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Abstract. Object detection and recognition has achieved a significant progress
in recent years. However robust 3D object detection and segmentation in noisy
3D data volumes remains a challenging problem. Localizing an object generally
requires its spatial configuration (i.e., pose, size) being aligned with the trained
object model, while estimation of an object’s spatial configuration is only valid at
locations where the object appears. Detecting object while exhaustively searching
its spatial parameters, is computationally prohibitive due to the high dimension-
ality of 3D search space. In this paper, we circumvent this computational com-
plexity by proposing a novel framework capable of incrementally learning the
object parameters (IPL) of location, pose and scale. This method is based on a
sequence of binary encodings of the projected true positives from the original 3D
object annotations (i.e., the projections of the global optima from the global space
into the sections of subspaces). The training samples in each projected subspace
are labeled as positive or negative, according their spatial registration distances
towards annotations as ground-truth. Each encoding process can be considered
as a general binary classification problem and is implemented using probabilis-
tic boosting tree algorithm. We validate our approach with extensive experiments
and performance evaluations for Ileo-Cecal Valve (ICV) detection in both clean
and tagged 3D CT colonography scans. Our final ICV detection system also in-
cludes an optional prior learning procedure for IPL which further speeds up the
detection.

1 Introduction

Detecting and segmenting human anatomic structures in a 3D medical image volume
(e.g., CT, MRI) is very challenging. It demonstrates different aspects of difficulties as
2D counterparts of occlusion, illumination and camera configuration variations (for in-
stance, rotation-invariant, single-view or multi-view 2D face detection [9, 15, 4, 6, 10]).
Human anatomic structures are highly deformable by nature, which leads to large intra-
class shape, appearance and pose variation. However only a limited number of patient
image volumes are available for training. Another important issue is that the pose of
the anatomic structure for detection is generally unknown in advance. If we knew the
pose as a prior, the detection problem would be easier because we can train a model
for anatomic structures under a fixed pose specification and pre-align all testing data
(w.r.t. the known pose) to then evaluate their fitness values using the learned model.
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However we always face a chicken-and-egg problem in practice. When estimating the
pose configuration, the structure itself must be first detected and localized because pose
information is only meaningful in the area where the object exists. In this paper, our
goal is to localize and segment an anatomic structure using a bounding box under a full
3D spatial configuration (i.e., 3D translation, 3D scaling and 3D orientation)

Exhaustive search for 3D object detection and segmentation is infeasible, due to
the prohibitive computational time required in 9D space. Naturally one would consider
restricting the search space by concatenated subspaces. Since the global optima pro-
jections are not necessarily optima in the projected subspaces, such naı̈ve projection
strategies cannot guarantee to find the global optima. In this paper, we propose a novel
learning framework to tackle this problem. In training, we encode the projections of
“global optima” in the global parameter space to a sequence of subspaces as optima
for learning. Thus the obtained classifiers can direct the searching sequentially back to
“global optima” in testing.

Our encoding process is iterative. At each stage of encoding, we extract new train-
ing samples by scanning the object’s configuration parameters in the current projected
subspace, based on previously detected candidates/hypotheses from the preceding step.
The distances of these extracted samples w.r.t. their corresponding labeled object an-
notations are then utilized to separate these training samples into positive or negative
set. This ensures the projections of the global optima represented by positives in the
subspace for training, so that the global optima can be sequentially detected through
subspaces in testing. We repeat this process until the full object configuration parameter
spaces are explored. Each encoding process is a general binary classification problem,
and is specifically implemented using probabilistic boosting tree algorithm (PBT) [12].

We demonstrate the validity of our approach with the application on 3D object de-
tection: fully automated Ileo-Cecal Valve1 (ICV) detection in 3D computed tomography
(CT) volumes. However our technique is generally applicable to other problems as 3D
object extraction in range-scanned data [3] or event detection in spatial-temporal video
volumes [7, 1]. For event detection [7, 1], only subvolumes with very pre-constrained
scales and locations in video are scanned for evaluation due to computational feasibil-
ity. Our 3D detection method allows full 9 degree-of-freedoms (DOF) of searching to
locate the object/event with optimal configurations (3D for translation, 3D for rotation
and 3D for scales).

