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Abstract— It has been shown that the global cost of the
task allocations obtained with fast greedy algorithms can be
improved upon by using a class of auction methods called
Stochastic Clustering Auctions (SCAs). SCAs use stochastic
transfers or swaps between the task clusters assigned to each
team member, allow both uphill and downhill cost movements,
and rely on simulated annealing. The choice of a key annealing
parameter and turning the uphill movements on and off
enables the converged solution of a SCA to slide in the region
between the global optimal performance and the performance
associated with a random allocation. The first SCA, called here
GSSCA, was based on a Gibbs sampler, which constrained
the stochastic cluster reallocations to simple single transfers or
swaps. This paper presents a new and more efficient SCA, called
SWSCA, based on the generalized Swendsen-Wang method that
enables more complex and efficient movements between clusters
by connecting tasks that appear to be synergistic and then
stochastically reassigning these connected tasks. For central-
ized auctioning, extensive numerical experiments are used to
compare the performance of SWSCA with GSSCA in terms
of costs and computational and communication requirements.
Distributed SWSCA is then compared with centralized SWSCA
using communication links between robots that were motivated
by a generic topology called a “scale free network.”

I. INTRODUCTION

Auction methods are an effective approach to task allo-
cation for heterogeneous robot teams. They are generally
presented as either centralized auctions that involve a central
auctioneer that determines the task allocation based on the
task bids provided to it by each team member [1], [2],
[3], [4], [5], [6] or distributed auctions that involve peer-to-
peer redistribution of plans between given subsets of robots,
where one of the robots serves as the auctioneer [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20]. However, this distinction is not strong since centralized
auction approaches lead to distributed auction approaches
using the concept of “opportunistic centralization” [12] in
which the centralized auction algorithm is applied regionally.
This concept is used in this paper in Section II-D. Oppor-
tunistic centralization is inherent in all of the distributed
auction approaches. (One way to see this is that each of
the distributed auction methods corresponds to a centralized
auction method when the auction simultaneously involves
each of the robots, i.e., a regional auction is the global
auction.)
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Distributed auctions can generally be divided into three
classes. The first set [8], [11], [14], [15], [17], [20] uses
greedy auctioning, which is inherently suboptimal. The
second set [9], [10], [12], [13], [16] uses the determinis-
tic heuristics in [6] to limit the combinations considered
in combinatorial auctioning. A current limitation of these
methods is that the deterministic heuristics assume that the
triangle inequality is preserved for the metric cost space [21],
which does not apply to cost functions that can be used
to represent minimum time objectives (see (2) below). The
third set of auction methods [7], [18], [19] is closely related
to the method developed here. This set uses a deterministic
synthesis of single transfer, swap and multi-party exchange
movements between the clusters assigned to the robots.
However, a limitation of all the approaches in these three
classes is that they do not provide a mechanism to avoid
local minima [7], [21].

An additional limitation of the previously developed auc-
tion methods is that they do not provide a mechanism
for using computational and communication requirements
to enable the performance obtained after the algorithm
convergence to slide in the region between the globally
optimal performance and the performance associated with
some random allocation, as illustrated in Fig. 1. In particular,
once these algorithms converge for a given problem they
converge to a single cost. However, it may be desirable to
specify that one is willing to increase (or decrease) computa-
tional and communication requirements in order to increase
(or decrease) the allocation performance by decreasing (or
increasing) the converged cost.

The first stochastic clustering auction based on global
optimization, in this case simulated annealing, is presented
in [22] and is called here the Gibbs sampler Stochastic Clus-
tering Auction (GSSCA) since the underlying optimization
algorithm is a Gibbs sampler in the class of probabilistic
algorithms called Markov Chain Monte Carlo [23]. GSSCA
alternates with equal probabilities between transfer and swap
moves and allows not only downhill movements, but also
uphill movements, which can enable it to escape local
minima. The team performance obtained after algorithm con-
vergence can slide in the region between the global optimal
performance and the performance of a random allocation by
tuning the annealing suite and turning the uphill movements
on and off [22].

