
(log 4m− log δ)

is equivalent to

m exp(−na1a2/m) <
δ

4
.

The condition

p > 128(log 8m− log δ)

is equivalent to

2m exp{−p/128} < δ

4
.

Finally, the condition

N >
m

a1a2
(log 4m− log δ) + 1.

is equivalent to:

m exp{−a1a2(N − 1)/m} < δ

4
.

Since n < N and m < N , then

p > 128(2 logN + log
104

δ
) > 128(log 8m− log δ)

N > n >
m

a1a2
(log 4m− log δ).

These conditions together imply that

1−26N2 exp{−p/128}−m exp(−na1a2/m)−2m exp{−p/128}−m exp{−a1a2(N −1)/m} > 1− δ.

According to Theorem 2, SCRLM has 100% accuracy with probability at least 1− δ.

Proposition 10. Given a set X of N samples from a two-level HGMM with outliers and√
σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6, then with probability at least 1− 18N2 exp{−p/128}, the distance

between first-level positives within a cluster satisfies

∥xi − xj∥2 < 2.5pρ21, ∀xi,xj s.t. l(xi) = l(xj) = (a,∼), a > 0,
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and the distance between first-level positives from a cluster and other samples not in that cluster

satisfies

∥xi − xj∥2 > 2.5pρ21 ∀xi,xj s.t. l(xj) ̸= l(xi).

Proof. From Corollary 12, with probability at least 1 − 2 exp{−p/128}, the distance between two

second-level positives in the same cluster is bounded as

∥xi − xj∥2 < 2.5pσ2
ij , l(xi) = l(xj) = (a, b), a, b > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distances between all

second-level positives in the same cluster are bounded as

∥xi − xj∥2 < 2.5pσ2
ij < 2.5pσ2

max,2 ≤ 2.5pρ21, ∀xi,xj s.t. l(xi) = l(xj) = (a, b), a, b > 0.

From Corollary 18, with probability at least 1− 2 exp{−p/128}, the distance between two second-

level negatives in the same first-level cluster is bounded as

∥xi − xj∥2 < 2.5pσ2
j , l(xi) = l(xj) = (a,−1), a > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distances between all

second-level negatives in the same first-level cluster are bounded as

∥xi − xj∥2 < 2.5pσ2
j < 2.5pσ2

max,1 ≤ 2.5pρ21, ∀xi,xj s.t. l(xi) = l(xj) = (a,−1), a > 0.

From Corollary 19, with probability at least 1−2 exp{−p/128}, the distance between two positives

from the same first-level cluster but different second-level clusters is bounded as

∥xi − xj∥2 < p(2.5σ2
i + 1.25(σ2

ij + σ2
ik)), l(xi) = (a, b), l(xj) = (a, d), b ̸= d, a, b, d > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distances between two

positives from the same first-level cluster but different second-level clusters are bounded as

∥xi − xj∥2 < 2.5p(σ2
max,1 + σ2

max,2) ≤ 2.5pρ21,

where

∀xi,xj s.t. l(xi) = (a, b), l(xj) = (a, d), b ̸= d, a, b, d > 0.

From Corollary 20, with probability at least 1−2 exp{−p/128}, the distance between two positives

from the same first cluster but different second-level clusters is bounded as

∥xi − xj∥2 < 2.5p(σ2
i + 0.5σ2

ij), l(xi) = (a, b), l(xj) = (a,−1), a, b > 0.
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Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positives and second-level negatives from the same first cluster are bounded as

∥xi − xj∥2 < 2.5p(σ2
max,1 + σ2

max,2) ≤ 2.5pρ21, l(xi) = (a, b), l(xj) = (a,−1), a, b > 0.

Therefore, with probability at least 1− 8N exp{−p/128}, the distance between two first-level pos-

itive is bounded as

∥xi − xj∥2 < 2.5pρ21, ∀xi,xj s.t. l(xj) = (a,∼), l(xi) = (a,∼). (4.3)

Using the union bound, with probability at least 1− 8N2 exp{−p/128}, the distance between any

first-level positives are bounded as

∥xi − xj∥2 < 2.5pρ21, ∀xi,xj s.t. l(xj) = (a,∼), l(xi) = (a,∼).

From Corollary 9, with probability at least 1−2 exp{−p/128}, the distance between two second-level

negatives from different first clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j ), l(xi) = (a,−1), l(xj) = (c,−1), a ̸= c, a, c > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

two second-level negatives from different first clusters satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ21, ∀xi,xj s.t. l(xi) = (a,−1), l(xj) = (c,−1), a, c > 0.

From Corollary 11, with probability at least 1− 2 exp{−p/128}, the distance between second-level

negative and first-level negative satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i ), l(xi) = (a,−1), l(xj) = −1, a > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distances between any

second-level negatives and first-level negatives satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ21, ∀xi,xj s.t. l(xi) = (a,−1), l(xj) = −1, a > 0.

From Corollary 14, with probability at least 1− 2 exp{−p/128}, the distance between two second-

level positives from different first clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij + 0.75σ2

ik),
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where

l(xi) = (a, b), l(xj) = (c, d), a ̸= c, a, b, c, d > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

two second-level positives from different first clusters satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ21, ∀xi,xj s.t. l(xi) = (a, b), l(xj) = (c, d), a, b, c, d > 0.

From Corollary 15, with probability at least 1−2 exp{−p/128}, the distance between a second-level

positive and a first-level negative satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij), l(xi) = (a, b), l(xj) = −1.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positive and any first-level negative satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ21, ∀xi,xj s.t. l(xi) = (a, b), l(xj) = −1, a, b > 0.

From Corollary 17, with probability at least 1−2 exp{−p/128}, the distance between a second-level

positive and a second-level negative from different first-level clusters satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

j + 0.75σ2
ij), l(xi) = (a, b), l(xj) = (c,−1), a, b, c > 0, a ̸= c.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positive and second-level negative from different first-level clusters satisfies

∥xi − xj∥2 > 1.5p > 2.5pρ21, ∀xi,xj , s.t. l(xi) = (a, b), l(xj) = (c,−1), a, b, c > 0, a ̸= c.

Therefore, with probability at least 1 − 10N2 exp{−p/128}, the distance between any first-level

positive and any sample not from that cluster satisfies

∥xi − xj∥2 > 2.5pρ21, ∀xi,xj s.t. l(xj) ̸= l(xi) = (a,∼).

Therefore, with probability at least 1 − 18N2 exp{−p/128}, the following bounds on first-level

positives within a cluster and between clusters are satisfied

∥xi − xj∥2 > 2.5pρ2, ∀xi,xj s.t. l(xj) ̸= l(xi) = (a,∼), a > 0,

and

∥xi − xj∥2 < 2.5pρ2, ∀xi,xj s.t. l(xj) = l(xi) = (a,∼), a > 0.
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Proposition 11. Given a set X of N samples from a two-level HGMM with outliers and√
σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6, then for a first-level negative sample xj , l(xj) = −1, with probabil-

ity at least 1− 6N exp{−p/128}, the loss satisfies L(xj ; ρ) = −F.