Comparing with our previous empirical approach for cardiac heart segmentation
[19], this paper develops an explicit, formal mathematical formulation for the core ob-
ject detection and parameter learning algorithm (see section 2). It also presents a more
intuitive interpretation, theoretical insights and convergence analysis in section 4. The
task of ICV detection in 3D colonography is more challenging than the organ local-
ization in [19], without considering its boundary delineation. The rest of this paper is
organized as follows. We give the mathematical formulation of proposed incremental
parameter learning (IPL) algorithm in section 2 followed by the application on ICV

1 Ileo-Cecal Valve (ICV) is a small, deformable anatomic structure connecting the small and
large intestine in human body. In addition to its significant clinical value, automated detection
of ICV is of great practical value for automatic colon segmentation and automatic detection of
colonic cancer in CT colongraphy (CTC) [11, 17, 5]



Simultaneous Detection and Registration for ICV Detection in 3D CTC 3

Fig. 1. Algorithm framework of incremental parameter learning (IPL) by projections in a full
3D space including 3D translations, 3D rotations (poses) and 3D scales. The parameter box on
the top row represents the ground truth, or the global optimal solution in searching. In the second
row, left, center and right boxes show how the object spatial parameters are incrementally learned
from translation, scale, to rotation. ‖ means one-to-one corresponding parameter augmentation,
and × means Cartesian product in ΩT , ΩS , ΩR parameter spaces.

detection in section 3 and its evaluation in section 4. We conclude the paper with dis-
cussion in section 5.

2 Incremental Parameter Learning

For noisy 3D medical data volumes, the scanning or navigation processes of finding in-
terested objects can be very ambiguous and time-consuming for human experts. When
the searched target is partially or fully coated by other types of noisy voxels (such as
colonic objects embedded within stool, or tagging materials in CT), 3D anatomic struc-
ture detection by human experts becomes extremely difficult and sometimes impossible.
These characteristics make it very necessary to solve the type of problems using com-
puter aided detection and diagnosis (CAD) system for clinic purpose. This is the main
motivation for our paper.

The diagram of our proposed incremental parameter learning (IPL) framework is
shown in figure 1, by taking a full 3D object detection problem as an illustrative exam-
ple. We define the detection task as finding a 3D bounding box including the object in
3D data volume as closely as possible. The object’s (or the box’s) spatial configuration
spaceΩ can be uniquely determined by its 3D (center) position (ΩT ), 3D size (ΩS) and
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3D pose (rotation angles ΩR). However the prohibitive computational expense makes
it impossible for the direct searching (ie. scanning and verifying) strategy in this total
9D space2. To address the computational feasibility, we decompose the 9D parame-
ter searching or learning process into three 3D steps: location finding (ΩT ), followed
by size adjustment (ΩS) and orientation estimation (ΩR). The general searching strat-
egy in sequentially decomposed subspaces can cause undesirable, sub-optimal solutions
because the global optima are not necessary to be optimal in the decomposed dimen-
sions as well. In this paper, we propose an incremental parameter learning framework
to tackle this problem with guaranteed training performance using ROC curves analysis
of multiple steps. In each step a “detection (using the detector from previous step)-
sampling-registration-training (the detector in the current step)” scheme is applied, as
explained later. In more detail, we formulate the following incremental parameter sub-
spaces

Ω1 : {ΩT } ⊂ Ω2 : {ΩT , ΩS} ⊂ Ω3 : {ΩT , ΩS , ΩR} (1)

where Ω3 = Ω, or

Ω1 ⊂ Ω2 ⊂ ... ⊂ Ωn = Ω (2)

more generally. In equation 1, the order of ΩS , ΩR is switchable, but ΩT needs to be
first learned. The object’s size and pose configurations can only be optimized where
object is found.

For training, a set of 3D objects are labeled with their bounding boxes {T, S,R}.
Without loss of generality, we assume that there is only one true object in each 3D
data volume. In the first step, we search into ΩT by scanning n samples {T1, T2, ...Tn}
around the true object positions {T} and set parameters ΩS , ΩR with the mean values
S∗, R∗ of {S} and {R} as priors. Prior learning itself is a general and important com-
puter vision problem. The mean-value (or median) prior setting is the simplest but not
necessary the only or optimal choice of formulation, which is selected for representa-
tion clarity in this section. For example, a more natural option is prior sampling from
the distribution formed by annotation parameters. In this paper, as an optional, more
problem-specific treatment, the prior configuration of ICV detection can be learned
from its informative orifice surface profiles and other side information using the same
training/detection strategy.