However, the difficulty of approaching optimal clustering
using a Gibbs sampler is well reflected in a simple Ising and
Potts model [24]. In Fig. 2 the tasks are indicated by the
shaded circles and aggregated into two clusters, each cluster



Fig. 1. Illustration of the ability of an “ideal auction method” to trade off computational and communication requirements so that the converged performance
lies anywhere in the performance spectrum

Fig. 2. Illustration of a reallocation task for two homogeneous robots r1
and r2 that is difficult to accomplish efficiently using a clustering algorithm
based on a Gibbs sampler

corresponding to the robot of the identical shading. The
Gibbs sampler requires flipping two connected set of tasks,
S1 and S2, from light circles in the current allocation to dark
circles in the optimal allocation. The probability of flipping
a task from light to dark is p0 = 1

2 . Thus, the expected
number of steps N needed to flip the 5 tasks in the set S1

from light to dark is N = 1
(1/p0)5

= 25. This illustrates that
the expected number of steps required to switch M tasks is
exponential in M . Intuitively, it is desirable to flip an entire
set of interconnected tasks such as S1 in one step. This paper
presents a stochastic algorithm that enables these types of
complex movements for optimal task allocation based on an
algorithm that uses a generalized Swendsen-Wang method
and has been successfully applied to shape clustering and
segmentation in computer vision [24].

The remainder of this paper is organized as follows.
Section II formulates the basic optimization problem for
task allocation, provides a description of the Swendsen-
Wang Stochastic Clustering Auction (SWSCA) and discusses
how the algorithm may be used for both centralized and
distributed auctioning. Section III considers centralized auc-
tioning and presents simulation results from random scenar-
ios with a focus on comparing the results of the SWSCA
and GSSCA algorithms with and without uphill movements.
Section IV considers distributed auctioning and presents
simulation results from random scenarios using communi-
cation links motivated by a generic topology called a “scale

free network”; the focus is on comparing the performance
achieved with distributed and centralized SWSCA. Finally,
Section V presents conclusions and future work.

II. SWENDSEN-WANG STOCHASTIC
CLUSTERING AUCTION

This section first presents the basic problem statement.
It then describes the Swendsen-Wang Stochastic Clustering
Auction (SWSCA). Furthermore, a generic framework for
Stochastic Clustering Auctions (SCAs) is given and used to
describe greedy and non-greedy versions of an SCA. After
introducing the concept of regional cost, it is shown that
when a distributed auctioneer reduces the corresponding re-
gional cost, the global cost will either decrease or remain the
same. Hence SWSCA is proposed to optimize the regional
cost in a distributed auction.

A. Notation and Problem Statement

Let R denote a set of k heterogeneous robots, and T
denote a set of n tasks, i.e. R = {r1, r2, . . . , rk} and
T = {t1, t2, . . . , tn}. Also, let A denote the allocation,

A = {a1, a2, . . . , ak}, where
k⋃

i=1

ai = T , ai ⊆ T and the

cluster ai is assigned to robot ri. Each ai is decomposed

into ni conected components aij such that ai =
ni⋃
j=1

aij .

CP denote the entire set of connected components such that
CP = {aij : i = 1, 2, . . . , k; j = 1, . . . , ni}. A(aij) = p
is used to denote the allocation of the connected component
aij from robot i to robot p. The cost associated with A is
given by either

C(A) =

k∑

i=1

ci(ai), (1)

or
C(A) = max

i
ci(ai), (2)

where ci(ai) is the minimum cost for robot i to complete the
set of tasks ai. The individual cost function ci(·) is based
on characteristics of each robot, e.g. the dynamic model of
the robot, the state of the market, current task commitments
and/or a human-inspired measure. The problem is to solve
the optimization min

A
C(A). In practice the cost function in

(1) might be used to represent the total distance traveled
or the total energy expended by the robots while the cost



function in (2) might be used to represent the maximum
time taken to accomplish the tasks.