Proof. From Corollary 8, for xi, l(xi) = −1, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xj − xi∥2 > 1.5p, l(xi) = −1, i ̸= j.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 1.5p > 2.5pρ21, ∀xi, l(xi) = −1, i ̸= j.

From Corollary 11, for xi, l(xi) = (a,−1), a > 0, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i )

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
i ) > 2.5pρ21, ∀xi, l(xi) = (a,−1),m > 0.

From Corollary 15, for xi, l(xi) = (a, b), a, b > 0, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xi − xj∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij)

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5 + 0.75σ2
i + 0.75σ2

ij) > 1.5p > 2.5pρ21, ∀xi, l(xi) = (a, b), a, b > 0.

Therefore, with probability at least 1− 6N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 2.5pρ21, ∀i ̸= j.

Therefore, with probability at least 1− 6N exp{−p/128}, it follows that

ℓ(∥xj − xi∥ ; ρ1) = min

(
∥xj − xi∥2

pρ21
− 2.5, 0

)
= 0, ∀i ̸= j.

Therefore, with probability at least 1− 6N exp{−p/128}, the loss satisfies

L(xj ; ρ1) =

N∑
i=1

ℓ (∥xj − xi∥ ; ρ1) = −F,

since ℓ (∥xj − xj∥ ; ρ1) = ℓ(0; ρ1) = −F .
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Proposition 12. Given a set X of N samples from a two-level HGMM with outliers and√
σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6, then for a first-level positive sample xj, l(xj) = (k,∼), k > 0, with

probability at least 1− 8 exp{−p/128} − exp{−(N − 1)wk}, the loss is bounded as L(xj ; ρ1) < −F.

Proof. The probability that a sample of size N − 1 contains no elements from the first-level cluster

Sk is

(1− wk)
N−1 ≤ exp{−(N − 1)wk}.

Therefore, with probability at least 1 − exp{−(N − 1))wk}, there is at least one more sample

xa, a ̸= j besides xj in the first-level cluster Sk.

From (4.3), with probability at least 1−8 exp{−p/128}, the distance between xa and xj is bounded

as

∥xj − xa∥2 < 2.5pρ21.

Therefore, with probability at least 1− 8 exp{−p/128}− exp{−(N − 1))wk}, the following equality

holds

ℓ(∥xj − xa∥ ; ρ1) = min

(
∥xj − xa∥2

pρ21
− 2.5, 0

)
< 0.

Therefore, with probability at least 1 − 8 exp{−p/128} − exp{−(N − 1))wk}, the loss is bounded

above as

L(xj ; ρ1) =
N∑
i=1

ℓ (∥xj − xi∥ ; ρ1) ≤ ℓ (∥xj − xa∥ ; ρ1) + ℓ (∥xj − xj∥ ; ρ1) < −F.

Proposition 13. Given a set X of N samples from a two-level HGMM with outliers, with wk ≥

a1/m1, k = 1,m1 for some a1 > 0, and
√
σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6, randomly select a

set S′ of |S′| = n1 subsamples from it, then with probability at least 1 − m1 exp{−n1a1/m1} −

8m1 exp{−p/128}−m1 exp{−a1(N − 1)/m1}, for each k = 1,m1, there exists xj ∈ {x ∈ S′, l(x) =

(k,∼)} such that L(xj ; ρ1) < −F .

Proof. According to Lemma 3, the probability that a sample S′ of size n1 contains at least one

observation from each cluster is

1−
m1∑
k=1

(1− wk)
n1 ≥ 1−m1(1− a1/m1)

n1 ≥ 1−m1 exp{−n1a1/m1},

and without loss of generality let xj be the observation from cluster Si, i = 1,m1. Applying

Proposition 12 repeatedly to m1 samples and using the union bound, with probability at least
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1− 8m1 exp{−p/128} −
∑m1

i=1 exp{−(N − 1)wi}, the loss is bounded as L(xj , ρ1) < −F.

Since ∀wk ≥ a1/m1, therefore
∑m1

k=1 exp{−(N − 1)wk} ≤ m1 exp{−a1(N − 1)/m1}. Therefore,

with probability at least 1−m1 exp{−n1a1/m1} − 8m1 exp{−p/128} −m1 exp{−a1(N − 1)/m1},

for each k = 1,m1 there exists xj ∈ Si such that L(xj ; ρ1) < −F.

Theorem 3. Given a set X of N samples from a two-level HGMM with outliers, with wi ≥

a1/m1, i = 1,m1 for some a1 > 0,
√

σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6, then the HSCRLM Algorithm 2

Step 3 has 100% accuracy with probability at least 1− 24N2 exp{−p/128} −m1 exp{−n1a1/m1} −

8m1 exp{−p/128} −m1 exp{−a1(N − 1)/m1}.

Proof. Combining Proposition 11, for a first-level negative sample xj , with probability at least

1− 6N exp{−p/128}, L(xj ; ρ) = −F , then for all the first-level negatives, with probability at least

1− 6N2 exp{−p/128}, the loss satisfies L(xj ; ρ1) = −F.

From Proposition 13, with probability at least

1−m1 exp{−n1a1/m1} − 8m1 exp{−p/128} −m1 exp{−a1(N − 1)/m1},

there is xj ∈ Si, L(xj ; ρ1) < −F.

Combining Proposition 11 and Proposition 13, with probability at least

1− 6N2 exp{−p/128} −m1 exp{−n1a1/m1} − 8m1 exp{−p/128} −m1 exp{−a1(N − 1)/m1},

only first-level positives will be selected.

From Proposition 10, with probability at least 1 − 18N2 exp{−p/128}, all first-level positives are

correctly identified and removed from first-level negatives.

So with probability at least

1− 24N2 exp{−p/128} −m1 exp{−n1a1/m1} − 8m1 exp{−p/128} −m1 exp{−a1(N − 1)/m1},

HSCRLM Algorithm 2 Step 3 will have 100% accuracy.

Proposition 14. Given a set X of N samples from a two-level HGMM with outliers and σmax,2 ≤

ρ2 <
√
0.6σmin,1, then with probability at least 1− 6N2 exp{−p/128}, the distance between second-

level positives within a cluster satisfies

∥xi − xj∥2 < 2.5pρ22, ∀xi,xj s.t. l(xi) = l(xj) = (a, b), a > 0, b > 0
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and the distance between second-level positives from a cluster and other samples not in that cluster

satisfies

∥xi − xj∥2 > 2.5pρ22 ∀xi,xj s.t. l(xj) ̸= l(xi).

Proof. From Corollary 12, with probability at least 1 − 2 exp{−p/128}, the distance between two

second-level positives in the same second-level cluster is bounded as

∥xi − xj∥2 < 2.5pσ2
ij , l(xi) = l(xj) = (a, b), a, b > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distances between all

second-level positives in the same second-level cluster are bounded as

∥xi − xj∥2 < 2.5pσ2
ij < 2.5pσ2

max,2 ≤ 2.5pρ22, ∀xi,xj s.t. l(xi) = l(xj) = (a, b), a, b > 0.