First, we compute the distances dist((Ti, S
∗, R∗), (Tt, St, Rt)), i = 1, 2, ..., n be-

tween each of the sampled box candidates {(T1, S
∗, R∗); (T2, S

∗, R∗); ...; (Tn, S
∗, R∗)}

and the annotated object bounding box (Tt, St, Rt) as its corresponding ground truth
in the same volume. The translational distance metric dist((Ti, S

∗, R∗), (Tt, St, Rt))
is computed as the center-to-center Euclidean distance

dist((Ti, S
∗, R∗), (Tt, St, Rt)) =‖ Ci − Ct ‖ (3)

where Ci is the geometrical center of the sampling box (Ti, S
∗, R∗) and Ct for the

ground truth box (Tt, St, Rt). Then the box samples {(T1, S
∗, R∗); (T2, S

∗, R∗); ...;
2 Assume that the searching step is M in each dimension, and the overall cost will be M9. If
M = 20, the searching cost will be 512 billion times! Our target gain is M6 here.
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(Tn, S
∗, R∗)} are divided into positive Φ+

T if

dist((Ti, S
∗, R∗), (Tt, St, Rt)) < θ1 (4)

or negative training set Φ−T if

dist((Ti, S
∗, R∗), (Tt, St, Rt)) > θ2 (5)

where θ2 > θ1. Φ+
T and Φ−T are learned using our implementation of a boosting based

probabilistic binary learner (PBT [12]). Steerable features [19] are computed from
each 3D bounding box and its including volume data for PBT training. After this,
the output classifier PT is able to distinguish sampled (in training) or scanned (in
testing) object boxes: higher positive-class probability values (close to 1) for boxes
which are close to their respective labeled object boxes, lower values (close to 0) for
boxes that are distant. For computational efficiency, only top M candidates are retained
as {(T ′1, S∗, R∗); (T ′2, S∗, R∗); ...; (T ′m, S∗, R∗)} with highest output probabilities. If
there is only one existing object per volume (such as ICV) and the training function can
be perfectly learned by a classifier, M = 1 is sufficient to achieve the correct detec-
tion. In practice, we set M = 50 ∼ 100 for all intermediate detection steps to improve
robustness. It means that we maintain multiple detected hypotheses until the final result.

We then use these M intermediate detections as a basis to search in the next step.
Each candidate (T ′i , S

∗, R∗), i = 1, 2, ...,M is augmented as n samples: {(T ′i , S1, R
∗);

(T ′i , S2, R
∗); ...; (T ′i , Sn, R

∗)}. Overall M × n box candidates are obtained. Similarly,
they are divided into positive Φ+

S if

dist((T ′i , Sj , R
∗), (T ′t , St, Rt)) < τ1 (6)

or negative training set Φ−S if

dist((T ′i , Sj , R
∗), (T ′t , St, Rt)) > τ2 (7)

for i = 1, 2, ...,M and j = 1, 2, ..., n. dist((T ′i , Sj , R
∗), (Tt, St, Rt)) is defined as a

box-to-box distance function which formulates 3D box differences in both ΩT and ΩS .
More generally,

dist(box1, box2) =
∑

i=1,2,...,8

{‖ vi
1 − vi

2 ‖}/8 (8)

where vi
1 is one of the eight vertices of box1 and vi

2 is its according vertex of box2.‖
vi
1−vi

2 ‖ is the Euclidean distance between two 3D vectors vi
1, vi

2. Again PBT algorithm
and steerable features are used for training to get PS .

In the third step, PS is employed to evaluate the positive-class probabilities for
M × n samples {T ′i , Sj , R