B. Description of the Swendsen-Wang Stochastic Clustering
Auction (SWSCA)

In the auction framework [13], SWSCA attempts to mini-
mize the cost C(A) using a Markov chain search process
in the space of possible allocations. It is assumed that
the robots are cooperative, and that collusion, shilling and
other cheating mechanisms are not allowed [14]. The basic
algorithm was originally developed in [24]. The essential
mechanism of SWSCA is to start with an allocation A for
k clusters and to reduce or probabilistically hillclimb C(A)
by rearranging the tasks T in connected components among
the clusters. The rearrangement is performed in a stochastic
fashion using transfer and swap moves. These moves are
performed with probabilities proportional to the negative
exponential of the costs C(A) of the resulting allocations
A (see (3) and (7)). SWSCA is always guaranteed to result
in an allocation that has a cost less than or equal to the cost
of the initial allocation. The actual algorithm is described
below.

1) For a given set of tasks T construct an adjacency graph
G0 = 〈T , E0〉 where E0 is the edge set of T .

2) Partition T into k clusters to form an initial allocation
A(0) = {a(0)1 , a

(0)
2 , . . . , a

(0)
k }, where each cluster a

(0)
i

is an unordered subset of T . Let A = A(0) and A∗ =
A(0). (A is the current algorithm allocation, while A∗

is the allocation during the iterations that stores the
lowest cost.)

3) Construct a graph G(A) = 〈T , E(A)〉 based on the
current allocation A, where E(A) ∈ E0 has all the
edges of E0 except those connecting the tasks belong-
ing to different robots.

4) Each robot ri ∈ R (i = 1, 2, . . . , k) uses a “constrained
Prim’s Algorithm”1 (a greedy algorithm) to efficiently
approximate the cost ci(ai) and submits its cost to
the auctioneer. In this bid valuation stage, each cluster
ai becomes an ordered subset of T . The auctioneer
computes the global cost C(A) using (1) or (2) and
sets a high temperature T .

5) For e ∈ E(A), turn the edge e off with a probability 1−
pe, e.g. pe = Dmin

d(e) where D = {||d(e)|| : e ∈ E(A)},
|| · || denotes Euclidean distance, and Dmin = minD.

6) For i = 1, 2, . . . , k turning the edge off divides each
ai ∈ A into ni connected components such that ai =
ni⋃
j=1

aij by each robot.

7) Collect all the connected components in the set CP .
8) The auctioneer rearranges the clusters using either a

single move or a dual move among CP .
Single Move (Connected Component Transfer): Se-
lect a connected component asi ∈ CP from robot rs
with a probability q(asi|CP), e.g., q(asi|CP) = 1

||CP||
in a uniform distribution. Assume that asi is reassigned

1This algorithm fixes the initial vertex with a single edge in Prim’s Algorithm [25],
and hence, unlike Prim’s algorithm, is not guaranteed to be optimal.

to robot rt with a probability q(A(asi) = t|asi,A),
e.g., q(A(asi) = t|asi,A) = 1

k in a uniform distribu-
tion, resulting in the new allocation A(s,t)

i that has two
modified clusters2 a

(−i)
s and a

(+i)
t . Assume that robot

rs computes3 cs(a
(−i)
s ) and for t = 1, 2, . . . , k (t 6= s)

robot rt computes3 ct(a
(+i)
t ), which the auctioneer

uses to compute the corresponding cost C(A(s,t)
i )

(based on (1) or (2)). The probability of the acceptance
of the transfer of the connected component asi from
robot rs to robot rt is given by [24]

αS(A → A(s,t)
i ) = min(1, α1

S · α2
S · α3

S), (3)

where

α1
S =

∏
e∈E(asi,at)

(1− pe)∏
e∈E(asi,as−asi)

(1− pe)
, (4)

α2
S =

P (A(asi) = s|asi,A(s,t)
i )

P (A(asi) = t|asi,A)
, (5)

α3
S =

exp(−C(2)/T )
k∑

t=1,t6=s

exp(−C(A(s,t)
i )/T )

(6)

and C(2) = C(A(s,t)
i ), the cost after transferring.