From Corollary 16, with probability at least 1−2 exp{−p/128}, the distance between a second-level

positive and a second-level negative from same first-level clusters satisfies

∥xi − xj∥2 > p(1.5σ2
i + 0.75σ2

ij), l(xi) = (a, b, l(xj) = (a,−1), a > 0.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positives and second-level negatives from the same first clusters satisfies

∥xi − xj∥2 > 1.5pσ2
min,1 > 2.5pρ22, ∀xi,xj s.t. l(xi) = (a, b), l(xj) = (a,−1), a > 0.

From Corollary 13, with probability at least 1− 2 exp{−p/128}, the distance between two second-

level positives from the same first-level cluster satisfies

∥xi − xj∥2 > p(1.5σ2
i + 0.75(σ2

ij + σ2
ik)), l(xi) = (a, b), l(xj) = (a, d), a, b, d > 0, b ̸= d.

Using the union bound, with probability at least 1− 2N2 exp{−p/128}, the distance between any

second-level positives from the same first-level cluster satisfies

∥xi − xj∥2 > 1.5pσ2
min,1 > 2.5pρ22, ∀xi,xj , s.t. l(xi) = (a, b), l(xj) = (a, d), a, b, d > 0, b ̸= d.

Therefore, with probability at least 1 − 4N2 exp{−p/128}, the distance between any second-level

positive and any sample not from that cluster satisfies

∥xi − xj∥2 > 2.5pρ22, ∀xi,xj s.t. l(xj) ̸= l(xi) = (a, b).
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Therefore, with probability at least 1 − 6N2 exp{−p/128}, the following bounds on second-level

positives within a cluster and between clusters are satisfied

∥xi − xj∥2 > 2.5pρ22, ∀xi,xj s.t. l(xj) ̸= l(xi) = (a, b), a, b > 0,

and

∥xi − xj∥2 < 2.5pρ22, ∀xi,xj s.t. l(xj) = l(xi) = (a, b), a, b > 0.

Proposition 15. Given a set X of N samples from a two-level HGMM with outliers and σmax,2 ≤

ρ2 <
√
0.6σmin,1, then for a second-level negative sample xj , l(xj) = (a,−1), a > 0, with probability

at least 1− 4|Xi| exp{−p/128}, the loss satisfies L(xj ; ρ2) = −F for i ∈ {1, ...,m1}.

Proof. From Corollary 10, for xi, l(xi) = (a,−1), with probability at least 1− 2 exp{−p/128}, the

separation satisfies

∥xj − xi∥2 > 1.5pσ2
i , l(xi) = (a,−1), i ̸= j.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 1.5pσ2
i , ∀xi, l(xi) = (a,−1), i ̸= j.

Given σmax,2 ≤ ρ2 <
√
0.6σmin,1, then with probability at least 1−2N exp{−p/128}, the separation

satisfies

∥xj − xi∥2 > 1.5pσ2
min,1 > 2.5pρ22 ∀xi, l(xi) = (a,−1), i ̸= j.

From Corollary 16, for xi, l(xi) = (a, b), b > 0, with probability at least 1 − 2 exp{−p/128}, the

separation satisfies

∥xj − xi∥2 > p(1.5σ2
i + 0.75σ2

ij), l(xi) = (a, b), b > 0.

Using the union bound, with probability at least 1− 2N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > p(1.5σ2
i + 0.75σ2

ij), ∀xi, l(xi) = (a, b), b > 0.

Given σmax,2 ≤ ρ2 <
√
0.6σmin,1, then with probability at least 1−2N exp{−p/128}, the separation

satisfies

∥xj − xi∥2 > 1.5pσ2
min,1 > 2.5pρ22 ∀xi, l(xi) = (a, b), a, b > 0.
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Therefore, with probability at least 1− 4N exp{−p/128}, the separation satisfies

∥xj − xi∥2 > 2.5pρ22, ∀i ̸= j.

Therefore, with probability at least 1− 4N exp{−p/128}, it follows that

ℓ(∥xj − xi∥ ; ρ2) = min

(
∥xj − xi∥2

pρ22
− 2.5, 0

)
= 0, ∀i ̸= j.

Therefore, with probability at least 1− 4N exp{−p/128}, the loss satisfies

L(xj ; ρ2) =

N∑
i=1

ℓ (∥xj − xi∥ ; ρ2) = −F,

since ℓ (∥xj − xj∥ ; ρ2) = ℓ(0; ρ2) = −F .

Proposition 16. Given a set X of N samples from a two-level HGMM with outliers with N >

2n2m1/a, and σmax,2 ≤ ρ2 <
√
0.6σmin,1, then for a second-level positive sample from first level

cluster Si and second-level cluster Sij, then with probability at least 1−2 exp{−p/128}−exp{−(Ni−

1)wij}, the loss is bounded as L(xj ; ρ2) < −F for i ∈ {1, ...,m1}.

Proof. The probability that a sample of size Ni − 1 contains no elements from the second-level

cluster Sij is

(1− wij)
Ni−1 ≤ exp{−(Ni − 1)wij}.

Therefore, with probability at least 1 − exp{−(Ni − 1)wij}, there is at least one more sample

xa, a ̸= j besides xj in the second-level cluster Sij .

From Corollary 12, with probability at least 1− 2 exp{−p/128}, the distance between xa and xj is

bounded as

∥xj − xa∥2 < 2.5pρ22.

Therefore, with probability at least 1− 2 exp{−p/128}− exp{−(Ni− 1)wij}, the following equality

holds

ℓ(∥xj − xa∥ ; ρ2) = min

(
∥xj − xa∥2

pρ22
− 2.5, 0

)
< 0.

Therefore, with probability at least 1 − 2 exp{−p/128} − exp{−(Ni − 1)wij}, the loss is bounded

above as

L(xj ; ρ2) =

Ni∑
i=1

ℓ (∥xj − xi∥ ; ρ2) ≤ ℓ (∥xj − xa∥ ; ρ2) + ℓ (∥xj − xj∥ ; ρ2) < −F.
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Proposition 17. Given a set X of N samples from a two-level HGMM with outliers, with wij ≥

a2/m2, j = 1,m2 for some a2 > 0, and σmax,2 ≤ ρ2 <
√
0.6σmin,1, randomly select a set S2 of |S2| =

n2 subsamples from it, then with probability at least 1−m2 exp{−n2a2/m2}− 2m2 exp{−p/128}−

m2 exp{−a2(Ni − 1)/m2} for each j = 1,m2 there exists xj ∈ {x ∈ S2, l(x) = (i, j)} such that

L(xj ; ρ2) < −F .