∗)},i=1,2,...,M; j = 1, 2, ..., n, and keep a subset of M can-
didates with the highest outputs. We denote them {(T ′i , S′i, R∗)}, i = 1, 2, ...,M , which
are further expanded inΩR as {(T ′i , S′i, Rj)}, i = 1, 2, ...,M ; j = 1, 2, ..., n. After this,
all the process is the same for training dataset construction and classifier training PR,
as step 2. Box-to-box distance is employed and the two distance thresholds are denoted
as η1 and η2. Finally we have {(T ′k, S′k, R′k)}, k = 1, 2, ...M returned by our whole
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algorithm as the object detection result of multiple hypotheses. In testing, there are
three searching steps in ΩT , ΩS and ΩR, according to the training procedure. In each
step, we can scan and detect 3D object box candidates which are close to the global
optimum (i.e., the object’s true spatial configuration) in the current parameter subspace
(Ω1 → Ω2 → Ω3), using the learned classifier (PT , PS or PR) respectively. The out-
put candidates are used as seeds of propagation in the next stage of incremental, more
accurate parameter optimization. The training samples at each step are expanded and
bootstrapped using the detection results at its previous step (and the global annotations
as reference). Note that we set smaller threshold margins,

(θ2 − θ1) > (τ2 − τ1) > (η2 − η1) (9)

for more desirable object detection/registration accuracy as steps of detection proceed.
The above incremental parameter learning process for 3D object detection is illus-

trated in figure 1. The parameter spaces (ΩT , ΩS and ΩR) before search (prior), during
search (learning/optimizing) and after search (optimized) are displayed in red, yellow
and white shadows respectively. The mean parameter values T ∗, S∗, R∗ estimated from
the labeled object annotations, are used as prior by default.

3 Ileo-Cecal Valve (ICV) Detection in 3D CT Colonography

Detecting Ileo-Cecal Valve (ICV) in 3D CT volumes is important for accurate colon
segmentationand colon polyp false positive reduction [11, 17, 5] that are required by
colon CAD system. Nevertheless, it is very challenging in terms of ICV’s huge varia-
tions in its internal shape/appearance and external spatial configurations: (X,Y, Z;Sx,
Sy, Sz;ψ, φ, ω), or (ΩT ;ΩS ;ΩR;). ICV is a relatively small-scaled (compared with
heart, liver, even kidney) and deformable human organ which opens and closes as a
valve. The ICV size is sensitive to the weight of patient and whether ICV is diseased. Its
position and orientation also vary of being a part of colon which is highly deformable.
To address these difficulties, we develop a two-staged approach that contains the prior
learning of IPL to prune ICV’s spatial configurations in position and orientation, fol-
lowed by the position, size and orientation estimation of incremental parameter learn-
ing. Figure 2 shows the diagram of our final system. To validate the proposed incremen-
tal parameter learning of ΩT ΩS ΩR, an ICV detection system without prior learning
is also experimentally evaluated.

3.1 Features

In the domain of 3D object detection, 3D Haar wavelet features [13] are designed to
capture region-based contrasts which is effective to classification. However 3D Haar
features are inefficient for object orientation estimation because they require a very
time-consuming process of rotating 3D volumes for integral volume computation. In
steerable features [19], only a sampling grid-pattern need to be translated, rotated and
re-scaled instead of data volumes. It allows fast 3D data evaluation and has shown to
be effective for object detection tasks [19]. It is composed by a number of sampling
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Fig. 2. System diagram of Ileo-Cecal Valve detection. The upper block is prior learning and the
lower block is incremental parameter learning for ICV spatial parameter estimation. Examples of
the annotated ICV bounding boxes are shown in red.

Fig. 3. Steerable sampling grid patterns for (a) 3D point detector and (b) 3D box detector.

grids/points where 71 local intensity, gradient and curvature based features are com-
puted at each grid. The whole sampling pattern models semi-local context. For details,
refer to [19].