Dual Move (Connected Component Swap): Select
two connected components in as and at, one con-
nected component asi from robot rs with a probability
q(asi|CP) and the other connected component atj
from robot rt with a probability in q(atj |CP), and
swap them, resulting in the new allocation A(s,t)

i,j

that has two modified clusters2 a
(−i,+j)
s and a

(+i,−j)
t .

Assume that robot rs computes3 cs(a
(−i,+j)
s ) and robot

rt computes3 ct(a
(+i,−j)
t ), which the auctioneer uses

to compute the corresponding cost C(A(s,t)
i,j ) (based on

(1) or (2)). Then, the probability of swapping the two
connected components is given by

αD(A → A(s,t)
i,j ) = min(1, α1

D · α2
D), (7)

where

α1
D =

∏
e∈E(asi,at)

(1− pe) ·
∏

e∈E(atj ,as)
(1− pe)∏

e∈E(asi,as−asi)
(1− pe) ·

∏
e∈E(atj ,at−atj)

(1− pe)
,

(8)

α2
D =

exp(−C(2)/T )
2∑

p=1
exp(−C(p)/T )

, (9)

and C(1) = C(A), the cost before swapping while
C(2) = C(A(s,t)

i,j ), the cost after swapping. (The proof
of (7) is a generalization of the proof of (3), given in
[24].)

2Each cluster is treated as an unordered subset and is ordered in a later bid valuation
stage.

3This cost is computed using the constrained Prim’s algorithm during bid valuation
stages.



9) If C(2) < C(A∗), then A∗ is updated (to A(s,t)
i or

A(s,t)
i,j ).

10) If C(2) < C(1), where C(1) = C(A), the cost
before transferring or swapping, or otherwise αS(A →
A(s,t)

i ) or αD(A → A(s,t)
i,j ) falls into acceptance

probability, the auctioneer accepts the proposal so
that A is updated and the cost C(A) is put on log.
Otherwise, the auctioneer declines the proposal and
the auctioneer reserves the current configuration and
goes back to Step 5).

11) If the auction evolution termination criteria is satisfied,
i.e., T < Tcut, where Tcut is some threshold tem-
perature, then the auction is terminated and the final
allocation is A∗ with final cost C(A∗) < C(A(0)). If
the criteria is not satisfied, reduce T , using T ← T/β
where β > 1 and go to Step 5).

In the implementation of SWSCA used in this study, the
algorithm alternates with equal probabilities between single
and dual moves. Simulation results (omitted for brevity)
showed that when SWSCA alternates with equal probabilities
between single and dual moves it is more efficient than using
exclusively single moves or dual moves.

In order to search for the global optimum, a simulated
annealing method has been adopted. Similar to the seminal
work in [26], SWSCA starts with a high value of T and
gradually reduces it in order to to make small variations in
the task allocation while searching for the optimal allocation
in T . Although the random search in simulated annealing
helps SWSCA avoid local minimum, simulated annealing
algorithms are only guaranteed to converge to the global opti-
mum if the annealing temperature T is sufficiently small [23].
However, although SWSCA relies on simulated annealing,
even for small T , the use of an internal greedy algorithm (see
Step 4 above) can prevent it from converging to a globally
optimal solution. Hence, the primary practical value of using
simulated annealing is to enable the algorithm to yield high
performance solutions with reasonably fast execution times
rather than guarantee asymptotic convergence to a global
optimum.