Proof. According to Lemma 4, the probability that a sample S′′ of size n2 contains at least one

observation from each cluster is

1−
m2∑
j=1

(1− wij)
n2 ≥ 1−m2(1− a2/m2)

n2 ≥ 1−m2 exp{−n2a2/m2},

and without loss of generality let xj be the observation from cluster Sij , i = 1,m1, j = 1,m2.

Applying Proposition 17 repeatedly to m2 samples and using the union bound, with probability at

least 1− 2m2 exp{−p/128} −
∑m2

j=1 exp{−(Ni − 1)wij}, the loss is bounded as L(xj ; ρ2) < −F.

Since ∀wij ≥ a2/m2, therefore
∑m2

j=1 exp{−(Ni − 1)wij} ≤ m2 exp{−a2(Ni − 1)/m2}. Therefore,

with probability at least 1−m2 exp{−n2a2/m2} − 2m2 exp{−p/128} −m2 exp{−a2(Ni − 1)/m2},

for each j = 1,m2 there exists xj ∈ Sij such that L(xj ; ρ2) < −F.

Theorem 4. Given a set X of N samples from a two-level HGMM with outliers, with wij ≥

a2/m2, j = 1,m2 for some a2 > 0 and σmax,2 ≤ ρ2 <
√
0.6σmin,1, then the HSCRLM Algorithm 2

Step 6 has 100% accuracy with probability at least 1− 10N2
i exp{−p/128} −m2 exp{−n2a2/m2} −

2m2 exp{−p/128} −m2 exp{−a2(Ni − 1)/m2}.

Proof. Combining Proposition 15, for a second-level negative sample xj , with probability at least

1 − 4Ni exp{−p/128}, L(xj ; ρ) = −F , then for all the second-level negatives, with probability at

least 1− 4N2
i exp{−p/128}, the loss satisfies L(xj ; ρ1) = −F.

From Proposition 17, with probability at least

1−m2 exp{−n2a2/m2} − 2m2 exp{−p/128} −m2 exp{−a2(Ni − 1)/m2},

there is xj ∈ Si, L(xj ; ρ1) < −F.

Combining Proposition 11 and Proposition 13, with probability at least

1− 4N2
i exp{−p/128} −m2 exp{−n2a2/m2} − 2m2 exp{−p/128} −m2 exp{−a2(Ni − 1)/m2},

only second-level positives will be selected.

From Proposition 14, with probability at least 1− 6N2
i exp{−p/128}, all second-level positives are
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correctly identified and removed from second-level negatives.

So with probability at least

1− 10N2
i exp{−p/128} −m2 exp{−n2a2/m2} − 2m2 exp{−p/128} −m2 exp{−a2(Ni − 1)/m2},

HSCRLM Step 6 will have 100% accuracy.

Theorem 5. Given a set X of N samples from a two-level HGMM with outliers, with wi ≥

a1/m1, wij ≥ a2/m2, i = 1,m1, j = 1,m2 for some a1, a2 > 0 and
√

σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6,

σmax,2 ≤ ρ2 <
√
0.6σmin,1, then the HSCRLM Algorithm 2 Step 4-8 has 100% accuracy with

probability at least 1−10N2 exp{−p/128}−m exp{−n2a2/m2}−2m exp{−p/128}−m exp{−a2(Ni−

1)/m2}.

Proof. From Lemma 4, with probability at least 1−2 exp{−Nw2
i /2}, there are at leastNwi/2+1 ob-

servations in Xi. Therefore, with probability at least 1−2 exp{−Na21/2m
2
1}−10N2

i exp{−p/128}−

m2 exp{−n2a2/m2}−2m2 exp{−p/128}−m2 exp{−a1a2N/2m}, HSCRLM Algorithm 2 Step 6 can

achieve 100% accuracy. HSCRLM Algorithm 2 Step 4-8 apply Step 6 m1 times, Therefore, with

probability 1−2m1 exp{−Na21/2m
2
1}−10N2 exp{−p/128}−m exp{−n2a2/m2}−2m exp{−p/128}−

m exp{−a1a2N/2m}, the HSCRLM Algorithm 2 Step 4-8 has 100% accuracy.

Theorem 6. Given a set X of N samples from a two-level HGMM with outliers, with wi ≥

a1/m1, wij ≥ a2/m2, i = 1,m1, j = 1,m2 for some a1, a2 > 0 and
√

σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6,

σmax,2 ≤ ρ2 <
√
0.6σmin,1, then the HSCRLM Algorithm 2 has 100% accuracy with probability

at least 1− (34N2 + 8m1 + 2m) exp{−p/128} −m1 exp{−n1a1/m1} −m1 exp{−a1(N − 1)/m1} −

2m1 exp{−Na21/2m
2
1} −m exp{−n2a2/m2} −m exp{−a1a2N/2m}.

Proof. Combining Theorem 3 and Theorem 5, we obtain with probability at least

1− 24N2 exp{−p/128} −m1 exp{−n1a1/m1} − 8m1 exp{−p/128}

−m1 exp{−a1(N − 1)/m1} − 2m1 exp{−Na21/2m
2
1} − 10N2 exp{−p/128}

−m exp{−n2a2/m2} − 2m exp{−p/128} −m exp{−a1a2N/2m},

the HSCRLM Algorithm 2 has 100%. Therefore, with probability at least

1− (34N2 + 8m1 + 2m) exp{−p/128} −m1 exp{−n1a1/m1} −m1 exp{−a1(N − 1)/m1}

− 2m1 exp{−Na21/2m
2
1} −m exp{−n2a2/m2} −m exp{−a1a2N/2m},

the HSCRLM Algorithm 2 has 100%.
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Corollary 22. Given a set X of N samples from a two-level HGMM with outliers, with wi ≥

a1/m1, wij ≥ a2/m2, i = 1,m1, j = 1,m2 for some a1, a2 > 0 and
√

σ2
max,1 + σ2

max,2 ≤ ρ1 <
√
0.6,

σmax,2 ≤ ρ2 <
√
0.6σmin,1, then for any δ, if

p > 128(log (204N2 + 48m1 + 12m)− log δ)

n1 >
m1

a1
(log 6m1 − log δ)

n2 >
m2

a2
(log 6m− log δ)

N >
2m2

1

a21
log

12m1

δ

N >
2m

a1a2
log

6m

δ

the HSCRLM Algorithm 2 will have 100% accuracy with probability at least 1− δ.

Proof. The condition

p > 128(log (204N2 + 48m1 + 12m)− log δ)

is equivalent to

(34N2 + 8m1 + 2m) exp{−p/128} < δ

6
.

the condition

n1 >
m1

a1
(log 6m1 − log δ)

is equivalent to:

m1 exp{−n1a1/m1} <
δ

6
.

the condition

n2 >
m2

a2
(log 6m− log δ)

is equivalent to:

m exp{−n2a2/m2} <
δ

6
.

The condition

N >
2m2

1

a21
log

12m1

δ

is equivalent to

2m1 exp{−Na21/2m
2
1} <

δ

6
.
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The condition

N >
2m

a1a2
log

6m

δ

is equivalent to

m exp{−a1a2N/2m} < δ

6
.