In this paper, we design two specific steerable patterns for our ICV detection task
as shown in figure 3. In (a), we design an axis-based pattern for detecting ICV’s orifice.
Assume that the sampling pattern is placed with its center grid at a certain voxel v. It
contains three sampling axes as the gradient directions averaged in v’s neighborhoods
under three scales respectively. Along each axis, nine grids are evenly sampled. This
process is repeated for halfly and quarterly downsampled CT volumes as well. Alto-
gether we have M = 81 = 3× 9× 3 grid nodes which brings 71× 81 = 5751 features.
In (b), we fit each box-based pattern with evenly 7 × 7 × 5 sampling grids. The total
feature number is 52185 by integrating features from three different scales. This type of
feature is used for all ΩT ΩS ΩR detection. The detector trained with axis pattern and
PBT is named 3D point detector; while the detector with box pattern and PBT is noted
as 3D box detector.
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(a) (b)

Fig. 4. (a) ICV orifice sampling pattern of three sampling axes and nine sampling grids along
each axis; (b) detected ICV voxel/orifice candidates shown in white.

3.2 Prior Learning in ΩT and ΩR of IPL

If likely hypotheses ICV’s orifice can be found, its position in ΩT can be constrained,
then no explicitly exhaustive searching of position is needed. The ICV orifice has an
informative, but far from fully unique, surface profile that can possibly indicates ICV
location as multiple hypotheses. It also allows very efficient detection using a 3D point
detector which involves less feature computation (5751 vs. 52185 for training) than a
box detector. Further more, it is known that ICV orifice only lies on the colon surface
that is computed using a 3D version of Canny edge detection. Thus we can prune all
voxel locations inside the tissue or in the air for even faster scanning. An illustrative
example of the orifice sampling pattern and detection result is shown in figure 4. Note
that multiple clusters of detection may occur often in practice. From the annotated ICV
orifice positions in our training CT volume set, we generate the positive training sam-
ples for surface voxels within α1 voxel distance and negatives out of α2 voxel distance.
We set α2 > α1, so the discriminative boosting training [12] will not focus on samples
with distances [α1, α2] which are ambiguous for classifier training but not important for
target finding. The trained classifier PO is used to exhaustively scan all surface voxels,
prune the scanned ICV orifice candidates and only a few hypotheses (eg. N = 100)
are preserved. In summary, 3D point detector for ICV orifice detection is efficient and
suitable for exhaustive search as the first step.

Given any detected orifice hypothesis, we place ICV bounding boxes centering at
its location and with the mean size estimated from annotations. In the local 3D coor-
dinates of an ICV box, XY plane is assumed to be aligned with the gradient vector
of the orifice as its Z-axis. This is an important domain knowledge that we can use to
initially prune ICV’s orientation space ΩR in 2 degrees of freedom (DOF). Boxes are
then rotated around Z-axis with 10o interval to generate training samples. Based on
their box-to-box distances against the ground truth of ICV box3 and β1, β2 threshold as
above, our routine process is: (1)generating positive/negative training sets by distance

3 The ground truth annotations are normalized with the mean size to count only the translational
and orientational distances.
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thresholding; (2) training a PBT classifier PR′ using the box-level steerable features;
(3) evaluating the training examples using the trained classifier, and keeping top 100
hypotheses of probabilities (ρi

R′ , i = 1, 2, ..., 100). In our experiments, we show results
with α1 = 4, α2 = 20 (normally out of the ICV scope), β1 = 6 and β2 = 30.

3.3 Incremental Parameter Learning in ΩT ΩS ΩR

In this section, we search for more accurate estimates of ICV position, scale and ori-
entation parameter configurations. Incremental parameter learning method described in
section 2 is implement. The box-level steerable features (as shown in figure 3(b)) and
PBT classifier are employed for all three steps. From section 3.2 we obtain 100 ICV
box hypotheses per volume with their positions and orientations pruned. Therefore we
select the order of incremental parameter learning as ΩT → ΩS → ΩR, where ΩT is
always the first step to locate itself and ΩS proceeds before aligned ΩR.

First, the position of each of theN hypotheses is shifted every one voxel in the range
of [−20, 20] of all X, Y and Z coordinates (ie. ΩT +∆T ). This set of synthesized ICV
box samples is then splitted into the positive (< θ1 = 5 voxel distance) and negative
(> θ2 = 25 voxel distance) training sets for the PBT training of PT . Again the top 100
ICV box candidates in each CT volume (with the largest probability outputs ρi

T using
PT ) are maintained. Next, the optimal estimates of ICV box scales are learned. We set
the size configuration of each survived hypotheses in ΩS , evenly with 2 voxel intervals
from the range of [23, 51] voxels in X, [15, 33] voxels in Y and [11, 31] voxels in Z
coordinates. The ranges are statistically calculated from the annotated ICV dataset.