C. Non-Greedy and Greedy Stochastic Clustering Auctions
Algorithm 1 describes the generic structure of the non-

greedy and greedy versions of a Stochastic Clustering Auc-
tion (SCA). Both the GSSCA of [22] and the SWSCA of this
paper fit in this framework. These algorithms primarily differ
in line 3, where they propose reclustering. The proposals of
GSSCA are based on treating tasks individually and hence
involve simple transfer and swaps of individual tasks. In
contrast, SWSCA is based on transfers and swaps of inter-
connected tasks. All SCA algorithms can be made greedy by
not allowing the uphill movements of line 8, which enable
the algorithm to escape local minima. The ability to intialize
and update the annealing suite in lines 1 and 10 and turn the
uphill movements on and off in lines 6 and 8 provides SCA
with the ability to tradeoff the converged algorithm cost with
computational and communication efficiency, a novel feature
of SCA. The authors’ experience is that when a mission is

Algorithm 1 principal mechanisms for the non-greedy and
greedy versions of a Stochastic Clustering Auction

1: Initialize the annealing suite.
2: repeat
3: Propose a reclustering.
4: Decide whether to accept the proposed cluster.
5: if the solution is better then
6: Accept.
7: else
8: Accept with an acceptance probability (for SCA

only). {This uphill movement is turned off for
gSCA.}

9: end if
10: Update the annealing suite.
11: until The termination is reached

being planned and more time is available it may be advisable
to use the non-greedy version of an SCA. However, during
a mission, the speed of the greedy version of an SCA may
be needed.

D. Use of a SWSCA for Distributed Task Allocation

If all the mission tasks are given in T , then a SWSCA
is a centralized auction. A centralized auction may make
sense at the beginning of a mission, but it may not be
feasible during the mission due to limited communication
and the computational cost of a centralized auction. Hence,
once the mission begins, it is assumed that clustering must
be performed in a distributed fashion in which each robot
sequentially in a given (possibly random) order becomes the
auctioneer. If the distributed auction is based on optimizing
the regional cost, the new global cost will be at least as
small as the global cost of the initial global allocation, which
motivates basing distributed SWSCA on the optimization of
regional costs. In particular, each robot, sequentially or in
random order, calls and clears one auction. Rounds are held
repeatedly until a stable solution is reached. The auctioning
process can recommence when a new task is obtained or
when there is a substantial change in the existing costs.

III. EXPERIMENTAL RESULTS FOR
CENTRALIZED IMPLEMENTATION OF SWSCA

This section provides simulation results for SWSCA using
the multi-robot routing problem, which is a standard test
domain for robot coordination using auctions [4], [7], [9],
[10], [11], [12], [13], [16], [18], [19]. The task allocation is
time-extended assignment such that all tasks are assigned to
robots before the assignments are carried out [27]. It is free
of conflicts since each task is assigned to no more than one
robot. The tasks in the multi-robot routing problem consid-
ered here are to visit targets and complete an assignment. The
SWSCA task allocations are compared with those obtained
using the Sequential (single-item) Auction (SA) and the
Parallel Auction (PA), which are standard auction methods in
the existing literature [13], [14], [16], [20], and their variants,
the Look-Back Sequential (single-item) Auction (LBSA) and



the Look-Back Parallel Auction (LBPA), which take into
account the previous bids when considering the cost of the
current bid in comparison with SA and PA. LBSA and LBPA
sometimes yield better performance than their better known
respective counterparts, SA and PA, while having similar
computational requirements.

For each simulation the stochastic random scenario ap-
pears in a 10000m×10000m area. The initial robot positions
were evenly distributed along one edge of the area and the
speeds for each of the robots were assumed to be constant
and were chosen randomly from the interval (0m/s,20m/s]
assuming a uniform distribution. The cost function is a
MINSUM cost function in (2) corresponding to the total
distance traveled or the total energy expended. Also, for each
simulation the following SWSCA parameters were used:
initial temperature, T = 1000; and termination temperature,
Tcut = 20.