The condition

N >
m1

a1
(log 6m1 − log δ) + 1.

is equivalent to:

m1 exp{−a1(N − 1)/m1} <
δ

6
.

4.5 Computational Complexity

4.5.1 Computational Complexity of Algorithm 2

Step 3 takes O(m1pN logm1) which is explained in Section 3.4. Steps 4-8 take O(mpN logm2).

The computational complexity of HSCRLM (Algorithm 2) is O(m1Np logm1 + mNp logm2) =

O(mNp logm2). If m1 = m2 =
√
m, then the computational complexity of Algorithm 2 is

O(mNp log
√
m).

4.5.2 Computational Complexity of Algorithm 3

Step 3 takes O(m1p), Step 7 takes O(km2p) The computational complexity of hierarchical

classification (Algorithm 3) is O(m1p+ km2p) = O(m1p+ kmp/m1). If m1 is set to be
√
km, then

the total complexity is O(
√
kmp).
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CHAPTER 5

EMPIRICAL EVALUATION

5.1 Overview

This chapter presents an empirical evaluation of the performance of SCRLM using synthetic

data and real datasets from computer vision. First, the tightness of the parameter bounds given in

the theoretical guarantees are evaluated using synthetic data. Then, the effectiveness of SCRLM

in real applications is evaluated using five real image datasets.

To evaluate the clustering performance on synthetic and real datasets, two evaluation measures

are defined for a true labeling vector l ∈ {1, ...,m}N and an obtained labeling vector l̂ ∈ {1, ..., T}N .

1. Accuracy(l, l̂) = 1
N maxπ∈P

∑N
i=1 I(π(̂li) = li)

2. Purity(l, l̂) = 1
N

∑T
i=1maxj |̂l−1(i) ∩ l−1(j)|

where T is the parameter specifying the maximum number of clusters allowed and l−1(j) = {i, li =

j}. Purity assesses the homogeneity of clusters by formalizing the process of assigning each cluster

to the true class label that is most frequent within that cluster. It then quantifies this assignment

by computing the ratio of correctly assigned data points to the total number of data points.

In order to assess the effectiveness of SCRLM, its performance is compared with the following

clustering methods: k-means++ (Arthur and Vassilvitskii, 2007), Complete Linkage Clustering

(CL) (Johnson, 1967), Spectral Clustering (SC) (Ng et al., 2002), Tensor Decomposition (TD)

(Hsu and Kakade, 2013), Expectation Maximization (EM) (Dempster et al., 1977) and t-Distributed

Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and Hinton, 2008).

For consistency in comparing the accuracy and running time, experiments use an implementa-

tion of SCRLM and the state-of-the-art algorithms in MATLAB. For k-means++, the built in func-

tion kmeans that implements k-means++ is used. The built-in function linkage, spectralcluster

and fitgmdist are used for CL, SC and EM respectively. For TD, Theorem 2 from (Hsu and

Kakade, 2013) has been implemented in MATLAB. For t-SNE+k-means++, the built-in tsne

function is used to generate a matrix of two-dimensional embeddings followed by an application of

k-means++ to obtain the final results. For SCRLM+k-means, k-means is applied using the initial

centers obtained from SCRLM.
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5.2 Simulation Experiments

This section shows experiments on synthetic data generated from a GMMwith outliers described

in Equation 3.1 and a HGMM with outliers described in Equation 4.1.

5.2.1 Comparison of Observed and Theoretical Accuracy of SCRLM

This section evaluates the tightness of the theoretical bounds for Algorithm 1. Synthetic data

is generated with 20% outliers. The minimum and maximum weights for the positive clusters are

taken to be 0.7/m and 0.9/m respectively. The standard deviations σi of positive clusters are

linearly increasing with i from 1/16 to 1/4. The experiments use ρ = 0.5.

The regions for different parameter combinations where the theoretical bound guarantees of

achieving 100% accuracy with at least 99% probability are compared with similar regions obtained

experimentally. The theoretical regions are described below on a case-by-case basis. The experi-

mental regions are obtained by running Algorithm 1 with different parameter combinations on a

log log plot. For each parameter combination the algorithm is run 100 times and the number of

times the algorithm has 100% accuracy is recorded. The area where at least 99 of the 100 runs had

100% accuracy is shown in light gray in Figure 5.1.

Figure 5.1 a) displays the results for the data dimension p vs. the sample size N , keeping the

number of clusters m fixed to m = 3 and the subsample size n = ⌈ma (logm+ log 4
δ )⌉. According to

Corollary 7, the theoretical p in this case should be at least

p > ⌈128(2 logN + log
40

δ
)⌉

when δ = 0.01. This area is shown in dark gray in Figure 5.1 a). From the plot, it can be seen

that the theoretical bound on p is not very tight, since there is a large gap, by a factor of over 64

between the dark region (theoretical) and the light gray region (experimental).

Figure 5.1 b) displays the results for the subsample size n vs. the number of clusters m, when

the sample size is N = 20, 000 and p = 3600. According to Corollary 7, the theoretical n is at least

n > ⌈m
a
(logm+ log

4

δ
)⌉.

The plot indicates that the theoretical bound for n is tight, by a factor around 1.2.

Figure 5.1 c) displays the results for the data dimension p vs. the number of clusters m, when

N is fixed to be N = 20, 000 and n = ⌈ma (logm+log 4
δ )⌉. According to Corollary 7, the theoretical
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a) p vs N(m = 3) b) n vs m (N = 20, 000, p = 3, 600)

c) p vs m (N = 20, 000) d) N vs m (p = 3, 600)

Figure 5.1: Comparison between the parameter combinations where the SCRLM algo-
rithm is theoretically guaranteed to have 100% accuracy for 99% of the time with the
experimental findings in GMM with outliers.

p should be at least

p > ⌈128(logm+ log
8

δ
)⌉

when δ = 0.01. The plot indicates that the bound on p in not very tight, off by a factor over 32.

Figure 5.1 d) displays the results for the sample size N vs. the number of clusters m, when

p = 3600 and n = ⌈ma (logm+ log 4
δ )⌉. According to Corollary 7, the theoretical N is at least

N > ⌈m
a
(logm+ log

4

δ
) + 1⌉.

The theoretical bound almost overlaps the experimental bound in this case since the smallest N

one can pick is n.
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a) p vs N(m = 3) b) n vs m (N = 20, 000, p = 3, 600)

c) p vs m (N = 20, 000) d) N vs m (p = 3, 600)

Figure 5.2: Comparison between the parameter combinations where the SCRLM algo-
rithm is theoretically guaranteed to have 100% accuracy for 99% of the time with the
experimental findings in GMM without outliers.

The empirical results support the conclusions that the theoretical bound for p is conservative

and accurate results are obtained with smaller values of p in practice, but the theoretical bounds

for N and n are in good agreement with values needed in practice.