In the same manner, we train the classifier PS and use it to obtain the top N candi-
dates of ρi

S with more accurate estimates ofΩS . The distance thresholds are τ1 = 4 and
τ2 = 20 for positive/negative training respectively. Last, we adaptively add disturbances
from the previously aligned orientation estimates in prior learning (ie. ΩR +∆R). ∆R

varies with 0.05 intervals in [−0.3, 0.3] radians, 0.1 in ([−0.9,−0.3), (0.3, 0.9]) and
0.3 in ([−1.8,−0.9), (0.9, 1.8]). This strategy provides a finer scale of searching when
closer to the current orientation parameters (retained from PR′ in prior learning), to im-
prove the ΩR detection accuracy. PR is learned with the distance thresholds as η1 = 4
and η2 = 15. After all steps of incremental parameter learning, the top one box can-
didate of the highest probability value from PR is returned as the final ICV detection
result by default.

Incremental parameter learning ofΩT , ΩS , ΩR is equivalent to exhaustive search in
ΩT∪ΩS∪ΩR if we can train mathematically perfect classifiers (100% recall at 0% false
positive rate) at all steps. This causes large positive within-class variations at early learn-
ing steps (e.g., detecting object location while tolerating unestimated poses and scales),
which decreases trainability in general. Classifiers with intrinsic “divide-and-conquer”
scheme as PBT [12] or cluster based tree [14] can be applied. In short, explicit ex-
haustive searching for parameter estimation is traded by implicit within-class variation
learning using data-driven clustering [12, 14]. It also relaxes the requirement for training
accuracy by keeping multiple hypotheses during detection. In case of multiple object
detection, selecting top N candidates simply based on their class-conditional probabil-
ities can not guarantee to find all objects since a single target may cause many detec-
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tions. Possible approaches are to exploit cluster based sampling [8] or Non-Maximum
Suppression by using the spatial locations of detected hypotheses.

4 Evaluation & Results

Convergence Analysis: The convergence analysis of incremental parameter learning
method is first based on the property of Receiver Operating Characteristic (ROC) curves
during five stages of training. The training scale for our PBT classifier ranges over
10K ∼ 250K positives and 2M ∼ 20M negatives. The ROC curves are shown in
figure 5 (a). From the evidence of these plots, our training process are generally well-
performed and gradually improves for later steps. We then discuss the error distribution
curves between the top 100 ICV hypotheses maintained for all five stages of detection
and the ground truth, using five-fold cross-validation. The error curves, as shown in
figure 5 (b), also demonstrate that more accurate ICV spatial configurations can be ob-
tained as the detection process proceed through stages. This convergence is bounded by
the good training performance of ROC curves with positive-class distance boundaries
that are gradually more close to the global optima (or ground-truth) as 6, 5, 4, 4, and
decreasing distance margins between positive and negative classes (eg. β2 − β1 = 24;
θ2 − θ1 = 20; τ2 − τ1 = 16 and η2 − η1 = 11) over stages.

ICV Detection Evaluation: Our training set includes 116 ICV annotated volumes
from the dataset of clean colon CT volumes using both Siemens and GE scanners. With
a fixed threshold ρR > 0.5 for the final detection, 114 ICVs are found with the detection
rate of 98.3%, under five-fold cross-validation. After manual examination, we find that
the two missed ICVs have very abnormal shape from the general training pool which is
probably heavily diseased. The ICV detection accuracy is first measured by a symmetric
overlapping ratio between a detected box Boxd and its annotated ground truth Boxa

γ(Boxa, Boxd) =
2× V ol(Boxa

⋂
Boxd)

V ol(Boxa) + V ol(Boxd)
(10)

where V ol() is the box-volume function (eg. the voxel number inside a box). The accu-
racy distribution over 114 detected ICV examples is shown in 5 (c). The mean overlap
ratio γ(Boxa, Boxd) is 74.9%. This error measurement is directly relevant with our
end goal of removing polyp-like false findings in my CAD system. Addtionally the
mean and standard deviation of orientational detection errors are 5.89o, 6.87o, 6.25o;
and 4.46o, 5.01o, 4.91o respectively for three axes. The distribution of absolute box-
box distances (ie. equation 8) has 4.31 voxels as its mean value, and 4.93 voxels for
the standard deviation. Two missed cases are further verified by clinician as heavily
diseased ICVs which are rare in nature. Our trained classifiers treat them as outliers.