The communication complexity of SWSCA is measured
by the number of auction cycles (ACs). Formally, an AC
is one bid evaluation cycle corresponding to Steps 5-7 of
Section II-B. In addition, to evaluate the performance of
SWSCA the concept of Mean Cost Improvement (MCI) is
introduced as given by Definition 1.

Definition 1 For m stochastic scenarios let {CSWSCA(i) :
i = 1, · · · ,m} denote the set of m costs resulting from
SWSCA and let {CBestGreedy(i) : i = 1, · · · ,m} denote the
set of minimum costs achievable with the greedy algorithms:
SA, LBSA, PA and LBPA. The Mean Cost Improvement
(MCI) is the average of the normalized improvement of the
SWSCA cost over the best of the greedy algorithms, such that

MCI
∆
=

m∑
i

(
CBestGreedy(i)−CSWSCA(i)

CBestGreedy(i)

)

m
. (10)

Previous studies [22], [24] reveal the performance and
algorithm convergence benefits of initializing an SCA with
an allocation obtained from a greedy algorithm as op-
posed to initializing them with a random allocation. Thus,
the lowest cost allocation from the set of greedy auc-
tions {SA,LBSA,PA,LBPA} is used to initialize SWSCA.
This section studies the performance of centralized SWCA
(cSWSCA), greedy centralized SWSCA (gcSWSCA), cen-
tralized GSSCA (cGSSCA), greedy centralized (gcGSSCA),
and the four greedy auctions using simulations involving
1000 random scenarios for a given number of tasks and
robots.

A. Simulation Results for cSWSCA and gcSWSCA with 3
Robots

The initial simulations were restricted to 3 robots with the
number of tasks ranging from 5 to 100 in increments of 5.
The algorithms cSWSCA and gcSWSCA were evaluated for
3 cooling schedule ratios β, representing slow (β=1.001),
medium (β=1.01), and fast (β=1.1) algorithm convergence.
For the smallest cooling schedule ratio, β = 1.001, the
MCI of cSWSCA is in the interval [12.2%, 40.9%] and

(for the same number of tasks) is always greater than the
MCI for gcSWSCA, which is in the interval [6.9%,36.6%]
with a maximum increase of 7.4%. In contrast, for the larger
cooling schedule ratio, β = 1.01, the MCI of gcSWSCA
is in the interval of [0.4%,23.3%] and is always greater
than the MCI for cSWSCA, which is in the interval of
[0.28%,21.2%] with a maximum increase of 3.34%. For
cSWSCA the auction cycles interval changes from [3,99] to
[1,4] with a maximum decrease of 96%. For medium to fast
annealing, e.g. β = 1.01 or β = 1.1, gcSWSCA tended to
converge faster than cSWSCA in terms of ACs by an order of
magnitude, while actually exceeding cSWSCA in MCI. The
reason for this is that the uphill random walk that is a part
of cSWSCA is inefficient when the annealing is sufficiently
fast. The purpose of the uphill random walk is to enable the
optimization to escape local minimum. However, when the
annealing is fast, the optimization will usually converge to a
local minimum and the uphill movement simply makes the
optimization less efficient.

(a) gcGSSCA

(b) gcSWSCA

Fig. 3. Mean cost improvement (MCI) vs. the number of robots and the
number of tasks for gcGSSCA and gcSWSCA for β = 1.01



B. Simulation Results for gcSWCA and gcGSSCA with a
Varying Number of Robots

In the subsequent simulations the number of robots was
added as a variable in the random simulations. In particular,
1000 random scenarios were again studied for a given
number of robots and tasks with the number of robots now
ranging from 3 to 6 and the number of tasks ranging from
10 to 260 in increments of 10. These results showed that
the relationship between the MCIs and ACs of gcSWSCA
observed before for 3 robots extend to an arbitrary number
of robots. (The detailed results are omitted for brevity.)
Second, they were used to provide a fairly comprehensive
comparison of gcSWSCA and gcGSSCA (see Section III-
B.1). Third, they were used to generate curves that can be
used to determine the number of robots needed for a mission
that is specified by some number (or range of numbers) of
possible tasks in a specified region (see Section III-B.2).