We also generate data in GMM without outliers and compare the theoretical bounds with the

experimental bounds in Figure 5.2. The minimum and maximum weights for the positive clusters

are taken to be 0.7/m and 1.3/m respectively. The standard deviations σi of positive clusters and

ρ are taken to be the same as Section 5.2.1. From Figure 5.1 and Figure 5.2, it is observed that the

experimental bounds in GMM with outliers is tighter than the bounds in GMM without outliers.
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5.2.2 Comparison of Observed and Theoretical Accuracy of HSCRLM

This section evaluates the tightness of the theoretical bounds for Algorithm 2. Synthetic data

is generated with 10% first-level outliers and 10% second-level outliers per first-level cluster. The

minimum and maximum weights for the first and second-level positive clusters are taken to be

0.85/m and 0.95/m respectively. The standard deviations σi of first-level positive clusters are

linearly increasing with i from 0.5 to 0.6, The standard deviations σij of second-level positive

clusters are linearly increasing with j from 0.05 to 0.3. The experiments use ρ1 = 0.7 and ρ2 = 0.35.

Figure 5.3 a) displays the results for the data dimension p vs. the sample size N , keeping

the number of first-level and second-level clusters m1 = m2 = 4 and the subsample size n1 =

⌈m1
a1

(logm1 + log 6
δ )⌉ and n2 = ⌈m2

a2
(logm+ log 6

δ )⌉. According to Corollary 22, the theoretical p in

this case should be at least

p > ⌈128(log (204N2 + 48m1 + 12m)− log δ)⌉.

when δ = 0.01. From the plot, it can be seen that the theoretical bound on p is not very tight,

since there is a large gap, by a factor of over 16 between the dark region (theoretical) and the light

gray region (experimental).

Figure 5.3 b) displays the results for the subsample size n1 vs. the number of first-level clusters

m1, when the sample size is N = 800, 000 and p = 4800. According to Corollary 22, the theoretical

n1 is at least

n1 > ⌈
m1

a1
(logm1 + log

6

δ
)⌉.

The plot indicates that the theoretical bound for n1 is tight, by a factor around 1.39.

Figure 5.3 c) displays the results for the subsample size n2 vs. the number of second-level

clusters m2, when the sample size is N = 800, 000 and p = 4800. According to Corollary 22, the

theoretical n2 is at least

n2 > ⌈
m2

a2
(logm+ log

6

δ
)⌉.

The plot indicates that the theoretical bound for n2 is tight, by a factor around 1.34.

The empirical results support the conclusions that the theoretical bound for p is conservative

and accurate results are obtained with smaller values of p in practice, but the theoretical bounds

for n1 and n2 are in good agreement with values needed in practice.
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a) p vs N b) n1 vs m1 c) n2 vs m2

Figure 5.3: Comparison between the parameter combinations where the HSCRLM algo-
rithm is theoretically guaranteed to have 100% accuracy for 99% of the time with the
experimental findings.

5.2.3 Stability of SCRLM Relative to the Bandwidth Parameter

This following experiments evaluate the tightness of the theoretical bounds of ρ for Algorithm

1. The experiments use σmax = 0.25.

Figure 5.4 a) displays the results for the bandwidth parameter ρ vs. the sample size N , keeping

the number of clusters m fixed to m = 3 and the subsample size n = ⌈ma (logm + log 4
δ )⌉. Figure

5.4 b) displays the results for the bandwidth parameter ρ vs. the data dimension p, when N = 32,

m = 3 and n = ⌈ma (logm + log 4
δ )⌉. Figure 5.4 c) displays the results for the the bandwidth

parameter ρ vs. the number of clusters m, when N is fixed to be N = 20000, p is fixed to be 3700

and n = ⌈ma (logm+ log 4
δ )⌉. Figure 5.4 d) displays the results for the bandwidth parameter ρ vs.

the number of subsamples n, when N = 20000, p = 4200 and m = 3.

According to Assumption 1, for all of the experiments, the theoretical upper bound of ρ is
√
0.6, and the theoretical lower bound of ρ is σmax = 0.25. From Figure 5.4, it can be seen that the

theoretical upper bound on ρ is not very tight with a difference of more than 0.1, but the theoretical

lower bound on ρ is very tight with the difference less than 0.02.

The empirical results support the conclusions that the theoretical upper bound for ρ is not

tight, that 100% accuracy can be achieved with ρ > σmax in practice, but the theoretical lower

bounds for ρ are in good agreement with values needed in practice.

5.2.4 Comparison with other clustering methods

For these simulations, the data is generated with different number of clusters (m), different

dimension (p) and different number of observations (N). The data is generated to contain 80%

positives and 20% negatives (outliers). The number of desired clusters is specified as m + 1 for
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a) ρ vs N (m = 3, p = 3600) b) ρ vs p (N = 32,m = 3)

c) ρ vs m (N = 20, 000, p = 3600) d) ρ vs n (N = 20, 000, p = 3600,m = 3)

Figure 5.4: Evaluation of tightness of the bandwidth parameter ρ.

all methods other than SCRLM. For SCRLM, the number of desired clusters T was selected to be

T = N and thus the actual number of clusters was found automatically. From Figure 5.5, it can

be seen that only SCRLM and TD are able to detect outliers, the other methods are very sensitive

to outliers and SCRLM is much faster than TD which is shown in Figure 5.6.

5.2.5 Tuning of Bandwidth Parameter

This section describes how to tune the hyper-parameter ρ based on data distribution. It is

followed by the following process.

1. Subsampling the Data. First of all, we randomly select a representative subset, or subsample,

from the complete dataset. This subsample should maintain the essential characteristics and

patterns present in the entire data population. From Corollary 7, n should be chosen by

⌈ma (logm+ log 4
δ )⌉.
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a) Accuracy vs m b) Accuracy vs p c) Accuracy vs N

Figure 5.5: Accuracy of clustering algorithms on simulation data.

a) Time vs m b) Time vs p c) Time vs N

Figure 5.6: Time of clustering algorithms on simulation data.

2. Computation of Scaled Pairwise Distances. Secondly, we employ the Euclidean distance to

calculate the pairwise distances between data points within the selected subsample. After

computing the distances, divide each distance value by
√
pF . The resulting pairwise distance

matrix quantifies the dissimilarity or similarity between each pair of data points.

3. Construction of Scaled Distance Histogram. Then we formulate a histogram that represents

the distribution of the scaled pairwise distances within the subsample. The histogram’s

bin structure captures the range of scaled distance values, allowing for insights into the

distribution characteristics.

4. Observation of Gap in Histogram. Finally, we examine the histogram of pairwise distances

for patterns and gaps. A noticeable gap or separation between clusters of distances suggests

the presence of distinct groups or clusters within the subsamples.

From Figure 5.7, when the dimension becomes bigger, we have a wider range of choice of ρ. For

example, when p = 100, an appropriate ρ is chosen between [0.3, 0.7], when p = 1000, an appropriate

ρ can be chosen between [0.25, 0.8].
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a) p = 10 b) p = 100 c) p = 1000

Figure 5.7: Tuning of bandwidth parameter ρ (N = 20000,m = 10, w−1 = 0.2).