Next we applied our detection system to other previously unseen clean and tagged
CT datasets. For clean data, 138 detections are found from 142 volumes. After manual
validation, 134 detections are true ICVs and 4 cases are Non-ICVs. This results a detec-
tion rate of 94.4%. We also detected 293 ICVs from 368 (both solid and liquid) tagged
colon CT volumes where 236 detections are real ICVs with 22 cases for Non-ICVs and
35 cases unclear (which are very difficult even for expert to make decision). Tagged CT
data are generally much more challenging than clean cases, under low-contrast imaging
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and very high noise level of tagging materials. Some positive ICV detections are illus-
trated in figure 6. The processing time varies from 4 ∼ 10 seconds per volume on a P4
3.2G machine with 2GB memory.

Without prior learning for ICV detection, our system can achieve comparable de-
tection performance as with prior learning. However it requires about 3.2 times more
computation time by applying a 3D box detector exhaustively on translational search,
not a cheaper 3D point detector as in prior learning. Note that prior learning is per-
formed in the exact same probabilistic manner as the incremental 3D translation, scale
and orientation parameter estimation. It is not a simple and deterministic task, and mul-
tiple (e.g., 100) detection hypotheses are required to keep for desirable results.

(a) (b)

(c) (d)

Fig. 5. (a) Receiver operating characteristic curves of different stages of training in our Ileo-Cecal
Valve detection system. (b) Error ratio curves of top 100 ICV hypotheses of different stages of
detection. Each curve show the ratios of hypotheses (Y axis) under the particular error readings
(X-axis) against ground truth. All numbers are averaged over the testing sets of volumes, under
five-fold cross-validation of 116 total labeled ICV examples. (c) Overlap ratios between 114
detected ICV examples and their ground truth. (d) A typical example of 3D ICV detection in CT
Colonography, with overlap ratio of 79.8%. Its box-to-box distance as define in equation 8 is
3.43 voxels where the annotation box size is 29.0 × 18.0 × 12.0 voxels. Its orientational errors
are 7.68o, 7.77o, 2.52o with respect to three axes. The red box is the annotation; the green box is
the detection. This picture is better visualized in color.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a,b) An example of ICV detection result from two viewpoints. The red box is the annota-
tion; the green box is the detection. (c,d,e,f,g,h) Examples of ICV detection results from unseen
clean colon CT volumes (c,d,e) and unseen solid (f) or liquid tagged (g,h) colon CT volumes. The
red box is the final detection result where no annotation available. Note that only a CT subvol-
ume surrounding the detected ICV box is visualized for clarity. This picture is better visualized
in color.

Polyp False Positive (FP) Deduction: ICV contains many polyp-like local struc-
tures which confuse colon CAD system [11, 17, 5]. By identifying a reasonably accurate
bound box for ICV, this type of ambiguous false positive polyp candidates can be re-
moved. For this purpose, we enhanced the ICV orifice detection stage by adding the
labeled polyp surface voxels into its negative training dataset. Other stages are conse-
quentially retained in the same way. Polyp FP deduction is tested on 802 unseen CT
volumes: 407 clean volumes from 10 different hospital sites acquired on Siemens and
GE scanners; 395 tagged volumes, including iodine and barium preparations, from 2
sites acquired on Siemens and GE scanners. The ICV detection is implemented as post
filter for our existing colon CAD system and only applied on those candidates that are
labeled as “Polyp” in the preceding classification phases4. In clean cases, ICV detec-
tion reduced the number of false positives (fp) from 3.92 fp/patient (2.04 fp/vol.) to
3.72 fp/patient (1.92 fp/vol.) without impacting the overall sensitivity of the CAD sys-
tem. It means that no true polyps were missed due to our ICV detection component
integrated. In tagged cases, ICV detection reduced the number of false marks from 6.2
fp/patient (3.15 fp/vol.) to 5.78 fp/patient (2.94 fp/vol.). One polyp out of 121 polyps
with a size range from 6 up to 25 mm was wrongly labeled as ICV, resulting in a sen-
sitivity drop of 0.8%. Another version implementation of using ICV detection as a soft
constraint, instead of a hard-decisioned post filter, avoids true polyp missing without
sacrificing FP Deduction. In summary our ICV system achieved 5.8% and 6.7% false
positive deduction rates for clean and tagged data respectively, which has significant
clinical importance.