(a) gcGSSCA

(b) gcSWSCA

Fig. 4. Average numbers of auction cycles to converge vs. the number of
robots and the number of tasks for gcGSSCA and gcSWSCA for β = 1.01

1) Comparison of gcSWSCA with gcGSSCA: Fig. 3 shows
that the maximum MCI for gcSWSCA is 27.7% while the
maximum MCI for gcGSSCA is 4.3%. Also, Fig. 4 shows
that the maximum AC for gcSWSCA is 24 while the maxi-
mum AC for gcGSSCA is 30. In general gcSWSCA is able
to achieve a higher MCI (i.e., performance improvement)

than gcGSSCA in a comparable number of ACs (auction
cycles), revealing the efficiency of the synergic task coupling
in SWSCA. It should be noted that an AC in SWSCA is more
computationally expensive than an AC in GSSCA. Future
work will quantify this extra expense.

(a) Mean cost vs. the number of robots and the number of tasks
for gcSWSCA
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(b) Frontal plane of Fig. 5(a) in 260 tasks

Fig. 5. Mean cost vs. the number of robots and the number of tasks, and
its “slice” in a frontal plane for gcSWSCA with β = 1.01

2) Evaluation of gcSWSCA: Fig. 5 displays the costs (in
this case for gcSWSCA with β = 1.01) as a function of the
number of robots and tasks. It shows that as the number of
tasks increases, a substantial performance improvement (i.e.,
distance savings) can be achieved by adding a small number
of robots. For example in Fig. 5(b), which shows the costs
for 260 tasks, the cost corresponding to 2 robots is 102.5
km, while the costs with 4 robots improves to 73.1 km. In
general for a fixed number of tasks, the corresponding “slice”
of a 3-D curve such as Fig. 5(b) may be used to trade off
performance vs. the number of robots and hence provides a
guideline for choosing the desired number of robots for the
expected mission.

IV. EXPERIMENTAL RESULTS FOR DISTRIBUTED
IMPLEMENTATION OF SWSCA

As previously discussed, distributed auctions are needed
due to limited communication between robots. This section
uses numerical experiments to evaluate the efficacy of the
distributed SWSCA (dSWSCA) approach described in Sec-
tion II-D. As in Section III, random scenarios were simulated
in a 10000m× 10000m area and the speeds for each of the
robots were assumed to be constant and were chosen ran-
domly from the interval (0m/s,20m/s] assuming a uniform



distribution. The cost function is a MINSUM cost function as
in (1). The SWSCA parameters used were as before: initial
temperature, T = 1000; termination temperature, Tcut = 20;
and the cooling schedule ratio, β = 1.01.

A. Two Metrics for Evaluation of dSWSCA

The efficacy of dSWSCA is measured by comparing
the resultant global cost with the corresponding gcSWSCA
global cost. This leads to the following definition for opti-
mization efficiency.

Definition 2 The optimization efficiency for scenario j is
denoted by ηj ∈ (0, 1] and defined by ηj

∆
=

C∗
j

Cj
, where C∗

j is
the global cost resulting from the application of gcSWSCA
and Cj is the global cost resulting from the application of
dSWSCA.

A tournament corresponds to one round of distributed
auctioning in which one of the robots serves as the auctioneer
and leads an auction with the robots that are within commu-
nication range. To quantify the extent of robot interaction in
the tournaments of the distributed auctioning the concept of
tournament participation index is introduced in the following
definition. Increasing values of this index corresponds to
increasing communication between the robots.

Definition 3 The Tournament Participation Index (TPI)4

for k robots is denoted by ζ(k) ∈ (0, 1] and defined by

ζ(k)
∆
=

k∑
i=1

b2(i)

k

k2 =

k∑
i=1

b2(i)

k3 , where b(i) is the number of
robots that participate in the regional auction in which robot
ri is the auctioneer. Hence ζ(k) is the mean of b2(i) for the
k robots, normalized so that it lies in the interval (0, 1].