Figure 5.8: Variability of MNIST, cluster centers obtained by SCRLM (T = 100).

5.3 Real Data Experiments

To show that the SCRLM is an effective method, it was applied to four real datasets: MNIST

(Deng, 2012), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009) and Ima-

geNet ILSVRC-2012 (Russakovsky et al., 2015).

MNIST (Deng, 2012) has 70,000 images of handwritten digits from 0 to 9 with 60,000 images

used for training and 10,000 images used for testing. CIFAR-10 (Krizhevsky et al., 2009) consists

of 60000 images in 10 classes, with 6000 images per class. There are 50000 training images and

10000 test images. CIFAR-100 (Krizhevsky et al., 2009) is just like the CIFAR-10, except it has 100

classes containing 600 images each. The ImageNet (Russakovsky et al., 2015) validation dataset

has 50000 observations on 1000 classes with 50 observation per class and the ImageNet training

dataset has almost 1.3 million observations on 1000 classes.

5.3.1 Data Preprocessing

Feature extraction for image data obtains a compact feature vector from the interesting parts

of an image. The model SimCLR (Chen et al., 2020) was used to obtain a version of the MNIST
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a) MNIST b) CIFAR-10

Figure 5.9: Purity vs number of clusters T of clustering algorithms on MNIST and CIFAR-10.

dataset as real vectors with dimension p = 512. The images from the CIFAR-10 and CIFAR-100

were resized to 144 × 144 pixels, then a pre-trained CNN, CLIP ResNet50 × 64 (Radford et al.,

2021) with average pooling was used to obtain a p = 4096 dimensional feature vector for each

image. The images from the ImageNet were resized to 224×224 pixels, then a p = 640 dimensional

feature vector for each image was obtained using CLIP ResNet50 × 4 (Radford et al., 2021) and

attention pooling.

5.3.2 Results

Figure 5.8 shows the cluster centers obtained by SCRLM when the number of desired clusters

T is set to be 100 in MNIST. It can be seen that each cluster center is a good representation of

that cluster. The variations of simple digits like 1 and 4 are relatively small, while complex digits

like 2 and 3 have more variations. This shows MNIST is likely to have a hierarchical structure that

can be used to cluster data when the number of clusters has a range of values.

Figure 5.9 and 5.10 support the conclusion that the SCRLM-based methods are superior to

other methods for problems with a large number of clusters. From the plot, it can be seen that the

purity of SCRLM and SCRLM+k-means increases as the number of clusters increases. However, the

purity of TD does not have an obvious increase as the number of clusters increases, and the running

time of EM increases significantly as the number of clusters increases. Therefore, SCRLM+k-means

is the most efficient in producing a particular level of accuracy within a particular time.

The comparison of accuracy and time is shown in Figure 5.11 and summarized in Tables 5.1 and

5.2. In all the cases, SCRLM outperforms all other methods in terms of running time. EM performs
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a) MNIST b) CIFAR-10

Figure 5.10: Computation time vs number of clusters T of clustering algorithms on MNIST
and CIFAR-10.

well when the number of clusters is small but has prohibitive computation cost for CIFAR-100 and

ImageNet validation datasets. t-SNE and TD achieve the best accuracy but only have acceptable

running time when the dimension is small. Therefore, only SCRLM, SCRLM+k-means and k-

means++ are compared for the ImageNet training dataset. From Tables 5.1 and 5.2 it can be seen

that SCRLM+k-means achieves a higher accuracy on ImageNet than k-means++ in far less time,

by a factor of 3.83. This demonstrates that SCRLM can be used as an initialization technique for

k-means clustering that has a better performance than k-means++.

Table 5.1: Accuracy of clustering algorithms on five image datasets.

Accuracy(%) MNIST CIFAR-10 CIFAR-100 ImageNet val ImageNet

CL 26.50 10.05 10.29 29.83 -

SC 82.46 63.47 25.17 43.96 -

EM 77.03 60.29 34.21 43.07 -

TD 73.38 64.76 37.55 - -

t-SNE+k-means++ 90.83 75.45 39.97 50.81 -

k-means++ 74.99 58.06 33.75 44.73 47.71

SCRLM 58.17 36.96 20.17 36.16 34.01

SCRLM+k-means 80.06 64.00 36.66 47.24 48.61
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a) MNIST b) CIFAR-10

c) CIFAR-100 d) ImageNet Val

Figure 5.11: Accuracy vs time of different clustering algorithms on four image datasets.

Table 5.2: Computation time of clustering algorithms on five image datasets.

Time(s) MNIST CIFAR-10 CIFAR-100 ImageNet val ImageNet

CL 328 1,285 1,286 252 -

SC 398 2,178 2,235 1,621 -

EM 21.3 129 1,944 2,658 -

TD 21.7 1,471 1,594 - -

t-SNE+k-means++ 478 2,255 2,294 421 -

k-means++ 5.61 23.8 207 52.1 10,005

SCRLM 0.46 3.25 28.2 40.6 1,269

SCRLM+k-means 10.5 33.6 327 67.8 2,610
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CHAPTER 6

CONCLUSIONS

6.1 Summary of Completed Work

In this dissertation, two innovative clustering methods: SCRLM and its hierarchical counter-

part, HSCRLM are introduced. SCRLM is designed to address the challenge of clustering large-scale

GMM in the presence of outliers. The fundamental assumptions underpinning this algorithm in-

clude the assumption of isotropic Gaussians for the foreground (positives) clusters and a constraint

on the range of values for the bandwidth parameter of the loss function. Notably, SCRLM stands

out from many conventional clustering methods by offering robust theoretical guarantees. With

high confidence, it excels in outlier detection and ensures accurate clustering, particularly when

dealing with a large number of clusters and dimensions. Moreover, it can be used as an initialization

strategy for k-means clustering and was observed to have better performance than other centroid

initialization methods in extensive experiments.

HSCRLM, an extension of SCRLM, is designed to tackle the hierarchical domain of HGMM

with outliers. It inherits the robustness and scalability of its predecessor while accommodating

the hierarchical structure of complex data. Just like SCRLM, HSCRLM offers robust theoretical

guarantees, ensuring accurate clustering and outlier detection within the hierarchical context.