4 Note that the use of ICV detection as post-process is dedicated to handle “difficult” polyp cases
which can not be correctly classified in preceding processes.
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Contextual K-Box ICV Model: To more precisely identify the 3D ICV region
besides detection, a contextual K-box model is experimented. The idea is using the
final ICV detection box B1 as an anchor to explore reliable expansions. For all other
high probability hypotheses {B̂i} returned in the last step of detection, we sort them
according to V ol(B̂i − B1

⋂
B̂i) while two constraints are satisfied: γ(B1, B̂i) ≥ γ1

and ρR(B̂i) ≥ ρ1. Then the box that gives the largest gain of V ol(B̂i − B1

⋂
B̂i)

is selected as the second box B2. The two constraints guarantee that B2 is spatially
correlated with B1 (γ1 = 0.5) and is a highly likely ICV detection hypothesis by itself
ρ1 = 0.8. By taking B1 and B2 as a union Boxd = B1

⋃
B2, it is straightforward to

expand the model for K-box ICV model while K > 2. Our initial experimental results
show that 2-box model improves the mean overlap ratio γ(Boxa, Boxd) from 74.9%
to 88.2% and surprisingly removes 30.2% more Polyp FPs without losing true polyps.

Previous Work on ICV Detection: Our proposed approach is the first reported,
fully automatic Ileo-Cecal Valve detection system in 3D CT colonography, due to the
difficulties discussed in sections 1 and 3. The closest previous work is by Summer et al.
[11] that is also considered as the state-of-art technique in medical imaging community.
We discuss and compare [11] and our work in two aspects. (1) For localization of ICV,
Summer et al. relies on a radiologist to interactively identify the ICV by clicking on
a voxel inside (approximately in the center of) the ICV. This is a requisite step for the
next classification process and takes minutes for an expert to finish. On the contrary, our
automatic system takes 4 ∼ 10 seconds for the whole detection procedure. (2) For clas-
sification, [11] primarily designs some heuristic rules discovered from dozens of cases
by clinicians. It depends on the performance of a volume segmentor [16] which fails
on 16% ∼ 38% ICV cases [11]. Their overall sensitivity of ICV detection is 49% and
50% based on the testing (70 ICVs) and training datasets (34 ICVs) [11], respectively.
This rule based classification method largely restricts its applicability and effectiveness
on recognizing varieties of ICV samples with their low detection rates reported in [11].
Our detection rate is 98.3% for training data and 94.4% for unseen data. The superiority
of our approach attributes to our effective and efficient incremental parameter learning
framework optimizing object spatial configuration in a full 3D parameter space, and the
discriminative feature selection algorithm (PBT + steerable features) exploring hun-
dreds of thousands volume features.

5 Conclusion & Discussion

In this paper, we present the incremental parameter learning framework to address gen-
eral 3D/2D object detection problem under high dimensional parameter spaces. The
challenges are not only the computational feasibility, but also how to obtain good so-
lutions in terms of the parameter searching complexity (essentially exponential to the
dimension). The effectiveness of our method is demonstrated using an application on
detecting Ileo-Cecal Valve (ICV) in 3D CT colonography with 9 DOF. To our best
knowledge, ICV detection is the first fully automatic system for localizing a small (ver-
sus the whole CT volume dimension), largely deformable, unconstrainedly posed and
possibly coated (by tagging material or stool in tagged volumes) 3D anatomic structure.
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As a discussion, our proposed learning architecture is intuitively analogical to the
famous twenty questions games, where many highly complex information extraction
problems can be solved by using a flow of simpler, binary (yes/no), sequentially de-
pendent testings (question vs. answer). We leave explorations on more sophisticated
solution searching techniques [2, 18] as future work.
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