Note the TPI ζ(k) = 1 corresponds to full communication
between each of the robots.

B. Evaluation of Distributed SWSCA Using Scale Free Net-
works

A key issue is how to evaluate distributed SWSCA
(dSWSCA) using simulations. In this section we base the
simulations on robots whose communication links are de-
termined according the topology of a scale free network
(SFN) [28]. As a robot is added to a SFN, the communi-
cation links with other robots is determined probabilistically
using “growth” and “preferential attachment” laws [28]. The
resulting SFN networks tend to have some robots that have
sparse communication links while others have more dense
communication links.

A SFN network for 11 robots is illustrated in Fig. 6.
This circular network was used in the simulations and it
was assumed that each robot sequentially takes a turn as an
auctioneer in the pattern r1 → r2 → r3 → . . .. The origin
of the circle defining the positions of the robots was at the
center of a 10000m×10000m area and the diameters of the

4TPI is similar to but different than the degree or connectivity in networks or graph
theory since there are no redundant connections between two robots and b(i) counts
the robots instead of the links.

(a) SFN for 12 robots

(b) One physical representation of SFN in Fig. 6(a)

Fig. 6. A SFN communication pattern for 11 robots (The solid line
represent communication links among the 11 robots while the dashed lines
represent the communication links determined by the growth and preferential
attachment laws when a 12th robot is added to the network.)

circles were chosen to be 5000m. The auctioning process
for dSWSCA was initialized using the set of fast greedy
algorithms {SA,LBSA,PA,LBPA}. In the dynamic scenarios
300 tasks were randomly given at the outset of auctioning
and subsequently no tasks were changed or added. However,
a new robot r12 is added after robot r11 first serves as the
auctioneer. For a given number of tasks each simulation
involved 1000 random scenarios. Fig. 7 showed that the mean
optimization efficiency actually decreased after the new robot
r12 was introduced due to the TPI decreasing from 0.0744 to
0.0689. However, the distributed auctioning accommodated
the new robot and increased the optimization efficiency as
the tournaments progressed.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel Stochastic Clustering Auc-
tion (SCA) based on the generalized Swendsen-Wang
method. The new algorithm is called the Swendsen-Wang
SCA (SWCCA) and unlike the previous Gibbs Sampler SCA
(GSSCA) it enables the transfer and swapping of tasks that
have been connected. SCA algorithms are based on simulated
annealing and have the ability to avoid local minima via
uphill moves. However, for faster convergence the uphill



6 7 8 9 10 11 12 13 14 15
0.52

0.54

0.56

0.58

0.6

0.62

TOURNAMENT

O
P

T
IM

IZ
A

T
IO

N
 E

F
F

IC
IE

N
C

Y

Fig. 7. Mean optimization efficiency vs. number of tournaments for a SFN
of abstract auction rotation patterns in Fig. 6: 300 tasks with a new robot
introduced after Tournament 12

movements may be turned off resulting in a greedy SCA.
The experiences of the authors is that when a mission is first
planned (and more time is available) the uphill movements
should be included to increase performance. However, during
a mission it may be more appropriate to use a greedy SCA.

A series of random simulations showed that SWSCA
was able to obtain significantly greater cost improvements
than GSSCA for both the greedy and non-greedy cases.
Distributed SWSCA, denoted as dSWSCA, was based on
applying the greedy SWSCA regionally and enabling each
robot to serve as the auctioneer in a rotation pattern. The
performance of dSWCA was evaluated in random simu-
lations using communication links derived from a scale
free network. The simulation results showed that dSWSCA
continuously improved the global performance each time
one of the robots completed its tournament (i.e., its auction
process).

The current Swendsen-Wang SCA is only valid for task
allocation using MinSum cost functions. Future work will
develop an algorithm that can also be used for problems
with MinMax cost functions.
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