In conclusion, this dissertation marks a significant milestone in the pursuit of robust clustering

solutions for modern data analysis challenges. SCRLM and HSCRLM stand as robust, theoretically

grounded algorithms, and SCRLM’s versatility as a clustering method and k-means initializer holds

great promise.
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6.2 Future Research

While this dissertation has laid a strong foundation for the SCRLM and HSCRLM algorithms,

there remain intriguing avenues for future research in the realm of robust clustering. One promis-

ing direction involves the parallelization of SCRLM to harness the computational power of modern

parallel and distributed computing environments. Developing strategies for efficient parallel ex-

ecution can significantly enhance SCRLM and HSCRLM’s scalability, allowing it to handle even

larger datasets in a time-efficient manner. Additionally, exploring the integration of SCRLM with

emerging technologies, such as deep learning and online learning, could further extend its capa-

bilities. Investigating the adaptability to diverse data types beyond Gaussian Mixtures and the

development of automated parameter tuning methods are areas ripe for exploration. Furthermore,

real-world applications across various domains, such as healthcare and finance, offer opportunities

to validate SCRLM’s robustness and utility in practical settings.
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Meilă, M. and Shi, J. (2001). A random walks view of spectral segmentation. In International
Workshop on Artificial Intelligence and Statistics, pages 203–208. 14

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., and
Xu, Z. (2002). Peer-to-peer computing. 17

Mirkin, B. (2005). Clustering for data mining: a data recovery approach. Chapman and Hall/CRC.
1

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems, pages 849–856. 14, 67

Ng, R. T. and Han, J. (2002). CLARANS: A method for clustering objects for spatial data mining.
IEEE Transactions on Knowledge and Data Engineering, 14(5):1003–1016. 9, 15

Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Trans-
actions of the Royal Society of London. A, 185:71–110. 3

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572. 15

Pratihar, D. K. (2009). Non-linear dimensionality reduction techniques. In Encyclopedia of Data
Warehousing and Mining, Second Edition, pages 1416–1424. IGI Global. 15

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language
supervision. In International Conference on Machine Learning, pages 8748–8763. 76

Rummel, R. J. (1988). Applied factor analysis. Northwestern University Press. 15

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252. 75

Segol, N. and Nadler, B. (2021). Improved convergence guarantees for learning Gaussian mixture
models by EM and gradient EM. Electronic Journal of Statistics, 15(2):4510–4544. 3

Sheikholeslami, G., Chatterjee, S., and Zhang, A. (1998). WaveCluster: A Multi-Resolution Clus-
tering Approach for Very Large Spatial Databases. In Proceedings of the 24rd International
Conference on Very Large Data Bases, pages 428–439. 13

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905. 14

Shi, X., Li, Y., and Zhao, Q. (2020). Flexible hierarchical gaussian mixture model for high-resolution
remote sensing image segmentation. Remote Sensing, 12(7):1219. 4

85



Sinclair, A. and Jerrum, M. (1989). Approximate counting, uniform generation and rapidly mixing
markov chains. Information and Computation, 82(1):93–133. 14

Srivastava, S. and Michael, N. (2018). Efficient, multifidelity perceptual representations via hier-
archical gaussian mixture models. IEEE Transactions on Robotics, 35(1):248–260. 4

Thrun, M. C. (2018). Projection-based clustering through self-organization and swarm intelligence:
combining cluster analysis with the visualization of high-dimensional data. Springer. 1

Thrun, M. C. and Ultsch, A. (2021). Swarm intelligence for self-organized clustering. In Proceed-
ings of the 29th International Conference on International Joint Conferences on Artificial
Intelligence, pages 5125–5129. 16

Tipping, M. E. and Bishop, C. M. (1999). Mixtures of probabilistic principal component analyzers.
Neural computation, 11(2):443–482. 16

Van der Maaten, L. and Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605. 16, 67

Vempala, S. and Wang, G. (2004). A spectral algorithm for learning mixture models. Journal of
Computer and System Sciences, 68(4):841–860. 3

Venna, J., Peltonen, J., Nybo, K., Aidos, H., and Kaski, S. (2010). Information Retrieval Per-
spective to Nonlinear Dimensionality Reduction for Data Visualization. Journal of Machine
Learning Research, 11:451–490. 16

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416.
14

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press. 22

WANG, W. (1997). STING: A statistical information grid approach to spatial data mining. In
Proceedings of Very Large Data Bases Conference, pages 186–195. 13

Xu, L. and Jordan, M. I. (1996). On convergence properties of the em algorithm for gaussian
mixtures. Neural Computation, 8(1):129–151. 3

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark: Cluster
computing with working sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 10). 17

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). BIRCH: an efficient data clustering method
for very large databases. ACM SIGMOD Record, 25(2):103–114. 10, 15

Zhao, X., Liang, J., and Dang, C. (2019). A stratified sampling based clustering algorithm for
large-scale data. Knowledge-Based Systems, 163:416–428. 1

86



BIOGRAPHICAL SKETCH

Yijia Zhou was born in 1996 in Changzhou, Jiangsu province of China. From a young age, Yijia had

a passion for mathematics that ultimately led her to pursue a career in this field. After completing

her Bachelor’s degree in Financial Mathematics at Southern University of Science and Technology

in 2017, she enrolled in the Ph.D. program of the Department of Mathematics at Florida State

University in the same year. There, she worked under the guidance of professors Adrian Barbu and

Kyle A. Gallivan.

Yijia’s research focuses on designing and analyzing algorithms for unsupervised learning. She

also works on sampling techniques for subsampling large data to efficiently explore, summarize, and

learn. Her interests and experiences range a broad spectrum of machine learning and data science

and she is passionate about using her research to address challenging, real-world problems.

87


	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols
	List of Abbreviations
	Abstract

	Introduction
	Motivation, Problem and Thesis Statement
	Problem Model
	Related Work on Gaussian Mixture Models
	Related Work on Hierarchical Gaussian Mixture Models
	Contributions of the Dissertation
	Overview of the Dissertation Structure

	Literature Review
	Literature Review of Traditional Clustering Techniques
	Partitioning-based Clustering
	Hierarchical-based Clustering
	Model-based Clustering
	Density-based Clustering
	Grid-based Clustering
	Spectral Graph-based Clustering

	Literature Review of Scalable Clustering Techniques
	Sampling-based Clustering
	Projection-based Clustering
	Parallel-based Clustering


	Scalable Clustering by Robust Loss Minimization in Gaussian Mixture Model with Outliers
	Problem Formulation
	Robust Loss Function
	Theoretical Guarantees
	Preliminaries
	Loss Bounds
	Accuracy Guarantees

	Computational Complexity

	Hierarchical Scalable Clustering by Robust Loss Minimization in Hierarchical Gaussian Mixture Model with Outliers
	Problem Formulation
	Hierarchical Scalable Clustering by Robust Loss Minimization
	Hierarchical Classification
	Theoretical Guarantees
	Assumptions
	Preliminaries
	Loss Bounds
	Accuracy Guarantees

	Computational Complexity
	Computational Complexity of Algorithm 2
	Computational Complexity of Algorithm 3


	Empirical Evaluation
	Overview
	Simulation Experiments
	Comparison of Observed and Theoretical Accuracy of SCRLM
	Comparison of Observed and Theoretical Accuracy of HSCRLM
	Stability of SCRLM Relative to the Bandwidth Parameter
	Comparison with other clustering methods
	Tuning of Bandwidth Parameter 

	Real Data Experiments
	Data Preprocessing
	Results


	Conclusions
	Summary of Completed Work
	Future Research

	Bibliography
	Biographical Sketch

